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Abstract

Holographic algorithms were first introduced by Valiant as a new methodology to derive
polynomial time algorithms. The algorithms introduced by Valiant are based on matchgates,
which are intrinsically for problems over planar structures. In this paper we introduce two new
families of holographic algorithms. These algorithms work over general, i.e., not necessarily
planar, graphs. Instead of matchgates, the two underlying families of constraint functions are of
the affine type and of the product type. These play the role of Kasteleyn’s algorithm for counting
planar perfect matchings. The new algorithms are obtained by transforming a problem to one
of these two families by holographic reductions.

The tractability of affine and product-type constraint functions is known. The real challenge
is to determine when some concrete problem, expressed by its constraint functions, has such a
holographic reduction. We present a polynomial time algorithm to decide if a given counting
problem has a holographic algorithm using the affine or product-type constraint functions. Our
algorithm also finds a holographic transformation when one exists. We exhibit concrete problems
that can be solved by the new holographic algorithms. When the constraint functions are
symmetric, we further present a polynomial time algorithm for the same decision and search
problems, where the complexity is measured in terms of the (exponentially more) succinct
presentation of symmetric constraint functions. The algorithm for the symmetric case also
shows that the recent dichotomy theorem for Holant problems with symmetric constraints is
efficiently decidable. Our proof techniques are mainly algebraic, e.g., stabilizers and orbits of
group actions.

1 Introduction

Recently a number of complexity dichotomy theorems have been obtained for counting problems.
Typically, such dichotomy theorems assert that a vast majority of problems expressible within the
framework are #P-hard, however an intricate subset manages to escape this fate. They exhibit
a great deal of mathematical structure, which leads to a polynomial time algorithm. In recent
dichotomy theorems, a pattern has emerged [14, 19, 21, 15, 35, 23, 12, 33]. Some of the tractable
cases are expressible as “those problems for which there exists a holographic algorithm.” However,
this understanding has been largely restricted to problems where the local constraint functions are
symmetric over the Boolean domain. In order to gain a better understanding, we must determine
the full extent of holographic algorithms, beyond the symmetric constraints.

Holographic algorithms were first introduced by Valiant [46, 45]. They are applicable for any
problem that can be expressed as the contraction of a tensor network. Valiant’s algorithms have
two main ingredients. The first ingredient is to encode computation in planar graphs using match-
gates [44, 43, 9, 17, 10]. The result of the computation is then obtained by counting the number of
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perfect matchings in a related planar graph, which can be done in polynomial time by Kasteleyn’s
(a.k.a. the FKT) algorithm [37, 42, 38]. The second ingredient is a holographic reduction, which is
achieved by a choice of linear basis vectors. The computation can be carried out in any basis since
the output of the computation is independent of the basis.

In this paper, we introduce two new families of holographic algorithms. These algorithms
holographically reduce to problems expressible by either the affine type or the product type of
constraint functions. Both types of problems are tractable over general (i.e. not necessarily planar)
graphs [25], so the holographic algorithms are all polynomial time algorithms and work over general
graphs. We present a polynomial time algorithm to decide if a given counting problem has a
holographic algorithm over general graphs using the affine or product-type constraint functions.
Our algorithm also finds a holographic algorithm when one exists. To formally state this result, we
briefly introduce some notation.

The counting problems we consider are those expressible as a Holant problem [24, 22, 20, 25].
A Holant problem is defined by a set F of constraint functions, which we call signatures, and is
denoted by Holant(F). An instance to Holant(F) is a tuple Ω = (G,F , π) called a signature grid,
where G = (V,E) is a graph and π labels each vertex v ∈ V and its incident edges with some
fv ∈ F and its input variables. Here fv maps {0, 1}deg(v) to C. We consider all possible 0-1 edge
assignments. An assignment σ to the edges E gives an evaluation

∏
v∈V fv(σ|E(v)), where E(v)

denotes the incident edges of v and σ|E(v) denotes the restriction of σ to E(v). The counting
problem on the instance Ω is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv
(
σ|E(v)

)
.

For example, consider the problem of counting Perfect Matching on G. This problem corre-
sponds to attaching the Exact-One function at every vertex of G. The Exact-One function
is an example of a symmetric signature, which are functions that only depend on the Hamming
weight of the input. We denote a symmetric signature by f = [f0, f1, . . . , fn] where fw is the value
of f on inputs of Hamming weight w. For example, [0, 1, 0, 0] is the Exact-One function on three
bits. The output is 1 if and only if the input is 001, 010, or 100, and the output is 0 otherwise.

Holant problems contain both counting constraint satisfaction problems and counting graph
homomorphisms as special cases. All three classes of problems have received considerable attention,
which has resulted in a number of dichotomy theorems (see [40, 34, 29, 2, 28, 5, 31, 8] and [4, 3,
27, 1, 25, 7, 13, 30, 32, 14, 6]). Despite this success with #CSP and graph homomorphisms, the
case with Holant problems is more difficult. A recent dichotomy theorem for Holant problems with
symmetric signatures was obtained in [12]. But the general (i.e. not necessarily symmetric) case
has a richer and more intricate structure. The same dichotomy for general signatures remains open.
Our first main result makes a solid step forward in understanding holographic algorithms based on
affine and product-type signatures in this more difficult setting.

Theorem 1.1. There is a polynomial time algorithm to decide, given a finite set of signatures F ,
whether Holant(F) admits a holographic algorithm based on affine or product-type signatures.

These holographic algorithms for Holant(F) are all polynomial time in the size of the problem
input Ω. The polynomial time decision algorithm of Theorem 1.1 is on another level; it decides
based on any specific set of signatures F whether the counting problem Holant(F) defined by F
has such a holographic algorithm.
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However, symmetric signatures are an important special case. Because symmetric signatures
can be presented exponentially more succinctly, we would like the decision algorithm to be efficient
when measured in terms of this succinct presentation. An algorithm for this case needs to be
exponentially faster than the one in Theorem 1.1. In Theorem 1.2, we present a polynomial time
algorithm for the case of symmetric signatures. The increased efficiency is based on several signature
invariants under orthogonal transformations.

Theorem 1.2. There is a polynomial time algorithm to decide, given a finite set of symmetric
signatures F expressed in the succinct notation, whether Holant(F) admits a holographic algorithm
based on affine or product-type signatures.

A dichotomy theorem classifies every set of signatures as defining either a tractable problem
or an intractable problem (e.g. #P-hard). Yet it would be more useful if given a specific set
of signatures, one could decide to which case it belongs. This is the decidability problem of a
dichotomy theorem. In [12], a dichotomy regarding symmetric complex-weighted signatures for
Holant problem was proved. However, the decidability problem was left open. Of the five tractable
cases in this dichotomy theorem, three of them are easy to decide, but the remaining two cases are
more challenging, which are (1) holographic algorithms using affine signatures and (2) holographic
algorithms using product-type signatures. As a consequence of Theorem 1.2, this decidability is
now proved.

Corollary 1.3. The dichotomy theorem for symmetric complex-weighted Holant problems in [12]
is decidable in polynomial time.

Previous work on holographic algorithms focused almost exclusively on those with match-
gates [46, 45, 16, 19, 17, 18, 33]. (This has led to a misconception in the community that holographic
algorithms are always based on matchgates.) The first example of a holographic algorithm using
something other than matchgates came in [24]. These holographic algorithms use generalized Fi-
bonacci gates. A symmetric signature f = [f0, f1, . . . , fn] is a generalized Fibonacci gate of type
λ ∈ C if fk+2 = λfk+1 + fk holds for all k ∈ {0, 1, . . . , n − 2}. The standard Fibonacci gates are
of type λ = 1, in which case, the entries of the signature satisfy the recurrence relation of the
Fibonacci numbers. The generalized Fibonacci gates were immediately put to use in a dichotomy
theorem [22]. As it turned out, for nearly all values of λ, the generalized Fibonacci gates are
holographically equivalent to product-type signatures. However, generalized Fibonacci gates are
symmetric by definition. A main contribution of this paper is to extend the reach of holographic
algorithms, other than those based on matchgates, beyond the symmetric case.

The constraint functions we call signatures are essentially tensors. Our central object of study
can be rephrased as the orbits of affine and product-type tensors when acted upon by the orthogonal
group (and related groups). We show that one can efficiently decide if any such orbit of a given
tensor intersects the set of affine or product-type tensors. This result also generalizes to a set of
tensors as stated in Theorems 1.1 and 1.2. In contrast, this orbit problem with the general linear
group acting on two arbitrary tensors is NP-hard [39]. The so-called orbit closure problem has a
fundamental importance in the foundation of geometric complexity theory [41].

Our techniques are mainly algebraic. A particularly important insight is that an orthogonal
transformation in the standard basis is equivalent to a diagonal transformation in the

[
1 1
i −i

]
basis,

a type of correspondence as in Fourier transform. Since diagonal transformations are much easier
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to understand, this gives us a great advantage in understanding orbits under orthogonal transfor-
mations. Also, the groups of transformations that stabilize the affine and product-type signatures
play an important role in our proofs.

In Section 2, we review basic notation and state previous results, many of which come from [11],
the full version of [12]. In Section 3, we present some example problems that are tractable by
holographic algorithms using affine or product-type signatures. The proof of Theorem 1.1 spans
two sections. The affine case is handled in Section 4 and the product-type case is handled in
Section 5. The proof of Theorem 1.2 also spans two sections. Once again, the affine case is handled
in Section 6 and the product-type case is handled in Section 7.

2 Preliminaries

2.1 Problems and Definitions

The framework of Holant problems is defined for functions mapping any [q]k → F for a finite q
and some field F. In this paper, we investigate some of the tractable complex-weighted Boolean
Holant problems, that is, all functions are [2]k → C. Strictly speaking, for consideration of models
of computation, functions take complex algebraic numbers.

A signature grid Ω = (G,F , π) consists of a graph G = (V,E), where π labels each vertex v ∈ V
and its incident edges with some fv ∈ F and its input variables. The Holant problem on instance
Ω is to evaluate HolantΩ =

∑
σ

∏
v∈V fv(σ |E(v)), a sum over all edge assignments σ : E → {0, 1}.

A function fv can be represented by listing its values in lexicographical order as in a truth table,
which is a vector in C2deg(v) , or as a tensor in (C2)⊗ deg(v). We also use fx to denote the value f(x),
where x is a binary string. A function f ∈ F is also called a signature. A symmetric signature f
on k Boolean variables can be expressed as [f0, f1, . . . , fk], where fw is the value of f on inputs of
Hamming weight w.

A Holant problem is parametrized by a set of signatures.

Definition 2.1. Given a set of signatures F , we define the counting problem Holant(F) as:
Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

A signature f of arity n is degenerate if there exist unary signatures uj ∈ C2 (1 ≤ j ≤ n) such
that f = u1⊗· · ·⊗un. A symmetric degenerate signature has the from u⊗n. For such signatures, it
is equivalent to replace it by n copies of the corresponding unary signature. Replacing a signature
f ∈ F by a constant multiple cf , where c 6= 0, does not change the complexity of Holant(F). It
introduces a global factor to HolantΩ.

We say a signature set F is tractable (resp. #P-hard) if the corresponding counting problem
Holant(F) is tractable (resp. #P-hard). Similarly for a signature f , we say f is tractable (resp. #P-
hard) if {f} is.

2.2 Holographic Reduction

To introduce the idea of holographic reductions, it is convenient to consider bipartite graphs. For a
general graph, we can always transform it into a bipartite graph while preserving the Holant value,
as follows. For each edge in the graph, we replace it by a path of length two. (This operation is
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called the 2-stretch of the graph and yields the edge-vertex incidence graph.) Each new vertex is
assigned the binary Equality signature (=2) = [1, 0, 1].

We use Holant (F | G) to denote the Holant problem on bipartite graphs H = (U, V,E), where
each vertex in U or V is assigned a signature in F or G, respectively. An input instance for this
bipartite Holant problem is a bipartite signature grid and is denoted by Ω = (H; F | G; π).
Signatures in F are considered as row vectors (or covariant tensors); signatures in G are considered
as column vectors (or contravariant tensors) [26].

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∃f ∈ F of arity n, g = T⊗nf},
similarly for FT . Whenever we write T⊗nf or TF , we view the signatures as column vectors;
similarly for fT⊗n or FT as row vectors.

Let T be an element of GL2(C), the group of invertible 2-by-2 complex matrices. The holo-
graphic transformation defined by T is the following operation: given a signature grid Ω = (H; F |
G; π), for the same graph H, we get a new grid Ω′ = (H; FT | T−1G; π′) by replacing each
signature in F or G with the corresponding signature in FT or T−1G.

Theorem 2.2 (Valiant’s Holant Theorem [46]). If there is a holographic transformation mapping
signature grid Ω to Ω′, then HolantΩ = HolantΩ′.

Therefore, an invertible holographic transformation does not change the complexity of the
Holant problem in the bipartite setting. Furthermore, there is a particular kind of holographic
transformation, the orthogonal transformation, that preserves the binary equality and thus can be
used freely in the standard setting. Let O2(C) be the group of 2-by-2 complex matrices that are
orthogonal. Recall that a matrix T is orthogonal if TT T = I.

Theorem 2.3 (Theorem 2.6 in [20]). Suppose T ∈ O2(C) and let Ω = (H,F , π) be a signature
grid. Under a holographic transformation by T , we get a new grid Ω′ = (H,TF , π′) and HolantΩ =
HolantΩ′.

We also use SO2(C) to denote the group of special orthogonal matrices, i.e. the subgroup of
O2(C) with determinant 1.

2.3 Tractable Signature Sets without a Holographic Transformation

The following two signature sets are tractable without a holographic transformation [25].

Definition 2.4. A k-ary function f(x1, . . . , xk) is affine if it has the form

λχAx=0 · i
∑n
j=1〈vj ,x〉,

where λ ∈ C, x = (x1, x2, . . . , xk, 1)T, A is a matrix over F2, vj is a vector over F2, and χ is a 0-1
indicator function such that χAx=0 is 1 iff Ax = 0. Note that the dot product 〈vj , x〉 is calculated
over F2, while the summation

∑n
j=1 on the exponent of i =

√
−1 is evaluated as a sum mod 4 of

0-1 terms. We use A to denote the set of all affine functions.

Notice that there is no restriction on the number of rows in the matrix A. It is permissible that
A is the zero matrix so that χAx=0 = 1 holds for all x. An equivalent way to express the exponent
of i is as a quadratic polynomial where all cross terms have an even coefficient.

5



Definition 2.5. A function is of product type if it can be expressed as a product of unary functions,
binary equality functions ([1, 0, 1]), and binary disequality functions ([0, 1, 0]). We use P to denote
the set of product-type functions.

It can be shown (cf. Lemma A.1 in [36], the full version of [35]) that if f is a symmetric signature
in P, then f is either degenerate, binary disequality, or of the form [a, 0, . . . , 0, b] for some a, b ∈ C.
It is known that the set of non-degenerate symmetric signatures in A is precisely the nonzero
signatures (λ 6= 0) in F1 ∪ F2 ∪ F3 with arity at least two, where F1, F2, and F3 are three
families of signatures defined as

F1 =
{
λ
(

[1, 0]⊗k + ir[0, 1]⊗k
)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
,

F2 =
{
λ
(

[1, 1]⊗k + ir[1,−1]⊗k
)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
, and

F3 =
{
λ
(

[1, i]⊗k + ir[1,−i]⊗k
)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
.

Let F123 = F1 ∪F2 ∪F3 be the union of these three sets of signatures. We explicitly list all the
signatures in F123 up to an arbitrary constant multiple from C:

1. [1, 0, . . . , 0,±1]; (F1, r = 0, 2)
2. [1, 0, . . . , 0,±i]; (F1, r = 1, 3)
3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)
4. [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)
5. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)
6. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)
7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)
8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3, r = 1)
9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3, r = 2)

10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3, r = 3)

2.4 A -transformable and P-transformable Signatures

The tractable sets A and P are still tractable under a suitable holographic transformation. This
is captured by the following definition.

Definition 2.6. A set F of signatures is A -transformable (resp. P-transformable) if there ex-
ists a holographic transformation T such that F ⊆ TA (resp. F ⊆ TP) and [1, 0, 1]T⊗2 ∈ A
(resp. [1, 0, 1]T⊗2 ∈P).

To refine the above definition, we consider the stabilizer group of A ,

Stab(A ) = {T ∈ GL2(C) | TA ⊆ A }.

Technically this set is the left stabilizer group of A , but it turns out that the left and right stabilizer
groups of A coincide (Lemma 8.3 in [11]).

The following matrices are useful. Let D = [ 1 0
0 i ] and H2 = 1√

2

[
1 1
1 −1

]
. Also let X = [ 0 1

1 0 ] and

Z = 1√
2

[
1 1
i −i

]
. Note that Z = DH2 and that D2Z = 1√

2

[
1 1
−i i

]
= ZX, hence X = Z−1D2Z. It is

easy to verify that D,H2, X, Z ∈ Stab(A ). In fact, Stab(A ) = C∗ · 〈D,H2〉, all scalar multiples of
the group generated by D and H2 (Lemma 8.3 in [11]).

The next lemma is the first step toward understanding the A -transformable signatures. In this

lemma and throughout the paper, we use α to denote 1+i√
2

=
√
i = e

πi
4 .
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Lemma 2.7 (Lemma 8.5 in [11]). Let F be a set of signatures. Then F is A -transformable iff
there exists an H ∈ O2(C) such that F ⊆ HA or F ⊆ H [ 1 0

0 α ] A .

The three sets A1, A2, and A3 capture all symmetric A -transformable signatures.

Definition 2.8. A symmetric signature f of arity n is in, respectively, A1, or A2, or A3 if
there exist an H ∈ O2(C) and nonzero constant c ∈ C such that f has the form, respectively,

cH⊗n
(

[ 1
1 ]
⊗n

+ β
[

1
−1

]⊗n)
, or cH⊗n

(
[ 1
i ]
⊗n

+
[

1
−i
]⊗n)

, or cH⊗n
(

[ 1
α ]⊗n + ir

[
1
−α
]⊗n)

, where β =

αtn+2r, r ∈ {0, 1, 2, 3}, and t ∈ {0, 1}.

For i ∈ {1, 2, 3}, when such an orthogonal H exists, we say that f ∈ Ai with transformation H.
If f ∈ Ai with I2, then we say f is in the canonical form of Ai.

Lemma 2.9 (Lemma 8.10 in [11]). Let f be a non-degenerate symmetric signature. Then f is
A -transformable iff f ∈ A1 ∪A2 ∪A3.

We also have a similar characterization for P-transformable signatures using the stabilizer
group of P,

Stab(P) = {T ∈ GL2(C) | TP ⊆P}.

The group Stab(P) is generated by matrices of the form [ 1 0
0 ν ] for any ν ∈ C and X = [ 0 1

1 0 ].

Lemma 2.10 (Lemma 8.11 in [11]). Let F be a set of signatures. Then F is P-transformable iff
there exists an H ∈ O2(C) such that F ⊆ HP or F ⊆ H

[
1 1
i −i

]
P.

Definition 2.11. A symmetric signature f of arity n is in P1 if there exist an H ∈ O2(C) and a

nonzero c ∈ C such that f = cH⊗n
(

[ 1
1 ]
⊗n

+ β
[

1
−1

]⊗n)
, where β 6= 0.

It is easy to check that A1 ⊂P1. We define P2 = A2. For i ∈ {1, 2}, when such an H exists,
we say that f ∈ Pi with transformation H. If f ∈ Pi with I2, then we say f is in the canonical
form of Pi.

Lemma 2.12 (Lemma 8.13 in [11]). Let f be a non-degenerate symmetric signature. Then f is
P-transformable iff f ∈P1 ∪P2.

3 Some Example Problems

3.1 A Fibonacci-like Problem

Fibonacci gates were introduced in [24]. These lead to tractable counting problems, and holographic
algorithms based on Fibonacci gates work over general (i.e. not necessarily planar) graphs. However,
Fibonacci gates are symmetric by definition. An example of a Fibonacci gate is the signature
f = [f0, f1, f2, f3] = [1, 0, 1, 1]. Its entries satisfy the recurrence relation of the Fibonacci numbers,
i.e. f2 = f1 + f0 and f3 = f2 + f1. For Holant(f), the input is a 3-regular graph, and the problem
is to count spanning subgraphs such that no vertex has degree 1.

A symmetric signature g = [g0, g1, . . . , gn] is a generalized Fibonacci gate of type λ ∈ C if
gk+2 = λgk+1 + gk holds for all k ∈ {0, 1, . . . , n − 2}. The standard Fibonacci gates are of type
λ = 1. An example of a generalized Fibonacci gate is g = [3, 1, 3, 1], which has type λ = 0. In
contrast to Holant(f), the problem Holant(g) permits all possible spanning subgraphs. The output
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is the sum of the weights of each spanning subgraph. The weight of a spanning subgraph S is 3k(S),
where k(S) is the number of vertices of even degree in S. Since g = [3, 1, 3, 1] is Fibonacci, the
problem Holant(g) is computable in polynomial time. One new family of holographic algorithms
in this paper extends Fibonacci gates to asymmetric signatures.

In full notation, g = (3, 1, 1, 3, 1, 3, 3, 1)T ∈ {0, 1}3. Consider the asymmetric signature h =
(3, 1,−1,−3,−1,−3, 3, 1)T. This signature h differs from g by a negative sign in four entries.
Although h is not a generalized Fibonacci gate or even a symmetric signature, it still defines a
tractable Holant problem. Under a holographic transformation by Z−1, where Z = 1√

2

[
1 1
i −i

]
,

Holant(h) = Holant (=2 | h) = Holant
(
=2(Z−1)⊗2 | Z⊗4h

)
= Holant

(
[1, 0,−1] | ĥ

)
,

where ĥ = 2i
√

2(0, 1, 0, 0, 0, 0, 2i, 0). Both [1, 0,−1](x1, x2) = Equality(x1, x2) · [1,−1](x1) and
ĥ(x1, x2, x3) = 2i

√
2 · Equality(x1, x2) ·Disequality(x2, x3) · [1, 2i](x1) are product-type signa-

tures.
It turns out that for all values of λ 6= ±2i, the generalized Fibonacci gates of type λ are P-

transformable. The value of λ indicates under which holographic transformation the signatures
become product type. For λ = ±2i, the generalized Fibonacci gates of type λ are vanishing, which
means the output is always zero for every possible input.

3.2 Some Cycle Cover Problems and Orientation Problems

To express some problems involving asymmetric signatures of arity 4, it is convenient to arrange
the 16 outputs into a 4-by-4 matrix.

Definition 3.1 (Definition 6.2 in [11]). The signature matrix of a signature f(x1, x2, x3, x4) is

Mf =

[
f0000 f0010 f0001 f0011
f0100 f0110 f0101 f0111
f1000 f1010 f1001 f1011
f1100 f1110 f1101 f1111

]
, where the row is indexed by two bits (x1, x2) and the column is

indexed by two bits (x4, x3) in reverse order. This ordering is for convenience in some proofs.

Consider the problem of counting the number of cycle covers in a given graph. This problem
is #P-hard even when restricted to planar 4-regular graphs [33]. As a Holant problem, its expres-
sion is Holant(f), where f(x1, x2, x3, x4) is the symmetric signature [0, 0, 1, 0, 0]. The signature

matrix of f is Mf =

[
0 0 0 1
0 1 1 0
0 1 1 0
1 0 0 0

]
. The six entries in the support of f , which are all of Hamming

weight two (indicating that a cycle cover passes through each vertex exactly twice), can be divided
into two parts, namely {0011, 0110, 1100, 1001} and {0101, 1010}. In the planar setting, this corre-
sponds to a pairing of adjacent or non-adjacent incident edges. Both sets are invariant under cyclic
permutations.

Suppose we removed the inputs 0101 and 1010 from the support of f , which are the two 1’s on
the anti-diagonal in the middle of Mf . Call the resulting signature g, which has signature matrix

Mg =

[
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

]
. These new 0’s impose a constraint on the types of cycle covers allowed. We call a

cycle cover valid if it satisfies this new constraint. A valid cycle cover must not pass through a vertex
in a “crossing” way. Counting the number of such cycle covers over 4-regular graphs can be done
in polynomial time, even without the planarity restriction, e.g., for a graph embedded on a surface
of arbitrary genus. The signature g(x1, x2, x3, x4) = Dis-Equality(x1, x3) ·Dis-Equality(x2, x4)
is of the product type P, therefore Holant(g) is tractable.

8



0
1

0

1

1
0

1

0

0 1

1 0

0 1

(a) An admissible assignment to this graph frag-
ment. The circle vertices are assigned ĝ and the
square vertices are assigned 6=2.

(b) The orientation induced by the assignment
in (a).

Figure 1: A fragment of an instance to Holant (6=2 | ĝ), which must be a (2, 4)-regular
bipartite graph. Note the saddle orientation of the edges incident to the two vertices
with all four edges depicted.

Under a holographic transformation by Z = 1√
2

[
1 1
i −i

]
, we obtain the problem

Holant(g) = Holant (=2 | g) = Holant
(
=2Z

⊗2 | (Z−1)⊗4g
)

= Holant (6=2 | ĝ) ,

where Mĝ =

[−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

]
. This problem has the following interpretation. It is a Holant problem

on bipartite graphs. On the right side of the bipartite graph, the vertices must all have degree 4
and are assigned the signature ĝ. On the left side, the vertices must all have degree 2 and are
assigned the binary disequality constraint 6=2. The disequality constraints suggest an orientation
between their two neighboring vertices of degree 4 (see Figure 1). By convention, we view the edge
as having its tail assigned 0 and its head assigned 1. Then every valid assignment in this bipartite
graph naturally corresponds to an orientation in the original 4-regular graph.

If the four inputs 0011, 0110, 1100, and 1001 were in the support of ĝ, then the Holant sum
would be over all possible orientations with an even number of incoming edges at each vertex. As
it is, the sum is over all possible orientations with an even number of incoming edges at each vertex
that also forbid those four types of orientations at each vertex, as specified by ĝ. The following
orientations are admissible by ĝ: The orientation of the edges are such that at each vertex all edges
are oriented out (source vertex), or all edges are oriented in (sink vertex), or the edges are cyclically
oriented in, out, in, out (saddle vertex).

Thus, the output of Holant ( 6=2 | ĝ) is a weighted sum over of these admissible orientations.
Each admissible orientation O contributes a weight (−1)s(O) to the sum, where s(O) is the number
of source and sink vertices in an orientation O. We can express this as

∑
O∈O(G)(−1)s(O), where

O(G) is the set of admissible orientations for G, which are those orientations that only contain
source, sink, and saddle vertices. In words, the value is the number of admissible orientations with
an even number of sources and sinks minus the number of admissible orientations with an odd
number of sources and sinks. This orientation problem may seem quite different from the restricted
cycle cover problem we started with, but they are, in fact, the same problem. Since Holant(g) is
tractable, so is Holant (6=2 | ĝ).

Now, consider a slight generalization of this orientation problem.

Problem: #λ-SourceSinkSaddleOrientations
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Input: An undirected 4-regular graph G.
Output:

∑
O∈O(G) λ

s(O).

For λ = −1, we recover the orientation problem from above. For λ = 1, the problem is also
tractable since, when viewed as a bipartite Holant problem on the (2, 4)-regular bipartite vertex-
edge incidence graph, the disequality constraint on the vertices of degree 2 and the constraint
on the vertices of degree 4 are both product-type functions. As a function of x1, x2, x3, x4, the
constraint on the degree 4 vertices is Equality(x1, x3) · Equality(x2, x4). Let sk,m(G) be the
number of O ∈ O(G) such that s(O) ≡ k (mod m). Then the output of this problem with λ = 1 is
s0,2(G) + s1,2(G) and the output of this problem with λ = −1 is s0,2(G) − s1,2(G). Therefore, we
can compute both s0,2(G) and s1,2(G). However, more is possible.

For λ = i, the problem is tractable using affine constraints. In the (2, 4)-regular bipartite
vertex-edge incidence graph, the disequality constraint assigned to the vertices of degree 2 is affine.
On the vertices of degree 4, the assigned constraint function is an affine signature since the affine
support is defined by the affine linear system x1 = x3 and x2 = x4 while the quadratic polynomial
in the exponent of i is 3x2

1 +3x2
2 +2x1x2 +1. Although the output is a complex number, the real and

imaginary parts encode separate information. The real part is s0,4(G)− s2,4(G) and the imaginary
part is s1,4(G)− s3,4(G). Since s0,2(G) = s0,4(G) + s2,4(G) and s1,2(G) = s1,4(G) + s3,4(G), we can
actually compute all four quantities s0,4(G), s1,4(G), s2,4(G), and s3,4(G) in polynomial time.

3.3 An Enigmatic Problem

Some problems may be a challenge for the human intelligence to grasp. But in a platonic view
of computational complexity, they are no less valid problems. For example, consider the problem
Holant((1 + c2)−1[1, 0,−i] | f) where f has the signature matrix



0 (4+4i)

(
28+20

√
2+

√
2
(
799+565

√
2
))

(4+4i)

(
28+20

√
2+

√
2
(
799+565

√
2
))

−8i

(
13+9

√
2+2

√
82+58

√
2

)
(4+4i)

(
28+20

√
2+

√
2
(
799+565

√
2
))

−8i

(
13+9

√
2+2

√
82+58

√
2

)
8i

(
18+13

√
2+4

√
41+29

√
2

)
(−4+4i)

(
12+8

√
2+

√
274+194

√
2

)
(4+4i)

(
28+20

√
2+

√
2
(
799+565

√
2
))

8i

(
18+13

√
2+4

√
41+29

√
2

)
−8i

(
13+9

√
2+2

√
82+58

√
2

)
(−4+4i)

(
12+8

√
2+

√
274+194

√
2

)
−8i

(
13+9

√
2+2

√
82+58

√
2

)
(−4+4i)

(
12+8

√
2+

√
274+194

√
2

)
(−4+4i)

(
12+8

√
2+

√
274+194

√
2

)
−16

(
13+9

√
2+2

√
82+58

√
2

)



and c = 1 +
√

2 +
√

2(1 +
√

2). Most likely no one has ever considered this problem before. Yet

this nameless problem is A -transformable under T = [ 1 0
0 α ]

[
1 c
−c 1

]
, and hence it is really the same

problem as a more comprehensible problem defined by f̂ . Namely,

Holant((1+c2)−1[1, 0,−i] |f) = Holant((1+c2)−1[1, 0,−i]T⊗2 |(T−1)⊗4f) = Holant([1, 0, 1] | f̂) = Holant(f̂),

where Mf̂ =

[ 1 −1 −1 −1
−1 −1 1 −1
−1 1 −1 −1
−1 −1 −1 1

]
. We can express f̂ as f̂(x1, x2, x3, x4) = iQ(x), where Q(x1, x2, x3, x4) =

2(x2
1 +x2

2 +x2
3 +x2

4 +x1x2 +x2x3 +x3x4 +x4x1). Therefore, f̂ is affine, which means that Holant(f̂)
as well as Holant((1 + c2)−1[1, 0,−i] | f) are tractable. Furthermore, notice that f̂ only contains
integers even though (1 + c2)−1[1, 0,−i] and f contain many complex numbers with irrational real
and imaginary parts. Thus, Holant((1 + c2)−1[1, 0,−i] | f) is not only tractable, but it always
outputs an integer. Apparent anomalies like Holant((1+c2)−1[1, 0,−i] | f), however contrived they
may seem to be to the human eye, behoove the creation of a systematic theory to understand and
characterize the tractable cases.
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4 General A -transformable Signatures

Let f be a signature of arity n. It is given as a column vector in C2n with bit length N , which is
on the order of 2n. We denote its entries by fx = f(x) indexed by x ∈ {0, 1}n. The entries are
from a fixed degree algebraic extension of Q and we may assume basic bit operations in the field
take unit time.

Notice that the number of general affine signatures of arity n are on the order of 2n
2
. Hence

a naive check of the membership of affine signatures would result in a super-polynomial running
time in N . Instead, we present a polynomial time algorithm.

Lemma 4.1. There is an algorithm to decide whether a given signature f of arity n belongs to A
with running time polynomial in N , the bit length of f .

Proof. If f is identically zero, then f is trivially in A , so assume that f is not identically zero. We
first normalize f so that the first nonzero entry of f is 1. If there exists a nonzero entry of f after
normalization that is not a power of i, then f 6∈ A , so assume that all entries are now a power of i.

The next step is to decide if the support S 6= ∅ of f forms an affine linear subspace. We try
to build a basis for S inductively. It may end successfully or find an inconsistency. We choose the
index of the first nonzero entry b0 ∈ S as our first basis element. Assume we have a set of basis
elements B = {b0, . . . ,bk} ⊆ S. Consider the affine linear span Span(B). We check if Span(B) ⊆ S.
If not, then S is not affine and f 6∈ A , so suppose that this is the case. If Span(B) = S, then
we are done. Lastly, if S − Span(B) 6= ∅, then pick the next element bk+1 ∈ S − Span(B). Let
B′ = B ∪ {bk+1} and repeat with the new basis set B′.

Now assume that S is an affine subspace, that we have a linear system defining it, and that
every nonzero entry of f is a power of i. If S has dimension 0, then S is a single point, and f ∈ A .
Otherwise, dim(S) = r ≥ 1, and (after reordering) x1, . . . , xr are free variables of the linear system
defining S. For each x ∈ {0, 1}r, let y ∈ {0, 1}n−r be the unique extension such that xy ∈ S.
Define px ∈ Z4 such that fxy = ipx 6= 0. We want to decide if there exists a quadratic polynomial

Q(x) =

r∑
j=1

cjx
2
j + 2

∑
1≤k<`≤r

ck`xkx` + c,

where c, cj , ck` ∈ Z4, for 1 ≤ j ≤ r and 1 ≤ k < ` ≤ r, such that Q(x) ≡ px (mod 4) for all
x ∈ {0, 1}r. Setting x = 0 ∈ {0, 1}r determines c. Setting exactly one xj = 1 and the rest to 0
determines cj . Setting exactly two xk = x` = 1 and the rest to 0 determines ck`. Then we verify if
Q(x) is consistent with f , and f ∈ A iff it is so.

For later use, we note the following corollary.

Corollary 4.2. There is an algorithm to decide whether a given signature f of arity n belongs to
[ 1 0

0 α ] A with running time polynomial in N , the bit length of f .

Proof. For arity(f) = n, just check if
[

1 0
0 α−1

]⊗n
f ∈ A by Lemma 4.1.

We can strengthen Lemma 2.7 by restricting to orthogonal transformations within SO2(C).

Lemma 4.3. Let F be a set of signatures. Then F is A -transformable iff there exists an H ∈
SO2(C) such that F ⊆ HA or F ⊆ H [ 1 0

0 α ] A .
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Proof. Sufficiency is obvious by Lemma 2.7.
Assume that F is A -transformable. By Lemma 2.7, there exists an H ∈ O2(C) such that

F ⊆ HA or F ⊆ H [ 1 0
0 α ] A . If H ∈ SO2(C), we are done, so assume that H ∈ O2(C)− SO2(C).

We want to find an H ′ ∈ SO2(C) such that F ⊆ H ′A or F ⊆ H ′ [ 1 0
0 α ] A . Let H ′ = H

[
1 0
0 −1

]
∈

SO2(C). There are two cases to consider.
1. Suppose F ⊆ HA . Then since

[
1 0
0 −1

]
∈ Stab(A ),

F ⊆ H
[

1 0
0 −1

]
A

= H ′A .

2. Suppose F ⊆ H [ 1 0
0 α ] A . Then since

[
1 0
0 −1

]
∈ Stab(A ), which commutes with [ 1 0

0 α ],

F ⊆ H [ 1 0
0 α ]

[
1 0
0 −1

]
A

= H
[

1 0
0 −1

]
[ 1 0

0 α ] A

= H ′ [ 1 0
0 α ] A .

We now observe some properties of a signature under transformations in SO2(C). Let f be a
signature and H =

[
a b
−b a

]
∈ SO2(C) where a2 + b2 = 1. Notice that v0 = (1, i) and v1 = (1,−i)

are row eigenvectors of H with eigenvalues a − bi and a + bi respectively. Let Z ′ =
[

1 i
1 −i

]
. Then

Z ′H = TZ ′, where T =
[
a−bi 0

0 a+bi

]
.

For a vector u = (u1, . . . , un) ∈ {0, 1}n of length n, let

vu = vu1 ⊗ vu2 ⊗ . . .⊗ vun ,

and let w(u) be the Hamming weight of u. Then vu is a row eigenvector of the 2n-by-2n matrix H⊗n

with eigenvalue (a−bi)n−w(u)(a+bi)w(u) = (a−bi)n−2w(u) = (a+bi)2w(u)−n since (a+bi)(a−bi) =
a2 + b2 = 1. In this paper, the following Z ′-transformation plays an important role. For any
function f on {0, 1}n, we define

f̂ = Z ′⊗nf.

Then f̂u = 〈vu, f〉, as a dot product.

Lemma 4.4. Suppose f and g are signatures of arity n and let H =
[
a b
−b a

]
and T =

[
a−bi 0

0 a+bi

]
.

Then g = H⊗nf iff ĝ = T⊗nf̂ .

Proof. Since Z ′H = TZ ′,

g = H⊗nf ⇐⇒ Z ′⊗ng = Z ′⊗nH⊗nf

⇐⇒ Z ′⊗ng = T⊗nZ ′⊗nf

⇐⇒ ĝ = T⊗nf̂ .

We note that vTu is also a column eigenvector of H⊗n with eigenvalue (a− bi)2w(u)−n. Now we
characterize the signatures that are invariant under transformations in SO2(C).

Lemma 4.5. Let f be a signature. Then f is invariant under transformations in SO2(C) (up to
a nonzero constant) iff the support of f̂ contains at most one Hamming weight.
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Proof. This clearly holds when f is identically zero, so assume that f contains a nonzero entry
and has arity n. Such an f is invariant under any H (up to a nonzero constant) iff f is a column
eigenvector of H⊗n. Take H ∈ SO2(C) such that H⊗n has n+1 distinct eigenvalues (a−bi)n−w(a+
bi)w, for 0 ≤ w ≤ n. Then f is a column eigenvector of H⊗n iff it is a nonzero linear combination of
vTu of the same Hamming weight w(u). Hence f is invariant under H iff the support of f̂ contains
at most one Hamming weight.

Using Lemma 4.5, we can efficiently decide if there exists an H ∈ SO2(C) such that H⊗nf ∈ A .

Lemma 4.6. There is an algorithm to decide, for any input signature f of arity n, whether there
exists an H ∈ SO2(C) such that H⊗nf ∈ A with running time polynomial in N . If so, either
f ∈ A and f is invariant under any transformation in SO2(C), or there exist at most 8n many
H ∈ SO2(C) such that H⊗nf ∈ A , and they can all be computed in time polynomial in N .

Proof. Compute f̂ = Z ′⊗nf . If the support of f̂ contains at most one Hamming weight, then by
Lemma 4.5, f is invariant under any H ∈ SO2(C). Therefore we only need to directly decide if
f ∈ A , which we do by Lemma 4.1.

Now assume there are at least two nonzero entries of f̂ that are of distinct Hamming weight.
Let u1,u2 ∈ {0, 1}n be such that f̂u1 and f̂u2 are nonzero, and 0 < w(u2) − w(u1) ≤ n. Suppose
there exists an H =

[
a b
−b a

]
∈ SO2(C) such that g = H⊗nf ∈ A . Then by Lemma 4.4, we have

ĝ = T⊗nf̂ , where T =
[
a−bi 0

0 a+bi

]
is a diagonal transformation. Since Z ′ =

√
2H2D ∈ Stab(A ),

we have ĝ = Z ′⊗ng ∈ A . Also since T is diagonal, both ĝu1 and ĝu2 are nonzero. Therefore, there
must exist an r ∈ {0, 1, 2, 3} such that

ir =
ĝu2

ĝu1

=
(a+ bi)2w(u2)−nf̂u2

(a+ bi)2w(u1)−nf̂u1

= (a+ bi)2w(u2)−2w(u1) f̂u2

f̂u1

. (1)

Recall that 0 < w(u2)−w(u1) ≤ n. Then given f̂u1 and f̂u2 , there are at most 8n many solutions
for a, b ∈ C such that a+ bi satisfies (1) (with 4 possible values of r) and a2 + b2 = 1. Each (a, b)
solution corresponds to a distinct H ∈ SO2(C).

We also want to efficiently decide if there exists an H ∈ SO2(C) such that H⊗nf ∈ [ 1 0
0 α ] A .

Lemma 4.7. There is an algorithm to decide, for any input signature f of arity n, whether there
exists an H ∈ SO2(C) such that H⊗nf ∈ [ 1 0

0 α ] A with running time polynomial in N . If so, either
f ∈ [ 1 0

0 α ] A and f is invariant under any transformation in SO2(C), or there exist O(nN16) many
H ∈ SO2(C) such that H⊗nf ∈ [ 1 0

0 α ] A , and they can all be computed in polynomial time in N .

Proof. Compute f̂ = Z ′⊗nf . If the support of f̂ contains at most one Hamming weight, then by
Lemma 4.5, f is invariant under any H ∈ SO2(C). Therefore we only need to directly decide if
f ∈ [ 1 0

0 α ] A , which we do by Corollary 4.2.

Now assume there are at least two nonzero entries of f̂ that are of distinct Hamming weight.
Let u1,u2 ∈ {0, 1}n be such that f̂u1 and f̂u2 are nonzero, and 0 < w(u2)−w(u1) ≤ n. We derive
necessary conditions for the existence of H ∈ SO2(C) such that H⊗nf ∈ [ 1 0

0 α ] A . Thus, assume
such an H =

[
a b
−b a

]
exists, where a2 + b2 = 1.
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Let g = H⊗nf . Then ĝ = Z ′⊗ng ∈
[

1 i
1 −i

]
[ 1 0

0 α ] A . By Lemma 4.4, we have ĝ = T⊗nf̂ , where

T =
[
a−bi 0

0 a+bi

]
. Thus ĝu = (a+ bi)2w(u)−nf̂u for any u ∈ {0, 1}n. Let t = w(u1)− w(u2). Then

ĝu1

ĝu2

=
(a+ bi)2w(u1)−nf̂u1

(a+ bi)2w(u2)−nf̂u2

= (a+ bi)2t f̂u1

f̂u2

.

Hence

(a+ bi)2t =
f̂u2

f̂u1

· ĝu1

ĝu2

.

Notice that ĝ ∈
[

1 i
1 −i

]
[ 1 0

0 α ] A . We claim that the value of each entry in ĝ as well as the number
of possible values is bounded by a polynomial in N , and hence so are the ratios between them.
Recall that ĝ =

[
1 i
1 −i

]⊗n
[ 1 0

0 α ]
⊗n
h, for some h ∈ A . Then every nonzero entry of h is a power of i,

up to a constant factor λ. This constant factor cancels when taking ratios of entries, so we omit it.
Let h′ = [ 1 0

0 α ]
⊗n
h. Then every entry of h′ is a power of α or 0. Moreover, each entry of

[
1 i
1 −i

]⊗n
is also a power of α. Therefore every entry of ĝ is an exponential sum of 2n terms, each a power of
α or 0. Let c0 denote the number of 0 and ci (for 1 ≤ i ≤ 8) denote the number of αi in an entry
ĝu of ĝ. Then we have

c0 +
8∑
i=1

ci = 2n and
8∑
i=1

ciα
i = ĝu.

Clearly the total number of possible values of entries in ĝu is at most the number of possible choices
of (c0, . . . , c8). There are at most

(
2n+8

8

)
= O(N8) many choices of (c0, . . . , c8). Thus the number

of all possible ratios is at most O(N16), and can all be enumerated in time polynomial in N .

For any possible value of the ratio
ĝu1
ĝu2

, each possible value of
f̂u2

f̂u1

gives at most 2n many different

transformations H. Therefore, the total number of transformations is bounded by O(nN16), and
we can find them in time polynomial in N .

Now we give an algorithm that efficiently decides if a set of signatures is A -transformable.

Theorem 4.8. There is a polynomial time algorithm to decide, for any finite set of signatures F ,
whether F is A -transformable. If so, at least one transformation can be found.

Proof. By Lemma 4.3, we only need to decide if there exists an H ∈ SO2(C) such that F ⊆ HA
or F ⊆ H [ 1 0

0 α ] A . To every signature in F , we apply Lemma 4.6 or Lemma 4.7 to check each
case, respectively. If no H exists for some signature, then F is not A -transformable. Otherwise,
every signature is A -transformable for some H ∈ SO2(C). If every signature in F is invariant
under transformations in SO2(C), then F is A -transformable. Otherwise, there exists an f ∈ F
that is not invariant under transformations in SO2(C). The number of possible transformations
that work for f is bounded by a polynomial in the size of the presentation of f . We simply try all
such transformations on all other signatures in F that are not invariant under transformations in
SO2(C), respectively using Lemma 4.1 or Corollary 4.2 to check if the transformation works.

5 General P-transformable Signatures

We begin with the counterpart to Lemma 4.3, which strengthens Lemma 2.10 by restricting to
either orthogonal transformations within SO2(C) or no orthogonal transformation at all.
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Lemma 5.1. Let F be a set of signatures. Then F is P-transformable iff F ⊆
[

1 1
i −i

]
P or there

exists an H ∈ SO2(C) such that F ⊆ HP.

Proof. Sufficiency is obvious by Lemma 2.10.
Assume that F is P-transformable. By Lemma 2.10, there exists an H ∈ O2(C) such that

F ⊆ HP or F ⊆ H
[

1 1
i −i

]
P. There are two cases to consider.

1. Suppose F ⊆ HP. If H ∈ SO2(C), then we are done, so assume that H ∈ O2(C)−SO2(C).
We want to find an H ′ ∈ SO2(C) such that F ⊆ H ′P. Let H ′ = H

[
1 0
0 −1

]
∈ SO2(C). Then

F ⊆ H
[

1 0
0 −1

]
P

= H ′P

since
[

1 0
0 −1

]
∈ Stab(P).

2. Suppose F ⊆ H
[

1 1
i −i

]
P. If H =

[
a b
−b a

]
∈ SO2(C), then

F ⊆ H
[

1 1
i −i

]
P

⊆
[

1 1
i −i

] [
a+bi 0

0 a−bi
]
P

⊆
[

1 1
i −i

]
P

since H
[

1 1
i −i

]
=
[

1 1
i −i

] [
a+bi 0

0 a−bi
]

and
[
a+bi 0

0 a−bi
]
∈ Stab(P). Otherwise, H =

[
a b
b −a

]
∈

O2(C)− SO2(C) and

F ⊆ H
[

1 1
i −i

]
P

⊆
[

1 1
i −i

] [
0 a−bi

a+bi 0

]
P

⊆
[

1 1
i −i

]
P

since H
[

1 1
i −i

]
=
[

1 1
i −i

] [
0 a−bi

a+bi 0

]
and

[
0 a−bi

a+bi 0

]
∈ Stab(P).

The “building blocks” of P are signatures whose support is contained in two entries with
complement indices. Recall that two signatures are considered the same if one is a nonzero constant
multiple of the other.

Definition 5.2. A k-ary function f is a generalized equality if it is [0, 0], [1, 0], [0, 1], or satisfies

∃x ∈ {0, 1}k, ∀y ∈ {0, 1}k, fy = 0 ⇐⇒ y 6∈ {x,x}.

We use E to denote the set of all generalized equality functions.

For any set F , we let 〈F〉 denote the closure under function products without shared variables.
If we view signatures as tensors, then 〈·〉 is the closure under tensor products. That is, if f(x1,x2) =
f1(x1)f2(x2), then f = f1 ⊗ f2 with a correct ordering of indices. By definition, one can show that
P = 〈E 〉.

Definition 5.3. We call a function f of arity n on variable set x reducible if there exist f1 and
f2 of arities n1 and n2 on variable sets x1 and x2, respectively, such that 1 ≤ n1, n2 ≤ n − 1,
x1 ∪ x2 = x, x1 ∩ x2 = ∅, and f(x) = f1(x1)f2(x2). Otherwise we call f irreducible.
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Note that all unary functions, including [0, 0], are irreducible. However, the identically zero
function of arity greater than one is reducible. Definition 5.2 is a slight modification of a similar
definition for E that appeared in Section 2 of [21]. For both definitions of E , it follows that
P = 〈E 〉. The motivation for our slight change in the definition is so that every signature in E is
irreducible.

If a function f is reducible, then we can factor it into functions of smaller arity. This procedure
can be applied recursively and terminates when all components are irreducible. Therefore any
function has at least one irreducible factorization. We show that such a factorization is unique for
functions that are not identically zero.

Lemma 5.4. Let f be a function of arity n on variables x that is not identically zero. Assume
there exist irreducible functions fi and gj, and two partitions {xi} and {yj} of x for 1 ≤ i ≤ k and
1 ≤ j ≤ k′, such that

f(x) =

k∏
i=1

fi(xi) =

k′∏
j=1

gj(yj).

Then k = k′, the partitions are the same, and {fi} and {gj} are the same up to a permutation.

Proof. Since f is not identically zero, none of fi or gj is identically zero. Fix an assignment

u2, . . . ,uk such that c =
∏k
i=2 fi(ui) 6= 0. Let zj = yj ∩ x1, and vj = yj ∩ (∪ki=2xi) for 1 ≤ j ≤ k′.

Let the assignments u2, . . . ,uk restricted to vj be wj . Then we have

cf1(x1) = f1(x1)
k∏
i=2

fi(ui) =
k′∏
j=1

gj(zj ,wj).

Define new functions hj(zj) = gj(zj ,wj) for 1 ≤ j ≤ k′. Then

f1(x1) =
1

c

k′∏
j=1

hj(zj).

Since f1 is irreducible, there cannot be two zj that are nonempty. And yet, x1 = ∪k′j=1zj , so it
follows that x1 = zj for some 1 ≤ j ≤ k′. We may assume j = 1, so x1 ⊆ y1. By the same
argument we have y1 ⊆ xi, for some i. But by disjointness of x = ∪ki=1xi, we must have y1 ⊆ x1.
Thus after a permutation, we have x1 = y1. Therefore f1 = g1 up to a nonzero constant.

By fixing some assignment to x1 = y1 such that f1 and g1 are not zero, we may cancel this
factor, and the proof is completed by induction. Therefore we must have k = k′ and {fi} and {gj}
are the same up to a permutation (and nonzero factors).

In fact, we can efficiently find the unique factorization.

Lemma 5.5. There is an algorithm to compute, for any input signature f of arity n that is not
identically zero, the unique factorization of f into irreducible factors with runtime polynomial in
N . More specifically, the algorithm computes irreducibles f1, . . . , fk of arities n1, . . . , nk ∈ Z+ (for
some k ≥ 1) such that

∑k
i=1 ni = n and f(x1, . . . ,xk) =

∏k
i=1 fi(xi).
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Proof. For the variable set x of length n, we may partition it into two sets x1 and x2 of length
n1 and n2, respectively, such that 1 ≤ n1, n2 ≤ n − 1, x1 ∪ x2 = x, and x1 ∩ x2 = ∅. Define a
2n1-by-2n2 matrix M such that Mu1,u2 = f(u1,u2) for u1 ∈ {0, 1}n1 and u2 ∈ {0, 1}n2 . Then M is
of rank at most 1 iff there exist f1 and f2 of arity n1 and n2, such that f(x) = f1(x1)f2(x2).

Therefore, in order to factor f , we only need to run through all distinct partitions, and check
if there exists at least one such matrix of rank at most 1. If none exists, then f is irreducible.
The total number of possible such partitions is 2n−1 − 1. Hence the running time is polynomial in
2n ≤ N .

Once we have found f = f1 ⊗ f2, we recursively apply the above procedure to f1 and f2 until
every component is irreducible. The total running time is polynomial in N .

This factorization algorithm gives a simple algorithm to determine membership in P.

Lemma 5.6. There is an algorithm to decide, for a given signature f of arity n, whether f ∈ P
with running time polynomial in N .

Proof. If f is identically zero, then f ∈ P. Otherwise, f is not identically zero and we obtain its
unique factorization f =

⊗
i fi by Lemma 5.5. Then f ∈ P iff for all i, we have fi ∈ E . Since

membership in E is easy to check, our proof is complete.

Let T ∈ GL2(C) be some transformation and f some signature. To check if f ∈ TP, it suffices
to first factor f and then check if each irreducible factor is in TE .

Lemma 5.7. Suppose f =
⊗k

i=1 fi is not identically zero and that fi is irreducible for all 1 ≤ i ≤ k.
Let T ∈ GL2(C). Then f ∈ TP iff fi ∈ TE for all 1 ≤ i ≤ k.

Proof. Suppose f is of arity n and fi is of arity ni so that
∑k

i=1 ni = n. If fi ∈ TE for all 1 ≤ i ≤ k,

then there exists gi ∈ E such that fi = T⊗nigi. Thus f =
⊗k

i=1 fi =
⊗k

i=1 T
⊗nigi = T⊗n

⊗k
i=1 gi.

Since gi ∈ E , we have
⊗k

i=1 gi ∈P. Therefore f ∈ TP.
On the other hand, assume f ∈ TP. By the definition of P, there exist g1, . . . , gk′ ∈ E of

arities m1, . . . ,mk′ ∈ Z+, such that f = T⊗ng, where g =
⊗k′

i=1 gi. It is easy to verify that each
gi ∈ E is irreducible. Let f ′i = T⊗migi ∈ TE for all 1 ≤ i ≤ k′, which are also irreducible. Then⊗k′

i=1 f
′
i = f =

⊗k
i=1 fi. By Lemma 5.4, we have k = k′ and {fi} and {f ′i} are the same up to a

permutation. Therefore each fi ∈ TE .

With Lemmas 5.5 and 5.7 in mind, we focus our attention on membership in E . We show how
to efficiently decide if there exists an H ∈ SO2(C) such that H⊗nf ∈ E when f is irreducible.

Lemma 5.8. There is an algorithm to decide, for a given irreducible signature f of arity n ≥ 2,
whether there exists an H ∈ SO2(C) such that H⊗nf ∈ E with running time polynomial in N .
If so, there exist at most eight H ∈ SO2(C) such that H⊗nf ∈ E unless f = (1, 0, 0, 1)T or
f = (0, 1,−1, 0)T.

Proof. Assume there exists an H =
[
a b
−b a

]
∈ SO2(C) such that g = H⊗nf ∈ E , where a2 + b2 = 1.

Then by Lemma 4.4, there exists a diagonal transformation T =
[
a−bi 0

0 a+bi

]
such that ĝ = T⊗nf̂ ∈[

1 i
1 −i

]
E . In particular, ĝ and f̂ have the same support. For two vectors u,x ∈ {0, 1}n, the

entry indexed by row u and column x in the matrix
[

1 i
1 −i

]⊗n
is iw(x)(−1)〈x,u〉, where w(·) denotes

Hamming weight and 〈·, ·〉 is the dot product.
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Since f is irreducible, g is irreducible as well. Thus g has two nonzero entries with opposite
index, say x and x. Hence we have

ĝu = iw(x)(−1)〈x,u〉gx + iw(x)(−1)〈x,u〉gx

= iw(x)(−1)〈x,u〉gx + in−w(x)(−1)w(u)−〈x,u〉gx

= (−1)〈x,u〉
(
iw(x)gx + in−w(x)(−1)w(u)gx

)
for any vector u ∈ {0, 1}n.

For u1,u2 ∈ {0, 1}n, if w(u1) ≡ w(u2) (mod 2), then

ĝu1 = ±ĝu2 . (2)

Therefore, if any entry of f̂ with even Hamming weight is 0, then all entries with even Hamming
weight are 0. This also holds for entries with odd Hamming weight. However, f̂ is not identically
zero because it is irreducible and of arity n ≥ 2. Therefore, we know that either all entries of even
Hamming weight are not 0 or all entries of odd Hamming weight are not 0. If n ≥ 3, or if n = 2
and all entries of even Hamming weight are not 0, then we can take two nonzero entries of f̂ whose
Hamming weight differ by 2. Their ratio restricts the possible choices of a + bi, as in the proof of
Lemma 4.7, because the only possible ratios for ĝu1/ĝu2 are ±1 by (2). Together with a2 + b2 = 1,
this gives at most 8 possible matrices H ∈ SO2(C).

The remaining case is when n = 2 and all entires of f̂ with even Hamming weight are 0. By (2),
we have ĝ = λ(0, 1,±1, 0)T for some λ 6= 0 since ĝ and f̂ have the same support. Then from
f̂ = (T−1)⊗2ĝ, where T−1 =

[
a+bi 0

0 a−bi
]

is diagonal, we calculate that T−1
[

0 1
±1 0

]
(T−1)T =

[
0 1
±1 0

]
.

Hence, up to a nonzero scalar, f̂ = (0, 1, 1, 0)T or f̂ = (0, 1,−1, 0)T. Finally f = (Z ′−1)⊗2f̂ , and we
get f = (1, 0, 0, 1)T or f = (0, 1,−1, 0)T, up to a nonzero scalar.

Now we give an algorithm that efficiently decides if a set of signatures is P-transformable.

Theorem 5.9. There is a polynomial time algorithm to decide, for any finite set of signatures F ,
whether F is P-transformable. If so, at least one transformation can be found.

Proof. By Lemma 5.1, we only need to decide if F ⊆
[

1 1
i −i

]
P or if there exists an H ∈ SO2(C)

such that F ⊆ HP. To check if F ⊆
[

1 1
i −i

]
P, we simply apply Lemma 5.6 to each signature in[

1 1
i −i

]−1F .
Now to check if F ⊆ HP. Any signature in F that is identically zero is in TP for any

T ∈ GL2(C). Thus, assume that no signature in F is identically zero. Now we obtain the unique
factorization of each signature in F using Lemma 5.5. If every irreducible factor is either a unary
signature, or (1, 0, 0, 1)T, or (0, 1,−1, 0)T, then F ⊆ 〈E 〉 = P. Otherwise, let f ∈ F be a signature
that is not of this form. This means that f has a unique factorization f =

⊗
i fi where some fi,

say f1, is not unary signature, or (1, 0, 0, 1)T, or (0, 1,−1, 0)T.
By applying Lemma 5.7 to f , we get the necessary condition f1 ∈ HE . Then we apply

Lemma 5.8 to f1. If the test passes, then by the definition of f1, we have at most eight trans-
formations in SO2(C) that could work. For each possible transformation H, we apply Lemma 5.6
to every signature in H−1F to check if it works.
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6 Symmetric A -transformable Signatures

In the next two sections, we consider the case when the signatures are symmetric. The significant
difference is that a symmetric signature of arity n is given by n + 1 values, instead of 2n values.
This exponentially more succinct representation requires us to find a more efficient algorithm.

6.1 A Single Signature

To begin, we provide efficient algorithms to decide membership in each of A1, A2, and A3 for a
single signature. If the signature is in one of the sets, then the algorithm also finds at least one
corresponding orthogonal transformation satisfying Definition 2.8. By Lemma 2.9, this is enough
to check if a single signature is A -transformable.

We say a signature f satisfies a second order recurrence relation, if for all 0 ≤ k ≤ n− 2, there
exist a, b, c ∈ C not all zero, such that afk + bfk+1 + cfk+2 = 0. For a non-degenerate signature of
arity at least 3, these coefficients are unique up to a nonzero scalar.

Lemma 6.1. Let f be a non-degenerate symmetric signature of arity n ≥ 3. If f satisfies a second
order recurrence relation with coefficients a, b, c ∈ C and another one with coefficients a′, b′, c′ ∈ C,
then there exists a nonzero k ∈ C such that (a, b, c) = k(a′, b′, c′).

Proof. Since f = [f0, f1, . . . , fn] is non-degenerate, the matrix A =
[
f0 f1 ... fn−1

f1 f2 ... fn

]
has rank 2. Let

B =

[
f0 f1 ... fn−2

f1 f2 ... fn−1

f2 f3 ... fn

]
. We claim that rank(B) ≥ 2, which implies that f satisfies at most one second

order recurrence relation up to a nonzero scalar, as desired.
If (f1, . . . , fn−1) = 0, then f0, fn 6= 0 since rank(A) = 2, so rank(B) = 2 as well. Otherwise,

(f1, . . . , fn−1) 6= 0. Consider the matrices A1 =
[
f0 f1 ... fn−2

f1 f2 ... fn−1

]
and A2 =

[
f1 f2 ... fn−1

f2 f3 ... fn

]
, which are

submatrices of both A and B. Both A1 and A2 have rank at least 1 since (f1, . . . , fn−1) 6= 0. We
show that either rankA1 = 2 or rank(A2) = 2, which implies that rank(B) ≥ 2.

For a contradiction, suppose rank(A1) = rank(A2) = 1. Then there exist λ, µ ∈ C such that
(f0, . . . , fn−2) = λ(f1, . . . , fn−1) and (f2, . . . , fn) = µ(f1, . . . , fn−1). If λ = 0, then by rank(A) = 2,
we have fn−1 6= 0, and rank(A2) = 2. Similarly if µ = 0, then rank(A1) = 2. Otherwise λ, µ 6= 0
and we get fi 6= 0 for all 0 ≤ i ≤ n, and λµ = 1. This implies that rank(A) = 1, a contradiction.

Under any holographic transformation, a signature retains both its second order recurrence
relation and the condition b2 − 4ac 6= 0.

Lemma 6.2. Let f be a symmetric signature of arity n and f ′ = T⊗nf for some T ∈ GL2(C).
Then f satisfies a second order recurrence relation iff f ′ does. Furthermore, the second order
recurrence for f satisfies b2 − 4ac 6= 0 iff the one for f ′ does.

For a signature with a second order recurrence relation, the quantity b2−4ac is nonzero precisely
when the signature can be expressed as the sum of two degenerate signatures that are linearly
independent.

Lemma 6.3. Let f be a non-degenerate symmetric signature of arity n ≥ 3. Then f satisfies
a second order recurrence relation with coefficients a, b, c satisfying b2 − 4ac 6= 0 iff there exist
a0, b0, a1, b1 (satisfying a0b1 6= a1b0) such that f =

[ a0
b0

]⊗n
+
[ a1
b1

]⊗n
.

19



The following definition of the θ function is crucial.

Definition 6.4. For a pair of linearly independent vectors v0 =
[ a0
b0

]
and v1 =

[ a1
b1

]
, we define

θ(v0, v1) =

(
a0a1 + b0b1
a1b0 − a0b1

)2

.

Furthermore, suppose that a signature f of arity n ≥ 3 can be expressed as f = v⊗n0 + v⊗n1 , where
v0 and v1 are linearly independent. Then we define θ(f) = θ(v0, v1).

Intuitively, this formula is the square of the cotangent of the angle from v0 to v1. This notion
of cotangent is properly extended to the complex domain. By insisting that v0 and v1 be linearly
independent, we ensure that θ(v0, v1) is well-defined. The expression is squared so that θ(v0, v1) =
θ(v1, v0).

Let f = v⊗n0 + v⊗n1 be a non-degenerate signature of arity n ≥ 3. Since f is non-degenerate, v0

and v1 are linearly independent. The next proposition implies that this expression for f via v0 and
v1 is unique up to a root of unity. Therefore, θ(f) from Definition 6.4 is well-defined.

Proposition 6.5 (Lemma 9.11 in [24]). Let a,b, c,d be four vectors and suppose that c,d are
linearly independent. If for some n ≥ 3, we have a⊗n + b⊗n = c⊗n + d⊗n, then there exist ω0 and
ω1 satisfying ωn0 = ωn1 = 1 such that either a = ω0c and b = ω1d or a = ω0d and b = ω1c.

Proposition 6.5 can be generalized to the following simple lemma.

Lemma 6.6. Let a,b, c,d be four vectors and suppose that c,d are linearly independent. Fur-
thermore, let x0, x1, y0, y1 be nonzero scalars. If for some n ≥ 3, we have x0a

⊗n + x1b
⊗n =

y0c
⊗n + y1d

⊗n, then there exist ω0 and ω1, such that either a = ω0c, b = ω1d, x0ω
n
0 = y0, and

x1ω
n
1 = y1; or a = ω0d, b = ω1c, x0ω

n
0 = y1, and x1ω

n
1 = y0.

It is easy to verify that θ is invariant under an orthogonal transformation.

Lemma 6.7. For two linearly independent vectors v0, v1 ∈ C2 and H ∈ O2(C), let v̂0 = Hv0 and
v̂1 = Hv1. Then θ(v0, v1) = θ(v̂0, v̂1).

Proof. Within the square in the definition of θ, the numerator is the dot product, which is invariant
under any orthogonal transformation. Also, the denominator is the determinant, which is invariant
under any orthogonal transformation up to a sign.

Now we have some necessary conditions for membership in A1∪A2∪A3. Recall that A1 ⊆P1.

Lemma 6.8. Let f be a non-degenerate symmetric signature of arity at least 3. Then
1. f ∈P1 =⇒ θ(f) = 0,
2. f ∈ A2 =⇒ θ(f) = −1, and
3. f ∈ A3 =⇒ θ(f) = −1

2 .

Proof. The result clearly holds when f is in the canonical form of each set. This extends to the
rest of each set by Lemma 6.7.

These results imply the following corollary.

20



Corollary 6.9. Let f be a non-degenerate symmetric signature f of arity n ≥ 3. If f is A -
transformable, then f is of the form v⊗n0 + v⊗n1 , where v0 and v1 are linearly independent, and
θ(v0, v1) ∈ {0,−1,−1

2}.

The condition given in Lemma 6.8 is not sufficient to determine if f ∈ A1∪A2∪A3. For example,
if f = v⊗n0 + v⊗n1 with v0 = [ 1

i ] and v1 is not a multiple of
[

1
−i
]
, then θ(f) = −1 but f is not

in A2. However, this is essentially the only exceptional case. We achieve the full characterization
with some extra conditions.

The next lemma gives an equivalent form for membership in A1, A2, and A3 using transforma-
tions in O2(C)− SO2(C). Only having to consider transformation matrices in O2(C)− SO2(C) is
convenient since such matrices are their own inverse.

Lemma 6.10. Suppose f is a non-degenerate symmetric signature of arity n ≥ 3 and let F ∈
{A1,A2,A3}. Then f ∈ F iff there exists an H ∈ O2(C)− SO2(C) such that f ∈ F with H.

Proof. Sufficiency is trivial. For necessity, assume that f ∈ F with H ∈ O2(C). If H ∈ O2(C) −
SO2(C), then we are done, so further assume that H ∈ SO2(C). By the definition of F ,

f = cH⊗n
(
v⊗n0 + βv⊗n1

)
,

where c 6= 0 and v0, v1, and β depend on F . Let H ′ =
[

1 0
0 −1

]
H−1 ∈ O2(C) − SO2(C) so that

H ′T = H ′−1 = H ′. Then

f = (H ′H ′)⊗nf

= cH ′⊗n(H ′H)⊗n
(
v⊗n0 + βv⊗n1

)
= cH ′⊗n

[
1 0
0 −1

]⊗n (
v⊗n0 + βv⊗n1

)
= cH ′⊗n

(
v⊗n1 + βv⊗n0

)
= cβH ′⊗n

(
v⊗n0 + β−1v⊗n1

)
,

where in the fourth step, we use the fact that
[

1 0
0 −1

]
v0 = v1 and

[
1 0
0 −1

]
v1 = v0 for any F ∈

{A1,A2,A3}. To finish, we rewrite β−1 in the form of β depending on F .
1. If F = A1, then β = αtn+2r for some t ∈ {0, 1} and r ∈ {0, 1, 2, 3} and β−1 = α−tn−2r. Pick
r′ ∈ {0, 1, 2, 3} such that r′ ≡ −tn− r (mod 4), so β−1 = αtn+2r′ as required.

2. If F = A2, then β = 1, so β−1 = 1 = β as required.
3. If F = A3, then β = ir for some r ∈ {0, 1, 2, 3}, so β−1 = i−r = i4−r as required.

Before considering A1, we prove a technical lemma that is also applicable when considering P1.

Lemma 6.11. Let f = v⊗n0 + v⊗n1 be a symmetric signature of arity n ≥ 3, where v0 =
[ a0
b0

]
and

v1 =
[ a1
b1

]
are linearly independent. If θ(f) = 0, then there exist an H ∈ O2(C) and a nonzero

k ∈ C satisfying a1 = kb0 and b1 = −ka0 such that

H⊗nf = λ
(

[ 1
1 ]
⊗n

+ kn
[

1
−1

]⊗n)
for some nonzero λ ∈ C.
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Proof. Since θ(f) = 0, we have a0a1 + b0b1 = 0. By linear independence, we have a1b0 6= a0b1.
Thus, there exists a nonzero k ∈ C such that a1 = kb0 and b1 = −ka0. (Note that this is clearly true
even if one of a0 or b0, but not both, is zero.) Let c = a2

0 + b20, which is nonzero since a1b0 6= a0b1.
Also, let u0 = v0√

c
and u1 = v1

k
√
c

so that the matrix M = [u0 u1] is orthogonal. Then the matrix

H = 1√
2

[
1 1
1 −1

]
M−1 is also orthogonal. Under a transformation by H, we have

H⊗nf = H⊗n
(
c
n
2 u⊗n0 + knc

n
2 u⊗n1

)
= λ

(
[ 1

1 ]
⊗n

+ kn
[

1
−1

]⊗n)
,

where λ = (c/2)
n
2 6= 0.

Now we give the characterization of A1.

Lemma 6.12. Let f = v⊗n0 + v⊗n1 be a symmetric signature of arity n ≥ 3, where v0 =
[ a0
b0

]
and

v1 =
[ a1
b1

]
are linearly independent. Then f ∈ A1 iff θ(f) = 0 and there exist an r ∈ {0, 1, 2, 3} and

t ∈ {0, 1} such that an1 = αtn+2rbn0 6= 0 or bn1 = αtn+2ran0 6= 0.

Proof. Suppose f ∈ A1. By Lemma 6.10, after a suitable normalization, there exists a transforma-
tion H =

[ x y
y −x

]
∈ O2(C)− SO2(C) such that

f = H⊗n
(

[ 1
1 ]
⊗n

+ β
[

1
−1

]⊗n)
,

where β = αtn+2r for some r ∈ {0, 1, 2, 3} and some t ∈ {0, 1}. Since H ∈ O2(C), we have
x2 + y2 = 1. By Lemma 6.8, θ(f) = 0.

Now we have two expressions for f , which are[ a0
b0

]⊗n
+
[ a1
b1

]⊗n
= f =

[ x+y
y−x

]⊗n
+ β

[ x−y
y+x

]⊗n
.

Since v0 and v1 are linearly independent, we know that a0 and a1 cannot both be 0. Suppose
a0 6= 0. By Lemma 6.6, we have two cases.

1. Suppose a0 = ω0(x + y) and b1 = ω1(x + y) where ωn0 = 1 and ωn1 = β. Then we have
bn1 = β(x+ y)n = βan0 6= 0. Since β = αtn+2r, we are done.

2. Suppose a0 = ω0(x − y) and b1 = ω1(y − x) where ωn0 = β and ωn1 = 1. Then we have
an0 = β(x − y)n = αtn+2r(−1)n(y − x)n = αtn+2r+4nbn1 , so bn1 = α−tn−2r−4nan0 6= 0. Pick
r′ ∈ {0, 1, 2, 3} such that r′ ≡ −tn − r − 2n (mod 4). Then α−tn−2r−4n = αtn+2r′ is of the
desired form.

Otherwise, a1 6= 0, in which case, similar reasoning shows that an1 = αtn+2rbn0 6= 0.
For sufficiency, we apply Lemma 6.11, which gives

H⊗nf = λ
(

[ 1
1 ]
⊗n

+ kn
[

1
−1

]⊗n)
for some H ∈ O2(C), some nonzero λ ∈ C, and some nonzero k ∈ C satisfying a1 = kb0 and
b1 = −ka0. The ratio of these coefficients is kn. We consider two cases.

1. Suppose an1 = αtn+2rbn0 6= 0. Then kn = αtn+2r, so f ∈ A1.
2. Suppose bn1 = αtn+2ran0 6= 0. Then kn = (−1)nαtn+2r. Pick r′ ∈ {0, 1, 2, 3} such that
r′ ≡ r + 2n (mod 4). Then kn = αtn+2r′ , so f ∈ A1.
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Now we give the characterization of A3.

Lemma 6.13. Let f = v⊗n0 +v⊗n1 be a symmetric signature of arity n ≥ 3, where v0 =
[ a0
b0

]
and v1 =[ a1

b1

]
are linearly independent. Then f ∈ A3 iff there exist an ε ∈ {1,−1} and r ∈ {0, 1, 2, 3} such

that a1

(√
2a0 + εib0

)
= b1

(
εia0 −

√
2b0
)
, an1 = ir

(
εia0 −

√
2b0
)n

, and bn1 = ir
(√

2a0 + εib0
)n

.

Proof. Suppose f ∈ A3. By Lemma 6.10, after a suitable normalization, there exists a transforma-
tion H =

[ x y
y −x

]
∈ O2(C)− SO2(C) such that

f = H⊗n
(

[ 1
α ]⊗n + ir

[
1
−α
]⊗n)

for some r ∈ {0, 1, 2, 3}. Since H ∈ O2(C), we have x2 + y2 = 1. By Lemma 6.8, θ(f) = −1
2 , which

implies a0a1+b0b1
a0b1−a1b0 = ± i√

2
. After rearranging terms, we get

a1

(√
2a0 + εib0

)
= b1

(
εia0 −

√
2b0

)
,

for some ε ∈ {1,−1}. Since v0 and v1 are linearly independent, we know that a1 and b1 cannot
both be 0. Also, if

√
2a0 + εib0 and εia0 −

√
2b0 are both 0, then we have −

√
2a0 = εib0 and

εia0 =
√

2b0, which implies a0 = b0 = 0, a contradiction. Therefore, we have

a1 = c(εia0 −
√

2b0) and b1 = c(
√

2a0 + εib0) (3)

for some c 6= 0. To prove necessity, it remains to show that cn is a power of i.
Now using H−1 = H, we have two expressions for (H−1)⊗nf , which are[
xa0+yb0
ya0−xb0

]⊗n
+
[
xa1+yb1
ya1−xb1

]⊗n
= H⊗n

([ a0
b0

]⊗n
+
[ a1
b1

]⊗n)
=
(
H−1

)⊗n
f = [ 1

α ]⊗n + ir
[

1
−α
]⊗n

.

By Lemma 6.6, there are two cases to consider, each of which has two more cases depending on ε.
1. Suppose ya0 − xb0 = α(xa0 + yb0), ya1 − xb1 = −α(xa1 + yb1), (xa0 + yb0)n = 1, and

(xa1 + yb1)n = ir. By rearranging the first two equations, we get

(y − αx)a0 = (x+ αy)b0 and (y + αx)a1 = (x− αy)b1. (4)

It cannot be the case that a0 = b0 = 0 or y−αx = x+αy = 0. If a0 = 0, then x+αy = 0, so
a1 = −

√
2ib1 by (4) and y 6= 0 lest x = 0 as well. If b0 = 0, then y − αx = 0, so

√
2ia1 = b1,

by the same argument. Now we consider the different cases for ε.
(a) If ε = 1, then a1 = c(ia0 −

√
2b0) and b1 = c(

√
2a0 + ib0) by (3). If a0 = 0, then

a1 = −c
√

2b0 and b1 = cib0, which contradicts a1 = −
√

2ib1; if b0 = 0, then a1 = cia0

and b1 = c
√

2a0, which contradicts
√

2ia1 = b1. Thus, (y − αx)a0 = (x + αy)b0 6= 0
by (4). Also from (4), (y + αx)a1 = (x − αy)b1. Then since c 6= 0 and using (3) with
ε = 1, we get

(y + αx)
(
ia0 −

√
2b0

)
= (x− αy)

(√
2a0 + ib0

)
.

Using (y − αx)a0 = (x+ αy)b0 6= 0, we get

(y + αx)
(
i(x+ αy)−

√
2(y − αx)

)
= (x− αy)

(√
2(x+ αy) + i(y − αx)

)
.

This equation simplifies to x2 + y2 = 0, which is a contradiction.
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(b) If ε = −1, then a1 = c(−ia0 −
√

2b0) and b1 = c(
√

2a0 − ib0), from (3). Then we get

xa1 + yb1 = xc
(
−ia0 −

√
2b0

)
+ yc

(√
2a0 − ib0

)
= c

(
−i(xa0 + yb0) +

√
2(ya0 − xb0)

)
= c(xa0 + yb0),

where in the third step, we used ya0−xb0 = α(xa0 +yb0) from (4). Raising this equation
to the nth power and using (xa0 + yb0)n = 1 and (xa1 + yb1)n = ir, we conclude that
cn = ir.

2. Suppose ya0 − xb0 = −α(xa0 + yb0), ya1 − xb1 = α(xa1 + yb1), (xa0 + yb0)n = ir, and
(xa1 + yb1)n = 1. Now we consider the different cases for ε.
(a) If ε = 1, then a1 = c(ia0−

√
2b0) and b1 = c(

√
2a0 + ib0) by (3). Using similar reasoning

to that in case 1b leads to (−c)nir = 1, so cn is a power of i.
(b) If ε = −1, then a1 = c(−ia0 −

√
2b0) and b1 = c(

√
2a0 − ib0) by (3). Using similar

reasoning to that in case 1a leads to a contradiction.
For sufficiency, suppose the three equations hold for some ε ∈ {1,−1} and some r ∈ {0, 1, 2, 3}.

Further assume ε = 1, in which case, the equations are

a1

(√
2a0 + ib0

)
= b1

(
ia0 −

√
2b0

)
, (5)

as well as
an1 = ir

(
ia0 −

√
2b0

)n
and bn1 = ir

(√
2a0 + ib0

)n
. (6)

From (5), we have
a1 = c(ia0 −

√
2b0) and b1 = c(

√
2a0 + ib0) (7)

for some c ∈ C. In (5), a1, b1 cannot be both zero. Similarly,
√

2a0 + ib0, ia0−
√

2b0 cannot be both
zero. Thus at least one equation in (7) has both sides nonzero and we can always find some c even
if one factor is zero. We can write (7) as[ a1

b1

]
= c

[
i −
√

2√
2 i

] [ a0
b0

]
.

This implies that a0a1 +b0b1 = ci(a2
0 +b20). Using (6) or (7), whichever equation is not zero on both

sides, we have cn = ir. Since (5) implies θ(f) = −1
2 , we know that a2

0 + b20 6= 0 because otherwise
v0 is a multiple of

[
1
±i
]
, which makes θ(f) = −1 regardless of v1.

We now define two orthogonal matrices T1 = 1√
1+i

[
1 α
−α 1

]
and T2 = 1√

a20+b20

[
a0 b0
b0 −a0

]
. Also let

T = T1T2 ∈ O2(C). For f =
[ a0
b0

]⊗n
+
[ a1
b1

]⊗n
, we want to calculate T⊗nf . First,

T2

[ a0
b0

]
=
√
a2

0 + b20 [ 1
0 ] and T

[ a0
b0

]
= γ

[
1
−α
]
,

where γ =

√
a20+b20
1+i . Furthermore, a1b0 − a0b1 =

√
2i(a0a1 + b0b1) = −c

√
2(a2

0 + b20) by (5). Then

T2

[ a1
b1

]
=

1√
a2

0 + b20

[
a0a1+b0b1
a1b0−a0b1

]
= c
√
a2

0 + b20

[
i
−
√

2

]
.
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It follows that
T
[ a1
b1

]
= cγ

[
1 α
−α 1

] [ i
−
√

2

]
= cγ

[
i−
√

2α
−iα−

√
2

]
= −cγ [ 1

α ] .

Thus
T⊗nf = γn

([
1
−α
]⊗n

+ (−c)n [ 1
α ]⊗n

)
.

So T transforms f into the canonical form of A3. If we write out the orthogonal transformation T
explicitly, then T =

[ x y
y −x

]
where

x =
a0 + αb0√

(i+ 1)
(
a2

0 + b20
) and y =

b0 − αa0√
(i+ 1)

(
a2

0 + b20
) .

When ε = −1, the argument is similar. In this case, a1 = c(−ia0−
√

2b0) and b1 = c(
√

2a0−ib0)
for some c ∈ C satisfying cn = ir and the entries of T are

x =
a0 − αb0√

(i+ 1)
(
a2

0 + b20
) and y =

b0 + αa0√
(i+ 1)

(
a2

0 + b20
) .

Remark: Notice that either a1(
√

2a0 + ib0) = b1(ia0−
√

2b0) or a1(
√

2a0− ib0) = b1(−ia0−
√

2b0)
implies θ(f) = −1

2 , unless det(
[ a0 a1
b0 b1

]
) = 0.

As mentioned before, A2 = P2 requires a stronger condition than just θ. If f ∈ A2 = P2, then
θ(f) = −1, but the reverse is not true. If f = v⊗n0 + v⊗n1 with v0 = [1, i] and v1 is not a multiple
of [1,−i], then θ(f) = −1 but f is not in A2 = P2, since any orthogonal H fixes {[1, i], [1,−i]}
set-wise, up to a scalar multiple.

The next lemma, which appeared in [11], gives a characterization of A2. It says that any
signature in A2 is essentially in canonical form. For completeness, we include its proof.

Lemma 6.14 (Lemma 8.8 in [11]). Let f be a non-degenerate symmetric signature. Then f ∈ A2

iff f is of the form c
(

[ 1
i ]
⊗n

+ β
[

1
−i
]⊗n)

for some c, β 6= 0.

Proof. Assume that f = c
(

[ 1
i ]
⊗n

+ β
[

1
−i
]⊗n)

for some c, β 6= 0. Consider the orthogonal trans-

formation H =
[
a b
b −a

]
, where a = 1

2

(
β

1
2n + β−

1
2n

)
and b = 1

2i

(
β

1
2n − β−

1
2n

)
. We pick a and b in

this way so that a+ bi = β
1
2n , a− bi = β−

1
2n , and (a+ bi)(a− bi) = a2 + b2 = 1. Also

(
a+bi
a−bi

)n
= β.

Then

H⊗nf = c
([

a+bi
−ai+b

]⊗n
+ β

[
a−bi
ai+b

]⊗n)
= c

(
(a+ bi)n

[
1
−i
]⊗n

+ (a− bi)nβ [ 1
i ]
⊗n
)

= c
√
β
([

1
−i
]⊗n

+ [ 1
i ]
⊗n
)
,

so f can be written as

f = c
√
β(H−1)⊗n

([
1
−i
]⊗n

+ [ 1
i ]
⊗n
)
.

Therefore f ∈ A2.
On the other hand, the desired form f = c([ 1

i ]
⊗n

+β [ 1
i ]
⊗n

) follows from the fact that {[ 1
i ] ,
[

1
−i
]
}

is fixed setwise under any orthogonal transformation up to nonzero constants.
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Remark: Notice that θ(v0, v1) = −1 for linearly independent v0 and v1 if and only if at least one
of v0, v1 is [ 1

i ] or
[

1
−i
]
, up to a nonzero scalar.

We now present the polynomial time algorithm to check if f ∈ A1 ∪A2 ∪A3.

Lemma 6.15. Given a non-degenerate symmetric signature f of arity at least 3, there is a poly-
nomial time algorithm to decide whether f ∈ Ak for each k ∈ {1, 2, 3}. If so, k is unique and at
least one corresponding orthogonal transformation can be found in polynomial time.

Proof. First we check if f satisfies a second order recurrence relation. If it does, then the coefficients
(a, b, c) of the second order recurrence relation are unique up to a nonzero scalar by Lemma 6.1. If
the coefficients satisfy b2−4ac 6= 0, then by Lemma 6.3, we can express f as v⊗n0 +v⊗n1 , where v0 and
v1 are linearly independent and arity(f) = n. All of this must be true for f to be in A1 ∪A2 ∪A3.
With this alternate expression for f , we apply Lemma 6.12, Lemma 6.14, and Lemma 6.13 to decide
if f ∈ Ak for each k ∈ {1, 2, 3} respectively. These sets are disjoint by Lemma 6.8, so there can be
at most one k such that f ∈ Ak.

6.2 Set of Symmetric Signatures

We first show that if a non-degenerate signature f of arity at least 3 is in A1 or A3, then for any
set F containing f , there are only a small constant number of transformations to be checked to
decide whether F is A -transformable. If f ∈ A2, then there can be more than a constant number
of transformations check. However, this number is at most linear in the arity of f .

Notice that any non-degenerate symmetric signature f ∈ A of arity at least 3 is in F123, which
contains signatures expressed as a sum of two tensor powers. Therefore θ(f) is well-defined. By
Lemma 2.7, we only need to consider the sets A and [ 1 0

0 α ] A . In particular,

θ(f) =


0 if f ∈ F1 ∪F2 ∪ [ 1 0

0 α ] F1,

−1 if f ∈ F3,

−1
2 if f ∈ [ 1 0

0 α ] (F2 ∪F3).

(8)

Lemma 6.16. Let F be a set of symmetric signatures and suppose F contains a non-degenerate
signature f ∈ A1 of arity n ≥ 3 with H ∈ O2(C). Then F is A -transformable iff F is a subset of
HA , or H

[
1 1
1 −1

]
A , or H

[
1 1
1 −1

]
[ 1 0

0 α ] A .

Proof. Sufficiency follows from Lemma 2.7 and both H,H2 = 1√
2

[
1 1
1 −1

]
∈ O2(C).

Before we prove necessity, we first claim that without loss of generality, we may assume H ∈
O2(C)− SO2(C). If H ∈ SO2(C), we let H̃ = H [ 0 1

1 0 ] ∈ O2(C)− SO2(C). Then f ∈ A1 also with

H̃. From [ 0 1
1 0 ] ∈ Stab(A ), it follows that H̃A = HA . Also [ 0 1

1 0 ]
[

1 1
1 −1

]
[ 1 0

0 α ] =
[

1 −1
1 1

]
[ 1 0

0 α ] =[
1 1
1 −1

] [
1 0
0 −1

]
[ 1 0

0 α ] =
[

1 1
1 −1

]
[ 1 0

0 α ]
[

1 0
0 −1

]
, and

[
1 0
0 −1

]
∈ Stab(A ). It follows that H̃

[
1 1
1 −1

]
[ 1 0

0 α ] A =
H
[

1 1
1 −1

]
[ 1 0

0 α ] A .
Suppose F is A -transformable. By Lemma 4.3, there exists an H ′ ∈ SO2(C) such that F ⊆

H ′A or F ⊆ H ′ [ 1 0
0 α ] A . We only need to show there exists an M ∈ Stab(A ), such that H ′ = HM

in the first case, and in the second case H ′ = H
[

1 1
1 −1

]
M , and M [ 1 0

0 α ] = [ 1 0
0 α ]M ′ for some

M ′ ∈ Stab(A ).
Since f ∈ A1 with H, after a suitable normalization by a nonzero scalar, we have

f = H⊗n
(

[ 1
1 ]
⊗n

+ β
[

1
−1

]⊗n)
,
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where β = αtn+2r for some r ∈ {0, 1, 2, 3} and t ∈ {0, 1}. Let g = (H ′−1)⊗nf and T = H ′−1H so
that

g = T⊗n
(

[ 1
1 ]
⊗n

+ β
[

1
−1

]⊗n)
.

Note that T ∈ O2(C) − SO2(C) since H ′ ∈ SO2(C) and H ∈ O2(C) − SO2(C). Thus T = T−1

and HT = H ′. Let T =
[
a b
b −a

]
for some a, b ∈ C such that a2 + b2 = 1. There are two possibilities

according to F ⊆ H ′A or F ⊆ H ′ [ 1 0
0 α ] A .

1. If F ⊆ H ′A , then g ∈ F123 since g is symmetric and non-degenerate. By (8), we have
θ(g) = 0, so g ∈ F1 or g ∈ F2. We discuss the two cases of g separately.
• Suppose g ∈ F1. Then we have

T⊗n
(

[ 1
1 ]
⊗n

+ β
[

1
−1

]⊗n)
= λ

(
[ 1

0 ]
⊗n

+ it [ 0
1 ]
⊗n
)

for some λ 6= 0 and t ∈ {0, 1, 2, 3}. Plugging in the expression for T , we have([
a+b
b−a
]⊗n

+ β
[
a−b
a+b

]⊗n)
= λ

(
[ 1

0 ]
⊗n

+ it [ 0
1 ]
⊗n
)
.

Then by Lemma 6.6, we have a + b = 0 or a − b = 0. Together with a2 + b2 = 1, we
can solve for T = 1√

2

[
1 1
1 −1

]
or T = 1√

2

[
1 −1
−1 −1

]
= 1√

2

[
1 1
1 −1

] [
0 −1
1 0

]
, up to a constant

multiple ±1. Since
[

0 −1
1 0

]
∈ Stab(A ), we have T ∈ Stab(A ), so we are done.

• Suppose g ∈ F2. Then we have

T⊗n
(

[ 1
1 ]
⊗n

+ β
[

1
−1

]⊗n)
= λ

(
[ 1

1 ]
⊗n

+ it
[

1
−1

]⊗n)
for some λ 6= 0 and t ∈ {0, 1, 2, 3}. Plugging in the expression for T , we have([

a+b
b−a
]⊗n

+ β
[
a−b
a+b

]⊗n)
= λ

(
[ 1

1 ]
⊗n

+ it
[

1
−1

]⊗n)
Then by Lemma 6.6, we have a+ b = a− b or a+ b = −(a− b). Therefore either a = 0
or b = 0. Thus T = ±

[
1 0
0 −1

]
or T = ± [ 0 1

1 0 ] and both matrices are in Stab(A ).
2. If F ⊆ H ′ [ 1 0

0 α ] A , then we have g ∈ [ 1 0
0 α ] F123. By (8), we have θ(g) = 0, so g ∈ [ 1 0

0 α ] F1.
That is,

T⊗n
(

[ 1
1 ]
⊗n

+ β
[

1
−1

]⊗n)
= λ [ 1 0

0 α ]
⊗n
(

[ 1
0 ]
⊗n

+ it [ 0
1 ]
⊗n
)

= λ
(

[ 1
0 ]
⊗n

+ itαn [ 0
1 ]
⊗n
)

for some λ 6= 0. This is essentially the same as the case where g ∈ F1 above, except that
the coefficients are different. However, the coefficients do not affect the argument and our
conclusion in this case that T = 1√

2

[
1 1
1 −1

]
or T = 1√

2

[
1 1
1 −1

] [
0 −1
1 0

]
, up to a constant multiple

±1. Notice that
[

0 −1
1 0

]
∈ Stab(A ). Moreover,[

0 −1
1 0

]
[ 1 0

0 α ] =
[

0 −α
1 0

]
= [ 1 0

0 α ]
[

0 −α
α−1 0

]
= −α [ 1 0

0 α ] [ 0 1
i 0 ] ,

and [ 0 1
i 0 ] ∈ Stab(A ).
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Lemma 6.17. Let F be a set of symmetric signatures and suppose F contains a non-degenerate
signature f ∈ A2 of arity n ≥ 3. Then there exists a set H ⊆ O2(C) of size O(n) such that F is
A -transformable iff there exists an H ∈ H such that F ⊆ HA . Moreover H can be computed in
polynomial time in the input length of the symmetric signature f .

Proof. Sufficiency is trivial by Lemma 4.3.
Suppose F is A -transformable. By Lemma 4.3, there exists an H ∈ SO2(C) such that F ⊆ HA

or F ⊆ H [ 1 0
0 α ] A . In the first case, we show that the choices of H can be limited to O(n). Then

we show that the second case is impossible.
Since f ∈ A2, after a suitable normalization by a nonzero scalar, we have

f = [ 1
i ]
⊗n

+ ν
[

1
−i
]⊗n

for some ν 6= 0 by Lemma 6.14. Let g = (H−1)⊗nf . Then

g = (H−1)⊗n
(

[ 1
i ]
⊗n

+ ν
[

1
−i
]⊗n)

.

There are two possibilities according to F ⊆ HA or F ⊆ H [ 1 0
0 α ] A .

1. Suppose F ⊆ HA . Therefore g ∈ F123. By (8), we have θ(g) = −1, so g ∈ F3. Then we
have

(H−1)⊗n
(

[ 1
i ]
⊗n

+ ν
[

1
−i
]⊗n)

= λ
(

[ 1
i ]
⊗n

+ ir
[

1
−i
]⊗n)

for some λ 6= 0 and r ∈ {0, 1, 2, 3}. Because H−1 ∈ SO2(C), we may assume that H−1 is of
the form

[
a b
−b a

]
where a2 + b2 = 1. Therefore

λ
(

[ 1
i ]
⊗n

+ ir
[

1
−i
]⊗n)

=
[
a b
−b a

]⊗n (
[ 1
i ]
⊗n

+ ν
[

1
−i
]⊗n)

= (a+ bi)n [ 1
i ]
⊗n

+ ν(a− bi)n
[

1
−i
]⊗n

.

Comparing the coefficients, by Lemma 6.6, we have

λ = (a+ bi)n and λir = ν(a− bi)n.

Hence,
ir(a+ bi)n = ν(a− bi)n.

Since (a + bi)(a − bi) = a2 + b2 = 1, we know that (a + bi)2n = νi−r. Therefore a + bi =
ω2n(νi−r)1/2n, where ω2n is a 2n-th root of unity. There are 4 choices for r, and 2n choices
for ω2n. However, a − bi = 1

a+bi , and (a, b) can be solved from (a + bi, a − bi). Hence there
are only O(n) many choices for H, depending on f .

2. Suppose F ⊆ H [ 1 0
0 α ] A . Then g ∈ [ 1 0

0 α ] F123. However, θ(g) = −1 by (8), which is a
contradiction.

Lemma 6.18. Let F be a set of symmetric signatures and suppose F contains a non-degenerate
signature f ∈ A3 of arity n ≥ 3 with H ∈ O2(C). Then F is A -transformable iff F ⊆ H [ 1 0

0 α ] A .

Proof. Sufficiency is trivial by Lemma 4.3.
Suppose F is A -transformable. As in the proof of Lemma 6.16, we may assume the given

H ∈ O2(C) − SO2(C). By Lemma 4.3, there exists an H ′ ∈ SO2(C) such that F ⊆ H ′A or
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F ⊆ H ′ [ 1 0
0 α ] A . We show the first case is impossible. Then in the second case, we show that there

exists an M , such that H ′ = HM , where M [ 1 0
0 α ] = [ 1 0

0 α ]M ′ for some M ′ ∈ Stab(A ).
Since f ∈ A3 with H, after a suitable normalization by a nonzero scalar, we have

f = H⊗n
(

[ 1
α ]⊗n + ir

[
1
−α
]⊗n)

for some r ∈ {0, 1, 2, 3}. Let g = (H ′−1)⊗nf and T = H ′−1H so that

g = T⊗n
(

[ 1
α ]⊗n + ir

[
1
−α
]⊗n)

.

Note that T ∈ O2(C) − SO2(C) since H ′ ∈ SO2(C) and H ∈ O2(C) − SO2(C). Thus T = T−1

and HT = H ′. Let T =
[
a b
b −a

]
for some a, b ∈ C such that a2 + b2 = 1. There are two possibilities

according to F ⊆ H ′A or F ⊆ H ′ [ 1 0
0 α ] A .

1. Suppose F ⊆ H ′A . Then g = (H ′−1)⊗nf ∈ F123. However, θ(g) = −1
2 by (8), which is a

contradiction.
2. Suppose F ⊆ H ′ [ 1 0

0 α ] A . Then g ∈ [ 1 0
0 α ] F123, so θ(g) = −1

2 by (8) and g ∈ [ 1 0
0 α ] (F2 ∪F3).

We discuss the these two cases separately.
• Suppose g ∈ [ 1 0

0 α ] F2. Then we have

T⊗n
(

[ 1
α ]⊗n + ir

[
1
−α
]⊗n)

= λ [ 1 0
0 α ]

⊗n
(

[ 1
1 ]
⊗n

+ it
[

1
−1

]⊗n)
= λ

(
[ 1
α ]⊗n + it

[
1
−α
]⊗n)

for some λ 6= 0 and t ∈ {0, 1, 2, 3}. Plugging in the expression for T , we have([
a+αb
b−αa

]⊗n
+ ir

[
a−αb
b+αa

]⊗n)
= λ

(
[ 1
α ]⊗n + it

[
1
−α
]⊗n)

.

Then by Lemma 6.6, we have either

b− aα = α(a+ bα) and b+ aα = −α(a− bα)

or
b− aα = −α(a+ bα) and b+ aα = α(a− bα).

The first case is impossible. In the second case, we have a = ±1 and b = 0. This implies
T = ±

[
1 0
0 −1

]
∈ Stab(A ), which commutes with [ 1 0

0 α ].
• Suppose g ∈ [ 1 0

0 α ] F3. Then we have

T⊗n
(

[ 1
α ]⊗n + ir

[
1
−α
]⊗n)

= λ [ 1 0
0 α ]

⊗n
(

[ 1
i ]
⊗n

+ it
[

1
−i
]⊗n)

= λ
(

[ 1
αi ]
⊗n

+ it
[

1
−αi
]⊗n)

for some λ 6= 0 and t ∈ {0, 1, 2, 3}. Plugging in the expression for T , we have([
a+αb
b−αa

]⊗n
+ ir

[
a−αb
b+αa

]⊗n)
= λ

(
[ 1
αi ]
⊗n

+ it
[

1
−αi
]⊗n)

.

Then by Lemma 6.6, we have either

b− aα = αi(a+ bα) and b+ aα = −αi(a− bα)
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or
b− aα = −αi(a+ bα) and b+ aα = αi(a− bα).

The first case is impossible. In the second case, we have a = 0 and b = ±1. This implies
that T = ± [ 0 1

1 0 ]. Note that [ 0 1
1 0 ] [ 1 0

0 α ] = [ 1 0
0 α ]

[
0 α

α−1 0

]
and

[
0 α

α−1 0

]
= α−1 [ 0 i

1 0 ] ∈
Stab(A ).

Now we are ready to show how to decide if a finite set of signatures is A -transformable. To
avoid trivialities, we assume F contains a non-degenerate signature of arity at least 3. If every
non-degenerate signature in F has arity at most two, then Holant(F) is tractable.

Theorem 6.19. There is a polynomial time algorithm to decide, for any finite input set F of
symmetric signatures containing a non-degenerate signature f of arity n ≥ 3, whether F is A -
transformable.

Proof. By Lemma 6.15, we can decide if f is in Ak for some k ∈ {1, 2, 3}. If not, then by Lemma 2.9,
F is not A -transformable. Otherwise, f ∈ Ak for some unique k. Depending on k, we apply
Lemma 6.16, Lemma 6.17, or Lemma 6.18 to check if F is A -transformable.

7 Symmetric P-transformable Signatures

To decide if a signature set is P-transformable, we face the same issue as the A -transformable
case. Namely, a symmetric signature of arity n is given by n+ 1 values, instead of 2n values. This
exponentially more succinct representation requires us to find a more efficient algorithm.

The next lemma tells us how to decide membership in P1 for signatures of arity at least 3.

Lemma 7.1. Let f = v⊗n0 + v⊗n1 be a symmetric signature of arity n ≥ 3, where v0 and v1 are
linearly independent. Then f ∈P1 iff θ(f) = 0.

Proof. Necessity is clear by Lemma 6.8 and sufficiency follows from Lemma 6.11.

Since A2 = P2, the membership problem for P2 is handled by Lemma 6.14. Using Lemma 7.1
and Lemma 6.14, we can efficiently decide membership in P1 ∪P2.

Lemma 7.2. Given a non-degenerate symmetric signature f of arity at least 3, there is a polynomial
time algorithm to decide whether f ∈ Pk for some k ∈ {1, 2}. If so, k is unique and at least one
corresponding orthogonal transformation can be found in polynomial time.

Proof. First we check if f satisfies a second order recurrence relation. If it does, then the coefficients
(a, b, c) of the second order recurrence relation are unique up to a nonzero scalar by Lemma 6.1. If
the coefficients satisfy b2 − 4ac 6= 0, then by Lemma 6.3, we can express f as v⊗n0 + v⊗n1 , where v0

and v1 are linearly independent and arity(f) = n. All of this must be true for f to be in P1 ∪P2.
With this alternate expression for f , we apply Lemma 7.1 and Lemma 6.14 to decide if f ∈Pk for
some k ∈ {1, 2} respectively. These sets are disjoint by Lemma 6.8, so there can be at most one k
such that f ∈Pk.

Like the symmetric affine case, the following lemmas assume the signature set F contains a
non-degenerate signature of arity at least 3 in P1 or P2. Unlike the symmetric affine case, the
number of transformations to be checked to decide whether F is P-transformable is always a small
constant.
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Lemma 7.3. Let F be a set of symmetric signatures and suppose F contains a non-degenerate
signature f ∈P1 of arity n ≥ 3 with H ∈ O2(C). Then F is P-transformable iff F ⊆ H

[
1 1
1 −1

]
P.

Proof. Sufficiency is trivial by Lemma 2.10.
Suppose F is P-transformable. As in the proof of Lemma 6.16, we may assume H ∈ O2(C)−

SO2(C). Then by Lemma 5.1, there exists an H ′ ∈ SO2(C) such that F ⊆ H ′P or F ⊆
H ′
[

1 1
i −i

]
P, where in the second case we can take H ′ = I2. In the first case, we show that

there exists an M ∈ Stab(P) such that H ′ = H
[

1 1
1 −1

]
M . Then we show that the second case is

impossible.
Since f ∈P1 with H, after a suitable normalization by a nonzero scalar, we have

f = H⊗n
(

[ 1
1 ]
⊗n

+ β
[

1
−1

]⊗n)
for some β 6= 0. Let g = (H ′−1)⊗nf and T = H ′−1H so that

g = T⊗n
(

[ 1
1 ]
⊗n

+ β
[

1
−1

]⊗n)
.

Note that T ∈ O2(C)−SO2(C) since H ′ ∈ SO2(C) and H ∈ O2(C)−SO2(C). Thus T = T−1 and
HT = H ′.

1. Suppose F ⊆ H ′P. Then g must be a generalized equality since g ∈ P with arity n ≥ 3.
The only symmetric non-degenerate generalized equality in P with arity n ≥ 3 has the form

λ
(

[ 1
0 ]
⊗n

+ β′ [ 0
1 ]
⊗n
)

, for some λ, β′ 6= 0. Thus

T⊗n
(

[ 1
1 ]
⊗n

+ β
[

1
−1

]⊗n)
= λ

(
[ 1

0 ]
⊗n

+ β′ [ 0
1 ]
⊗n
)
.

Let T =
[
a b
b −a

]
for a, b ∈ C such that a2 + b2 = 1. Then[

a+b
b−a
]⊗n

+ β
[
a−b
a+b

]⊗n
= λ

(
[ 1

0 ]
⊗n

+ β′ [ 0
1 ]
⊗n
)
.

By Lemma 6.6 we have either a − b = 0 or a + b = 0. Together with a2 + b2 = 1,
the only solutions are T = ± 1√

2

[
1 1
1 −1

]
or T = ± 1√

2

[
1 −1
−1 −1

]
= ± 1√

2

[
1 1
1 −1

] [
0 −1
1 0

]
. Since

± 1√
2
I2,± 1√

2

[
0 −1
1 0

]
∈ Stab(P), this case is complete.

2. Suppose F ⊆ H ′
[

1 1
i −i

]
P. Then g ∈

[
1 1
i −i

]
P, and θ(g) = θ([ 1

1 ] ,
[

1
−1

]
) = 0 by Lemma 6.8.

However, θ(h) = −1 for any non-degenerate h ∈
[

1 1
i −i

]
P of arity at least 3, contradiction.

Lemma 7.4. Let F be a set of symmetric signatures and suppose F contains a non-degenerate
signature f ∈ P2 of arity n ≥ 3. Then F is P-transformable iff all non-degenerate signatures in
F are contained in P2 ∪ {=2}.

Proof. Suppose F is P-transformable. Let Z = 1√
2

[
1 1
i −i

]
. Then by Lemma 5.1, F ⊆ ZP or there

exists an H ∈ SO2(C) such that F ⊆ HP. In first case, we show that all the non-degenerate
symmetric signatures in ZP are contained in P2 ∪ {=2}. Then we show that the second case is
impossible.
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1. Suppose F ⊆ ZP. Let g ∈ ZP be a symmetric non-degenerate signature of arity m. If
(Z−1)⊗2g = λ[0, 1, 0] is the binary disequality signature up to a nonzero scalar λ ∈ C, then

g = λZ⊗2

(
0
1
1
0

)
= λ

(
1
0
0
1

)
is the binary equality signature =2. Otherwise, we can express g as

g = cZ⊗m
(

[ 1
0 ]
⊗m

+ β [ 0
1 ]
⊗m
)

= c
(

[ 1
i ]
⊗m

+ β
[

1
−i
]⊗m)

for some c, β 6= 0 with m ≥ 2. Thus, g ∈ P2 = A2 by Lemma 6.14. We conclude that
the symmetric non-degenerate subset of ZP is contained in P2 ∪ {=2}. Therefore, the
non-degenerate subset of F is contained in P2 ∪ {=2}.

2. Suppose F ⊆ HP. Since f ∈P2 = A2, after a suitable normalization by a scalar, we have

f = [ 1
i ]
⊗n

+ β
[

1
−i
]⊗n

for some β 6= 0 by Lemma 6.14. Let g = (H−1)⊗nf so that

g =
(
H−1

)⊗n (
[ 1
i ]
⊗n

+ β
[

1
−i
]⊗n)

.

In particular, f and g have the same arity n ≥ 3. By Lemma 6.8, θ(g) = θ([ 1
i ] ,
[

1
−i
]
) = −1

since H−1 ∈ O2(C). However, g ∈ P must be of the form [ c0 ]⊗n +
[

0
d

]⊗n
for some nonzero

c, d ∈ C, which has θ(g) = 0. This is a contradiction.
It is easy to see that all of above is reversible. Therefore sufficiency follows.

Now we are ready to show how to decide if a finite set of signatures is P-transformable. To
avoid trivialities, we assume F contains a non-degenerate signature of arity at least 3. If every
non-degenerate signature in F has arity at most two, then Holant(F) is tractable.

Theorem 7.5. There is a polynomial time algorithm to decide, for any finite input set F of
symmetric signatures containing a non-degenerate signature f of arity n ≥ 3, whether F is P-
transformable.

Proof. By Lemma 7.2, we can decide if f is in Pk for some k ∈ {1, 2}. If not, then by Lemma 2.12,
F is not P-transformable. Otherwise, f ∈ Pk for some unique k. Depending on k, we apply
Lemma 7.3 or Lemma 7.4 to check if F is P-transformable.
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