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Abstract 

The early life period is extremely vulnerable to programming effects from the environment, many of 

which persist into adulthood. We have previously demonstrated that adult rats that were overfed as 

neonates have hypothalamic microglia that are hyper-responsive to an immune challenge and 

hippocampal microglia that respond less efficiently to learning. We therefore hypothesized that 

neonatal overfeeding would alter the ability of hippocampal microglia to respond to an immune 

challenge with lipopolysaccharide (LPS) and that concomitant minocycline, a tetracycline antibiotic 

that suppresses microglial activity, could restore these responses. We induced neonatal overfeeding by 

manipulating the litter sizes in which Wistar rat pups were raised, so the pups were suckled in litters 

of 4 (neonatally overfed) or 12 (control-fed). We then examined the hippocampal microglial profiles 

24 hr after an immune challenge with LPS, and found that the neonatally overfed rats had 

dramatically increased microglial numbers in the hippocampus after immune challenge compared 

with control-fed. Attempts to reverse these effects with minocycline revealed repeated neonatal 

injections, whether with minocycline or with saline, markedly suppressed microglial number and 

density throughout the hippocampus and abolished the difference between the groups in their 

responses to LPS. These data suggest neonatal overfeeding can have lasting effects on hippocampal 

immune responses, but also that neonatal exposure to a protocol of repeated injections, irrespective of 

treatment, has pronounced long-term impact, highlighting the importance of considering these effects 

when interpreting experimental data.  

 

Introduction  

Early life diet in children and animals can strongly influence body weight long-term 1-5. As such, 

children and rodents that overeat or have poor diet during vulnerable windows of development are at 

significant risk of long-term obesity and the myriad associated comorbidities that ensue 6. For 

instance, rodents suckled in small litters, where they have greater access to their mother’s milk 

compared with controls, have accelerated growth and weight gain early on; this excess weight and 
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body fat persists at least to young adulthood 5,7-9. In addition to metabolic dysfunction 7,10,11, 

hypothalamic-pituitary-adrenal (HPA) axis dysfunction 12,13, reproductive problems 14, and other 

complications, neonatal overfeeding leads to a potentiated febrile response 15 as well as 

hypersensitivity or “priming” of hypothalamic microglia, one of the major immune cell populations in 

the brain 5. Hypothalamic microglia in the neonatally overfed are increased in number and density 

under basal conditions, reflective of a pro-inflammatory, hyper-activated profile. They also hyper-

respond to stimulation with lipopolysaccharide (LPS) and this is associated with elevated circulating 

cytokines 5, suggesting neonatal overfeeding leads to an increased response to immune challenge. 

 

This programming effect of early life diet on microglia extends beyond the hypothalamus; microglia 

are also increased in density in the hippocampus in adults that have been overfed as neonates 16. 

Similarly, recent studies have shown a primed hippocampal microglial profile in adult offspring from 

high-saturated-fat diet-fed dams 4,17. Performance in hippocampally-mediated learning tasks is less 

efficient in these rats 4,17 and it appears microglia are less responsive to a learning task in neonatally 

overfed rats than in control-fed 16. Microglia have region-specific heterogeneity with different 

responses to stimuli in different brain regions 18-21. However, given that neonatally overfed rats have a 

primed microglial profile under basal conditions in both the hypothalamus and hippocampus, and 

noting the integral role of the hippocampus in responding to immune challenge 22,23, we hypothesized 

that hippocampal microglia from neonatally overfed rats would be hyper-activated in response to 

LPS, leading to an altered ability to respond to the immune challenge.   

 

We therefore tested hippocampal microglial responses to LPS in vitro and in vivo in rats that had been 

suckled in small litters (neonatally overfed; SL) compared to those that had been suckled in normal-

sized litters (control-fed; CL). To restore normal hippocampal microglial responses, we then 

attempted to suppress microglial activation during the neonatal period with the second generation 

antibiotic, minocycline 24. Minocycline easily crosses the blood-brain after systemic administration 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

25,26 and is a known inhibitor of microglial activation 27,28. Minocycline has been shown to 

successfully ameliorate neuroinflammation at the site of hypoxic-ischemic insult in neonatal rodent 

studies 28-32. Unexpectedly, we found that the injection protocol, even in the saline-treated rats, 

markedly suppressed microglial number and density throughout the hippocampus. It also reversed the 

effects of neonatal overfeeding on microglia. There was no additional effect of minocycline. Our 

outcomes have significant implications for future study design and also suggest that the negative 

effects of neonatal overfeeding, on at least microglial responsiveness, may be mitigated by neonatal 

experience.   

 

Materials and Methods 

Animals  

We obtained timed pregnant Wistar rats from the Animal Resources Centre, Murdoch, WA Australia. 

On arrival at the RMIT University Animal Facility at gestational day 16, we singly-housed the dams 

at 22 °C on a 12 hr light/dark cycle (light: 0700 – 1900 hr) and provided them with ad libitum pelleted 

rat chow and water. All procedures were conducted in accordance with the National Health and 

Medical Research Council Australia Code of Practice for the Care of Experimental Animals, and 

experiments were approved by the RMIT University Animal Ethics Committee. 

 

Litter manipulation and minocycline treatment 

On the day of birth (postnatal day 0; P0) we removed all pups from their dams and randomly 

reallocated them to new dams in litters of 12 (CL) or 4 (SL) as we have previously described 2,5,11,15. 

Dams did not receive any of their own pups and each new litter was made up of 50% males and 50% 

females. Excess pups were culled by decapitation. We have previously shown that this manipulation 

results in the neonatally overfed pups being significantly heavier by P7 and throughout life 2,5,11,15. We 
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have previously reported weight data from this cohort of rats (those shown here in Fig. 2 and Fig. 3) 

and have analysed their HPA axis responses to an immune challenge 33. 

 

At P0, control-fed and neonatally overfed pups were allocated to either a three-week treatment 

regimen or were untreated, except for the litter size manipulation, until experimentation in adulthood; 

approximately P70 (Fig. 1). For the neonatal treatment, we administered either minocycline (22.5 

mg/kg i.p. in saline, 100 μL) or vehicle (saline, 100 μL) once every second day during the three-week 

suckling period starting on P1 to control-fed and neonatally overfed pups 24 (Fig. 1B). Each litter had 

equal numbers of minocycline and saline-treated pups. To administer the minocycline (or vehicle), we 

removed the entire litter of pups from the dam, completed the injections, then returned the whole litter 

unit to the dam. Each pup was handled for approximately 10 s on each injection day and was 

separated from the dam for a maximum of 10 min. We refer to this treatment throughout the 

manuscript as the injection protocol.  

 

The pups were separated into same-sex littermate pairs upon weaning at P21 and left undisturbed until 

experimentation, except for the usual animal husbandry. We used only males in these experiments; 

females were kept for use in other studies. For these experiments we used 136 rats. No more than two 

rats per litter were used per experimental group 34. N are as indicated in the results. We performed all 

adult experiments between 0900 and 1300 hr to avoid the potential influence of circadian rhythms. 

 

Hippocampal microglial responses to immune challenge 

To determine if hippocampal microglia are more susceptible to an immune challenge in neonatally 

overfed animals we gave adult (P70) control-fed and neonatally overfed rats an i.p. injection of LPS 

(100 μg/kg/mL; E. coli, serotype 0.127:B8; L-3129; Sigma-Aldrich, St Louis, MO, USA) or pyrogen-

free saline, 24 hr prior to cull (Fig. 1A). 
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At 24 hr after LPS injection, we deeply anaesthetized the rats with sodium pentobarbital 

(approximately 150 mg/kg/mL, i.p.). We then transcardially perfused the rats with phosphate buffered 

saline (PBS; 4 °C, pH 7.4), followed by 4% paraformaldehyde in PBS (4°C, pH 7.4). We then 

removed the brains and post-fixed them for 24 hr in the same fixative before placing them in 20% 

sucrose in PBS (4 °C). Forebrains were cut into 30 μm-thick coronal sections using a cryostat. 

Sections were serially cut into a one in five series and were stored at 4 °C until use for 

immunohistochemistry.  

 

For immunohistochemistry, sections through the hippocampus were immunolabelled for ionized 

calcium-binding adapter molecule-1 (Iba-1; expressed on microglia). Iba1 is a commonly used marker 

for identification of microglia 35-37. It is clearly constitutively expressed in microglia and is not 

expressed in neurons, astrocytes, or oligodendroglia 38,39. However, we should note it is expressed on 

cells of the monocyte / macrophage lineage, including non-microglial CNS macrophages. Sections 

from each treatment group were randomly selected and processed at the same time to reduce 

variability. Briefly we incubated sections in primary Iba-1 antibody (overnight; 4 °C; 1:1000; rabbit; 

Wako Chemicals USA Inc., Richmond, VA, USA), followed by secondary antibody (1.5 hr; 1:200; 

biotinylated anti-rabbit; Vector Laboratories, Burlingame, CA, USA) and avidin-biotin horseradish 

peroxidase (HRP) complex (ABC; 45 min; Vector Elite Kit; Vector). To visualize the HRP activity, 

the sections were incubated in diaminobenzidine (DAB), seen as amber staining. The reactions were 

stopped when the contrast between specific cellular and non-specific background labelling was 

optimal. Sections were mounted and air-dried, dehydrated in a series of alcohols, cleared in histolene 

and coverslipped.  

 

Hippocampal sections were assessed by an experimenter blinded to treatment conditions for 

differences in numbers of cells with Iba-1 labelling and in density of Iba-1 labelling, as previously 

described 40,41. Briefly, we used the thresholding method on photomicrograph images imported into 
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image analysis software ImageJ (National Institutes of Health, Bethesda, MD, USA). For the 

hippocampus we analysed four sections 120 μm apart between 2.52 and 4.56 mm caudal to bregma 

per animal. We saw no differences between the rostrocaudal levels for any of the regions, so we took 

the sum counts and mean density of the four images as our sampled result. We present analysis from 

several subfields of the hippocampus since there are regional differences in microglial distribution 

between these regions, with microglial density in the CA3 region being lower than in the CA1 region 

and the dentate gyrus (DG), and this heterogeneous distribution may participate in the modulation of 

hippocampal activity 42.  

 

Microglial cell isolation and in vitro immune stimulation  

To assess microglial responsiveness in vitro, we euthanized a cohort of otherwise untreated control-

fed and neonatally overfed rats in early adulthood (P70) with a lethal dose of sodium pentobarbital 

(Fig. 1A). We rapidly extracted the brains, and dissected the two hippocampi on ice. Whole 

hippocampi were placed in ice cold Dulbecco’s PBS supplemented with 0.2% glucose (sDPBS). 

These experiments were conducted in accordance with previous literature that states isolated 

microglial cultures do not change their phenotype after 4 hrs post-isolation 43-45. Moreover, we 

directly analysed freshly isolated microglia, which have been shown to be more representative for the 

in vivo status of microglial cells at the time of isolation 45,46.  

 

Tissue was homogenized according to the methods previously described by Frank et al 45,47,48. Briefly, 

we finely minced the whole hippocampi with a razor blade in DPBS and transferred the minced tissue 

to an iced tissue homogenizer. The homogenate was filtered through a 40 μM cell strainer (BD 

Biosciences Discovery Labware, Australia) and was pelleted at 1500 rpm for 10 min.  A Percoll 

density gradient was created by resuspending the pellet in 70% isotonic Percoll (Sigma-Aldrich), 

followed by 37% and 30% Percoll layers and topped with DPBS. The gradient was spun for 45 min 
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at 3400 x rpm at 20 °C with minimum acceleration and brake. Microglia were extracted from the 

37/70% interface. Following isolation, hippocampal microglia from cage-mate pairs were combined 

and stained with Trypan blue and the numbers of viable cells were counted under the microscope 

based on dye exclusion. We obtained a density of >5 x 105 cells. Cells were pelleted at 1500 x rpm for 

5 min at room temperature (RT) and then separated for either flow cytometric assessment or in vitro 

immune stimulation.   

 

For flow cytometric assessment of microglial purity and immunophenotype, microglia were stained 

with both CD11b-FITC (a microglial marker to assess microglial purity) and CD45-PE (a non-

microglial macrophage marker to assess contamination with other brain macrophages) 45. Briefly, 

microglia (>3 x 104 cells) were suspended in incubation buffer (1 x DPBS + 0.2% glucose) and kept 

on ice for 30 min prior to staining. Antibodies and the isotype controls (1:100; Anti-Rat CD45-PE, 

Anti-Rat CD11b-FITC, Mouse IgG2a K Isotype Control FTC, Mouse IgG2a K Isotype Control PE; 

EBiosciences, Waltham, MA, USA) were diluted in the incubation buffer and incubated on ice for 1 

hr. Cells were washed and resuspended in DPBS and immediately analysed by flow cytometry.  

 

Isolated microglia were analysed on a FACSCanto II cytometer (BDBiosciences, North Ryde, NSW, 

AUS). For each staining condition (isotype control and antibody of interest), 1 x 104 events were 

collected. Quantitation of positively labelled cells was determined by setting threshold on background 

staining of isotype control. The mean fluorescence intensity of each sample was measure and 

expressed as a fold increase. To ensure that the population of cells analysed were a pure population of 

microglia (CD11bhigh/ CD45low), we performed gating on size and granularity to exclude the debris.  
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For in vitro immune stimulation, microglia (3 x 104 cells per well) were resuspended in 100 μL/well 

of media (RMPI + 10% Fetal Bovine Serum (FBS)). To assess microglial cytokine responsiveness, 

cells were challenged with LPS (E. coli, serotype 0.127:B8; L-3129; Sigma) at a concentration of 

either 10 or 100 ng/mL, or media alone 45 for 4 hr at 37 °C, 5% CO2. At the end of incubation, 100 μL 

of media was collected, centrifuged at 1500 x rpm for 1 min at RT, and kept frozen for cytokine 

analysis.  

 

To assess changes in LPS-stimulated hippocampal microglia, cultured supernatant fluids were 

analysed for two pro-inflammatory cytokines, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-

α) in a simultaneous, multiplexed format using a Bio-Plex Pro rat cytokine assay. All procedures were 

carried out according to the recommended procedure (Bio-Plex Pro Array System, Bio-Rad 

Laboratories Inc., Hercules, CA, USA). The data were analysed using Bio-Plex Manager Software 6.1 

(Bio-Rad).  

 

Assessment of body fat composition via EchoMRI in adult neonatally injected rats 

One week prior to cull, a cohort of adult (P63) control-fed and neonatally overfed rats that had been 

treated as neonates with minocycline or saline underwent a magnetic resonance imaging (MRI) scan 

to assess fat and lean mass (Fig. 1B). Rats were briefly restrained for the duration of the 90 s scan. 

 

Effects of minocycline on adult microglia and central susceptibility to LPS 

To determine if the increased microglial activation after LPS in adult rats that had been overfed as 

neonates could be reversed by neonatal microglial inactivation with minocycline, we also examined 

immunohistochemical responses to LPS (as described above; Fig. 1B). We assessed this in a cohort of 
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adult control-fed and neonatally overfed rats that had been treated as neonates with minocycline or 

saline (as described above).  

 

Assessment of plasma corticosterone 

To assess basal HPA axis function in adults that had been overfed as neonates, versus control-fed, and 

either not injected (Fig. 1A) or given the injection protocol (saline; Fig. 1B), we measured plasma 

corticosterone concentrations. We used a standard rat corticosterone ELISA (Abnova Corp., Taipei, 

Taiwan). The inter-assay variability for this assay was 7.2% coefficient of variation (CV), intra-assay 

variability 4.8% CV, and lower limit of detection 40 pg/ mL. We assayed samples from all treatment 

groups together in duplicate.  

 

Data Analysis 

Data were analysed by SPSS using multi-factorial analyses of variance (ANOVAs) with Tukey’s post 

hoc tests where significant interactions were found. We analysed weight data using repeated measures 

ANOVA. Data are mean + SEM and statistical significance was assumed when p < 0.05.  

 

Results 

Neonatal overfeeding increases the microglial response to LPS in adults 

Neonatal overfeeding increased susceptibility to the central effects of an immune challenge in the 

CA3 and CA1 regions of the hippocampus at 24 hr after i.p. LPS (Fig. 2A-E), however, there were no 

differences in density. Thus, after LPS injection, the numbers of microglia were significantly higher 

in the CA3 region in neonatally overfed than control-fed rats, and were also significantly elevated 

after LPS compared with saline-treated animals (significant effect of litter size: F(1,36) = 12.28, p = 

0.001 and LPS: F(1,36) = 8.61, p = 0.006; n = 6-16). The neonatally overfed rats also showed increased 
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numbers of microglia in the CA1 region compared to control-fed rats (significant effect of litter size: 

F(1,39) = 13.61, p = 0.001 and LPS: F(1,39) = 5.88, p = 0.02). Numbers of microglial cells were also 

increased in the hilus with neonatal overfeeding (significant effect of litter size: F(1,35) = 14.68, p = 

0.001; Fig. 2 G) and subgranular/granular (significant effect of litter size: (F(1,35) = 13.17, p = 0.001; 

Fig. 2 I) regions of the dentate gyrus (DG) but not in the molecular region of the DG (Fig. 2K). 

 

Additionally, in the DG, the previously reported finding that density was increased in neonatally 

overfed rats with respect to control-fed rats under basal and LPS-stimulated conditions 16 was 

replicated here (Fig. 2H, J, L). Thus, there was a significant effect of litter size on density in the hilus, 

subgranular/granular, and molecular regions, with neonatally overfed rats having higher density than 

control-fed (hilus: F(1,36) = 30.44, p < 0.001; Fig. 2H, subgranular/ granular: F(1,36) = 27.87, p < 0.001; 

Fig. 2J and molecular: F(1,35) = 39.40, p < 0.001; Fig. 2L) . 

 

Neonatal overfeeding does not affect microglial sensitivity to an LPS challenge in vitro 

Since our in vivo studies had revealed that the hippocampus, at least the CA3 and CA1 regions, was 

more sensitive to the effects of LPS on microglia in neonatally overfed than control-fed rats, we next 

aimed to determine if this was an effect specific to microglia. We thus examined specific microglial 

responses to LPS by stimulating them in isolation.  

 

Quantitation of cells positively labelled for CD11b and CD45 verified there were no differences in the 

expression of both either marker between the groups, indicating our isolation protocol was equally 

effective in both the neonatally overfed and control-fed rats (Fig. 3A). For both TNFα and IL-6 there 

was a significant effect of treatment with LPS. 100 ng/mL LPS significantly increased TNFα (F(2,39) = 

13.32, p < 0.001; n = 8; Fig. 3B) in neonatally overfed rats only compared with no LPS and 

significantly increased IL-6 (F(2,39) = 44.78, p < 0.001; Fig. 3C) in control-fed and neonatally overfed 
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rats compared with no LPS. There were no significant differences between the control-fed and 

neonatally overfed groups, indicating microglial sensitivity to LPS in vitro was not affected by 

neonatal overfeeding, and suggesting the response is potentially modulated by other cell types.  

 

Neonatal overfeeding and effects of minocycline 

Although we did not see in vitro differences between the microglial responses of the neonatally 

overfed control-fed rats in adulthood, our in vivo results showed microglial responses to an immune 

challenge in adults are increased in these animals relative to control-fed responses. We thus aimed to 

reverse or mitigate the long-term effects of neonatal overfeeding on microglial responses by inhibiting 

microglial activation concomitant with overfeeding.  

 

The course of minocycline injections had no immediate effect on neonatal weight (significant time by 

litter size effect: F(3, 108) = 107.54, p < 0.001; Fig. 4A; n = 16-18) with both groups of neonatally 

overfed rats weighing more than control-fed rats at P14 and P21. The weight difference in adulthood 

between control-fed and neonatally overfed rats was also maintained, even slightly increased, after 

minocycline injections (significant effect of litter size: F(1, 60) = 25.41, p < 0.001 and treatment: F(1, 60) 

= 9.33, p = 0.003; Fig. 4B).  

 

The differences in body mass in control-fed and neonatally overfed rats were also maintained despite 

neonatal minocycline. Lean mass, total fat mass and percentage fat mass were significantly increased 

in the neonatally overfed compared with the control-fed rats (lean mass: significant effect of litter 

size: F(1, 60) = 17.44, p < 0.001 and treatment: F(1, 60) = 5.41, p = 0.023; Fig. 4C, total fat mass: 

significant effect of litter size: F(1, 60) = 45.18, p < 0.001 and treatment: F(1, 60) = 5.08, p = 0.028; Fig, 

4D and percentage fat mass: significant effect of litter size: F(1, 60) = 29.28, p < 0.001; Fig. 4E). 
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Neonatal injection protocol markedly reduces microglial numbers and density; no additional effect of 

minocycline.  

We hypothesized that the altered microglial profile that we have previously seen in the neonatally 

overfed rats 16 would be suppressed to that of control-fed levels with minocycline administered during 

the suckling period. We thus analysed hippocampal microglia from these rats that had been injected as 

neonates with either saline or minocycline. We unexpectedly found not only no beneficial effect of 

minocycline, but that our finding (previously observed in two separate experiments 16 and here) of 

neonatal overfeeding-induced increases in hippocampal microglia number and density was no longer 

evident in this cohort (Fig. 5; n = 7-9). In the CA3 region, there was a main effect of immune 

challenge on the number of microglia (significant effect of immune challenge: F(1,54) = 12.312, p = 

0.01; Fig 5A) but no effect on density (Fig. 5B). In the CA1 region, there was a significant interaction 

between litter size and immune challenge on density of microglia: F(1,54) = 4.576, p = 0.037; Fig. 5F), 

but no specific effects of neonatal overfeeding with post hoc comparisons. Neonatal overfeeding did 

not affect the number of microglia in the hilus region of the DG (Fig. 5G), however, it suppressed the 

density of microglia overall (significant interaction between litter size and minocycline injection: 

F(1,55) = 4.518, p = 0.038 and an interaction between litter size and immune challenge: F(1,55) = 4.042, p 

= 0.005; Fig. 5H). Specifically, there was reduced microglial density in the neonatally overfed 

vehicle-treated rats that were given LPS as adults (SL nSal/ aLPS) compared to control-fed (CL nSal/ 

aLPS), and reduced microglial density in the control-fed minocycline-treated rats that were given LPS 

as adults (CL nMino/ aLPS) compared to control-fed vehicle-treated that were given adult LPS rats 

(CL nSal/ aLPS). In the sub-granular/granular zone, there was an interaction between litter size, 

minocycline-injection and immune challenge (F(1,57) = 4.049, p = 0.049; Fig. 5J) on microglia density, 

however, there were no effects with post hoc analysis. We also found no of any of the treatments the 

number of microglia between the control-fed and neonatally overfed animals regardless of injection in 

the sub-granular/ granular region (Fig. 5I). Neonatal overfeeding suppressed the number and density 

of microglia in the molecular region of the DG (number: significant interaction between litter size and 

immune challenge: F(1,55) = 4.869, p = 0.032; Fig. 5K, and, density: significant interaction between 
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litter size and immune challenge: F(1,54) = 4.244, p = 0.044; Fig. 5L) with specifically fewer microglia 

in the neonatally overfed vehicle-treated ratsthat were given LPS  (SL nSal/ aLPS) compared to 

control-fed vehicle-treated (CL nSal/ aLPS).  

 

Interestingly, the neonatal injection protocol, whether with minocycline or with saline, appeared to 

significantly suppress microglial numbers and density in all groups. Figure 6 illustrates the data 

shown in Figure 5 superimposed on those from the experiment in Figure 2. Data from Figure 2 show 

high numerical similarity with data we have previously published 16. Given the apparent effect of the 

neonatal treatment regimen, we re-processed the hippocampal tissue from our previously published 

animals 49 to verify this result was not due to tissue processing or age of the tissue/duration of storage. 

Microglial numbers and density were not different from the published data and Figure 2 (data not 

shown).  

 

To statistically compare the effects of the neonatal injection protocol and neonatal overfeeding alone, 

we examined an additional cohort of control-fed and neonatally injected rats that had been processed 

at the same time as our minocycline cohort, but for a different study (Fig. 1C). These were not 

otherwise handled except for the usual husbandry and weekly weighing during the neonatal period. 

The non-injected animals (CL and SL non-injected) showed the same microglial profiles as 

previously reported. The neonatally overfed animals that were not injected (SL non-injected) during 

the suckling period showed an increased microglial density in the hilus region of the DG, compared to 

the control-fed (CL non-injected) and neonatally overfed saline-injected animals (SL nSal/ aSal) 

(number: significant effect of litter: F(1,21) = 5.326 , p = 0.031; Fig. 7A and injection F(1,25) = 23.793 , p 

< 0.001; Fig. 7B and density: significant interaction between litter and injection: F(1,23) = 32.797, p < 

0.001; Fig. 7B). In the sub-granular/granular zone, the neonatally injected rats (both CL nSal/ aSal 

and SL nSal/ aSal) had significantly fewer microglia and reduced microglial density compared to non-

injected rats (CL and SL non-injected; number: significant effect of injection: F(1,23) = 15.747, p = 
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0.01; Fig. 7C and density: significant interaction between litter and injection: F(1,23) = 125.472, p < 

0.01; Fig. 7D). Neonatal injections (both CL nSal/ aSal and SL nSal/ aSal) also suppressed the 

number and density of microglia in the molecular region compared to non-injected animals (CL and 

SL non-injected; number: significant effect of injection: F(1,22) = 28.466, p < 0.01; Fig. 7E and density: 

significant interaction between litter and injection: F(1,23) = 55.876, p < 0.01; Fig. 7F). 

 

To assess if the neonatal injection protocol caused a generalized suppression of microglia throughout 

the brain, we also assessed two regions we had investigated in previous studies, the arcuate nucleus of 

the hypothalamus (ARC) and paraventricular nucleus of the hypothalamus (PVN). Similar to 

previously published data 5, there was no change in either the microglial number or density in the 

ARC under basal conditions (Fig. 8A, B), but neonatal overfeeding (SL non-injected) led to a 

significant increase in microglial numbers in the PVN (Fig. 8C), with no change in density (Fig. 8D), 

compared with CL non-injected. Neonatally overfed animals that were saline-injected (SL nSal/ aSal) 

had a reduced number and density of microglia in the ARC compared to the non-injected animals (CL 

and SL non-injected; number: significant effect of treatment: F(1,20) = 54.312, p < 0.001; Fig. 8A and 

density: significant effect of treatment: F(1,20) = 38.591, p < 0.001; Fig. 8B). The previously reported 

effect of neonatal overfeeding to increase PVN microglial number and density was also abolished in 

the neonatally injected group (both CL nSal/ aSal and SL nSal/ aSal; number: significant litter size by 

treatment interaction: F(1,19) = 7.668, p = 0.012; Fig. 8C and density: significant effect of treatment: 

F(1,19) = 63.696, p < 0.001; Fig. 8D). Together these data suggest that our neonatal injection protocol 

caused a generalized suppression of microglial activity that was able to over-ride any effects of 

neonatal overfeeding to increase numbers of these cells, with no additional effect of minocycline.  
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Neonatal injection protocol increases basal corticosterone concentrations in neonatally overfed 

offspring 

To determine if the generalized suppression of microglial activity is due to the neonatal injection 

protocol causing a long-term upregulation in HPA axis activity or basal glucocorticoid secretion, we 

assessed basal corticosterone concentrations. We saw no basal corticosterone differences between the 

non-injected neonatally overfed and control-fed adult rats 24 hr after saline injection (Fig. 9) and 

saline-injected control-fed (CL nSal/ aSal) corticosterone concentrations were not significantly 

different from those of non-injected animals. Basal corticosterone levels were elevated in neonatally 

overfed rats that were saline injected (SL nSal/ aSal) during the suckling period compared with both 

the neonatally overfed non-injected (SL non-injected) and the control-fed injected rats (CL nSal/ aSal; 

significant litter size by treatment interaction: F(1,16)=4.769, p = 0.044; n=5; Fig. 9). However, this is 

unlikely to account for our microglial findings since the control-fed rats were not similarly affected.  

 

Discussion 

This study is the first to show that neonatal overfeeding increases hippocampal microglial responses 

to an immune challenge with LPS and that neonatal injections (in this case with either saline or 

minocycline) can have pronounced long-term effects on microglia sufficient to over-ride the impact of 

the neonatal overfeeding intervention. Notably, saline injections were just as effective as minocycline 

at suppressing microglial activity long-term.  

 

The neonatal nutritional environment, as induced by altering the litter size in which the animals were 

raised, can have significant long-term programming effects. We have previously demonstrated that 

changes to the neonatal nutritional environment can alter body weight into adulthood as well as 

altering microglial profiles within developing brains and it predisposes the animal to a sensitized basal 

microglial profile in the hypothalamus during adulthood 5,49. We have also previously shown that 
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adult neonatally overfed animals have dramatically increased microglial numbers in the PVN 24 hr 

after an LPS challenge 5. This microglial programming in adults that have been overfed as neonates 

extends beyond the hypothalamus into the hippocampus 16. Here we demonstrate that adult neonatally 

overfed rats have increased microglial numbers in the CA3 in response to an LPS challenge compared 

with control-fed rats. Other early life manipulations can lead to similar hyper-responsive microglia. A 

peripheral immune challenge with E.coli or LPS in early life results in increased microglial numbers 

and an activated phenotype in the adult brain 4,50. Similarly, maternal high fat diet predisposes the 

offspring to an increase in hippocampal expression of microglial activation markers at birth, as well as 

increased microglial activation both basally and in response to an LPS challenge in adulthood 4. It 

should be noted that previous groups have used numbers and density of Iba-1 staining to provide an 

index of microglial activation states 5,40,41. We acknowledge that this method of microglial 

characterisation does have its limitations. However, other more refined analysis techniques such as 

Sholl analysis also have restrictions; despite the Sholl analysis being able to quantitatively analyse 

processes and branching complexity of microglia 51-53, this technique is unable to determine microglial 

function 54. For instance, a ramified microglial cells may be de-ramifying in response to a stimulus 

such as LPS or hyper-ramifying 54. Additionally, functional changes can be seen in microglial cells in 

the absence of morphological change 55. Nonetheless, our findings that neonatally overfed microglial 

cell numbers, particularly in the CA3, are increased after an LPS challenge support our findings that 

neonatally overfed rats have hyper-responsive microglia. 

 

This increase in microglial numbers in the CA3 region in our neonatally overfed animals led us to 

investigate whether these findings are likely to be due to an exclusive effect on microglia. It is 

noteworthy that culturing isolated microglia for an extended period can result in loss of the microglial 

phenotype 43-45. However, we only stimulated the microglia culture for 4 hours therefore the 

microglial phenotype should be similar to in vivo microglial cells. We found that microglial 

sensitivity to LPS in vitro was not affected by neonatal overfeeding suggesting that other cell types 

may be interacting with microglia to produce the response. Astrocytes are known to form an 
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interaction with microglia and this is an important mechanism allowing the inhibition of excessive 

microglial activation 56. Therefore, it is possible that our neonatally overfed animals have reduced 

astrocyte numbers or complexity enabling them to hyper-respond to an immune challenge in vivo 

compared to control-fed rats. The absence of this and other cell types in our in vitro isolated microglia 

experiments could explain why the differences induced by neonatal overfeeding are not seen in this 

preparation. Furthermore, the neonatal injection protocol caused generalized microglial suppression in 

both adult neonatally overfed and control-fed rats, however it failed to alter the neonatal overfeeding-

induced weight gain, further suggesting that other cells types are involved alongside microglia to 

maintain long-term changes in response to early life diet.  

 

To our knowledge this is the first study to demonstrate that repeated injections during the suckling 

period suppress the number and density of microglia in the hippocampus in adulthood. However, 

other early life treatments can have similar effects on microglia 57,58. Handling refers to neonatal rats 

being exposed to short periods of maternal absence in a novel environment (approximately 15 mins) 

daily for the first 2-3 weeks of life. Adult rats that are infected with E. coli at P4 coupled with 

neonatal handling (P1-10, 15 mins daily) exhibit decreased gene expression of cluster of 

differentiation molecule 11b (CD11b), glial fibrillary acidic protein (GFAP), and IL-1β in the 

hippocampus under basal conditions compared with non-handled control-fed rats 57. These adult rats 

also display a suppression of CD11b gene expression 2 hr after an immune challenge with LPS and 

have dramatically improved spatial learning and memory in the Morris water maze compared with 

those that are not handled as neonates 57. It has been speculated that microglia of neonatally handled 

rats shift to take on an anti-inflammatory profile via epigenetic modification of the IL-10 gene 

specifically within the microglia 58, but this remains to be tested with either neonatal handling or 

multiple injections. We have demonstrated here that non-injected neonatally overfed animals have an 

increased microglial response to LPS in the hippocampus relative to control-fed, particularly in the 

CA3 region, and that this response is suppressed in adult neonatally injected rats. Thus, our data 
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support the hypothesis that neonatal handling coupled with an injection can produce an anti-

inflammatory microglial profile.  

 

Obesity and high-fat diets have been associated with systemic inflammation and more recently central 

inflammation 59. It has become increasingly apparent that a high-fat diet can cause hypothalamic 

inflammation, which can disrupt normal feeding- and metabolism-related signalling via the activation 

of microglia 59-61. This central inflammation can contribute to leptin and insulin resistance therefore 

causing weight gain and maintaining an elevated body weight 59,60. We have demonstrated that 

neonatal overfeeding contributes to a primed basal pro-inflammatory profile with increases in number 

and density of Iba-1 positive microglia in the PVN during early life, which persists into adulthood 5 

and this co-occurs with the maintenance of accelerated weight gain compared to control-fed rats. 

Interestingly, in the present study we found the drastic suppression of microglial number and density 

in adult rats that underwent repeated injections was not localized to the hippocampus but this trend 

was also seen in the hypothalamus. Furthermore, this microglial suppression did not affect weight 

gain during the suckling period or in adulthood. Maternal separation does not affect body weight or 

ingestion of standard lab chow 62, therefore it is possible that an additional increase in microglia is 

occurring in these neonatally overfed pups during the suckling period, that dissipates after weaning, 

which is affecting normal feeding- and metabolism- related signalling compared to control-fed rats.  

 

Under normal physiological conditions, corticosterone is considered to be anti-inflammatory. 

However, stressful stimuli can sensitize central pro-inflammatory responses and activation of 

microglia. To investigate if the repeated neonatal injections effects on microglia were associated with 

long-term changes to the HPA axis, we measured basal circulating corticosterone in neonatally non-

injected and injected (saline) adult rats. Our current findings are consistent with previous studies from 

our group, showing that corticosterone levels in non-injected neonatally overfed rats are not 

significantly different from non-injected control-fed rats 2,15,33. Surprisingly, we found that the 
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neonatally overfed animals that underwent repeated neonatal injections had significantly increased 

basal corticosterone levels compared to the non-injected equivalent and this difference was not seen in 

the neonatally injected control-fed animals. Repeated neonatal injections induced a potentiated 

corticosterone response in animals that were overfed during development which could suggest that the 

HPA axis in these animals is sensitized.  

 

Previous literature shows confounding evidence on the effects of maternal separation of pups during 

development on basal corticosterone; however, this is likely due to the different separation protocols. 

In adulthood, animals that were handled during the suckling period display a reduction in plasma 

corticosterone concentrations 57,63,64. However, a longer period of maternal separation during this 

developmental period (180 min/day) increases basal corticosterone concentrations 65-71. Interestingly, 

Llorente and colleagues have also shown similar findings to our study, whereby a neonatal injection 

period between P7-P12 increases basal corticosterone compared to the non-injected rats 72.  

 

The neonatal litter size manipulation model undoubtedly has elements incidental to feeding that may 

influence physiology long-term 5,73. However, these do not provide a simple explanation for our 

findings. For example, Meaney and colleagues have shown maternal attention suppresses HPA axis 

responses to stress throughout life via maternal contact-mediated changes in histone acetylation and 

NGF1-A binding to the glucocorticoid receptor promoter to increase expression of this receptor and 

enhance the efficiency of glucocorticoid negative feedback 74. Dams will spend approximately the 

same time in high intensity nursing and grooming behaviours irrespective of the size of the litter, 

therefore more attention would be imparted to each of the neonatally overfed pups than to the control-

fed pups 75-77. Thus, one would anticipate those from the neonatally overfed group to have suppressed 

HPA axis responses to stress and perhaps reduced basal circulating corticosterone; the opposite 

profile to the one we see here. Likewise, neonatal overfeeding can induce changes in circulating 

satiety hormones such as ghrelin that have a role in stress regulation 78,79. However, this effect on 
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ghrelin’s role in stress regulation appears to be exclusive to females despite persistent changes in 

other function of this hormone in males 79,80. We thus currently do not have an explanation for why 

basal corticosterone is elevated in the neonatally overfed that have had the neonatal injection protocol 

and not in the other groups. 

 

In the current study, we aimed to test the effects of neonatal minocycline; a known microglial 

inhibitor 28, on the hippocampal microglial profile both under basal conditions and after an LPS 

challenge. We hypothesized that a minocycline regimen during the suckling period would attenuate 

the increased microglial response to an LPS challenge in our adult neonatally overfed rats. Neonatal 

minocycline had no effect on the number or density of microglia in adulthood regardless of whether 

the rats were exposed to LPS or not. The results from the minocycline aspect of this experiment were 

inconclusive due to the over-riding effect of the repeated injection regimen itself. Ideally, an 

alternative form of drug administration would need to be adopted to gain a conclusive result as to 

whether minocycline administration could reduce microglial activation after neonatal overfeeding. 

Our treatment regimen was based on studies of hypoxia-ischemia showing this dose, administered via 

i.p. injection, could successfully ameliorate neuroinflammation at the site of hypoxic-ischemic insult 

24. A common alternative form of minocycline administration is via oral administration from drinking 

water 81,82. However, delivery of drugs via voluntary consumption of water does not take into 

consideration the individual variability in the amount of water consumed. Additionally, the drug must 

be able to accumulate in the dam’s milk to enable delivery to the suckling pups and may therefore not 

be reliably delivered to each pup at the same dose 83. Importantly, the nature of our model where the 

neonatally overfed pups consume more milk from the dams means the neonatally overfed pups would 

unavoidably receive more minocycline. Alternatively, drug delivery could be achieved via oral 

gavage of the drug into either the pharynx or the esophagus, which would give exact concentrations of 

minocycline 83,84. Previous literature recommends oral gavage to commence after P4 to reduce 

damage to the tissue 84. We needed to begin our regimen following litter manipulation to try and 

prevent the early effects on microglia, therefore this technique would not be suitable. This process is 
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also stressful to the pups and involves removing the litter and handling them, therefore, likely, 

providing the same result as we have shown here with a reduction in microglia despite early life 

overfeeding. Thus, the effect of reversing microglial priming during neonatal overfeeding remains 

untested but our experiments reveal important effects of repeated injections in the neonatal period.  

 

In summary, we have shown that neonatal overfeeding leads to a hyper-responsive basal microglial 

profile in the hippocampus and this is associated with an increased response to LPS in this region 

relative to control-fed responses, and that cellular populations additional to microglia may be 

important for these responses. In our attempts to reverse the neonatal overfeeding-induced microglial 

effects, we also revealed that our neonatal injection protocol, whether with minocycline or with 

saline, strongly suppressed microglial numbers and density without reversing any of the metabolic 

effects of neonatal overfeeding. Although the mechanism behind the impact of neonatal injection on 

microglia remains to be determined, it does not appear to be explained by an effect on HPA axis 

function. These findings have significant implications for all studies employing injection protocols in 

neonatal experimental animals and raise interesting questions about the impact of various stimuli on 

neonates in general.  
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Figure Legends 

Fig. 1. Timeline of the experimental design. Litter size manipulation is performed on the day of birth 

(postnatal (P)0) into litters of 12 (control-fed; CL) or 4 (neonatally overfed; SL). Litters are assigned 

to either A) non-injected or B) the neonatal injection protocol during the suckling period until 

weaning (P21). Pups are weaned into pairs and left undisturbed until experiment during adulthood 

(P70). C) To further examine the impact of the injection protocol on microglia, we performed another 

experiment on a different cohort of non-injected pups.  

 

Fig. 2. Numbers and density of ionized calcium-binding adapter molecule-1 (Iba-1)-immunolabelled 

cells 24 hours after an i.p. saline or lipopolysaccharide (LPS) injection at postnatal day (P)70 in rats 

raised in control-fed litters (CL) and small litters (neonatally overfed; SL). A, B) CA3 region. C, D) 
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CA1 region. G, H) Dentate gyrus (DG) hilus. I, J) DG subgranular/granular region. K, L) DG 

molecular region. Data are mean + SEM. N = 6-16 per group. Stripes represent animals that are 

injected with LPS. E, F) Representative photomicrographs of the CA3 (E) or the dentate gyrus (F) 

region from control-fed and neonatally overfed rats at P70 injected with saline or LPS i.p. illustrating 

differences in numbers of Iba-1-positive microglia. Scale bar = 50 μm. * main effect of litter size. # 

main effect of LPS. p < 0.05.  

 

Fig. 3. A) Characterisation of hippocampal microglial culture from rats raised in control-fed (CL) and 

small (neonatally overfed; SL) litters. Hippocampal cell expression of B) tumour necrosis factor α 

(TNFα) and C) interkeukin-6 (IL-6) in response to either 10 ng/mL or 100 ng/mL lipopolysaccharide 

(LPS) stimulation in vitro from control-fed and neonatally overfed rats. Data are mean + SEM. N = 9 

per group. ^ p < 0.05 Tukey post hoc after main effect of dose.  

 

Fig. 4. Effects of injections on A) pre-weaning weight (P7-P21) * saline and # minocycline p < 0.05 

Tukey post hoc after litter size by day interaction. B) adult weight in rats raised in control-fed (CL) 

and small (neonatally overfed; SL) litters. C) lean mass, D) fat mass and E) percentage of fat mass at 

P70 in rats raised in control-fed and small (neonatally overfed) litters. Data are mean + SEM. N = 14-

16 per group. * main effect of litter size. $ main effect of minocycline treatment. p < 0.05. 

 

Fig. 5. Numbers and density of ionized calcium-binding adapter molecule-1 (Iba-1)-labelled cells at 

postnatal day (P)70 in rats raised in control-fed (CL) and small (neonatally overfed; SL) litters that 

were saline or minocycline injected during the suckling period (P1-21) as well as given an adult 

immune challenge with lipopolysaccharide (LPS) (or saline). A, B) CA3 region. E, F) CA1 region. G, 

H) Dentate gyrus (DG) hilus. I, J) DG subgranular/ granular region. K, L) DG molecular region. Data 

are mean + SEM. N = 7-9 per group. C, D) Representative photomicrographs of the CA3 region from 
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P70 injected neonatally overfed rats (SL) that were injected with saline (C) or LPS (D) during 

adulthood illustrating no differences in numbers and density of Iba-1-labelled cells. Scale bar = 50 

μm. # main effect of LPS. * x # litter size by minocycline treatment interaction. ^ Tukey post hoc 

after litter size by minocycline treatment interaction. p < 0.05. 

 

Fig. 6. Comparison between Fig. 2 and Fig. 5 of numbers and density of ionized calcium-binding 

adapter molecule-1 (Iba-1)-labelled cells at postnatal day (P)70 in rats raised in control-fed (CL) and 

small (neonatally overfed; SL) litters. These animals were injected with saline or minocycline during 

the suckling period (P1-21) as well as given an adult immune challenge with lipopolysaccharide 

(LPS). Blue shaded bars on the graphs represent previously seen non-injected microglial profile from 

Fig. 2. A, B) CA3 region. C, D) CA1 region. E, F) Dentate gyrus (DG) Hilus. G, H) DG subgranular/ 

granular region. I, J) DG molecular region. Data are mean + SEM. N = 7-9 per group.  

 

Fig. 7. Comparison of numbers and density of ionized calcium-binding adapter molecule-1 (Iba-1)-

stained cells at postnatal day (P)70 in injected (saline) rats and a separate cohort of non-injected rats 

raised in control-fed (CL) and small (neonatally overfed; SL) litters. A, B) Dentate gyrus (DG) hilus. 

C, D) DG subgranular/ granular region. E, F) DG molecular region. Data are mean + SEM. N = 7-9 

per group. * main effect of litter size. & main effect of injection. ^ Tukey post hoc after litter size by 

injection interaction. p < 0.05. 

 

Fig. 8. Numbers and density of ionized calcium-binding adapter molecule-1 (Iba-1)-stained cells at 

postnatal day (P)70 in rats raised in control-fed (CL) and small (neonatally overfed; SL) litters that 

were non-injected or injected with saline. A, B) Arcuate nucleus of the hypothalamus (ARC). C, D) 

Paraventricular nucleus of the hypothalamus (PVN).  Data are mean +SEM. N = 5-8. * main effect of 
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Fig. 9. Basal plasma corticosterone conce

fed (CL) and small (neonatally overfed; S

after litter size by injection interaction. p

 

  

Tukey post hoc after litter size by injection interaction. p

entrations of non-injected and injected rats raised in co

SL) litters. Data are mean + SEM. N = 5. ^ Tukey post
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