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Abstract

The aims of this thesis are to develop and validate a robust and efficient algorithm for the numerical

solution of the equations of General Relativistic Hydrodynamics, to implement the algorithm in a com-

putationally efficient manner, and to apply the resulting computer code to the problem of perturbed

Bondi-Hoyle-Lyttleton accretion onto a Kerr black hole. The algorithm will also be designed to evolve

the space-time metric, and standardised tests will be applied to this aspect of the algorithm.

The algorithm will use up-to-date High-Resolution Shock-Capturing numerical schemes that have

been developed for the stable and accurate solution of complex systems of equations. It will be built

around the Adaptive Mesh Refinement and overlapping, curvilinear grid methodologies in order to extend

these schemes to the efficient solution of two and three-dimensional problems. When implementing the

algorithm, we will use previously written code libraries, where appropriate, to avoid excessive software

development.

We will validate the algorithm against standard test-cases for Special and General Relativistic Hy-

drodynamics, and for Einstein’s equations for the evolution of the space-time metric. The methodologies

we use will be tested to ensure that they lead to the stable and accurate numerical solution of these

problems.

Finally, the implemented algorithm will be applied to the problem of Bondi-Hoyle-Lyttleton flow onto

a Kerr black hole in three dimensions. It will be validated against existing exact and numerical solutions

of the problem, and then be used to perform an extensive parametric study of the problem, varying the

spin of the black hole and the incident wind direction, and allowing for the perturbation of the fluid

density upstream of the black hole.

We will then analyze the results of the study, and present the complete set of results on a DVD

accompanying this thesis.
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Chapter 1

Introduction

The theory of General Relativity (GR) was developed by Albert Einstein in the early part of the 20th

century. The theory has been shown to be impressively accurate in certain cases, including the perihelion

progression of Mercury, and the variation of the period of binary pulsars (see [86, 113]). The Einstein

field equations in the presence of matter can be written in the deceptively simple form

Gµν = 8πTµν , (1.1)

where Gµν is the Einstein tensor, representing the space-time curvature, and Tµν is the energy-momentum

tensor, representing any matter or other energy field present in the space-time.

This simple form arises from the fact that GR is a covariant theory, that is, it is invariant under local

Lorentz transformations. This is the result of the assumption on which special relativity is based, that

the speed of light is locally the same for all physical observers. GR extends this to a curved space-time,

where we find that what is commonly referred to as the force of gravity can be regarded as the result of

matter following geodesics in the curved space-time.

The Einstein equations are highly non-linear second order partial differential equations in the space-

time metric, however, and as a result relatively few classes of analytic solutions are known, and these

often have a high degree of symmetry. Also, there are very few astrophysically interesting solutions among

them. Progress has been made for some systems where GR effects do not dominate, using Post-Newtonian

approximations, but it is necessary to solve the full set of Einstein’s equations for more extreme cases

such as the inspiral and merger of two black holes.

The method of solution is of necessity numerical in nature and, since general relativistic problems

often require fully three-dimensional simulations in a large computational domain, considerable effort is

being put into finding accurate, robust, parallelisable, and computationally efficient solution techniques.

It is on this that we concentrate in this thesis.
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1.1 Conventions

We take the speed of light to be c = 1, and Newton’s gravitational constant to be G = 1. This is a

simple matter of non-dimensionalisation.

We also adopt the Einstein summation convention throughout, except where it is explicitly stated

that we do not. Since we will be splitting the space-time into space-like and time-like parts, we also take

the convention that Greek indices µ, ν, . . . represent space-time indices 0, 1, 2, 3, and Latin indices i, j, . . .

represent space indices 1, 2, 3.

We take the sign convention that the Minkowski metric is given by ηµν = diag(−1, 1, 1, 1), and that

any curved space-time has the same signature.

The Christoffel symbols for a symmetric metric are defined as

Γ i
j k = 1

2γip(γjp,k + γpk,j − γjk,p) (1.2)

for a 3-metric γij , and

Γ σ
µ ν = 1

2gσρ(gµσ,ν + gσν,µ − gµν,σ) (1.3)

for a 4-metric gµν , where ,i denotes partial differentiation with respect to the coordinate variable xi. We

use ;i to denote covariant differentiation with respect to xi:

C a
b;c = ∂c C a

b + Γ a
c i C i

b − Γ i
c b C a

i . (1.4)

We note that 3-indices are raised and lowered using the appropriate 3-metric, and 4-indices are raised

and lowered using the appropriate 4-metric.

The Riemann curvature tensor in three dimensions is defined as

(3)Ri
jkm = Γ i

j m,k − Γ i
m k,j + Γ i

p kΓ p
j m − Γ i

j pΓ
p

m k , (1.5)

and the Ricci tensor, Ricci scalar, and Einstein tensor, respectively, as

(3)Rij = (3)Rp
ipj ,

(3)R = γij(3)Rij ,
(3)Gij = (3)Rij − 1

2γij(3)R . (1.6)

There are also four-dimensional equivalents of these.

We note that, when discussing numerical methods, a subscript i refers to a value evaluated at the

centre of cell i, and a subscript i + 1/2 refers to a value evaluated at the interface between cells i and

i+1. A superscript refers to a time-step number in a similar way. Hence, u
n+1/2
i refers to the value of the

numerically evolved variable u, evaluated at the centre of cell i, and at a point in time half-way between

the time-steps n and n + 1. This notation could potentially be confused with the use of subscripts and

superscripts to refer to space-time indices, but it is usually clear what an index means in a given context,

and any cases where there could be confusion will be clarified.
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Chapter 2

The State of Numerical Relativity

In this chapter we give a brief overview of the field of Numerical Relativity, its aims, and the current

state of research. We also outline the aims of this thesis, and some issues that must be considered in the

validation of our results. Two useful reviews of the field are by Alcubierre [1] and Lehner [68].

2.1 Research Areas in Numerical Relativity

There are three main research areas areas that require the numerical solution of Einstein’s equations

(Numerical Relativity, often abbreviated to NR):

1. It has already been confirmed (see Will [113] §5.1) that binary pulsars, where GR effects dominate,

evolve as predicted by GR, with the decay of their orbits due to the emission of gravitational

radiation following predictions closely. However, in order to explore the validity of GR further, it is

necessary to examine phenomena such as that of binary black hole (BBH) coalescence, where even

more extreme GR effects will occur. NR aims to be able to provide templates for the gravitational

waves that will result from such events, so that these can be compared to physical observations.

This will make it possible to detect any deviations from classical GR. It is likely that this will only

require the solution of Einstein’s equations for a vacuum.

2. Some highly energetic astrophysical phenomena, such as the iron-core collapse of massive stars, can

be modelled to some degree using Newtonian or Post-Newtonian approximations to GR (see [87]).

However, more accurate simulations will require GR effects to be taken into account and these

effects may be sufficiently strong so as to either change predictions made by these models, or to

rule out postulated paths for certain events to occur, such as the physical mechanisms that lead to

supernovae. This will require relativistic fluids to be simulated, perhaps including magnetic fields
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and micro-physical effects.

3. Once gravitational wave templates are firmly established, it should be possible to use these data

banks to process data from gravitational wave detectors so as to extract physical properties of events

which would otherwise be undetectable by telescopes relying on the electromagnetic spectrum. This

would be yet another tool by which we could gather information about distant astrophysical events.

The gravitational waves referred to above are the main interest in NR. These are predicted by GR

through a linearised perturbation of Minkowski space. According to classical GR, they should travel at the

speed of light, and are mainly generated by highly dynamic astrophysical events such as BBH coalescence.

They cause distortions in space-time which, although they result in variations of the order of one part

in 1021 by the time they reach the Earth (see Will [113] §6.1), should nonetheless be detectable using

experiments such as the Earth-based Laser Interferometer Gravitational-Wave Observatory (LIGO [28]),

VIRGO [80], and GEO600 [43]. There is also a space-borne system in the planning stages, the Laser

Interferometer Space Antenna (LISA [70]).

These usually function by suspending test masses a large distance apart (of the order of several kilo-

metres for the Earth-bound experiments, and millions of kilometres for LISA) and measuring their motion

as gravitational waves pass through. The setup is similar to that of a classic Michelson interferometer,

with two perpendicular arms having a beam splitter at their intersection and test masses at the other

ends. Changes in the lengths of the arms are then measured using laser interferometry. This is possible

since gravitational waves moving in a direction perpendicular to the plane of the interferometer will cause

the length of one arm to increase while the other decreases.

There are many technical problems to overcome when building these detectors. These include reduc-

ing thermal noise in the detector components, shielding the test masses from local seismic vibrations,

such as that caused by passing traffic, and designing laser frequency stabilisation systems to ensure the

interferometry is carried out as accurately as possible. Further details of the problems involved with

building these experiments can be found in the Living Reviews article by Rowan and Hough [91].

Since gravitational waves pass through low-mass objects such as the Earth virtually unchanged, ascer-

taining which part of the sky a signal comes from is far more difficult than with conventional telescopes.

The different systems will have to work together to rule out effects local to each detector (such as those

caused by seismic or thermal vibrations), and to provide a directional estimate for signals by using tri-

angulation based on the times at which signals were received by different detectors. The data analysis

required to extract a single signal from the raw data is also highly complex, and is the subject of much

research, prompted by the Mock LISA Data Challenge [9].

In fact, although considerable effort has been put into NR, and substantial progress has been made

in recent years, there has been little physical verification of any of its predictions. Of course, there has
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been rigorous verification of the NR framework by similar results obtained from quite different numerical

techniques, and from Post-Newtonian approximations, but this is simply internal consistency of the

solution techniques used.

2.2 Foundations of Numerical Relativity

In the absence of any method to solve Einstein’s equations numerically in all four dimensions at once,

we must split the space-time in some fashion. There are two main approaches to this. The first approach

is to perform a 3 + 1 split [116], singling out a time-like coordinate, and evolving a three-dimensional

hypersurface forward in time. The second approach is to perform a 2 + 2 split, decomposing the space-

time into two null coordinates and two space-like coordinates. A two-dimensional hypersurface is then

evolved along the two null coordinate directions simultaneously.

The latter approach has several advantages for vacuum space-times, and for the extraction of grav-

itational waves, whose path will lie in the plane formed by the null coordinates. However, for evolving

fluids, this approach is not the best one, and throughout this thesis we use the 3 + 1 splitting approach,

which is as follows:

In order to turn the intrinsically four-dimensional Einstein equations into a system of equations that

can be evolved in time from some three-dimensional initial conditions, we decompose the metric as

ds2 = gµνdxµdxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) , (2.1)

and we seek to evolve the 3-metric γij in the time coordinate t. The metric γij is that of a 3-dimensional

space-like hypersurface embedded in four-dimensional space-time. The extrinsic curvature of the hyper-

surface is given by the Lie derivative of the 3-metric with respect to the vector normal to the space-like

hypersurfaces:

Kij = −1

2
Lnγij = − 1

2α
(∂tγij + ∇iβj + ∇jβi) ,

where nµ = −α∇µt ,

(2.2)

and the evolution of the slice in the time-like coordinate t is governed by the lapse α and the shift βi.

The lapse is the rate at which the slice moves along the time coordinate perpendicular to the slice, and

the shift allows for any change in coordinates in the slice itself. We also define a time vector

tµ = αnµ + βµ (2.3)

where we now write β with a 4-index for consistency, although it remains a space-like vector since

βµnµ = 0. These various vectors are shown graphically in Figure 2.1.
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Figure 2.1: Two hypersurfaces at times t = tn and t = tn+1, with lapses α and shifts βk marked, with tµ

being the time-like vector separating equivalent coordinate points xn
i and xn+1

i . Here, Greek indices are

space-time indices, and Latin indices refer to discretisation points and time-steps, except for those on the

shift βk, where they index the space-like components.

2.2.1 Gauge freedom

Clearly, a given four-dimensional space-time can undergo a 3 + 1 split in an infinite number of ways,

corresponding to different ways for the evolving hypersurface to be embedded into the four-dimensional

manifold via the definitions of the space and time coordinates xi and t, and the lapse and shift α and

βi. This freedom is known as the gauge freedom, since the particular form of the hypersurface does not

affect any physical deductions from the evolution. However, some gauges may result in poor numerical

evolutions, particularly when the hypersurface becomes strongly curved, resulting in numerical methods

becoming inaccurate, often as a result of the lapse approaching zero near singularities.

Much time and effort has been devoted to investigating appropriate gauges for successful evolutions.

For example, the work in [3] and references therein. Most of the other references to black hole evolution

in this thesis also contain details of the various gauge evolution methods used.

However, this is not something that we investigate here, as our intention is to concentrate on the

numerical methods used, and in particular on the test-fluid case where the metric is not evolved.

2.2.2 Constraints

Einstein’s equations (1.1) represent ten separate equations in the components of the metric gµν , where

we assume that the metric is symmetric. These can be split into two types: those that do not contain

any explicit time dependence (four equations) and those that do (the remaining six). Only the last six

equations can act as evolution equations for the metric γij ; the others can be shown analytically to be

satisfied for all time if they are satisfied initially, and are referred to as the constraints of the system.
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The four constraints for the Einstein equations can be written in terms of the 3 + 1-split variables as

H = (3)R + (trK)2 − KijKij − 2α2 (4)G00

and Mi = ∇j(K
ij − γijtrK) − α (4)G0i .

(2.4)

These must be zero for any initial data that is used, which we arrange either by choosing a known

analytical solution to Einstein’s equations, or by solving the constraint equations numerically, usually for

some elements of K.

In any case, the constraints will not remain zero when the space-time is evolved numerically, either

due to truncation errors in the numerical method used or round-off errors in the arithmetic. There are

three possible ways of dealing with this. The first is to use the amount by which the constraints are

violated as a measure of the (in)accuracy of the methods used. The second is to solve the constraint

equations frequently, perhaps even after every time-step. It should be noted that this approach does not

necessarily result in the constraints being zero throughout the whole evolution if half time-steps occur as

a result of the time-stepping algorithm used, or through the use of adaptive mesh refinement (see §4.9).

The third approach is to construct a formulation of Einstein’s equations in which the constraints will be

relaxed to zero. See, for example, the work of Tiglio [108], Gundlach et al. [53], and Marronetti [72, 73].

Other work in this area includes that of Bonazzola et al. [23], which uses a constrained formulation of

Einstein’s equations, avoiding constraint-violating modes altogether.

Although we will use constraint monitoring in this thesis, we note that this approach does have its

drawbacks. Formulations of Einstein’s equations that are supposedly appropriate for numerical solution

may rely on the constraints being exactly or approximately satisfied. Once we have left the hypersurface

in the space of possible metrics that corresponds to zero constraints, the formulation may not behave

as expected. By this we mean that it is by no means certain that evolving a problem through non-

zero constraints and then projecting onto the zero-constraint hypersurface will give the same result as

evolving the problem correctly on the zero-constraint hypersurface. Some progress has been made in

understanding this problem by Holst et al. [59], but the methods are not as yet in widespread use.

2.2.3 Formulations of Einstein’s equations

In the form (1.1), Einstein’s equations do not allow for any obvious numerical approach, and it is

therefore necessary to rewrite them in a suitable form. It might initially be thought that the equations

are hyperbolic by their very nature, as a result of the finite speed of propagation of physical information

imposed by the speed of light as an upper bound. However, the non-physical gauge freedom is not

constrained by this, and information about the gauge can travel at any speed through the computational

domain.
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There is no obvious way of splitting Einstein’s equations into gauge-free and gauge-only parts, which

has led to the wide range of formulations with different approaches to evolving the gauge. However, the

gauge often corresponds to a part of the formulation with elliptic character, for which elliptic equations

would need to be solved. That said, gauge conditions which are hyperbolic in character are often sought, as

hyperbolic systems can often be solved using less computational effort than elliptic or parabolic systems,

and allow for more efficient parallelisation.

For many years, the most used formulation was the Arnowitt-Deser-Misner (ADM) formulation

(see [75]). However, it has been shown that this formulation is ill-posed [47], meaning that it is not

possible to put a bound on the growth-rate of a norm of the solution such that the bound is independent

of the initial data. This could potentially cause stability problems in numerical evolutions by causing

high-frequency modes to grow uncontrollably. With this in mind, several strongly hyperbolic formulations

were produced, among them Bona-Massó [22] and Baumgarte-Shapiro-Shibata-Nakamura (BSSN [18]).

Subsequent experimentation and experience has resulted in the BSSN formulation being the most widely

used.

These formulations differ from each other mainly in their choice of evolved variables. Although

all formulations ultimately evolve the space-time metric gµν , supplementary variables such as the first

derivatives of the metric are introduced in order to reduce Einstein’s equations to a first-order system

of equations, and it is the choice of these variables that results in different formulations. Even within a

given approach, there is still the choice of how the gauge, represented by the lapse α and the shift βi,

is to evolved, and many choices of gauge drivers are available. Further modifications to a formulation

may be made by adding multiples of the constraints (2.4) to the system. Since these are zero (at least

analytically), this does not alter the solution space of the system, but it may alter its character or stability

properties.

2.2.4 Initial data

The problem of initial data is not one that will concern us in this thesis as we deal either with stationary

space-times for the purposes of test-fluid evolution or with exact solutions to Einstein’s equations for the

purposes of testing. The specific solutions we use are given in §3.7, §3.8, and §3.9.

If we wished to evolve space-times whose form was not known analytically, then we would have

to construct a set of initial conditions that had the required properties, and then solve the constraint

equations (2.4). For example, in order to construct a space-time containing two black holes, we could

take a linear combination of two Kerr black holes with different centres, and then solve the constraint

equations numerically.

A further complication arises if we are outside the test-fluid approximation regime, as the fluid enters
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into the constraints via the energy-momentum tensor Tµν . The constraint equations are elliptic in nature,

and therefore require a large amount of computational effort to solve. This is one reason why it is not

usual to solve for the constraints at every time-step, and why it is more usual to use different formulations

of Einstein’s equations which have the property that the constraints are reduced as far as possible.

More details of the issues involved in generating initial data for simulations can be found in the Living

Review by Cook [29] and the overview presented by Gourgoulhon [52]. More recent work on the problem

includes that of Foucart et al. [45], covering the construction of initial data for black-hole neutron-star

binary problems.

2.3 Current state of Numerical Relativity

Numerical Relativity has been a subject of research since the late 1960s [68]. For much of that

time, numerical simulations were restricted to one-dimensional or low-resolution two-dimensional cases.

However, in the past ten years, computer technology and numerical techniques have developed sufficiently

to allow large-scale simulations to be performed in three (spatial) dimensions. Further, in recent years,

dramatic improvements have been made in the simulation of binary black-hole coalescence starting with

the results of [85] in 2005. Many research groups now have robust codes capable of predicting gravitational

wave signals for a wide range of black hole characteristics. For the current state of BBH simulations, see

the review by Hinder [58] and references therein.

In this thesis, we intend to concentrate mainly on the evolution of a relativistic fluid on a station-

ary space-time background, and so we restrict ourselves to detailing the current research in this area.

Codes have been developed to evolve the equations of general relativistic hydrodynamics on a variety of

metrics, including dynamically evolved metrics, and various types of fluid. We now list the main codes

that have been developed for the evolution of General Relativistic Hydrodynamics (GRHD), with their

distinguishing features:

2.3.1 Cactus and associated thorns

The Cactus code [5] is a collaborative effort developed primarily by researchers at Louisiana State

University and the Max Planck Institute for Gravitational Physics in Germany. The code is modular, so

that it can be compiled with different sets of modules (known as thorns) depending on what is required

of it. It also has the advantage that independent researchers can develop their own thorns, implementing

new features, while taking advantage of all the computational infrastructure and numerical methods

already available as thorns or in the main body of the code, known as the flesh.

Cactus is fully parallelised, with almost perfect scaling up to 131 072 cores on the Blue Gene/P
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system at the Argonne National Laboratory [5]. It is capable of solving elliptic equations, and of using

the Method of Lines approach to solving PDEs. It has the ability to perform multi-patch evolutions,

where the domain of solution is covered by more than one numerical grid. These grids may be either

abutting or overlapping but can only be Cartesian in nature. It is capable of evolving the space-time

metric stably, using the BSSN formulation of Einstein’s equations.

Carpet thorn

The Carpet thorn [99] for the Cactus code implements Adaptive Mesh Refinement (AMR), a standard

numerical technique for focusing computational effort on areas of interest, often on shocks (see §4.9 for

more details).

Whisky thorn

The Whisky thorn, written by Hawke, Baiotti, and Montero [12] for the Cactus code implements the

evolution of GRHD simulations, and GRMHD has also been included in it [49].

The evolution is carried out using high-resolution shock-capturing schemes (see §4.2), using approxi-

mate Riemann solvers to calculate fluxes. Via the flesh of Cactus, the hydrodynamics are fully coupled

with the evolution of the metric. Whisky is capable of excising portions of the computational grid to

exclude, for example, the singularity at the centre of a black hole from the evolution. However, due to

the restriction to Cartesian grids imposed by Cactus, the edge of the excision region is jagged.

Whisky has been fully tested on various test-cases, including the ability to evolve a stable magnetized

neutron star [49], and applied to problems such as that of inspiralling neutron stars collapsing to form a

black hole [13].

Curvi-linear Multi-block thorn

Schnetter et al. [98] have produced a Cactus thorn that is capable of evolving Einstein’s equations on a

multi-block grid setup, where the computational domain is constructed from more than one grid, perhaps

using multiple coordinate systems which may overlap. They use high-order finite-difference operators

and the boundaries between patches are handled using penalty methods. These methods, though, are

not suitable for stably evolving fluid flow. They have simulated weak gravitational waves and also the

evolution of the scalar wave equation on a Kerr-Schild background. The code is capable of reading grid

structures from an external code suited to designing complex patch systems.
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Curvi-linear Multi-patch Cactus thorn

There is currently under development by Zink et al. a code which has the ability to evolve GRHD

problems on curvi-linear multi-patch grids [118]. Note that multi-patch grids are the same as the multi-

block grids referred to in the previous section. The code is capable of using either overlapping or abutting

grids, and has had a few grid setups implemented to give a spherical domain, including a 6-patch cubed

sphere setup, and a similar 13-patch system of grids. The advantage of using curvi-linear grids is that

spherical excision can be performed to remove a black hole singularity from the domain, using a smooth

inner boundary. As is pointed out in [118], a spherical grid also has the advantage that extending its outer

boundary requires a far lower increase in the number of computational cells as compared to a Cartesian

grid.

The code uses a monotonised central TVD scheme with the HLL approximate Riemann solver (see

§4.2). It has been tested on some one-dimensional shock-tube tests on overlapping grids, as well as the

propagation of a one-dimensional shock across a three-dimensional cubed-sphere grid. Its most advanced

test is that of evolving an equilibrium accretion torus on a Schwarzschild background.

2.3.2 Cornell and CalTech code

There is a code developed by Duez et al. [30] which has the ability to evolve the GRHD system of

equations on a dynamic space-time. The code is capable of evolving binary black holes [27, 81], as well

as black-hole neutron-star mergers [32].

This code uses pseudospectral methods to evolve the metric, and uses different grid systems for the

metric and the fluid. The fluid is evolved using the HLL approximate Riemann solver, either in a finite

volume (see §4.2) or in a finite differencing (see §4.3) setup.

The grid system for the metric can be one of several, including a spherical shell or a cubed sphere.

The fluid grid, on the other hand, is Cartesian in nature. The use of pseudospectral methods for the

metric means that the convergence rate is exponential, assuming the metric to be smooth. However, the

convergence rate for the fluid evolution is still polynomial. The intended uses of this code are for cases

where the fluid only covers a small part of the domain, so that the fluid grid does not need to cover the

same extent as the metric grid.

Excision for the evolution of the fluid is performed by excising specific grid points, and using one-sided

differencing near those points as necessary. This is an improvement on excision of a single cube, giving

rise to Lego R© excision, but the excision boundary is still not smooth and could give rise to numerical

errors.

The code has been tested on spherical accretion onto a black hole, and also on the evolution of

equilibrium relativistic stars. It has also been applied to black hole/neutron star binaries.
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2.3.3 Wind Accretion by Font, Ibáñez, and Papadopoulos

This code, detailed in a series of papers [40, 41, 42], was developed with the intention of exploring

Bondi-Hoyle-Lyttleton wind accretion onto black holes with and without spin. Although this code is not

capable of solving as many types of problem as some of the other codes mentioned, we nevertheless give

some details as we intend to perform similar simulations to the ones in the papers mentioned above.

The fluid is evolved using a Roe Riemann solver with monotonic linear reconstruction, and using

TVD Runge-Kutta time-stepping. The metric is stationary only, and is restricted to a single black hole

in either Boyer-Lindquist or Kerr-Schild coordinates. The grid setup is either that for an axisymmetric

evolution, or that for the thin disc approximation to the evolution. We emphasise that both of these are

two-dimensional calculations.

Excision is not strictly used for Boyer-Lindquist coordinates as the metric becomes singular at the

horizon of the black hole, and so the grid stops outside the horizon. In Kerr-Schild coordinates, the grid

goes inside the horizon, and the inner boundary is smooth owing to the annular nature of the grid.

2.3.4 Illinois GRHD code

There is a code developed by researchers at Illinois: Duez, Shapiro, and Yo [31]. This is capable of

evolving GRHD coupled with the space-time metric. The grid setup is either axisymmetric or three-

dimensional Cartesian. The metric is evolved using Iterated Crank-Nicolson with the BSSN formulation

of Einstein’s equations. The fluid is evolved using van Leer type advection, and uses artificial viscosity

to handle shocks. It is therefore inaccurate for ultra-relativistic fluid flows.

The code has been tested using radial Bondi-accretion onto a Schwarzschild black hole, and has been

used to simulate the collapse of rapidly rotating stars.

2.3.5 Nada code

This code, written by Montero, Font, and Shibata [76], is a recent development. It imposes axisym-

metry, and so is a two-dimensional code only. However, it couples the space-time and fluid evolution.

The space-time and fluid are evolved in time using either an Iterated Crank-Nicolson or a Runge-Kutta

approach, and the fluxes are calculated using either the HLLE or the Roe approximate Riemann solver

with slope-limited reconstruction.

Black holes are represented using the puncture approach [25], which avoids any excision requirements

at singularities. The fluid can have either an ideal or polytropic equation of state.

The code has been shown to evolve rapidly rotating stars and also self-gravitating tori in equilibrium

around a black hole. The latter case was tested with either a fixed space-time or a dynamical space-time,
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and demonstrated long-term stable evolution in both cases.

2.3.6 SACRA code

The SACRA (SimulAtor for Compact objects in Relativistic Astrophysics) code has been developed

by Yamamoto, Shibata, and Taniguchi [115]. This uses AMR on a three-dimensional Cartesian domain

to evolve problems where the space-time is coupled to the hydrodynamics. The BSSN formulation of

the Einstein equations is solved using a fourth-order finite-difference approach for calculating spatial

derivatives, and a fourth-order Runge-Kutta for time integration. The hydrodynamical equations are

solved using a high-resolution central scheme.

The code is capable of solving binary systems composed of black holes and neutron stars. Results

produced using SACRA have reasonable agreement with those from other constant-refinement codes.

This includes post-processed results such as gravitational waves. Further, conservation of energy and

angular momentum are satisfied to a reasonable accuracy. As a result of using AMR, simulations with

SACRA could be performed on personal computers, although requiring up to one month of CPU time to

perform.

2.3.7 Brigham Young University

Anderson, Hirschmann, Lehner, and their collaborators have developed an NR code capable of evolving

neutron-star binaries [7]. The code uses the generalized harmonic formulation of Einstein’s equations.

The space-time metric is evolved using up to fourth-order finite difference operators to calculate spatial

derivatives, and the fluid is evolved using an HRSC solver. In both cases time is advanced using a

third-order Runge-Kutta solver. The code includes AMR, and uses a three-dimensional Cartesian grid

on which to evolve.

The code has been used to evolve a binary neutron-star system which collapses to a black-hole state,

and is capable of extracting gravitational waves from the system. The code also has the ability to perform

GRMHD simulations [6] of magnetized neutron-star mergers.

2.3.8 WHAM: WENO-based GRMHD code

This code, described in [104], is an improved version of the HARM code by Gammie, McKinney and

Tóth [48], and is designed to evolve the equations of general relativistic magnetohydrodynamics on a

stationary space-time. It uses the WENO approximate Riemann solver to calculate fluxes, as well as

constrained transport to maintain a divergence-free magnetic field. The code can be used in any number

of dimensions and in two dimensions can use either axisymmetric or cylindrical coordinates. It has been
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applied to various tests both in flat-space and in black hole space-times, including an equilibrium torus

in Kerr space-time. Overall, the scheme is fifth-order accurate, while the original HARM code was only

second-order.

2.3.9 COSMOS++

Fragile et al. [8, 46] have developed a code capable of evolving GRMHD on a cubed-sphere grid setup.

This setup allows for smooth excision inside the horizon of a Kerr black hole. The code is capable of

adaptive mesh refinement, although done in a different way to Berger and Oliger [19], using a cell-by-cell

refinement approach on an unstructured mesh. The methods used are advection based, using a first-order

forward Euler scheme.

2.3.10 Zanotti and Dumbser

A quite different approach to those in the preceding sections is being used by Dumbser and Zanotti

[33]. Their approach is to use discontinuous Galerkin methods on an unstructured mesh to achieve

third to fifth order accuracy in both space and time. These are finite-element methods, which treat the

numerical solution as a weighted sum of basis functions on the domain, rather than as values at a point

or as integrals over a cell as for the methods used by other codes mentioned here.

Their work currently only covers the resistive (i.e. non-infinite conductivity) relativistic magnetohy-

drodynamical equations on a flat space-time. However, all other codes mentioned in this section (that

include MHD) assume infinite conductivity. This assumption may not be valid for some astrophysical

situations, such as pulsars and active galactic nuclei, and the work done by Dumbser and Zanotti may

prove useful in simulations of these, particularly since they can use coarser meshes than other codes given

in this section, as a result of the higher-order methods used.

The code has been tested against some exact solutions relevant to RRMHD, such as shock-tube

tests, as well as the problem of a cylindrical explosion, and a vortex problem which, in the limit of high

conductivity, gave results in agreement with those of previous research and for lower conductivity gave

qualitatively plausible results.

2.3.11 Code review conclusions

We have seen that there are several mature codes capable of evolving the GRHD system of equations,

either on a static space-time, or fully coupled with a dynamical space-time. Some codes are also capable

of including magnetic fields in their simulations.

However, most of these codes are restricted to evolving on a Cartesian domain, and those that are

not do not have adaptive mesh refinement capabilities, and generally rely on specific grid setups, or take
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advantage of space-time symmetries and only evolve in two dimensions, although the code of Schnet-

ter et al. mentioned in §2.3.1 is capable of using complex grid structures.

Therefore, the aims of this thesis are to design and validate an algorithm capable of evolving the

GRHD system of equations on a general curvi-linear system of grids in three dimensions, including the

ability to use AMR to make best use of computational resources, to implement the algorithm, and to

apply it to a GRHD problem that requires the above features for its solution. We also intend to include

in the algorithm the ability to evolve the space-time metric.

The advantages of our approach over previous work are two-fold. Firstly, by allowing a completely

general grid structure, we will be able to implement a spherical grid system without polar singularities,

which will allow us to extend the domain of solution to a large radius whilst using fewer grid points

than a Cartesian grid of similar resolution near the black hole. Secondly, AMR will allow us to use an

underlying coarse grid system, and then to concentrate computational effort on those areas which need

it in order to increase accuracy.

We further believe that a general grid structure will be necessary for evolving problems such as fluid

flow in the vicinity of a BBH system, where the singularities due to the black holes move in time, and

the excised portion of the grid therefore needs to change in order to accommodate this.

2.4 Validating a Numerical Relativistic Code

One of the major difficulties in comparing NR codes is that not all codes are capable of some of

the more advanced techniques, such as capturing moving singularities, and also that differences in gauge

conditions make it difficult to make comparisons of simulation results. Further, there are a large number

of possible combinations of formulations of Einstein’s equations with numerical solvers which, when

combined, could have completely different stability and evolution properties.

It would therefore be useful to have some general relativistic tests that can be solved by any numerical

relativity solver, which factor out as far as possible any implementation-dependent effects, and focus

instead upon the numerical algorithm and formulation of the Einstein equations used. The tests will

still need to be fairly stringent, however, and test the full dynamic capabilities of the algorithm. To this

end, some suitable tests have been suggested by Alcubierre et al. [2] and Babiuc et al. [11]. In order to

emphasise the fact that these tests are capable of comparing disparate algorithms and implementations,

they are called “Apples with Apples” tests.

An online repository for associated information can be found at [44]. The test-cases specify in every

detail some, mostly one-dimensional, problems that are straightforward to implement, and do not take

large amounts of computational time, but are nonetheless challenging for NR solvers, largely as a result of
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requiring many thousands of time-steps to evolve, thus bringing to light any secular stability or accuracy

problems in the methods.

There are also some exact solutions available for the evolution of a test-fluid in the vicinity of a

black hole, and these are detailed in §7.5. As well as these standardised tests, any solver should have

test-cases developed to test its own particular features. We have constructed our own suite of tests

including convergence order testing and testing against exact solutions for the numerical methods we

have implemented.

We note that BBH simulations have advanced to a sufficient degree that gravitational wave signatures

may be extracted, and these are another way of comparing different codes, as the wave signatures should

be independent of the code. Such comparisons are now being made as part of the Samurai [55] and

NINJA [35] projects. The NINJA project consists of providing templates for use in tests of code which

will extract gravitational wave signatures from experimental data, and the Samurai project compares

results from several different NR codes, using the predicted phase and amplitude of the gravitational

waves.

2.5 Aims of this thesis

The first aim of this thesis is to construct a numerical algorithm applicable to general relativistic

problems, and capable of evolving both the space-time metric and a fluid in that space-time, using an

overlapping curvi-linear grid approach. The intention is to do this in such a way as should be generally

applicable to any initial value problem. In the process of doing this, we will also aim to validate our

algorithm extensively, comparing results with those of other numerical approaches, including those of

other researchers, and using standardised test-cases. Since a large part of this thesis concerns algorithm

development, we aim to spend some time describing and analysing the various numerical techniques used,

checking them for consistency, and validating both the algorithms and their implementation.

We shall then aim to apply an implementation of our algorithm to the case of Bondi-Hoyle-Lyttleton

accretion of a test fluid onto a stationary black hole, validate our algorithm for this specific problem, and

finally perform a parametric study of this problem to explore previously uninvestigated aspects of the

flow.

The remainder of this thesis is arranged as follows: in Chapter 3 we present the various systems

of equations that we will be using our algorithm to solve, as well as the initial conditions for the test

problems that we will use, including black hole metrics in appropriate coordinate systems. Chapter 4

details the numerical methods that we use for the solution of the equations, and our reasons for choosing

them. In this we include some numerical techniques that have only recently been developed and have
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not previously been applied to relativistic calculations, as well as some adjustments that we have made

to some of the methods used in order to increase accuracy.

As promised, we then proceed in Chapter 5 to present extensive validation tests of all the numerical

methods presented in the preceding chapter, and also some comparisons with results from other groups.

Chapter 6 then covers some of the technical aspects of the implementation of our algorithm, and some

of the features of the software libraries we have used to ease the implementation.

Chapter 7 then sees the introduction of the area which we wish to investigate, namely, Bondi-Hoyle-

Lyttleton accretion onto a black hole. We detail some known results, the current state of research in

this area, and perform some validation tests for this particular problem, before continuing to perform a

parametric study of the problem, presented in Chapter 8. In Chapter 9 we detail our conclusions, both

those from a consideration of the Bondi-Hoyle-Lyttleton accretion problem, and also those concerning

the suitability of the algorithm we have developed for such problems. Finally, Chapter 10 suggests some

directions this work could take in the future.

When implementing a new algorithm, a large amount of effort is usually required in areas other

than simply the numerical algorithms, such as parallelisation and data input/output. We have therefore

decided to use the Overture software [57], developed by Henshaw et al., as a base for our implementation.

This provides for overlapping grid generation and interpolation, as well as making available information

about the grid geometries and grid functions that will allow us to develop easily our own numerical

algorithms using that information. Overture has sufficient generality and scope that it implements, or

allows for the easy implementation of, the features that we have defined as being desirable in §2.3.11. It

further allows for the dynamic generation of grids from inside a user’s code, and also for changes to the

grid structure during an evolution.

Overture is set up in a data-distributed way that allows for efficient parallelisation. It also includes

visualisation and input/output through a standard file format. All of this has allowed us to concentrate

on developing the numerical algorithms, rather than aspects that are a matter of software development

and well-understood mathematics.
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Chapter 3

System Equations and Metrics

In order to allow for an uncluttered set of results in the validation in Chapter 5, we present here the

systems of equations that we will use in this thesis, as well as some sets of initial data and metrics.

3.1 Special Relativistic Hydrodynamics

The evolution of a relativistic fluid on the Minkowski metric is governed by the conservation law

∂U

∂x0
+

∂Fi

∂xi
= 0 , (3.1)

where

U = (D, Sj , τ) ,

and Fi =
(

Dvi, Sjv
i + pδi

j , τvi + pvi
)

.
(3.2)

In the case of an ideal gas, the conserved fluid variables U are defined in terms of the primitive fluid

variables as

D = ρW, Sj = ρhW 2vj , τ = E − D = ρhW 2 − p − D ,

W =
(

1 − ηijv
ivj

)−1/2
,

(3.3)

where ρ is the fluid density, p is the pressure, and vi is the velocity vector. The specific enthalpy h

characterises the heat content of a fluid per unit volume, and it defines the equation of state for the fluid

when written in terms of the pressure and density. The conserved variables are the relativistic density

D, the three-momenta Si, and the relativistic energy E, although we evolve τ in place of E to allow for

more accurate evolutions as otherwise variations in p can be swamped by the relatively large relativistic

density D. The Lorentz factor W is the length contraction and time dilation factor, and we use the

Minkowski metric ηij for its calculation here.
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3.2 General Relativistic Hydrodynamics

The evolution of a relativistic fluid on an arbitrary metric is given by

1√−g

(

∂
√

γU

∂x0
+

∂
√−gFi

∂xi

)

= S , (3.4)

where

U = (D, Sj , τ) ,

Fi =

(

D

(

vi − βi

α

)

, Sj

(

vi − βi

α

)

+ pδi
j , τ

(

vi − βi

α

)

+ pvi

)

,

S =

(

0, Tµν

(

∂gνj

∂xµ
− Γ δ

ν µgδj

)

, α

(

Tµ0 ∂ lnα

∂xµ
− TµνΓ 0

ν µ

))

,

(3.5)

with g = det(gµν), and γ = det(γij). The expressions for D, Sj , and τ are as in (3.3), and

W =
(

1 − γijv
ivj

)−1/2
. (3.6)

The energy-momentum tensor Tµν depends on the fluid-type, and we define it for the fluid-types we use

in this thesis in §3.3.

Although (3.4) does not immediately resemble a conservation law, it is nonetheless derived from

the conservation law Tµν
;ν = 0 which follows from Einstein’s equations. The terms on the right-hand

side arise from the space-time curvature. It can easily be seen that equations (3.4) and (3.5) reduce to

equations (3.1) and (3.2) in the case that γij = ηij and gµν = ηµν .

We note that the sources can also be written as (see documentation for the Whisky code [12])

S =

(

0, T 00

(

1

2
βlβmγlm,j − αα,j

)

+ T 0iβlγil,j +
1

2
T lmγlm,j +

ρhW 2vl

α
βl

,j ,

T 00
(

βiβjKij − βiα,i

)

+ T 0i(−α,i + 2βjKij) + T lmKlm

)

, (3.7)

assuming that the metric satisfies the constraint equations. This definition of the sources is equivalent to

that in (3.5), but is better as it only uses variables already defined, rather than having to calculate the

time derivatives of γij and other space-time variables to incorporate into the four-Christoffel symbols. In

the case of a stationary metric, these are exactly equivalent, but for a time-dependent metric, this means

that we do not base the fluid source terms on the calculated metric source terms.

The wavespeeds for the full GRHD system of equations are given by ([39] §6.2):

λ0 = αvi − βi (triple eigenvalue of the system) ,

λi
± =

α

1 − v2c2
s

(

vi(1 − c2
s) ± cs

√

(1 − v2)(γii(1 − v2c2
s) − vivi(1 − c2

s))
)

− βi
(3.8)

in each coordinate direction i, where there is no sum over the i index.
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3.3 Fluid types

In this thesis, we restrict ourselves to two fluid types: a perfect ideal gas, with a given adiabatic index,

Γ, and a stiff, ultra-relativistic fluid.

Given an equation of state through the specific enthalpy h, the energy momentum tensor, found on

the right-hand side of Einstein’s equations (1.1), is given, for a perfect fluid, by

Tµν = ρhuµuν + pgµν , (3.9)

where the four-velocity uµ is defined in terms of the three-velocity vi via

vi =
ui

αu0
+

βi

α
, and W = αu0 . (3.10)

Here, α is the lapse function and βi is the shift vector as defined by the 3+1 splitting in (2.1), and W is

the Lorentz factor.

3.3.1 Stiff fluid

This is a special case of an ultra-relativistic fluid where, instead of taking p = (Γ − 1)ρ as for ultra-

relativistic flow, we now take p = ρ. The fluid is defined in terms of a stream-function ψ, which allows for

some simplifications to the fluid equations, resulting in the possibility of analytical solutions (e.g. Petrich,

Shapiro and Teukolsky [83], and Shapiro [102]). The details of the more general ultra-relativistic fluid

can be found in David Neilsen’s Ph.D. thesis [78].

We define the fluid variables as follows:

n = (−ψ,µψ,µ)1/2, uµ =
1

n
ψ,µ ,

ρ = p = n2, vi =
ui

αu0
+

βi

α
,

Sj =
√

γ(ρ + p)W 2vj , τ =
√

γ(W 2(ρ + p) − p) ,

(3.11)

where, due to the inherent simplifications, we can ignore the equation in D. This explains the absence

of a −D term in the expression for τ .

The primitive variables are easily recovered from the conserved variables via the formulae

ρ = τ2 − SjS
j and vi =

Si

τ + ρ
. (3.12)

We note that Neilsen [78] warns against calculating vi in this way due to potential numerical precision

problems, but the solution he gives is for one dimension only, and is not easily generalisable to multi-

dimensions.

This equation of state leads to the the simplification of the conservation of energy and momentum,

Tµν
;µ = 0 to the linear wave equation ψ;ν

ν = 0. However, Neilsen notes [78] that not all solutions of the
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wave equation can be interpreted as physical fluid solutions, only those that satisfy

∇φ · ∇φ < 0 (3.13)

on the entire space-time.

3.3.2 Ideal fluid

For the ideal fluid, we define the specific enthalpy of the fluid to be

h = 1 +
p

ρ

(

Γ

Γ − 1

)

, (3.14)

where Γ is the adiabatic index of the fluid (often written as γ, but that has already been used for the

determinant of the three-metric). The speed of sound in the fluid, cs, is then given by

c2
s =

Γp

ρ

(

1 +
p

ρ

Γ

Γ − 1

)−1

. (3.15)

In non-relativistic fluid evolution, the recovery of the primitive variables from the conserved variables

is an algebraic operation. However, the presence of the Lorentz factor complicates the issue, since the

three-momenta are no longer independent of each other, and we use a Newton-Raphson method to recover

the primitive variables. Other techniques are available, including the solution of a quartic, but tend to

be computationally involved and expensive.

Initially we followed Mart́ı and Müller’s algorithm presented in [74] and available in the code rppm.f

accompanying that article. However, their provision for dealing with large velocities, which was to restrict

the pressure p by

p ≥ pmin ≡ (1 + ǫ)
√

γijSiSj − τ − D (3.16)

since we know that

v2 < 1 ⇔ p >
√

γijSiSj − τ − D, (3.17)

caused problems in precisely the cases it was meant to assist since, when the minimum pressure is used,

v2 =
γijSiSj

(pmin + τ + D)2
= (1 + ǫ)−2 (3.18)

which then can lead to problems in calculating W accurately due to issues with finite precision (a back-

ground to the issues involved and some possible cures are given by Goldberg [51]).

Therefore, we follow instead the suggestion in Appendix A of Eulderink and Mellema [36]. This

requires no calculation of W and, although it does have its own problems, these can be rectified in a
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robust way. The equation we solve, using a Newton-Raphson method, is

α4ξ
3(ξ − η) + α2ξ

2 + α1ξ + α0 = 0 ,

where ξ =

√

(τ + D)2 − S2

ρhW
,

α0 = − 1

Γ2
, α1 = −2C

Γ − 1

Γ2
,

α2 =
Γ − 2

Γ
(C2

0 − 1) + 1 − C2

(

Γ − 1

Γ

)2

, η = 2C
Γ − 1

Γ
, α4 = C2

0 − 1 ,

C0 =
τ + D

√

(τ + D)2 − S2
, and C =

D
√

(τ + D)2 − S2
.

(3.19)

We note that in order to retain numerical accuracy, the expression for calculating u0 = W/α in equation

(A.12) of [36] should be rewritten as

W =
1

2
C0ξ

(

1 +

√

1 + 4
Γ − 1

Γ
· 1 − Cξ

C2
0ξ2

)

, (3.20)

taking C0ξ outside the brackets, since for large W the bracketed expression is of order unity and C0ξ is

large. We then use the following to recover the remaining primitive variables:

ρ = max(D/W, 10−8), h = 1/(Cξ) . (3.21)

Given that ρ may have been altered from its correct value of D/W , we recalculate the appropriate

value of p from h, enforce p ≥ pmin if necessary, and then recalculate h before calculating vi as

vi =
Si

ρhW 2
. (3.22)

According to [36], “with some effort it may be shown that the derivative of [the quartic (3.19)] is always

at least 2/Γ in its physical root, thus guaranteeing quadratic convergence for the Newton[-Raphson]

method”.

We performed some tests to determine the error in converting conserved variables to primitive variables

and back again. We found that with full optimization switched on (-O3 for the Intel and GNU compilers,

but with floating-point precision maintained), the adjustment in (3.20) was the most important, i.e. any

adjustment of the way in which the ratio C0 was calculated, or whether C2
0 was calculated from C0 or

directly from τ,D, and S2 made no discernible difference to the accuracy.

Recovery from non-physical conserved variables

As explained later in §4.10.2, we may still get unphysical conserved variables if

(τ + D)2 ≥ S2 (3.23)

is violated due to some numerical error in the evolution.
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It does not seem appropriate to effectively cap the maximum velocity v2 by setting D or τ explicitly

to satisfy this inequality. Further, specifying a vacuum state of v = 0, ρ = ρmin and p = pmin where

(3.23) is violated is unsatisfactory as it is usually violated in regions where v2 is large, and setting v2 = 0

is therefore inappropriate.

Our solution to this is that, if the inequality is violated, then we specify a minimum pressure p, and

then calculate ρ and W from the values of D and S2. The choice of variables either to specify or from

which to calculate is made for ease of implementation. It would be possible to set either a minimum

pressure or a minimum density. However, the viability of such a minimum relies on the positivity of the

other variable, as we shall see below. This is trivial to check in the case of density, where ρ > 0 ⇔ D > 0,

but much harder to check in the case of pressure, and so we choose to fix a minimum pressure.

Then, since most of our problems arise from violations of v2 < 1, the easiest way to enforce this is

to use the known value of S2 in our recovery of the primitive variables, as this has an overall factor of

v2, and will therefore lead to the most appropriate value for v2. Choosing not to use the known value of

S2 may well lead to the resulting primitive variables not satisfying v2 < 1, so that our initial difficulty

remains unsolved. Our subsequent choice of fixing D was mainly due to ease of implementation, but does

represent to some extent a fixing of the original density, given that we have already chosen to specify a

minimum pressure. In practice, we use pmin = 10−8.

It is important to demonstrate that a solution is possible for any value of pmin that we might impose

and this is shown by the following argument:

We want to find the range of p s.t. (τ + D)2 > S2 can be satisfied, given values of D and S2:

(τ + D)2 > S2

⇔ (ρhW 2 − p)2 > ρ2h2(W 4 − W 2)

⇔ p2 − 2W 2p

(

ρ + p
Γ

Γ − 1

)

> −W 2

(

ρ + p
Γ

Γ − 1

)2

⇔ p2

(

1 − W
Γ

Γ − 1

)2

+ 2pW 2ρ
1

Γ − 1
+ W 2ρ2 > 0

(3.24)

and, since all the coefficients of p2, p, and 1 are positive, assuming that ρ > 0 and Γ > 1, this is true for

any value of p, so any value of pmin is consistent with given τ + D and S2, although not with τ,D, S2

separately, as this would lead to an over-determined system of equations.

Now, given S2 and D, we wish to solve the inequality

S2 < (τ + D)2 (3.25)

for ρ as closely as possible to equality. Some algebra shows that we wish to solve

0 < f(ρ) ≡ −ρ4(D2 + S2) − 2ρ3λD2 + ρ2(D4 − λ2D2) + 2ρλD4 + λ2D4

where λ = pmin
Γ

Γ − 1
.

(3.26)
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The form of this quartic is not obviously amenable to solution by an iterative method such as Newton-

Raphson as there are no suitable bounds on its derivative, although we could use an alternative method

to find a suitably close solution, and then use Newton-Raphson to converge rapidly to a more accurate

solution. However, we know that ρ ∈ [0,D] and so we have decided to perform a bisection root-finding

method to find ρ, stopping when the upper and lower limits for ρ differ by a given relative amount.

This is possible since f(0) = λ2D4 > 0 and f(D) = −D4S2 < 0, so that f(ρ) has at least one root in

the range [0,D]. If we assume that λ is small (justified by the facts that pmin is small and we do not use

Γ close to 1) compared to D and S2 (which are large for large W ), then we can consider the polynomial

− ρ4(D2 + S2) + ρ2D4 = 0 (3.27)

with roots at

ρ = 0, ±D2/
√

D2 + S2. (3.28)

We then regard f as a perturbation of this, and note that f(−λ) = −λ4S2 < 0, implying that f has a

root in the range (−λ, 0).

Since the ρ4 coefficient of f is negative and the constant coefficient is positive, we know that f has

an odd number of negative roots. Therefore, with the assumption that f has a root in the vicinity of the

root of the unperturbed polynomial, −D2/
√

D2 + S2 ≪ −λ, we deduce that f has three negative roots,

and hence has precisely one positive root, so that the bisection method will always succeed.

The bisection approach is slower than an iterative scheme would be, but is used far less frequently

by the algorithm, and so its efficiency is less important. A first step to improve efficiency is to note that

f(λ + D2/
√

D2 + S2) < 0, and so we start our bisection approach with the range [0, λ + D2/
√

D2 + S2].

We have therefore shown that we have used a fast, robust, and accurate method for recovering primitive

variables. Further, we have made provision for the possible case where the conserved variables become

unphysical, in that the primitive variables we then recover would convert back to conserved variables

close to the original ones.

3.4 Medium system

The Medium system was developed by Barnes et al. [16]. It is a specialised version of the full

Einstein equations, and describes the evolution of an ultra-relativistic fluid on a Gowdy plane-polarised

background. The metric used is

ds2 = e2a(−dt2 + dx2) + e2b(e2cdy2 + e−2cdz2) , (3.29)

where a, b, c are functions of x and t alone. The primitive fluid variables are µ, the density and v, the

velocity. The fluid pressure is then P = (Γ − 1)µ, and the Lorentz factor is W =
(

1 − v2
)−1/2

.
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The conserved fluid variables are

S = (µ + P )vW 2, and τ = (µ + P )W 2 − P , (3.30)

and we can use the expressions

µ =
1

Γ − 1

(

−1

2
(2 − Γ)τ +

[

1

4
(2 − Γ)2τ2 + (Γ − 1)(τ2 − S2)

]
1

2

)

and v =
Γµ

2S

(

√

1 +
4S2

Γ2µ2
− 1

)
(3.31)

to recover the primitive variables, as suggested by Neilsen [78].

The evolved variables for the full Medium system are then [17]

e2a , a,t , a,x , b,t , b,x , c,t , c,x , a,tx , a,xx , b,tx , b,xx , c,tx , c,xx , τ , S , (3.32)

so that second derivatives of the metric are also evolved.

The full set of equations is given by

∂t(e
2a) = 2a,t e2a

∂t(a,t) = a,xx + b2
,t − b2

,x − c2
,t + c2

,x − 1
2κe2a(τ − (Sv + P ))

∂t(a,x) = a,tx

∂t(b,t) = b,xx − 2b2
,t + 2b2

,x + 1
2κe2a(τ − (Sv + P ))

∂t(b,x) = b,tx

∂t(c,t) = c,xx − 2(b,t c,t − b,x c,x)

∂t(c,x) = c,tx

∂t(a,tx) + ∂x

(

−a,xx + 1
2κe2a(τ − (Sv + P ))

)

= 2b,t b,tx − 2b,x b,xx − 2c,t c,tx + 2c,x c,xx

∂t(a,xx) + ∂x(−a,tx) = 0

∂t(b,tx) + ∂x

(

−b,xx − 1
2κe2a(τ − (Sv + P ))

)

= −4b,t b,tx + 4b,x b,xx

∂t(b,xx) + ∂x(−b,tx) = 0

∂t(c,tx) + ∂x(−c,xx) = −2(b,t c,tx − b,x c,xx + b,tx c,t − b,xx c,x)

∂t(c,xx) + ∂x(−c,tx) = 0

∂tτ + ∂xS = −τ(a,t + 2b,t) − 2S(a,x + b,x) − (Sv + P )a,t − 2Pb,t

∂tS + ∂x(Sv + P ) = −τa,x − 2S(a,t + b,t) − (Sv + P )(a,x + 2b,x) + 2Pb,x.

(3.33)

The constraint equations in this system are algebraic in the variables (3.32):

2a,t b,t + 2a,x b,x + b2
,t − 2bxx − 3b2

,x − c2
,t − c2

,x = 8πe2aτ

and − 2a,t b,x − 2a,x b,t + 2b,tx + 2b,t b,x + 2c,t c,x = 8πe2aS .
(3.34)
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We define the actual constraints to be

H = e2b(2a,t b,t + 2a,x b,x + b2
,t − 2bxx − 3b2

,x − c2
,t − c2

,x − 8πe2aτ)

and M = e2b(−2a,t b,x − 2a,x b,t + 2b,tx + 2b,t b,x + 2c,t c,x − 8πe2aS) .
(3.35)

Note that we omit the exponential factor e2b when plotting them as determining this would require a

numerical integration of the evolved variables. Barnes et al. made the same alteration for their plots

in [16] (Barnes - personal communication).

We use the two sets of initial conditions as given in [16], the first being given by:

v = S = a,t = b,t = 0, a = −2, c2
s =

1

3
,

κµ =















100 if x < 0 ,

1 if x > 0 .

b,x = −
√

κe2aτ

3
tan

(x

2

√
3κe2aτ +

√
3κe2aτ

)

where κ = 8π ,

(3.36)

where the expression for b,x has been found analytically, with the conditions that it be continuous at

x = 0 and that the singularity be well outside the domain. The data is evolved to a time t = 0.5.

The second test case is given by

a,t = 0, a = −3, c2
s =

1

3
,

µ =
40

κ
(1.1 + tanh(−40x)), v =

20

tanh(−40x)

(3.37)

where, in order to complete the initial conditions, we solve numerically for b,t and b,x, using a Runge-

Kutta second-order integrator, specifying b,t(x = 0) = b,x(x = 0) = 0 as a point from which to integrate

outwards to the edges of the domain. This initial data is then evolved to time t = 0.3.

3.5 Bona-Massó formulation

Although the BSSN formulation [18] is currently the one that is most used in successful evolutions, we

here consider the Bona-Massó formulation [22], which is written in a form more amenable to the solution

techniques we wish to use.

The Bona-Massó formulation is written in first-order flux-conservative form, with source terms, using

the 3+1 splitting approach (2.1). It has been shown to be strongly hyperbolic, and so can form part of a

well-posed initial-value problem. Since Einstein’s equations are second-order, it is necessary to introduce

some auxiliary variables involving first derivatives of the main variables:

Ai =
α,i

α
, Dkij = 1

2γij,k

Vi = D s
is − Ds

si, B k
i = 1

2βk
,i .

(3.38)
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The time evolution is governed by the following equations [22]:

∂tγij = −2α(Kij − sij) + 2βrDrij , (3.39)

∂tα = −α2Q + αβrAr , (3.40)

∂tDkij + ∂k(−βrDrij + α(Kij − sij)) = 0 , (3.41)

∂tAk + ∂k(−βrAr + αQ) = 0 , (3.42)

∂tKij + ∂k

(

− βkKij + α[Dk
ij − n

2 V kγij

+ 1
2δk

i (Aj + 2Vj − D r
jr ) + 1

2δk
j (Ai + 2Vi − D r

ir )]
)

= 2(KirB
r

j + KjrB
r

i − KijB
r

r ) + α[−(4)Rij − 2K k
i Kkj

+tr(K)Kij − Γ k
r iΓ

r
k j + 2D r

ik D k
rj + 2D r

jk D k
ri

+Γ k
k rΓ

r
i j − (2D k

kr − Ar)(D
r

ij + D r
ji )

+Ai(Vj − 1
2D k

jk ) + Aj(Vi − 1
2D k

ik ) − nV kDkij ]

+n
4 αγij [−D rs

k Γ k
r s + D r

kr Dks
s − 2V kAk

+KrsKrs − (trK)2 + 2α2G00] , (3.43)

∂tVi + ∂k(−βkVi + Bk
i − B k

i ) = α[αG0
i + Ar(K

r
i − trKδr

i ) + Kr
s (D s

ir − 2D s
ri )

−Kr
i (D

s
rs − 2D s

sr )] + 2(B r
i − δr

i trB)Vr

+2(D s
ri − δs

i D
j
jr)B

r
s . (3.44)

We note that there is an error in [22], equation (13) which has an extra Aj(Vi− 1
2D k

ik ) term as compared

to equation (3.43) here, which destroys the symmetry in i and j.

The parameter n is set to be 1 for our purposes. This corresponds to adding the constraints (2.4) to

the equations (3.39-3.44) as compared to when n = 0. The advantage of this is that when we tend to

the Newtonian limit, small relativistic corrections are not masked by large Newtonian terms, which could

result in a loss of accuracy when evolving with numerical methods that introduce truncation errors [21].

The slicing condition Q is defined to be

Q = trK = Ki
i (3.45)

for our purposes, giving the harmonic slicing condition, although an extra factor dependent on the lapse

α can be introduced. Also, for convenience, and following [22], we have written

sij =
1

α
(Bij + Bji) , (3.46)

where the indices of B j
i have been lowered using the three-metric, even though it is not a tensor.

For later use, we will show how the space-time variables can be transformed between coordinate

systems. This is not entirely trivial, as some of the quantities are not tensorial in nature. If we wish
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to transform between the 3-coordinate systems xi and ri, with unprimed quantities in the xi basis, and

primed quantities in the ri basis, then we can proceed as follows:

The general form of the transformation for a tensor Ci...k
m...p is given by

C ′a...c
d...f =

∂ri

∂xa
· · · ∂rk

∂xc

∂xm

∂rd
· · · ∂xp

∂rf
Ci...k

m...p , (3.47)

and this applies to the tensors γij ,Kij , β
i, Ai, and Vi. Although it is not obvious that Vi is a tensor, this

can be shown by deriving its transformation law from that of Dijk and finding that it is as would be

expected for a tensor.

The transformations for the non-tensors are easily derived, and take the forms are:

D′
kij =

∂xr

∂rk

∂xp

∂ri

∂xq

∂rj
Drpq +

1

2

∂2xp

∂rk∂ri

∂xq

∂rj
gpq +

1

2

∂2xp

∂rk∂rj

∂xq

∂ri
gpq

and B′ j
i =

∂rj

∂xk

∂xp

∂ri
B k

p +
1

2

∂xp

∂ri

∂2rj

∂xp∂xk
βk .

(3.48)

We use these transformations when moving between a computational grid, usually expressed as a unit

cube [0, 1]3, and physical coordinate space. The first derivatives of the coordinate transformations in

both directions are provided by Overture in this case, and we can calculate the second derivatives as

required by using second order finite-differencing from the first derivatives.

We note that the constraints (2.4) can be calculated from these variables since the covariant derivative

∇i can be found using Dkij to calculate the Christoffel symbols, and the Ricci scalar (1.6) can be found

as in [22]

(3)R = −2∂kV k + D rs
k Γ k

r s − D r
kr Dks

s . (3.49)

3.6 Fluid validation tests

In this section we describe some tests which we use to validate the fluid evolution parts of the code.

They are all carried out in flat (Minkowski) space-time.

3.6.1 One-dimensional Riemann problems

A Riemann problem is one for which the initial data is given by two constant states:

u =















uL if x < x0 ,

uR if x > x0 .

(3.50)

For many systems of equations of interest to fluid dynamicists, it is possible to solve such a problem

for any (physically valid) states on the left and right sides. For example, the complete solution to the
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Figure 3.1: Exact solution for the mild shock Riemann problem given by equation (3.51) at time t = 0.4.

The solution is composed of a rarefaction, a contact discontinuity, and a shock.

Riemann problem for the non-relativistic Euler equations can be found in Toro [109]. The approach found

therein can then be extended (albeit with some difficulty) to other systems of equations.

An exact solution to the Riemann problem for the one-dimensional special relativistic hydrodynamical

equations exists (see [84]), and so numerical evolutions can be compared to this.

The test-cases we use are taken from Del Zanna and Bucciantini [117], so that a comparison can be

made with their numerical results, which were obtained using a Convex ENO reconstruction and the HLL

Riemann solver.

The three test-cases all use an ideal fluid with adiabatic index Γ = 5/3 and are performed on a domain

of x ∈
[

− 1
2 , 1

2

]

. In order to generate the exact solutions, we use the code riemann.f from the Living

Review by Mart́ı and Müller [74].

Mildly Relativistic Shock

The initial conditions for this test are

(ρ, v, p) =















(10, 0, 13.3) if x < 1
2 ,

(1, 0, 0) if x > 1
2 .

(3.51)

It is fairly easy to obtain good results for this simple test, as it contains no extreme velocities or densities.

It is evolved to a time t = 0.4. The exact solution for all variables is shown in Figure 3.1.
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Figure 3.2: Exact solution for the blast-wave Riemann problem given by equation (3.52) at time t = 0.4.

The solution is composed of a rarefaction, a contact discontinuity, and a shock. The maximum velocity

is v ≈ 0.96040961, corresponding to a Lorentz factor of W ≈ 3.59.

Strongly Relativistic Blast-Wave

The initial data for this problem is given by

(ρ, v, p) =















(1, 0, 1000) if x < 1
2 ,

(1, 0, 0.01) if x > 1
2 .

(3.52)

This is a more difficult test-case to evolve, as the solution contains a narrow peak of high density, which

is hard to capture with a low resolution, and also contains velocities which approach c = 1. This too is

evolved to a time t = 0.4. The exact solution for all variables is shown in Figure 3.2.

Perturbed Density Test

The initial data for this problem is given by

(ρ, v, p) =















(5, 0, 50) if x < 1
2 ,

(2 + 0.3 sin(50x), 0, 5) if x > 1
2 .

(3.53)

This is not a Riemann problem but provides a good indicator of how well a numerical method can

capture extrema. There is no analytic solution to this, and instead we use a converged numerical solution,

generated at high-resolution. This test is evolved to t = 0.35, since Del Zanna and Bucciantini’s results
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Figure 3.3: Converged solution to the density perturbation test given in equation (3.53) at time t = 0.35,

where only the density ρ is shown. The three peaks are particularly hard for a numerical method to capture

accurately.

are consistent with this, not t = 0.4 as stated in their main text. The converged solution, evolved using

the SLIC 1 scheme with van Leer limiter (see §4.2), and 20 000 cells, is shown in Figure 3.3. We believe

this to be sufficiently converged as the solution with 20 000 cells is visually indistinguishable from that

with 10 000 cells.

3.6.2 Two-dimensional Riemann problem

We can also test the multi-dimensionalisation of our schemes in a simple two-dimensional test, which

is essentially four separate Riemann problems interacting with each other. Due to the two-dimensional

nature of the setup, there is no exact solution to this problem, but we can compare our results to those of

other authors such as Del Zanna and Bucciantini [117]. The problem is defined on a region [0, 1] × [0, 1]

and is evolved to a time t = 0.4.

(ρ, vx, vy, p) =















































(0.5, 0, 0, 1) if x < 1
2 and y < 1

2 ,

(0.1, 0, 0.99, 1) if x > 1
2 and y < 1

2 ,

(0.1, 0.99, 0, 1) if x < 1
2 and y > 1

2 ,

(0.1, 0, 0, 0.01) if x > 1
2 and y > 1

2 .

(3.54)

This setup is symmetric about the line x = y, so that the evolved solution should maintain this symmetry.
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3.7 Propagating Gauge Pulse

The propagating gauge pulse metric is taken from [97] and is given by

γij = diag(eb, 1, 1), α = eb/2, Kxx = 1
2 b,x eb/2,Dxxx = 1

2 b,x eb, and Ax = 1
2b,x . (3.55)

All other metric variables are zero, and b = sin(π(x − t)).

A simple variation of this is given by introducing a constant shift so that

γij = diag(eb, 1, 1), α = eb/2, Kxx = 1
2 b,x eb/2,Dxxx = 1

2 b,x eb, Ax =
1

2
b,x , and βx = 1 . (3.56)

All other metric variables are zero, and now b = sin(πx), i.e. we have a static metric.

3.8 Apples with Apples tests

Here we define some of the Apples with Apples tests [11], referred to in §2.4, that we will use to

validate our metric evolution. The tests are generally characterised by a parameter ρ, which defines the

resolution of the test grid so as to allow for convergence testing. As this will be relevant for two of the

tests, we note that double precision arithmetic has a machine epsilon of ǫ = 2.2 × 10−16, where ǫ is the

smallest positive number such that 1 + ǫ > 1 in double precision arithmetic.

3.8.1 Robustness test

The first test that can be performed is that of robustness. Einstein’s equations are highly non-linear

and, even if they perform well on data that satisfies the constraints (2.4), they may cause departures

from the constraints to grow without limit, obliterating the required solution. These original departures

may be simply due to finite numerical accuracy.

We therefore evolve Minkowski space, with perturbations of order ǫ, where 1 + ǫ2 = 1 in double

precision arithmetic, taking ǫ = 10−10. We add to each space-time variable (i.e. those given in §3.5) a

uniformly distributed value in the range [−10−10/ρ, 10−10/ρ]. The grid has limits

[

−1

2
,
1

2

]

× [−1/(20ρ), 1/(20ρ)] × [−1/(20ρ), 1/(20ρ)] , (3.57)

with five grid cells in the y and z directions, and 50ρ cells in the x direction, so that the grid cells are

cubic. The time-stepping constraint is chosen to be ∆t = 1/(100ρ), corresponding to a CFL condition of

c = 1/2.

The constraints will not be satisfied initially, as we do not insist, for example, that Dxxx = 1
2γxx,x,

but allow each variable to vary independently of the others. However, this is close to what might be

encountered due to numerical noise in a realistic evolution.
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3.8.2 Linearized wave test

This test is that of a small amplitude (linearized) gravitational wave propagating around a periodic

domain. For once, limited computational accuracy works in our favour, in that if A = 10−8, and A is

stored in double precision, then 1 + A2 = 1, as required for a linearized solution.

The initial conditions for the non-zero variables are given by

γxx = 1, γyy = 1 + b, γzz = 1 − b, α = 1, Kyy = 1
2b,t, Kzz = − 1

2b,t ,

Dxyy = 1
2b,x, and Dxzz = − 1

2b,x ,
(3.58)

where

b = A sin(2π(x − t)) , (3.59)

and the simulation parameters are given by

Domain : x ∈
[

− 1
2 ,+ 1

2

]

, y = 0, z = 0 ,

Grid : xi = − 1
2 + (n − 1

2∆x), n = 1 . . . 50ρ, ∆x = 1/(50ρ), ρ ∈ [1, 2, 4]

Timestep : ∆t = ∆x/4 = 1/(200ρ)

(3.60)

The system should be evolved up to time T = 1000. We note that the specified time-step is a quarter

of the maximum possible given by the stability criterion. The space-time is linearized about Minkowski

space, giving the speed of light to be 1 up to an error of order 10−8, so that the stability limit is given by

∆t = ∆x. For the methods we will be using, we should not be surprised if we see very diffusive results

indeed as a result of the many extra time-steps used, with their associated truncation error.

3.8.3 Gowdy wave

We use the backwards evolution of the Gowdy Wave, with harmonic slicing. The initial conditions

for this test case are given by

γxx = t−1/2eλ/2, γyy = teP , γzz = te−P , α = t−1/4eλ/4

Kxx = 1
4 t−1/4eλ/4(t−1 − λ,t) , Kyy = − 1

2 t1/4e−λ/4eP (1 + tP,t),

Kzz = − 1
2 t1/4e−λ/4e−P (1 − tP,t),

where P = J0(2πt) cos(2πx),

λ = −2πt J0(2πt)J1(2πt) cos2(2πx) + 2π2t2
[

J2
0 (2πt) + J2

1 (2πt)
]

−
1
2

{

(2π)2
[

J2
0 (2π) + J2

1 (2π)
]

− 2πJ0(2π)J1(2π)
}

(3.61)

where J0 and J1 are Bessel functions. We note that we took the code for computing the Bessel functions

and their derivatives from the Cactus code [5] (translated into C).
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Following [44], we re-parameterize the time coordinate as

t = F (τ) = kecτ ,

where c ≈ 0.0021195119214617 and k ≈ 9.6707698127638 ,
(3.62)

and we use an initial time τ0 = t0 ≈ 9.8753205829098.

The problem should be run on a one-dimensional grid x ∈ [−0.5,+0.5], ∆x = 1/(50ρ) , ∆t = ∆x/4,

where ρ = 1, 2, 4. We evolve this problem up to a time of t = 1000 if that is possible before the code

crashes due to large numerical error.

3.9 Black Hole metrics

Since our intention is to use overlapping grids to excise singularities, we shall need some appropriate

space-times. These will be those containing one or more black holes. It is well-known that, in the absence

of electromagnetic fields, a black hole can be specified uniquely by its mass and spin. However, the

resulting space-time can still be written in several coordinate systems. We have used Maple
TM

to find the

necessary metric derivatives for the coordinate systems, and then to generate C code from the resulting

expressions. This reduces the likelihood of coding errors when calculating the metrics.

3.9.1 Kerr-Schild coordinates

The most general black hole we will consider here is the Kerr black hole, with spin, but no charge.

The mass of the black hole is M and its dimensionless spin parameter is a where |a| < 1. The metric can

be expressed in Cartesian coordinates as follows [63, 77]:

gµν = ηµν − 2V lµlν ,

α =
1√

1 − 2V
, βi =

2V

1 − 2V
li , γij = δij − 2V lilj ,

Kij = α(−li V,j − lj V,i − V li,j − V lj,i + 2V 2 (li lm lj,m + lj lm li,m) + 2V li lj lm V,m) ,

where V = − MR3

R4 + M2a2z2
, li = li =

(

− Rx + aMy

R2 + M2a2
,− Ry − aMx

R2 + M2a2
,− z

R

)

,

and R2 =
1

2

(

‖x‖2 − M2a2 +
√

(‖x‖2 − M2a2)2 + 4M2a2z2
)

,

(3.63)

and this is the form that we use.

There is a more standard form of the metric, in Kerr-Schild spherical coordinates, defined by (see

Boyer and Lindquist [24])

x = (r cos φ − a sin φ) sin θ ≡
√

r2 + a2 sin θ cos
(

φ − tan−1 a

r

)

,

y = (r sinφ + a cos φ) sin θ ≡
√

r2 + a2 sin θ sin
(

φ − tan−1 a

r

)

,

z = r cos θ ,

(3.64)
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where the 3 + 1 split of the metric now takes the form

γrr = 1 +
2Mr

R2
, γrφ = −Ma sin2 θ

(

1 +
2Mr

R2

)

, γθθ = R2 ,

γφφ =

(

r2 + M2a2 +
2M3ra2

R2
sin2 θ

)

sin2 θ ,

α2 =
1

1 + 2Mr/R2
, βr =

2Mr

R2
α2 ,

(3.65)

The space-time has an outer horizon at r = r+ and an inner horizon at r = r−, where

r± = M(1 ±
√

1 − a2) . (3.66)

3.9.2 Boyer-Lindquist coordinates

Another way of writing the same space-time is in Boyer-Lindquist spherical coordinates, where

x =
√

r2 + a2 sin θ cos φ ,

y =
√

r2 + a2 sin θ sin φ ,

z = r cos θ ,

(3.67)

which differ from Kerr-Schild spherical coordinates only in the φ coordinate when a 6= 0. In these

coordinates, the metric becomes (again, see Boyer and Lindquist [24] and Kelly [63])

γrr =
R2

∆
, γθθ = R2 , γφφ =

Ω

R2
sin2 θ , α2 =

∆R2

Ω
, βφ = −2aMr

Ω
,

where ∆ = r2 + a2 − 2Mr , and Ω = R2(r2 + a2) + 2M3a2r sin2 θ .

(3.68)

This form of the metric has coordinate singularities where ∆ = 0, corresponding to the outer and inner

horizons. The metric therefore does not extend continuously to inside the event horizon of the black

hole, in the same way as the Schwarzschild coordinates, which are a specialisation of the Boyer-Lindquist

coordinates for a = 0.

3.9.3 Transformation between Kerr-Schild and Boyer-Lindquist systems

We shall also need to transform velocity vectors between the Kerr-Schild and Boyer-Lindquist coor-

dinate systems. The transformations between Cartesian and spherical coordinate systems are achieved

via the Jacobians

hi
j =

∂ri

∂xj
and (h−1) j

i =
∂xj

∂ri
, (3.69)

where ri are the spherical coordinates (given by (3.64) or (3.67)) and xj are the Cartesian coordinates.

One-tensors are then transformed from the Cartesian basis to the spherical basis by

vi
sph = hi

jv
j
Cart , and wsph

i = (h−1) j
i wCart

j , (3.70)
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and from the spherical basis to the Cartesian basis by

vi
Cart = (h−1) i

j vj
sph , and wCart

j = hi
jw

sph
i . (3.71)

The transformation between Kerr-Schild and Boyer-Lindquist spherical coordinates outside the outer

event horizon is then given by Font, Ibáñez, and Papadopoulos [42] as follows:

vr
BL = Ψ

(

vr
KS − βr

KS

αKS

)

vθ
BL = Ψvθ

KS

vφ
BL = Ψ

(

vφ
KS − Ma

∆
vr
KS

)

− Ψ

(

βφ
KS

αKS
− Ma

∆

βr
KS

αKS

)

+
βφ

BL

αBL
,

where Ψ =
WKS

WBL
=

(

αBL

αKS
− 2Mr

∆
αBL

(

vr
KS − βr

KS

αKS

))−1

.

(3.72)

where the subscripts KS and BL refer to variables expressed in Kerr-Schild and Boyer-Lindquist spherical

coordinates, respectively, and where vi
KS, vi

BL are the components of the Eulerian velocity, related to the

proper velocity by (3.10). Note that Ψ here is the reciprocal of that defined in [42]; however, the

expressions given here are correct.

3.9.4 Binary black holes

No analytic space-time metric encoding a complete time-evolution of two general Kerr black holes

has yet been found (indeed, determining such evolutions is a major aim of NR). We therefore require

an initial metric which resembles such a setup for widely separated Kerr black holes. One solution is to

impose two superposed Kerr solutions of the form given in (3.63). However, we would then need to solve

the constraints numerically, and we have not included such a solver as part of our algorithm, although

we note that Overture does have the ability to solve elliptic equations on general overlapping grids.

Instead, we use Brill-Lindquist initial data, which encapsulates two (non-spinning) black holes with

arbitrary masses m1 and m2, at positions x1 and x2. The metric is then given by [61]:

ds2 = −
(

1 − ψ/8

1 + φ/2

)2

dt2 + (1 + φ/8)4 (dx2 + dy2 + dz2) ,

where φ = 8

(

α1

r1
+

α2

r2

)

, ψ = 8

(

β1

r1
+

β2

r2

)

,

α1 = −1

4
(2r12 + m2 − m1) +

r12

4

√

4 +
4

r12
(m1 + m2) +

(

m1 − m2

r12

)2

,

α2 = −1

4
(2r12 + m1 − m2) +

r12

4

√

4 +
4

r12
(m1 + m2) +

(

m1 − m2

r12

)2

,

β1 = α1
r12 + α1 − α2

r12 + α1 + α2
, β2 = α2

r12 + α2 − α1

r12 + α1 + α2
,

r12 = ‖x1 − x2‖ , r1 = ‖x − x1‖ , r2 = ‖x − x2‖ .

(3.73)
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The extrinsic curvature Kij is zero, as is the shift vector βi. When evolved, this initial data gives rise to

a head-on collision of two black holes.

3.9.5 Apparent Horizon of a black hole

We also define the apparent horizon of a black hole to be the outer boundary of the union of all

trapped surfaces, which are smooth closed 2-surfaces such that future-pointing outgoing null geodesics

have negative expansion

Θ = ∇is
i + Kijs

isj − trK < 0 , (3.74)

where si is the outward pointing unit 3-vector normal to the surface [107].

The important properties of the apparent horizon are that it is defined locally on a hypersurface,

i.e. without reference to the gauge, and that it is inside or coincident with the event horizon of a black-

hole [107]. The more familiar event horizon, in contrast, is defined in terms of whether or not any

future-pointing null-geodesic can reach spatial infinity. Its location requires knowledge of the entire

space-time and thus cannot be calculated when we are already trying to calculate the full space-time.

We can therefore use the location of an apparent horizon as a surface from the inside of which we can

safely assume that no physical information can emerge. In the case of stationary black-holes, such as we

use in this thesis, the event horizon is coincident with the apparent horizon.
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Chapter 4

Numerical Methods

In this chapter we describe in detail the numerical schemes we have included in our algorithm. Most

of the material herein is based on established numerical methods widely used in computational fluid

dynamics. Suitable references for a more in-depth guide to these methods are the books of Laney [67],

LeVeque [69], and Toro [109].

Some methods described in this chapter, particularly the MUSTA approach, are less well-known, and

we include references to specific papers where appropriate. Further, the analysis of the MUSTA approach

and the generalisation of the SLIC scheme to a curvi-linear grid and to a non-flat metric are our own.

4.1 Choice of numerical methods

The primary aim of this thesis is to develop a numerical algorithm to evolve a space-time metric and

a fluid with reasonable accuracy and in a computationally efficient manner. We therefore detail here the

reasoning which led to the choices of numerical methods presented in this section.

4.1.1 Evolution schemes

Firstly, the overall methodology for the evolution must be determined. Our main choice here is

between finite-difference and finite-volume methods. We could also consider spectral methods, which are

often used for the evolution of the metric (see [30]), but these are certainly not suitable for the evolution

of a fluid, as they require functions to be smooth.

Finite-difference schemes approximate derivatives of variables using an approach such as the approx-

imation
∂u

∂x
≈ u(x + ∆x) − u(x − ∆x)

2∆x
, (4.1)

which is second-order accurate in ∆x if u is a smooth function of x.
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Although this can easily be extended to higher orders of accuracy, there is the problem that derivatives

are undefined at discontinuities, so that the approximation (4.1) cannot converge to ∂u/∂x as ∆x → 0.

This can be overcome by the construction of conservative and shock-capturing finite-difference schemes,

such as the conservative finite-difference WENO schemes presented by Xing and Shu [114], but we do

not use these approaches here.

Since we wish to evolve fluids, which can develop shocks even from an initially smooth flow, basic

finite-difference methods without conservative or shock-capturing corrections are not appropriate for use

here. However, the space-time metric is known to be at least twice differentiable (two derivatives are

required for the definition of the Einstein tensor), and so it may be possible to use finite-difference

methods for this. In fact, we use finite-difference methods as a comparison with other works in testing

the metric evolution. However, the most that we can say about gµν is that it has a second derivative.

That this derivative is not necessarily continuous is clear from the fact that Gµν , a combination of second

derivatives of gµν , is set equal to 8πTµν , which contains the fluid variables. Since the fluid variables may

be discontinuous, the second derivatives of gµν may also be discontinuous, so that the first derivatives,

which include variables that we are evolving, will then have obvious kinks in them, and so not be suitable

for evolution with finite-difference schemes.

Finite-volume methods, on the other hand, are based on the concept of a conserved quantity, averaged

over a given volume, which is updated using the notion of the flux of that quantity through the surface

of the volume. The archetypal conservation law is

∂u

∂t
+

∂Fi(u)

∂xi
= 0 , (4.2)

which we can rewrite in its integrated (weak) form

∫

udxi +

∫

Fi(u) dt = 0 , (4.3)

or, in a form more suited to relativity:

∫

V

∇µF
µdV =

∫

∂V

FµdSµ = 0 , (4.4)

where Fµ = (u, Fi), and V is a space-time volume. Equation (4.4) best exemplifies the conservation law,

but the form (4.3) is more usually seen in CFD literature.

In the case of a fluid, where mass and momentum are conserved, this is easily imagined in terms of

the mass-flux through the surface of a region; the only way for mass to pass from inside the region to

outside is to go through the boundary. This is more evident in the four-dimensional conservation law

(4.4). With the integrated form (4.3) there is no difficulty if a variable is discontinuous somewhere in that

volume. The form (4.2) is seen more often, but is of course undefined for discontinuous fluid variables.
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Stable finite-volume methods tend to be somewhat harder to design and implement for high orders

of accuracy than finite-difference methods. In this work, therefore, we restrict ourselves to second-order

methods, and seek to improve the overall accuracy of a scheme within that constraint without using to

a higher-order approach. We note that, even allowing for this approach, we can still achieve levels of

accuracy similar to those of higher-order schemes such as those used by Del Zanna and Bucciantini [117].

In many systems of equations, the zero right-hand side in (4.2) is replaced by so-called source-terms.

These can be seen both in the Bona-Massó equations (3.39)-(3.44) and the GRHD equations (3.5). In

both these cases, the sources depend only on the solution variables themselves. However, in general, the

sources may depend on derivatives of the variables as well, and this is the case for the BSSN formulation

of Einstein’s equations [18]. The way in which the evolution of the source terms is calculated and coupled

with the flux terms is discussed in §4.4.

4.1.2 Grid Structure

In order to evolve a space-time that includes a black hole, one approach is to excise the singularity so

as to avoid having to evolve the space-time or fluid in regions of large, tending to infinite, curvature, which

could cause numerical overflows or slow evolution due to the maximum stable time-step being reduced

dramatically by small grid cells. Many current codes, such as those described in §2.3, are restricted to

Cartesian grids, and therefore need to use Lego R© excision as demonstrated in Figure 4.1. However, this

leads to a jagged excision edge which could cause problems in implementing stable boundary conditions.

Note that if we wanted to use a cubic excision region, its size would be severely constrained as noted in

the Introduction and Appendix of [26], to the extent that it is not possible to use such an excision for

high-spin Kerr black holes. Further discussion on the location of the excision boundary can be found in

the work of Szilágyi et al. [103].

The excision will be done inside the apparent horizon of any black hole present so that, physically

speaking, no information, including any about instabilities, should be capable of leaving the black hole’s

event horizon. However, numerical instabilities need not be constrained by physical properties of the

system, and so there is no guarantee that any instabilities would not affect the space-time outside the

horizon.

In fact, as previously discussed in §2.2.1, the speed of propagation of the gauge is not constrained by

physical considerations. Errors in computing the gauge as a result of excision could therefore propagate

outside the event horizon. Particular care therefore has to be taken when evolving the metric to ensure

that the excision boundary conditions do not affect the solution.

There is also the issue of whether, having excised a region inside the apparent horizon, the problem

remains well-posed in the discrete sense, since we have introduced a non-physical boundary, on which

52



Figure 4.1: Excising a circle in a Cartesian domain by means of Lego R© excision.

boundary conditions must be specified. Work on this topic has been performed by Kreiss and collaborators

([65] and [66]). However, since in this thesis we only use excision when evolving fluid and not the metric,

these issues will not concern us further.

It would therefore seem prudent to use a spherical grid for the evolution of a fluid in a black hole space-

time. This improves on Cartesian grids in two ways. Firstly, it allows for a smooth excision boundary at

some radius inside the apparent horizon of the black hole, which is far easier to deal with from a numerical

point of view, and also from an implementation point of view as a Lego R© excision boundary requires

some extra logic to alter the numerical method used on the excision boundary. Secondly, a spherical

coordinate system only requires the number of grid cells to be increased by a factor of two for a doubling

in the outer radius of the domain.

Spherical coordinates do have drawbacks, however. Near to the poles, the grid cells become very small

in their longitudinal dimension, and this leads to requiring very small time-steps in order to keep the

simulation stable, so that a large amount of computational time is required. Further, there is also the

problem of the coordinate singularity along the axis. This requires a substantial amount of analytical

work to overcome, in order to regularise Einstein’s equations for solution on a spherical coordinate system.

The work of Rinne [89] contains details of such a regularisation.

The issue of prohibitively small grid cells can be avoided by using two or more grids to cover dif-

ferent segments of the domain, so that no one grid contains a singularity. The issue of the coordinate

system singularity can also be overcome by using different coordinate systems on the different patches,

as demonstrated by Thornburg [106].
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However, this requires us to interpolate the evolving solution between the grids. There are two possible

approaches to performing this interpolation. The first is to allow the various grids merely to touch. This,

however, is not suitable for non-smooth solutions, such as we expect to find in fluids. Having grids that

touch means that, at the grid boundaries, only information from one side, i.e. inside the grid, is available.

When we need to evolve a solution here, we cannot expect that a one-sided numerical scheme as might

be used in the finite-difference approach would be suitable since, if a discontinuity approached a grid

boundary, a one-sided reconstruction would not allow the grid onto which the discontinuity was passing

to know about the incoming discontinuity. Some way is therefore needed to have information from both

sides of a boundary available to the numerical scheme at once, so that a suitable reconstruction can be

made, even for non-smooth solutions.

We therefore use the second approach, which is to allow the grids to overlap, and then grid cells on

the boundary of one grid can interpolate from cells inside the evolved domain of the other grid. We

would, however, need to ensure that the interpolation be robust and not lead to numerical oscillations or

unphysical instabilities.

We note that making this generalisation will allow for the use of completely general overlapping sets

of grids. An example would be the use of a global spherical set of coordinates (constructed out of two or

more grids to avoid singularities), and another local spherical set of grids, so as to excise the singularities

of two black holes (see §8.6). Other approaches to the same problem require either Lego R© excision or

carefully constructed domains.

We believe that the advantages of using overlapping grids are greater than the problems caused by

having to implement methods capable of evolving on the general grids. Several of these problems are

obviated by using a system such as Overture that implements all the interpolation between different

grids, for a completely general grid structure. Overture is also capable of generating grids for AMR (see

§4.9), which is an extra advantage.

4.1.3 Mesh Adaptation

Second-order finite-volume schemes are so-called because they are second-order on smooth solutions.

However, near to discontinuities, they reduce to first-order convergence in order not to introduce nu-

merical instabilities nearby, in accordance with Godunov’s theorem (see §4.2.1). It is therefore the case

that finite-volume schemes are at their least accurate near discontinuities, the very features we wish to

capture. Ideally, we should like to be able to run the simulation at a sufficiently high resolution that the

discontinuities would be captured reasonably well. However, our computational resources are finite, so

it would seem to be worthwhile to seek to increase resolution only at shocks, so that smooth parts of

the solution are evolved at a low resolution, and shocks are evolved at a higher resolution. We would
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therefore require that the regions of high resolution follow the shocks dynamically. Such an approach

was invented by Berger and Oliger [19], and is known as Adaptive Mesh Refinement, or AMR. We have

included this in our algorithm. More details are given in §4.9.

4.2 Finite Volume Schemes

Finite Volume (FV) schemes are applied to PDEs written in the form

∂u

∂t
+

∂

∂x(1)
f1(u) + · · · + ∂

∂x(n)
fn(u) = S(u) , (4.5)

where u = u(x, t) is a set of variables to be evolved, the fluxes fi are functions of u only, with the same

dimension, and u(x, 0) = u0(x) forms the initial conditions. The source terms S usually arise from either

chemical reactions or geometrical effects not contained within the physical grid structure, and do not

depend on derivatives of u.

Clearly, (4.5) is undefined when the solution has discontinuities, and therefore we use the integral

form of the equation when expressed over the region [x − 1
2∆x, x + 1

2∆x] × [t, t + ∆t] for some ∆x

and ∆t. We only outline the FV approach for one space dimension; the extension to more dimensions is

straightforward. From now on in this section, subscripts i refer to discretisation in space, and superscripts

n refer to discretisation in time. We obtain

∆x (u n+1
i − u n

i ) + ∆t (f̂n
i+ 1

2

− f̂n
i− 1

2

) = 0 , (4.6)

where

u n
i =

1

∆x

∫ xi+
1

2
∆x

xi− 1

2
∆x

u(x′, tn) dx′ and f̂n
i =

1

∆t

∫ t+∆t

t

f(xi, t
′) dt′ (4.7)

are averages over the cell-volume and period covered by a time-step, respectively. The name “finite-

volume” arises from the fact that we take integrals over the cells and hence that we evolve the value

averaged over each cell volume.

We obtain a stable time-step ∆t from the Courant-Friedrich-Lewy (CFL) condition

∆t ≤ cCFL
∆x

Smax
, (4.8)

where Smax is the fastest wave speed over the whole domain and cCFL is the CFL or Courant number.

Note that it is not necessarily true that Smax ≤ 1, as Smax includes the effects of information about the

gauge, which may travel faster than the speed of light. The CFL number is usually required to satisfy

0 ≤ cCFL ≤ 1 for stability, although the upper bound may vary, depending on the precise scheme used.

Having an upper bound of one is the most intuitive, however, as it corresponds to the situation where

information may propagate by precisely one cell in one time-step, and this satisfies the notion that the
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(a) Non-conservative shock capturing (b) Conservative shock capturing

Figure 4.2: Illustrations of computed solutions to shocks. The lines represent the exact solution, and the

circles represent the computed solution.

physical domain of dependence must lie within the numerical domain of dependence if we are to obtain

a consistent evolution. As information usually only travels by one cell per time step, very few stable

schemes have an upper bound greater than one, but many have an upper bound somewhat below one.

All FV schemes follow the same basic evolution step, derived from (4.6):

u n+1
i = u n

i +
∆t

∆x

(

f̂n
i− 1

2

− f̂n
i+ 1

2

)

. (4.9)

This states that the change in the amount of u contained in cell i increases by an amount equal to the

time-step ∆t multiplied by the rate at which u enters through cell-face i − 1/2 minus the rate at which

it leaves through cell-face i + 1/2.

The difference between various FV schemes comes when we consider how to approximate the fluxes

f̂n
i+ 1

2

between the cells.

The evolution equation (4.9) makes one of the important properties of FV schemes immediately clear;

regardless of the approximation used to obtain f̂n
i+ 1

2

, it is always the case that the quantity
∑

i u is

conserved if we ignore the effect of boundary conditions. In the case of a fluid, where it is vital that mass,

momentum, and energy are conserved, this is an important property, and is one of the main reasons for

FV schemes being widely used in computational fluid dynamics.

A corollary of the fact that FV schemes conserve the integral of quantities is that they capture shock-

speeds accurately. This is not the case, in general, for other types of numerical scheme. Figure 4.2 shows

two possible ways of capturing a shock wave. The right-hand solution, although it smears the shock to the

same extent as the left-hand, is considered to be better since the smear is centred on the exact solution.

It is clear that the integral of the numerical solution on the left-hand side is not the same as that of the

exact solution, and so this cannot be the result of a conservative scheme. A finite-volume scheme, on the

other hand, being conservative, will always capture a shock in the manner of the right-hand figure.

If insufficient care is taken in calculating the flux approximations, then it is possible to generate

unphysical oscillations in the solution, often in the vicinity of discontinuities. These tend to increase

in size exponentially in time, and come to dominate the solution as high frequency modes increase in

amplitude.
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Some care is taken, therefore, to seek numerical methods that are Total Variation Diminishing (TVD).

Total Variation (TV) is calculated for a discrete solution as

TV(u) =
∑

i

|ui − ui+1| . (4.10)

This calculates the sum of the height differences between adjacent peaks and troughs in the solution. If

we have a scheme which obeys

TV(un) ≥ TV(un+1) ∀ n , (4.11)

then it is said to be TVD, and clearly no extra oscillations can be generated. It can be shown that the

exact solutions to convex scalar conservation laws obey this restriction, so that TVD schemes are seen to

be relevant to the problem in question. This is not necessarily the case for systems of equations, however,

but experience has shown that schemes that are TVD for scalar equations tend to perform well, and not

usually effect oscillations, for systems of equations.

The usual approach to considering how best to approximate the flux across a cell boundary is to

consider the Riemann problem (see (3.50)) formed by the reconstructed solution on both sides of the

boundary. This reconstruction can be to any order, although higher order schemes are more computa-

tionally intensive.

From now on, we shall omit the line and hat indicating the cell and time averages, and simply refer

to un
i and fn

i+ 1

2

.

A subset of finite volume schemes is the set of High-Resolution Shock-Capturing (HRSC) schemes.

These are capable of capturing shocks with very little smearing, even at low resolution, and are of at

least second-order accuracy.

4.2.1 FORCE and SLIC schemes

One of the most basic FV schemes is FORCE (First ORder CEntred). It can be applied to any set of

PDEs of the form (4.5) (omitting source terms) with little effort. The flux approximation is calculated

as follows:

fFORCE
i+ 1

2

(un
i ,un

i+1) = 1
2 f

LW
i+ 1

2

+ 1
4

[

fn
i + fn

i+1

]

+
1

4

∆x

∆t
(un

i − un
i+1) ,

where fn
i = f(un

i ) , fLW
i+ 1

2

= f
(

u
n+ 1

2

i+ 1

2

)

, and u
n+ 1

2

i+ 1

2

= 1
2 (un

i + un
i+1) +

1

2

∆t

∆x
(fn

i − fn
i+1) .

(4.12)

This is first-order accurate, and is a centred scheme, meaning that it does not have a (solution dependent)

bias to information from either the left or the right. As will become relevant later, FORCE is the

simple average of two other numerical schemes: the Lax-Wendroff scheme, being the term fLW
i+ 1

2

, and

the Lax-Friedrichs scheme, being the remaining terms up to a factor of 1
2 . The Lax-Wendroff scheme
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is second-order but, in accordance with Godunov’s theorem1, causes oscillations near shocks, and the

Lax-Friedrichs scheme is first-order, but very diffusive. It turns out that the FORCE scheme is the least

diffusive non-oscillatory first-order scheme that is not dependent on local solution information.

The FORCE scheme is based on the piecewise constant reconstruction of the solution, i.e. the left

and right states of the Riemann problem are taken directly from the solution vectors un
i and un

i+1. One

improvement to this, known as the SLIC scheme (Slope-LImited Centred), is to use cells i − 1 and i + 2

to make a piecewise linear reconstruction of the solution at time n + 1
2 to provide initial states for the

Riemann problem. However, we must take care that, in reconstructing the solution, we do not introduce

any new extrema into the solution. We first reconstruct the slope of the solution, using data from either

side of the current cell:

∆−
i = un

i − un
i−1 , ∆+

i = un
i+1 − un

i , ∆i = 1
2 (∆−

i + ∆+
i ) , (4.13)

and then change the slope ∆i by multiplying each component by a factor dependent on the local solution

behaviour:

∆∗
i = ∆i · ξ(∆−

i ,∆+
i ) , (4.14)

where

ξ(∆−
i ,∆+

i ) ≡ ξ

(

∆−
i

∆+
i

)

≡ ξ(r) . (4.15)

The preceding two equations are applied to each individual component of ∆i, ∆+
i , and ∆−

i to form a

limited slope ∆∗
i .

The SLIC flux is then calculated as

un
i,L = un

i − 1
2∆

∗
i , un

i,R = un
i + 1

2∆
∗
i , (4.16)

u
n+ 1

2

i,L = un
i,L +

∆t

2∆x

(

f(un
i,L) − f(un

i,R)
)

, (4.17)

u
n+ 1

2

i,R = un
i,R +

∆t

2∆x

(

f(un
i,L) − f(un

i,R)
)

, (4.18)

fi+ 1

2

= fFORCE
i+ 1

2

(

u
n+ 1

2

i,R ,u
n+ 1

2

i+1,L

)

. (4.19)

where we use u
n+ 1

2

i,R and u
n+ 1

2

i+1,L as the left and right states for the FORCE flux.

There are many options for the slope-limiter ξ, even allowing for the constraint that the overall

numerical scheme must be TVD. The constraints on ξ(r) can be shown to be ([109] p505, setting ω = 0):

ξ(r) = 0 for r ≤ 0 , and 0 ≤ ξ(r) ≤ min{ξL(r), ξR(r)} for r > 0 , (4.20)

1Godunov’s theorem states that “linear monotonicity preserving methods are first-order accurate, at best”, where the

TVD property implies monotonicity preservation. This statement of the theorem comes from Laney [67] p277, as the

original theorem is in Russian [50].
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where

ξL(r) =
4r

(1 + cCFL)(1 + r)
, and ξR(r) =

4r

(1 − cCFL)(1 + r)
, (4.21)

with cCFL being the Courant number.

We see that r in (4.15) is a measure of the change in slope in the solution around cell i. It is negative

if i lies at an extremum of the solution, as one of ∆+
i and ∆−

i will be positive and the other negative,

and this is the reason that we require ξ(r) = 0 for r < 0 as any non-constant reconstruction would result

in an overshoot or undershoot of the extremum.

The slope-limiters that we will use in this thesis are:

ξsuper-bee(r) =















































0 if r ≤ 0 ,

2r if 0 < r ≤ 1
2 ,

1 if 1
2 < r ≤ 1 ,

min
(

r, 2, 2
1+r

)

if r > 1 ,

ξvan Leer(r) =















0 if r ≤ 0 ,

min
(

2r
1+r , 2

1+r

)

if r > 0 ,

ξmin-bee(r) =































0 if r ≤ 0 ,

r if 0 < r ≤ 1 ,

min(1, 2
1+r ) if r > 1 .

(4.22)

These have been arranged in order from least diffusive to most diffusive. For a scalar conservation law

such as linear advection, all of these are guaranteed to be TVD. However, there is no such guarantee for

other systems of equations, and in general we use the van Leer limiter as the super-bee limiter can in

extreme circumstances cause overshoots.

4.2.2 Multi-Staging approach (MUSTA)

When considering a numerical scheme, there are two types of accuracy that need to be considered.

Firstly, the order of accuracy, which determines the rate at which the numerical solution tends to the

exact solution with increasing resolution. Secondly, the overall accuracy, which is the actual difference

between the exact and computed solution. The point to note is that it is possible to increase the overall

accuracy of a method without increasing its order of accuracy.

In order to improve on the accuracy of SLIC, we would usually consider Riemann solvers, which

use information about the wave types making up the solution to calculate the flux. These tend to be

computationally intensive, often requiring iterative or matrix methods to determine the state at the cell
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x/t = 0

i − 1
2 i + 1

2 i + 3
2

Figure 4.3: How to multi-stage a simple numerical scheme (e.g. FORCE). The Riemann problem is

solved for several time steps using the simple scheme on the two-cell domain, with transmissive boundary

conditions as shown by the empty arrows. The solid lines show the wave structure of the solution. As the

number of stages increases, the waves move away from the centre, so that the flux at the centre tends to

the correct limit, which is represented by the filled arrow at the top. This figure corresponds to calculating

the FORCE 3 scheme, if FORCE is used as the underlying simple scheme.

face. In order to increase the order of accuracy, we could use a higher-order reconstruction than the linear

one that SLIC uses. Again, this would require more computational expense.

However, Toro [110] has suggested a simple way of improving the accuracy of any numerical scheme,

which can produce improved accuracy for less computational effort than would be required if the accuracy

were to be attained by increasing resolution. This is called MUSTA, which stands for MUlti-STAging

and can be understood as follows:

The FORCE flux provides a simple way of estimating the flux between two cells, given a Riemann

problem. However, if we were to evolve a Riemann problem for a few time steps, the exact flux between

the two cells would remain constant due to the similarity of the solution in x/t, and the values of the

solution immediately to either side of the initial discontinuity would become closer. The FORCE flux

can provide a better estimate of the correct flux given two close states than two separated states, and so

its approximation of the central flux would be improved. Therefore, the MUSTA approach is to evolve

the Riemann problem on a two cell grid, with transmissive boundary conditions, for a few time steps,

or stages, and to take the central flux at the last stage as the estimate for the final flux. This can be

represented as in Figure 4.3. In terms of an evolution algorithm, multi-staged FORCE can be written as

the iterative scheme

fFORCEk

i+ 1

2

= fFORCE
i+ 1

2

(

uk−1
L , uk−1

R

)

, (4.23)

uk
L = uk−1

L − ∆t

∆x

(

fFORCEk

i+ 1

2

− f(uk−1
L )

)

, (4.24)
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uk
R = uk−1

R − ∆t

∆x

(

f(uk−1
R ) − fFORCEk

i+ 1

2

)

, (4.25)

where u0
L = uL and u0

R = uR give the initial conditions.

The best improvements in accuracy for least computational expense are likely to be found when

multi-staging is applied to as simple a scheme as possible. Therefore, in order to improve the accuracy

of SLIC, we do not multi-stage SLIC itself, but rather multi-stage the FORCE scheme on which SLIC is

based. We write the multi-staged FORCE scheme as FORCEk, where k is the number of stages, so that

FORCE1 ≡ FORCE. This notation is as in [110] but differs from that in [112].

Although the preceding explanation seems plausible enough, we can examine the theoretical effect of

MUSTA for the linear advection equation. As mentioned in §4.2.1, the FORCE scheme can be expressed

as

fFORCE
i+ 1

2

= ωfLW
i+ 1

2

+ (1 − ω)fLF
i+ 1

2

with ω = 1
2 . (4.26)

The local CFL number cL is derived from the local wave speed ai+ 1

2

and global time step ∆t as

cL =
∆t

∆x
ai+ 1

2

. (4.27)

For linear advection, all numerical schemes with a centred stencil of width at most three can be written in

the form (4.26), and so we can plot the dependence of ω on cL for various schemes, as in Figure 4.4. For

the linear advection problem, other schemes can be plotted on the same diagram. The exact Riemann

solver (Godunov scheme) falls on the curved line shown. This splits the diagram into two parts. Above

the curve lie schemes that are oscillatory, and below it lie schemes that are non-oscillatory, but are more

diffusive than the ideal. The exact Riemann solver is the least diffusive non-oscillatory first-order method

for the linear advection equation. The FORCE scheme can therefore be seen to be the least diffusive

non-oscillatory first-order method not to depend on the local wave speed information given by cL.

Although the MUSTA approach does not depend explicitly on cL, it does depend on it implicitly,

through its dependence on the local data for the predictor step (4.23). This dependence can be calculated

in a straight-forward, but algebraically intensive manner, which we have done using Maple
TM

, and we

plot the results for FORCE n, n = 1, . . . , 5 in Figure 4.5. It is immediately clear that MUSTA may not

be a suitable evolution scheme at high CFL numbers, even for such a simple equation as linear advection,

as all of the schemes now protrude into the oscillatory region. Using very high numbers of stages shows

that FORCEk tends to the Lax-Wendroff scheme as k → ∞ (except for cCFL = 1 where ω = 1
2 for all k,

so that the convergence is not uniform).

However, some improvement can be made to this. If we replace ∆t by α∆t all the way through,

i.e. in equations (4.24),(4.25) and (4.12), keeping α the same throughout a multi-staging calculation,

then using the values of α in Table 4.1, we find the situation in Figure 4.6. Here we see that there is no

protrusion into the oscillatory region, and that we have reduced the diffusivity of the FORCE scheme.
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cL

ω

Lax−Friedrichs

FORCE

Lax−Wendroff

Godunov

Figure 4.4: Four basic schemes for evolving the linear advection equation, displayed in terms of the local

CFL number cL, which affects the weighting used to construct the method from the Lax-Friedrichs and

Lax-Wendroff schemes.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

cL

ω

Lax−Wendroff

FORCE2

FORCE1

Lax−Friedrichs

Godunov

Figure 4.5: Same as Figure 4.4, with additional multi-staged versions of FORCE k where k = 1, . . . , 5

and k increases up the page (labels for k = 3, 4, 5 are omitted for reasons of clarity).

However, increasing the number of stages beyond two is of little use. The values for α were calculated

using Maple
TM

, the condition being that the curves should lie below the Godunov curve for all values of
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0.55
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0.65

cL

ω

Godunov
FORCE2

FORCE1

Figure 4.6: Same as Figure 4.5, except that ∆t in (4.24) and (4.25) has been scaled by a factor α to

maintain the monotonicity of the scheme overall. Note the expanded ω scale as compared to the other

two figures.

stages α

1 not applicable

2 1
2

3 1 − 1√
2

4 1 − 1
3
√

2

5 1 − 1
4
√

2

Table 4.1: Values of α that make a multi-staged FORCE scheme stable for the linear-advection problem

when replacing ∆t by α∆t.

cCFL. We have not been able to prove the apparent relation that α = 1 − 21−k in general.

4.2.3 GFORCE flux

The impetus for the development of MUSTA was the fact that even for the simplest of all conserva-

tion laws, the linear advection equation, the FORCE method was not equivalent to the exact Godunov

Riemann solver, and the approach was to improve the accuracy of a scheme, without requiring local wave

speed information. However, we have seen that the MUSTA approach is not ideal as it leads to oscillatory

methods, even for linear advection.

Toro and Titarev presented a solution to this in the same paper as their MUSTA approach [112]. In

this, we calculate the generalised FORCE flux (GFORCE) as a weighted average of the Lax-Friedrichs
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and Lax-Wendroff fluxes, now dependent on local wave speed information:

fGFORCE
i+ 1

2

=
1

1 + cL

(

fLW
i+ 1

2

+ cL fLF
i+ 1

2

)

(4.28)

where cL is the local CFL number, derived from the local wave speed ai+ 1

2

and global time step ∆t as

cL =
∆t

∆x
ai+ 1

2

. (4.29)

With these definitions, GFORCE replicates the Godunov upwind scheme for the linear-advection case.

This suggests that the GFORCE flux could well provide improved accuracy, beyond that of MUSTA, for

more complex systems of equations. The wave speed calculation is carried out in the local computational

grid coordinates so that the wave speeds are aligned with the grid, and the wave-speeds we use for GRHD

are those given in equation (3.8).

As the GFORCE scheme already coincides with the Godunov scheme for the linear advection equation,

applying the MUSTA approach makes no difference in this case, simply maintaining the Godunov scheme.

However, this is not the case for more complicated systems of equations, and we shall see that multi-

staging GFORCE provides some increase in accuracy.

4.2.4 HLL flux

The GFORCE flux, being equivalent to the Godunov exact Riemann solver in this case, is the most

accurate non-oscillatory first-order scheme for the linear advection equation. However, more complex

systems of equations have more complex solutions to their Riemann problems. It is possible, in many

cases, to derive an exact Riemann solver for a system of equations. However, this will usually involve

either calculating a matrix inverse or using an iterative method to find the flux. This tends to be

computationally expensive, and is therefore often avoided unless the pay-off of computational time versus

accuracy is worth it.

However, an approximate Riemann solver, applicable to any system of equations, was suggested by

Harten, Lax, and van Leer [56], known as the HLL flux. The rationale is that if all the waves in the

solution are moving in one direction only, then the flux is taken wholly from information on one side or

the other, and an appropriately weighted average is taken otherwise:

fHLL
i+ 1

2

=



























f(ui) if 0 < aL ,

aR f(ui) − aL f(ui+1) + aL aR(ui+1 − ui)

aR − aL
if aL < 0 < aR ,

f(ui+1) if aR < 0 .

(4.30)

This is only dependent on the local wave speeds aL and aR. These can be calculated from the fluid

variables as suggested by Schneider et al. [96]

aL = min

(

0,
v − cs

1 − v cs

)

, aR = max

(

v + cs

1 + v cs
, 0

)

, (4.31)
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where v and cs are the arithmetic means of the initial velocities and sound speeds in cells i and i + 1.

The wave speeds in (4.31) are the special relativistic simplification of those given in (3.8). For the

general relativistic case, we use the speeds from (3.8) based on averaging the metric components as well

as the fluid variables. Indeed, the HLL flux for metric variables and fluid variables can be calculated

separately as the fluid wave speed is always less than the metric wave speed, and we use this property

in order to find the appropriate fluxes for both the metric and the fluid, even when evolving both at

the same time. In the case of a curvi-linear grid, we note that we have to transform the variables into

the computational grid’s local coordinate system in order to find the wave speed parallel to the grid

coordinate direction. We elaborate on this in §4.6.

4.2.5 Recommendations for the MUSTA approach

In summary, therefore, the multi-staging approach at first sight appears to produce a straightforward

and cheap way of improving the accuracy of a simple flux approximation scheme. However, some inves-

tigation shows that applying it to the FORCE scheme alone is not a viable approach as this results in

oscillatory schemes even for linear advection. An improvement on this appears to be to apply it to the

GFORCE scheme, where no oscillatory schemes emerge for linear advection. The same applies to the

HLL scheme.

However, we have not been able to extend our analysis to more complex systems of equations, and

therefore our recommendations are as follows: use of FORCEk may be advantageous, but any improve-

ments are likely to be at part due to a failure of the TVD property of the scheme. The use of GFORCEk

or HLLk does not, as yet, have any evidence of causing the loss of the TVD property, although, given

the analysis for FORCE, we suggest caution as to whether this result can be applied to more complex

systems of equations.

In any event, we may tend to be saved by the inherent diffusivity of higher-order schemes when

applied to complex systems of equations, so that an increase in multi-staging may in fact do what it was

designed to do without causing unstable schemes. We attach a caveat emptor here, therefore, to any use

of multi-staging, but suggest that it may be useful if used with care, and with only a few extra stages,

perhaps around three or so. We present some numerical results and comparisons in Chapter 5.

4.3 Finite Difference Schemes

The majority of NR codes use finite differencing methods to evolve their space-time variables. As we

intend to make comparisons between our finite-volume methods and other current NR codes, we present

here the finite difference scheme we will use.
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We use the Iterated Crank-Nicolson method, an iterative, explicit version of the implicit Crank-

Nicolson method. Given a numerical solution ui, we calculate the lth iteration as follows:

(l−1)u
n+ 1

2

i =
1

2

(

(l−1)un+1
i + un

i

)

, (4.32)

(l)un+1
i − un

i

∆t
= −

(

f
(

(l−1)u
n+ 1

2

i+1

)

− f
(

(l−1)u
n+ 1

2

i−1

)

2∆x

)

, (4.33)

using the starting condition (0)un
i = un

i .

The solution for the next time-step is then given by un+1
i = (l)un+1

i . In terms of the number of

iterations that are necessary, it is possible to perform von Neumann stability analysis in the case of the

linear advection equation (see Teukolsky [105]). The result of this is that we should use three iterations,

corresponding to l = 3, and no more. We have a slight difference of notation here to make the form

of (4.32)-(4.33) more compact, which accounts for the fact that [105] suggests two iterations, rather

than the three we use here. Also, the extra minus sign on the right-hand side of (4.33) as compared to

equation (11) in [105] comes from the fact that Teukolsky has the x-derivative on the right-hand side of

the advection equation. The schemes are in fact equivalent.

4.4 Source Terms and Splitting

So far we have only considered the left-hand side of equation (4.5). The right-hand side of the

equations are known as source terms, and often arise as the result of chemical reactions. In GRHD, they

arise from geometry due to the fact that we are evolving on a non-flat three dimensional hypersurface

embedded in a four-dimensional manifold.

We evolve the source terms using one of the following methods:

• Euler method

un+1
i = un

i + ∆t · S (un
i ) (4.34)

• Runge-Kutta 2nd order (RK2)

u
n+ 1

2

i = un
i +

∆t

2
· S (un

i )

un+1
i = un

i + ∆t · S
(

u
n+ 1

2

i

)

(4.35)
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• Runge-Kutta 4th order (RK4)

k1 = S(ui
n)

k2 = S
(

un
i + ∆t

2 k1

)

k3 = S
(

un
i + ∆t

2 k2

)

k4 = S (un
i + ∆tk3)

un+1
i = un

i + ∆t
6 (k1 + 2k2 + 2k3 + k4) .

(4.36)

The Euler method is first-order accurate, the RK2 scheme is second-order accurate, and the RK4 scheme

is fourth-order accurate. However, in order to retain second-order accurate evolution overall, when

combined with the evolution of the flux terms, we need to take care.

The need for this arises from the fact that if we approximate the evolution over one time-step as the

evolution of two separate PDEs:

∂u

∂t
+

∂f i

∂xi
= 0 , and

∂u

∂t
= S(u) , (4.37)

and combine them as

E(∆t) = S(∆t)T (∆t) , (4.38)

where S evolves the source terms and T evolves the flux terms, and they are applied individually, from

right to left, then the full evolution operator E is then only first-order in time. However, if we use the

Strang splitting

E (∆t) = S
(

1
2∆t

)

T (∆t) S
(

1
2∆t

)

, (4.39)

then E is second order in time if both T and S are. We could split the T operator instead of the S

operator, but we generally need to evolve T by a full timestep to attain as much accuracy as possible

and, in any case, T tends to be by far the more computationally expensive operator.

4.4.1 Combining the source evolution with the flux

A disadvantage of the above approach is that it may not be entirely consistent. The operators S and

T have been constructed on the assumption that they will act on an exact solution of the system. If we

consider the hypersurface of exact solutions of the system, we wish the numerical evolution to keep us

on or close to this manifold, and we know that evolving the full system of equations exactly would do

this. However, applying the operators S and T individually does not necessarily keep us on the manifold.

In particular, applying a half-step of operator S and then a full step of operator T would not appear to

leave us in a suitable position to apply operator S again. It would appear to be preferable to apply S to

the result of a half-step of S and a half-step of T which, while it is not likely to leave us exactly on the
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solution hypersurface, is at least similar to evolving the system for time ∆t/2, for which we might expect

to remain close to the hypersurface, and hence that applying S might be valid.

The approach that we have developed, therefore, is as follows, beginning with state un :

1. Apply the source term operator using RK4 for time ∆t/2 to obtain state u
n+

1
2S

2. Calculate the fluxes for time ∆t for the state u
n+

1
2S , and add a half of them to that state to obtain

state u
n+

1
2 (Note that this will not, in general, give the same fluxes as finding the fluxes for time

∆t/2, but since the fluxes are the most computationally expensive part of the algorithm, we try

not to have to calculate them any more than necessary.)

3. Calculate the sources for time ∆t/2 for state u
n+

1
2 using RK4.

4. Add the full fluxes (i.e. for time ∆t) from step (2) and the sources from step (3) to u
n+

1
2S to obtain

the final state un+1.

The way in which this differs from the usual Strang splitting is the way in which only half the fluxes are

added before calculating the second set of sources.

4.4.2 Simpson’s Rule correction

Another improvement that can be made is to remember that, although we often calculate the source

term as a point value, it is in fact an integral over the whole cell. We can therefore improve the accuracy

of the source term by applying Simpson’s Rule, which is that [88]

∫ x+
1
2∆x

x−1
2∆x

f(x) dx ≈ 1

6
∆x ( f(x − 1

2∆x) + 4f(x) + f(x + 1
2∆x) ) +

1

2880
(∆x)4〈f (4)〉 ,

where 〈f (4)〉 is an average of f (4) over [x − 1
2∆x, x + 1

2∆x]

(4.40)

for a smooth function f in one dimension, and is easily extended to multi-dimensions by multiple appli-

cations of the one-dimensional case.

We can include the effects of the Jacobian for non-uniform grids (see §4.6 for an explanation of terms

used), multiplying each source term by the Jacobians averaged in the same way as the evolution variables,

before dividing by the correct combination of Jacobians. In the one-dimensional case, for example, we

take

Si =
Ji− 1

2

S
(

ui− 1

2

)

+ 4Ji S (ui) + Ji+ 1

2

S
(

ui+ 1

2

)

Ji− 1

2

+ 4Ji + Ji+ 1

2

. (4.41)

Usually, the values of ui−1/2 for the cell faces are approximated by taking the simple average 1
2 (ui−1 + ui).
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4.4.3 Flux-Source balancing

Yet another improvement that can be made, at least in one dimension, is to attempt some form of

flux-source balancing. A problem often arises when a solution close to a steady state is sought, but where

the fluxes and sources are relatively large as compared to the perturbation from steady state. As the

fluxes and sources are not calculated in the same manner as each other, the terms do not cancel exactly,

and the loss of cancellation can swamp the effect sought. Much work has been done on certain sets of

equations, particularly the shallow water equations [60], deriving numerical methods that allow the terms

to cancel to round-off error.

For GRHD, such an analysis would take a large amount of work due to the highly non-linear nature

of the problem. However, if we have a static solution u(x) of the equation

∂u(x)

∂t
+

∂f(u(x))

∂x
= s(u(x)) , (4.42)

then (writing f(x) for f(u(x)) and s(x) for s(u(x)) as a convenient shorthand):

1

∆x
(f(x + 1

2∆x) − f(x − 1
2 ∆x))

=
1

∆x

(

(f(x) + 1
2 ∆xf ′(x) + 1

8 ∆x2f ′′(x) + 1
48 ∆x3f ′′′(x))

−(f(x) − 1
2f ′(x) + 1

8 ∆x2f ′′(x) − 1
48 f ′′′(x)) + O(∆x4)

)

= f ′(x) + 1
24 ∆x2f ′′′(x) + O(∆x3)

= s(x) + 1
24 ∆x2s′′(x) + O(∆x3), assuming u to be an exact solution

= s(x) + 1
6 (s(x + 1

2 ∆x) + s(x − 1
2 ∆x) − 2s(x)) + O(∆x3) .

(4.43)

Unfortunately, it is not possible to extend this approach to more than one dimension, as the resulting

mixed derivatives of the fluxes cannot be simplified by assuming the solution to be exact.

4.5 Multi-dimensions

All the finite-volume schemes presented so far are for one dimension alone. There is a simple way to

apply FV schemes to more than one dimension, namely, to apply the 1D operator to each dimension in

turn:

T (∆t) = Tx(∆t)Ty(∆t)Tz(∆t), (4.44)

and we permute the order of the operators with each timestep to avoid letting asymmetric effects creep

in, although the symmetry in the axes is only maintained after two steps in the 2D case, and after three

steps in the 3D case and then only if the time-step is fixed. However, this simple scheme results in a

decrease in stability. In order for this to be stable, we have to take cCFL ≤ 1
2 in the 2D case, and cCFL ≤ 1

3

in the 3D case.
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It is possible to avoid this by using a somewhat more complex approach to multi-dimensionalising the

scheme, such as that developed by Toro and Hu [111]. In this scheme, the flux in the x direction can be

found as

F SLIC
x,∆t

(

FFORCE
y,∆t/2

)

(4.45)

in two dimensions and as

F SLIC
x,∆t

(

FFORCE
y,∆t/2

(

FFORCE
z,∆t/2

))

(4.46)

in three dimensions.

In other words, we do not calculate the x flux directly from the data at the beginning of the time step,

but from data that has been advanced by half a time-step in each of the other coordinate directions by

a first-order scheme. The fluxes for the other coordinate directions are calculated in an equivalent way.

In three dimensions, it is best to keep the cyclic order of the axes fixed for symmetry.

Although this requires more flux evaluations per time-step overall, the advantage is two-fold: firstly,

it is completely symmetric in all the coordinate directions after each time-step, and secondly, there is an

improved CFL stability condition.

With regard to the latter point, Toro and Hu claim that the scheme has a stability limit of cCFL ≤ 1

for two dimensions, and cCFL ≤ 1
2 for three dimensions. However, this claim is based only on the linear-

advection scheme, using von Neumann analysis. Simulations that we have done suggest that this result is

valid even for more complex systems of equations. As a result, we can use cCFL = 0.95 in 2D evolutions,

which means that we introduce as little diffusion as possible.

However, Toro and Hu do not appear to have looked at the stability of the centred scheme in three

dimensions, although they have used the obvious extension of their approach in constructing a multi-

dimensional WAF scheme [20] and investigated the stability of that scheme.

We have examined a simplified version of equations (4.45) and (4.46) by replacing the SLIC scheme

with FORCE or GFORCE. We have shown, using Maple
TM

to perform a numerical sampling of frequency

space in a von Neumann approach, that for the linear advection equation in three dimensions, the scheme

has stability region max(cx, cy, cz) ≤ 1 as we might hope.

4.6 Curvi-linear grids

If we wish to evolve PDEs in coordinate systems other than Cartesian, we have two choices. We

can either transform the PDEs themselves, i.e. transform (3.4)-(3.5) or (3.39)-(3.44) and the correspond-

ing variables from Cartesian coordinates into general coordinates, or we can transform the Cartesian

fluxes into the general coordinate system, while leaving the variables defined everywhere in Cartesian

coordinates.
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Since we need to interpolate between grids with different coordinate systems, and Overture performs

the interpolation itself, without doing any coordinate transformations, it is easiest to have all the variables

in Cartesian coordinates. We write Cartesian coordinates as xi and the coordinate system of the grid as

ri. We assume that there exists a smooth mapping between these, and that the coordinate system of the

grid is rectangular, which is the case in Overture. This means that we transform the flux equations as

follows
∂u

∂t
+

∂f i(u)

∂xi
= 0 7→ ∂Ju

∂t
+

∂

∂ri

(

J
∂ri

∂xj
f j(u)

)

= 0 , (4.47)

where J is the Jacobian of the transformation:

J =

∣

∣

∣

∣

[

∂xi

∂rj

]∣

∣

∣

∣

, (4.48)

although an extra term needs to be added when discretising this, as shown in §4.6.3.

The standard finite-volume methods can then be applied to the transformed equations. However, we

have to look carefully at the transformed equations, and consider how they behave if, for example, we

attempt to evolve a static fluid on a curvilinear background, where we would hope to keep the fluid static,

regardless of the grid.

The slope-limiting step (4.14) will potentially limit the piecewise linear solution, where the cell volume

is the only non-constant quantity. Further, since the quantities u
n+ 1

2

i,L , u
n+ 1

2

i,R are meant to be evaluated at

the cell faces, rather than the cell centres, we have to make a further adjustment. We replace (4.13)-(4.18)

by

∆−
i = Ji ·

(

un
i

Ji
− un

i−1

Ji−1

)

, ∆+
i = Ji ·

(

un
i+1

Ji+1
− un

i

Ji

)

, ∆i =
1

2

(

∆−
i + ∆+

i

)

,

un
i,L =

Ji− 1

2

Ji

(

un
i − 1

2
∆i

)

, un
i,R =

Ji+ 1

2

Ji

(

un
i +

1

2
∆i

)

,

u
n+ 1

2

i,L = un
i,L +

∆t

2∆x

(

f(un
i,L) −

Ji− 1

2

Ji+ 1

2

f(un
i,R)

)

,

u
n+ 1

2

i,R = un
i,R +

∆t

2∆x

(

Ji+ 1

2

Ji− 1

2

f(un
i,L) − f(un

i,R)

)

,

(4.49)

where Ji is the Jacobian of cell i, and Ji+ 1

2

= 1
2 (Ji + Ji+1). We also take care to evaluate the fluxes,

which require J and ∂ri/∂xj for their calculation, at the correct part of the cell, be it cell-centre or

cell-face. We use a simple average of cell-centred Jacobians to find the Jacobian as required on cell-

faces. The derivatives ∂ri/∂xj , however, are averaged differently since, in one dimension, we know that

J−1 = ∂r/∂x, and so we want to ensure that

J |
i+

1
2

∂rj

∂xj

∣

∣

∣

∣

i+
1
2

= 1 ∀ j , (4.50)

where there is no sum over j.

71



One way to ensure that this is always true is to average the derivatives of the inverse coordinate

mapping using the harmonic mean

D
i+

1
2

=
2

D−1
i + D−1

i+1

, (4.51)

where

Di =

[

∂rl

∂xm

]∣

∣

∣

∣

x=xi

. (4.52)

Even in the case of multi-dimensions, we never need to calculate the fluxes across more than one cell-face

at a time, so the above averaging is only ever done in one computational grid direction at a time.

4.6.1 HLL scheme

In order to calculate the HLL flux in curvi-linear coordinates, we first transform the Cartesian compo-

nents into the local grid coordinate basis. The wave speeds are then calculated for the required coordinate

direction from the transformed variables. As for SLIC, we calculate the fluxes in the local grid coordinate

direction, multiplied by the local Jacobian. In order to achieve second order convergence, we adjust the

HLL flux to read:

f HLL
i+ 1

2

=































f(ui) if 0 < aL ,

aR Ji+ 1

2

f(ui) − aL Ji+ 1

2

f(ui+1) + aL aR(Ji+ 1

2

ui+1 − Ji+ 1

2

ui)

aR − aL
if aL < 0 < aR ,

f(ui+1) if aR < 0 ,

(4.53)

where the fluxes are calculated parallel to the local grid coordinate i. We note that the local CFL number

required for the calculation of GFORCE is also derived from the wave speeds calculated along the local

grid coordinate directions.

4.6.2 Determination of time step

On Cartesian grids, the maximum time-step that retains stability is given by equation (4.8). On

curvi-linear grids, we determine the time-step on a cell-by-cell basis, where the cell size is matched to the

data in that cell. The alternative, taking the minimum cell size and the maximum wave speed over the

whole grid, can lead to time steps that are more restrictive than necessary. Further, when we wish to

calculate the wave-speeds, we in fact transform the numerical solution into the local grid basis so that

the exact wave speeds along the coordinate directions can be found, as these may not be aligned with

Cartesian directions, which could lead to an underestimate of the local wavespeed.

However, a drawback of using curvi-linear grids is that the cells are not of similar size everywhere.

Even with the above method of calculating the time-step, this still leads to an effectively lower CFL

number for evolution on larger grid cells, as the time-step has been restricted by the stability condition

72



on smaller grid cells. Therefore a shock can become somewhat smeared on a coarser area of the grid only

because of finer resolution elsewhere.

We reduce the effect of this problem by using as accurate a scheme as possible, namely GFORCE or

HLL, and also by using AMR (see §4.9) appropriately.

4.6.3 Free-streaming correction

The obvious way to discretise the transformed fluxes is given in (4.47) as this leaves the new system

of equations in the same form as the Cartesian form, and is therefore easy to implement in a pre-existing

code. Although valid in the continuous case, (4.47) is not valid when discretised since

∂Ju

∂t
+ J

∂f i(u)

∂xi
= 0

⇒ ∂Ju

∂t
+ J

∂rj

∂xi

∂f i(u)

∂rj
= 0

⇒ ∂Ju

∂t
+

∂

∂ri

(

J
∂ri

∂xj
f j(u)

)

− ∂

∂ri

(

J
∂ri

∂xj

)

f j(u) = 0 .

(4.54)

The additional term as compared to (4.47) is analytically zero for a continuous mapping. However, it

will not necessarily be so when discretised, and therefore needs to be considered when implementing a

numerical algorithm, since we wish to maintain exact conservation on a discrete grid.

This extra term is composed of an evaluation of f on a cell-centred value of u, multiplied by a

geometric term. This geometric term must be calculated in a certain way, dependent on the precise

numerical method used, so that, for a constant state u, the geometric terms will cancel exactly (at least

up to round-off error).

The process of determining the appropriate term is fairly straightforward in practice. If we start

with a fluid with constant density, velocity, and pressure (on the Minkowski metric for the time being),

then it is possible to work through the SLIC algorithm by hand, ensuring that the states un
k,∗ and u

n+ 1

2

k,∗

are again this constant state, regardless of the geometry or the slope-limiter used. This is what has

been done in order to construct the form of (4.49). The outcome is that the flux for each cell face is

composed of the product of a flux, derived from the given constant state, and a geometry term of the

form Jk+1/2
∂ri

∂xj

∣

∣

∣

k+1/2
. Since the final flux for a given coordinate direction ri is then simply a difference

of these, the term that cancels these is

(

J
k+

1
2

∂ri

∂xj

∣

∣

∣

∣

k+
1
2

− J
k−1

2

∂ri

∂xj

∣

∣

∣

∣

k−1
2

)

F(uk ) , (4.55)

where the values of the Jacobian and coordinate derivatives have to be calculated in exactly the same

way as in the main SLIC algorithm.

This simple additional term improves evolutions on curvi-linear grids greatly, keeping a constant state
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fluid static up to round-off error (of the order of 10−17 for double precision) on even the most distorted

grids.

4.7 Adjustments for a non-Minkowski metric

So far we have not made any mention of how we deal with a non-flat metric. Since our eventual aim

is to evolve the metric with the fluid, we can only assume that we know the metric at the cell centres

(i.e. at the same points as the fluid), rather than using analytic values wherever they are needed. The

main issue is how we alter the SLIC scheme from §4.2.1 when it requires slope-reconstructed values to

be evaluated at cell faces. A careful and rigorous approach to this is presented by Rossmanith et al. [90].

However, as this approach is somewhat involved, and computationally expensive, we use the following

approach, which includes considerations for a curvi-linear coordinate system. This is a generalisation of

the SLIC method on flat space, given in (4.49), and explicitly uses slope-limiting on primitive variables,

rather than conserved variables. In the following we use p for the primitive fluid variables, u for the

conserved fluid variables, and g for the metric variables. We also use u(gi,pi) to define the conserved

variables u as a function of the primitive variables p and the metric g, where the subscript i refers to the

cell in which the quantities are calculated. The following is for the case where the metric is stationary,

and is not being evolved:

Define ∆−
i = pi − pi−1 , ∆+

i = pi+1 − pi , ∆i =
1

2
(∆+

i + ∆−
i ) , ξ = ξ(∆−

i ,∆+
i ) , (4.56)

then find slope-limited values

ui,L = u(gi , pi) −
1

2
ξ∆i , ui,R = u(gi , pi) +

1

2
ξ∆i , (4.57)

average the metric for cell-faces

gi− 1

2

=
1

2

(

gi +
Ji

Ji−1
gi−1

)

, gi+ 1

2

=
1

2

(

gi +
Ji

Ji+1
gi+1

)

, (4.58)

adjust the fluid variables for the cell-face metric

ui− 1

2
,L =

Ji− 1

2

Ji
u(gi− 1

2

,p(gi,ui,L)), ui+ 1

2
,R =

Ji+ 1

2

Ji
u(gi+ 1

2

,p(gi,ui,R)) , (4.59)

and then continue as in (4.49), replacing un
i,∗ by the un

i+ 1

2
,∗ found above. These calculations are somewhat

expensive since they involve several conversions between primitive and conserved variables. However, we

have found them to improve accuracy substantially, particularly for three-dimensional simulations.

The main improvement to the fluid evolution comes through the use of averaging the metric correctly

for the cell faces as above. Our reason for using the primitive variables on which to limit is due to the

fact that, on a curvilinear grid, the mixing that occurs between different components of the momentum
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can cause a flow in the x-direction to develop non-zero velocities in the y-direction. Removing the mixing

effect of the Lorentz factor on the momenta by limiting on primitive variables reduces this effect, but

does not remove it altogether.

Any further adjustments to the metric averaging process tend to be inconsistent with the free-

streaming correction given in §4.6.3. We have not found a way of combining a metric averaging with the

final free-streaming correction to correct the coordinate mixing errors completely, so as to maintain a

static fluid on a stationary metric.

We note that we only limit on the primitive variables when there is a non-flat metric involved.

Otherwise, we limit on the conserved variables.

4.8 Boundary conditions

In dealing with excised black holes, there are two types of boundary condition that must be considered:

inner (excision) boundary conditions, and outer (spatial infinity) boundary conditions.

4.8.1 Excision boundary conditions

In theory, boundary conditions should not be needed at an excision boundary, provided that it is

within the black hole’s apparent horizon, since no physical information can emerge from an apparent

horizon. However, most numerical methods do not obey this precisely, as a method may use cells further

inside the black hole in order to provide a local reconstruction of the solution. There are methods which

overcome this, for example, the causal differencing approach of Gundlach and Walker [54], but they tend

to be computationally expensive. Simpler methods can lead to satisfactory solutions if sufficient care is

taken with the boundary conditions.

When the metric is evolved, its values are extrapolated to second order, i.e. linearly, into two ghost

cells outside the boundary. Metric variables tend to be smooth, and so no problems are caused by this.

Indeed, this is sufficient to maintain overall second-order accuracy.

If we are evolving the fluid, then we must restrict ourselves to a simple copying of the conserved

variables from just inside the grid onto the two ghost cells, multiplying by the ratio of the metric de-

terminants in the respective cells. Any higher-order extrapolation, unless checked carefully with extra

routines, could lead to negative densities or pressures, which would immediately cause the method to fail.

If we are evolving the fluid alone, we do not extrapolate the metric at all, but set it to its analytic

value. This is usually not necessary since the metric is set at the start of the simulation, but is sometimes

required for the boundaries of AMR grids (see §4.9) that are generated during the simulation and which

touch the excision boundary.
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4.8.2 Boundary conditions at spatial infinity

We should like to have our outer boundaries at spatial infinity. However, due to limited computational

resources, we must restrict ourselves to a finite domain. There do exist ways of capturing infinite space-

times on a finite grid, such as the use of a conformal mapping of the metric [4] but these require more

computational expense and more complex numerical algorithms.

Metric outer boundary conditions are again performed using linear extrapolation if necessary, although

exact metric values are used if we do not evolve the metric. In this thesis, this suffices, although if it is

wished to extract gravitational wave data from the outer boundaries, then especial care must be taken

not to generate spurious waves at the boundary.

The fluid boundary conditions depend on the problem we are trying to solve. In the case of wind

accretion (Chapter 7), the incoming fluid is defined using fixed Dirichlet boundary conditions, and the

boundary conditions where the fluid is outgoing are that the fluid is copied in conserved variables, where

no allowance is made for the change in metric as at the excision boundary, since we assume the metric

to be nearly flat there.

4.8.3 Reflective boundary conditions

Reflective boundary conditions, which we will need for some SRHD tests, are fairly straightforward.

As a first attempt, we apply even symmetry to the D and τ variables, setting values in the nth ghost cell

to be equal to those in the nth cell inside the boundary. The momentum variables S then use Overture’s

built in vectorSymmetry boundary condition, which ensures that n · S is an odd function across the

boundary, and t · S is an even function, where n is the normal to the boundary, and t is any vector

tangential to the boundary.

However, this is not completely robust. It is possible that a strong rarefaction may occur at a reflective

boundary, if fluid is moving away from it, creating a near vacuum, and this could lead to a negative density

if the numerical method is not TVD. To avoid this case, we calculate n ·S and if it is more negative than

a given parameter, then we set the ghost cell values for the momentum using even symmetry.

4.9 Mesh refinement

One problem often encountered in numerical computations is that of resolution. For example, in the

case of a fluid falling into a black hole, there is very little going on far from the black hole. However, the

fluid may develop very fine features near the black hole which would need to be resolved accurately. If a

sufficiently high resolution to resolve these were to be used over the whole domain, there would be a lot

of unnecessary computation far from the black hole, and the overall evolution would proceed very slowly.
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There are two approaches to mesh refinement, depending on whether it can be predicted in advance

where the most accuracy will be required.

Adaptive Mesh Refinement (AMR) uses a hierarchical set of grids, where one relatively coarse grid is

used to cover the complete domain, and levels of successively finer grids are used in regions where high

resolution is required. See Figure 4.7 for an example. The finer grids used are repositioned every few

timesteps, so that they adapt to the evolving solution. This decreases the amount of computation used in

regions of low activity and smooth solution, as we know that the numerical methods we use have a higher

order of accuracy on smooth solutions than near discontinuities. Further, since the grids can be evolved

independently of each other, apart from some interaction at the boundaries and when interpolating or

extrapolating, the computation can be efficiently parallelised, giving different grids to different processors

of a multi-processor computer, although Overture in fact splits individual grids over different processors

instead.

The most widely used approach for AMR was developed by Berger and Oliger [19], which refines in

both space and time, thus maintaining the effective CFL number of the finite volume schemes being used,

and therefore maintains accuracy by minimising diffusion.

In theory, using AMR with a certain effective resolution (the resolution of the finest grid) should give

the same results as evolving the entire system at that finest resolution. In practice this may not quite be

achieved, but it is possible to come very close to the ideal.

The second approach is Fixed Mesh Refinement (FMR), which is a special case of AMR where the

grid structure is not changed throughout the simulation. In this case, the grid structure can be carefully

specified beforehand, and then no overhead regarding grid generation need be incurred. However, since in

Overture we have sufficient routines to enable us to implement AMR, we do not consider this simplification

again.
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Level 0

Level 1

Level 2

Figure 4.7: Example AMR grid setup. The finer lines correspond to refined grids, with a refinement

ratio of two. Levels 0 and 2 consist of one rectangular grid each, and Level 1 consists of two separate

rectangular grids.

4.9.1 Grid creation

In order to be able to use AMR, we must create an appropriate grid structure. This is done as follows:

Error flagging

The first step is to flag points on the coarsest grid where we expect large numerical errors to occur.

One way of doing this is to evolve the coarse grid and an even coarser version of the grid forward by one

time-step and to compare the solutions. Where the solutions differ by more than a certain threshold, we

flag a grid point on the original coarse grid.

An alternative, which we follow here, is to create some criterion, based on the evolution variables and

their derivatives, which tends to pick out places where large errors in the numerical method are likely to

occur. For example, we could refine where the density gradient exceeds a certain threshold:

ρ−2 γij ρ,i ρ,j > ǫtol , (4.60)

which would tend to pick out regions where there are steep gradients in the fluid density. It has the

added advantage that it is scale invariant, i.e. if we double the density everywhere, then the refinement

occurs in exactly the same places.

Another possible refinement criterion is to consider the divergence of the momentum

γijSi,j < −ǫtol . (4.61)
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(a) Possible grid refinement with an ef-

ficiency of 0.28

(b) Possible grid refinement with an ef-

ficiency of 0.47

(c) Possible grid refinement with an ef-

ficiency of 0.73

Figure 4.8: Series of possible grid structures to refine a grid given the marked points as being flagged.

as suggested by Ruffert [93] since “in shocks matter is decelerated and thus a high negative value of the

divergence [of the velocity] appears.”

Once the initial flagging is complete, we extend the flagging regions slightly so as to include nearby

regions. This means that when a shock moves, it will still be inside the flagged region, thus retaining the

accuracy of the method.

Boxing flagged points

Once we have flagged points, we must create grids which contain them. This must be done with some

care; if we simply cover all the flagged points with a single grid, we are likely to cover too much space and

to waste computational resources. On the other hand, if we cover only points that have been flagged, we

run the risk of creating too many small grids with a lot of computational overhead. We therefore specify

an efficiency (we choose 0.7), which dictates the minimum proportion of each grid that should be filled

with flagged points. An example with various efficiencies is shown in Figure 4.8.

Once the grids have been decided upon, we also extend them by a few cells in all directions so that

the features we are seeking to refine upon do not immediately move outside the refined region. With this,

we can avoid redefining the refined grid structure every time-step and only redefine it every four steps,

for example.

Child grid creation

The grids are created as described above, with an appropriate refinement factor. This is often taken to

be a power of two, although this is not necessary, and any integer ratio is in fact permissible. However, we

use a refinement ratio of two throughout this work. Once the first set of grids has been created, we repeat
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the process on the new grid level to obtain another refined level, up to some user-defined maximum.

In this way, each refined level is entirely contained within the level one stage coarser than it. In some

implementations, it is further required that a refined grid must be contained entirely within a single grid

on the next coarser level, although this is not a necessary part of the AMR algorithm, and is not followed

by Overture itself, for example. We therefore have the concept of a hierarchical grid structure, which can

be coded efficiently within modern programming languages.

When we change the grid structure, we need to find solution data on the newly created grids. This is

done by interpolation or copying from the most refined data available. For example, if the grid structure

for the third refined level is changed, then the data for those grids can be obtained from data on the

second refined level and any solution data previously obtained on the third refinement level. This can

always be done due to the parent-child relationship described above.

With the exception of specifying and evaluating the refinement criterion, all the above grid creation

steps can be carried out by Overture.

4.9.2 Sub-cycling

Once the grid structure has been determined, we need to find a way of evolving the system consistently

so that it retains the accuracy of the other numerical methods used, and does not introduce any new

errors. We could simply evolve the grid using the time-step found from the finest grid. However, this will

give rise to more diffusive results than necessary on the coarsest grid.

We therefore use a scheme in which all grids are evolved with the time-stepping appropriate to their

resolution in a process called sub-cycling. This proceeds as follows for a grid with a single level of

refinement:

• Start with all grid levels at time t.

• Impose physical boundary conditions on Level 0

• Store the solution on Level 0 in a temporary array

• Advance the solution on Level 0 by one time-step ∆t

• Advance the solution on Level 1 by one time-step ∆t as follows:

– Impose physical boundary conditions on Level 1

– Advance the solution on Level 1 by a half time-step ∆t/2

– Interpolate non-physical boundary conditions on Level 1 grids from the two stored solutions

on Level 0 at times t and t + ∆t.
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– Impose physical boundary conditions on Level 1

– Advance the solution on Level 1 by a half time-step ∆t/2

• Project data on Level 1 back onto any relevant cells on Level 0.

• All levels now have the most accurate data available for time t + ∆t.

This can be easily extended to multiple levels of refinement. In practice, the sub-cycling algorithm is

implemented as a recursive procedure.

In order to maintain flux conservation of our scheme, we should apply a fix-up for the fluxes at cell-

faces on grid cells that border a refined grid. However, we have not found this loss of conservation to be

a problem, and we postpone applying this correction for future work.

4.9.3 Overlapping grids

With regard to overlapping grids and AMR, there is no increase in complexity once both are imple-

mented individually within Overture. AMR grids are defined as refinements of the main base grids of the

overlapping grid setup. We have to be somewhat careful as to when we interpolate between grids, and

not to mix data from different times. If, however, we only ever interpolate between grids on the same

refinement level at once (something Overture lets us do quite simply), then this is not a problem.

4.9.4 Refinement criterion

One other consideration that must be made is that of the refinement criterion. In CFD, this may be

related in some way to local truncation error, which requires the use of shadow grids to calculate. Also,

in CFD we usually only refine where shocks, or at least steep gradients, occur. In NR, it would also be

useful to refine in the presence of strong gravitational fields, which could nevertheless be smooth, since

we expect highly dynamic flows here.

When considering the refinement criterion, there is also the issue of coordinate system. If we refine a

spherically symmetric black hole then, even if it is represented in a Cartesian coordinate system, we would

wish that the refinement be spherically symmetric. In order to achieve this, our refinement criterion must

be a scalar comparison, i.e. independent of the coordinate system used. We use separate criteria for the

metric and the fluid, respectively:

(3)R = −2∂kV k + D rs
k Γ k

r s − D r
kr Dks

s > ǫtol ,

and
γij∂iρ∂jρ

ρ2
> ǫtol in three dimensions, or γijSi,j < −ǫtol in two dimensions.

(4.62)

We note that these are derived from 3-vectors in the space-like hypersurface, not from 4-vectors in the

full space-time, and are therefore not gauge independent.
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4.10 Overlapping grids

Having decided to use overlapping grids on which to evolve the fluid and the metric, it is necessary

to make a choice as to whether to have the variables on each grid defined in a coordinate system specific

to each grid, or to have all the variables defined in a global coordinate system.

The use of a local coordinate system could be advantageous on a single grid as we would define the

variables in the coordinate system of that grid, which could lead to simpler numerical methods which

would more easily satisfy conservation conditions. However, the interpolation between grids would require

the construction of a transformation between the two coordinate systems of the grids involved.

A global coordinate system removes the latter problem, but requires consideration of the issues pre-

sented in §4.6. Also, for some space-times, a global coordinate system may not exist. However, all the

metrics we use do have a global coordinate system, at least on the portion of the space-time we wish to

cover. For example, the Boyer-Lindquist coordinate system (see §3.9) does not have a global continuous

coordinate basis if we were to extend our grid inside the black hole, but we do not do this.

In our case, Overture has made the decision for us. Overture already performs the interpolation

between grids itself, and we would need to rewrite and specialise that part of the Overture software if we

wished to have some variables expressed in local coordinate systems. We have therefore decided to use a

global coordinate system, specifically, Cartesian for ease of implementation and use.

There are two main issues with regard to dealing with overlapping grids. The first is that of con-

structing the full grid structure. This is one of the tasks that Overture has been designed to perform

for even very complicated grids. Given a set of logically rectangular grids, along with mappings to the

physical grid coordinates, as well as boundary conditions, Overture can remove parts of grids that are

obscured by other grids and calculate which cells on which grids should be used to interpolate data onto

grid cells that are now near cut-out portions of the grid. In implementing our algorithm, we have treated

this very much as a black-box algorithm and, since the grids we use have been relatively simple, we have

not needed to investigate the algorithm in any detail.

Cells that are obscured by other grids are masked out, and it is possible to determine, within a code,

which these points are so that we can avoid expending any computational resources in evolving them.

Once we know which cell values will be interpolated from which other cell values on which grids, we

still need to decide what form the interpolation will take. If we have allowed an interpolation point to

interpolate from points on another grid that are themselves interpolation points, then we need to use an

implicit, matrix-based method to find the interpolated values. This tends to be fairly computationally

expensive, but does allow for relatively small grid overlap, which may be needed in complex grid setups

in order to get a valid interpolation scheme for the entire grid.

Alternatively, we can use explicit interpolation. Here, interpolation points only need to use values
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Figure 4.9: Overlapping grid generated by Overture. Interpolation points are marked.

from the interior of other grids. Each point can therefore be determined as an explicit function of a set of

values on the interpolee grid. Overture does this using Lagrange polynomials, and takes into account the

grid geometries involved. The main drawback of this is that it is not guaranteed that the interpolated

values will be contained in the same range as the values from which they are interpolated. This could

lead to overshoots developing at grid boundaries. However, we have not found this to be a problem, and

correcting for it was found to be very computationally intensive as a result of the conditional statements

involved.

In practice, we used fifth-order interpolation, which allowed for two lines of interpolation points at

the edge of each grid. We needed this as the slope-limiting methods we use require two ghost cells at

the grid boundaries. However, we note that we could have used a lower order of interpolation while still

having sufficient interpolation points for our scheme.

Figure 4.9 shows an example grid generated by Overture with the interpolation points marked. This

demonstrates the smooth excision of a circle from a rectangular region using an annular grid overlapping

a Cartesian grid.
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4.10.1 Cell size considerations

One thing that is important when defining suitable grids is the grid spacing. It is best for the

interpolation routines if the grid cells that overlap are of approximately the same size, as then the

interpolated values have an approximate one-to-one correspondence with the interpolee values. If there

were fewer interpolated points than points to be interpolated from, then information could be lost, and

if there were more interpolated points, then the interpolated solution could be less accurate as several

cells would be interpolated from the same points on the other grid.

Also, due to the CFL number, if there were some cells on the grid that were much smaller than

others, then the small cells would probably have the dominant effect on the CFL condition, lowering it

with respect to the larger cells. The result would be that solution would become more diffused on the

larger cells than would otherwise have been the case.

We reduce the effect of this problem by only using a very few cells in the radial direction of the

annulus shown in Figure 4.9. We also apply a stretching to the radial coordinate of the annulus so that

the cells are all approximately square (see §7.3.2 for details). When we consider a spherical grid later on,

we use the same approach.

4.10.2 Keeping variables physical

The conserved fluid variables do not, by themselves, define the primitive variables, but require the

metric for the transformation. It is therefore the case that simply copying or interpolating conserved

fluid variables may cause them to become unphysical if the metric in the cell to which they are copied

causes the violation of the inequality

(D + τ)2 ≥ γijSiSj . (4.63)

Some physical boundary issues have been considered in §4.8, and in practice no problems have been found

at interpolation boundaries. Further, it tends to be quite a demanding exercise to enforce physicality of

the variables, due to the presence of the
√

γ factor. In practice, all we can easily enforce is D > 0, and

this is our reason for using the fall-back techniques given in §3.3.2.

It is still possible for the numerical methods to cause unphysical fluid conditions, as they have not been

designed to deal with such problems. However, the above considerations certainly reduce the number of

places where such errors can arise.

4.11 Overall time-stepping approach

Now that we have described all the numerical methods we intend to use, we need to explain how these

fit together to create a consistent, robust, and accurate algorithm. For clarity, we omit any AMR related
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operations; it should be clear how the following combines with the AMR sub-cycling approach in §4.9.2.

The following is the procedure we used to perform a single time-step of a single refinement level:

• Update grid ghost boundaries (ghost cells used due to the splitting of a grid across multiple pro-

cessors)

• Interpolate between all grids on this refinement level

• Impose physical boundary conditions

• Advance solution by source evolution for time ∆t/2

• Update grid ghost boundaries

• Interpolate between all grids on this refinement level

• Advance solution by HRSC flux method for time ∆t (if we are evolving both the fluid and the

metric, then either both are evolved using the same scheme, or we use Strang splitting to evolve

them using different schemes, i.e. half a time-step for the fluid, a full time-step for the metric, and

a final half time-step for the fluid)

• Update grid ghost boundaries

• Interpolate between all grids on this refinement level

• Impose physical boundary conditions

• Advance solution by source evolution for time ∆t/2

• Impose physical boundary conditions

• Interpolate between all grids on this refinement level

We have not included issues such as solution output and grid generation. These are only performed after

a time-step and consist largely of calls to the Overture infrastructure. Also, we assume that the solution

is stored in conserved variables. The entire solution is only converted back to primitive variables when

necessary for output although, of course, individual cells may be converted to primitive variables for flux

calculations. Further, it is possible that not all of the interpolations carried out in the above are, in

fact, necessary. In particular, the interpolation following the source evolution may not be needed, and

the interpolation at the end of the time-step is equivalent to that carried out at the beginning of the

(following) time-step.

The way we have done this means that the solution remains consistent and the evolution remains

second-order in both time and space. We demonstrate this in the next chapter.
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Chapter 5

Validation of schemes

In this chapter we present the various tests that we have performed on our algorithm and its imple-

mentation in order to confirm that they perform as intended. The aim of these tests is twofold. Firstly,

we use them to confirm that we have implemented standard schemes correctly. Secondly, we use them

as a test-bed for some of the new schemes and approaches that are being used in this algorithm, to

demonstrate that they improve accuracy, and are well-suited to the types of problems we are addressing.

5.1 One-dimensional SRHD Tests

In this section we present validations of the numerical schemes presented in Chapter 4, using the

tests presented in §3.6.1. The first three tests were carried out using a simple one-dimensional uniform

resolution version of our algorithm implementing the same numerical schemes as the Overture-based

implementation, but without the overhead imposed by Overture. The last two tests were carried out

using the Overture-based implementation as they required AMR and non-uniform grid capabilities.

5.1.1 Mildly Relativistic Shock

Here we evolve the IVP found in (3.51). It has been noticed by other researchers (e.g. Del Zanna and

Bucciantini [117]) that, for certain schemes, the initial zero pressure has to be set to some small non-zero

value. We use a minimum pressure of 10−8.

An example output is shown in Figure 5.1 using the van Leer slope limiter, a CFL number of 0.99,

based upon GFORCE 3. The right-most discontinuity, corresponding to a shock wave, is captured with

only four points. In this, and in the capturing of other discontinuities, we see that our results are as good

as those of Del Zanna and Bucciantini. However, the capturing of the density is seen to be somewhat

better in Lucas-Serrano et al. [71]. We also note that the kink we find in the velocity at x ≈ 0.6 is present
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Figure 5.1: Results for a mildly relativistic shock wave, (ρ, u, p)L = (10, 0, 13.3) and (ρ, u, p)R =

(1, 0, 0), using 400 cells, a CFL number of 0.99, and the van Leer limiter, with the SLIC scheme based

on the GFORCE 3 flux. The exact solution is give by the solid line.

to a slightly lesser extent in [71], and not at all in [117].

Figure 5.2 shows the result of using four different numerical schemes for the same problem. All the

methods use the SLIC scheme, based on four different first-order fluxes: FORCE, GFORCE, GFORCE 3,

and HLL. It can be seen that there is very little difference indeed between the methods. This is due to

the mild and simple nature of the problem.

However, we can make the differences between the methods more apparent by evaluating the L1 error

norm on the density for each of several methods, using a range of CFL numbers. The results are shown

in Table 5.1. The error norm is taken over the whole domain and so includes the discontinuities.

We see that increasing the number of stages used for a scheme reduces the error. In all cases, the

GFORCE scheme is better than the FORCE scheme, although the FORCE 2 scheme is always better

than the GFORCE 2 scheme, except for the case with CFL 0.4, where the numerical evolution blows

up. We note this data as evidence for the caveat emptor in §4.2.5. The reason for the improvement of

FORCE k over GFORCE is that the FORCE k scheme is usually above the GFORCE scheme as shown

in Figure 4.5, as a result of its lessening diffusion at the expense of potentially introducing oscillations

into the solution. The HLL scheme is always better than the GFORCE scheme, but usually worse than

the GFORCE 2 scheme. In this problem, there is very little improvement when increasing the number of
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Figure 5.2: Results for the density of a mildly relativistic shock wave, (ρ, u, p)L = (10, 0, 13.3) and

(ρ, u, p)R = (1, 0, 0), using 400 cells, a CFL number of 0.99, and the van Leer limiter, with the SLIC

scheme based on the fluxes: FORCE (circles), GFORCE (squares), GFORCE 3 (crosses), and HLL (+

signs). The exact solution is given by the straight line. We restrict the region plotted so that the differences

between the methods can be seen.

Scheme CFL 0.4 CFL 0.8 CFL 0.9 CFL 0.99

FORCE 1 8.68 × 10−2 5.81 × 10−2 5.14 × 10−2 4.61 × 10−2

FORCE 2 6.94 × 1048 4.62 × 10−2 4.08 × 10−2 3.63 × 10−2

FORCE 3 4.37 × 10−2 4.00 × 10−2 3.69 × 10−2 3.32 × 10−2

GFORCE 1 6.14 × 10−2 5.37 × 10−2 4.53 × 10−2 4.06 × 10−2

GFORCE 2 5.89 × 10−2 5.02 × 10−2 4.31 × 10−2 3.82 × 10−2

GFORCE 3 5.70 × 10−2 4.82 × 10−2 4.28 × 10−2 3.81 × 10−2

HLL 1 5.88 × 10−2 5.44 × 10−2 5.30 × 10−2 5.13 × 10−2

Table 5.1: Error norms of the density using ‖·‖1 for various base schemes for the SLIC method applied

to the mildly relativistic shock test. All were evaluated using the van Leer slope limiter on 400 cells. Note

the blow-up evident for FORCE 2 with CFL 0.4.

stages used for the GFORCE scheme.

We also note that the error decreases for higher CFL numbers, as a result of the reduced number of

time-steps required to reach the final time.

All of these conclusions are roughly in line with what we would expect from the analysis of the various
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(a) Same scheme used for all time-steps
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(b) Used FORCE scheme alone for first five time-steps

Figure 5.3: Results for a strongly relativistic shock wave, (ρ, u, p)L = (1, 0, 1000) and (ρ, u, p)R =

(1, 0, 0.01), using 400 cells, a CFL number of 0.99, and the van Leer limiter, with the SLIC scheme

based on the GFORCE flux. The exact solution is given by the solid lines. Note that the kink in the

velocity seen in (a) is not present in (b), as a result of using a first-order scheme for the first few time

steps.

schemes on the linear advection equation in §4.2.

5.1.2 Strongly Relativistic Blast Wave

The initial conditions from (3.52) produce a narrow region of high density moving close to the speed of

light, as shown in Figure 3.2. The maximum density is very difficult to capture at a moderate resolution

such as we are using due to the narrowness of the peak. A good test of the accuracy of a scheme, therefore,

is the fraction of the peak value that is attained.

An example solution, obtained using the SLIC scheme based on GFORCE, using the van Leer limiter,

with a CFL of 0.99, is shown in Figure 5.3(a). The solution is already quite accurate, and the density

peak is at 65.6% of its correct value. Del Zanna and Bucciantini achieved peaks of 70.1% and 62.4% for

two different versions of their method, and Lucas-Serrano et al. [71] attained a density peak of 76% of

the exact value (the comparison is not quite valid as Del Zanna and Bucciantini only evolved to time

t = 0.35, rather than t = 0.4 as used here and in [71]).

However, we note that there is an odd kink in the velocity solution, at x ≈ 0.8. This is just visible in

Del Zanna and Bucciantini [117], but to a lesser degree. We can remove this by setting the slope-limiter

to zero, effectively using the GFORCE scheme alone, for the first five time steps only (out of 287 time

steps for the whole evolution). The results are now shown in Figure 5.3(b). We use this approach for

this problem from now on.
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Scheme Density peak

Exact 10.42

FORCE 6.84

FORCE 2 7.56

FORCE 3 8.04

FORCE 5 8.24

GFORCE 6.99

GFORCE 2 7.45

GFORCE 3 7.78

GFORCE 5 7.98

HLL 7.26

Table 5.2: Density peak for strongly relativistic shock as predicted by various methods. The approximate

methods all used CFL 0.99, van Leer limiter, and the first-order reduction for the first five steps as

indicated in the main text.

Once again, there is little visual difference between the various schemes, and we give the density

peaks in Table 5.2. These results are in line with what we have already seen, that FORCE k tends to

be more accurate than GFORCE k for k ≥ 2, and that HLL is more accurate than GFORCE when no

multi-staging is used.

In Table 5.3 we give the L1 errors in the density for various resolutions and methods. This shows

near first-order accuracy over the whole problem, which is the best that we can expect over a solution

containing discontinuities.
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Resolution Scheme ‖ρexact − ρnum‖1

400

FORCE 1.59 × 10−1

GFORCE 1.54 × 10−1

GFORCE 3 1.44 × 10−1

HLL 2.05 × 10−1

800

FORCE 1.16 × 10−1

GFORCE 1.13 × 10−1

GFORCE 3 9.95 × 10−2

HLL 2.00 × 10−1

1600

FORCE 6.27 × 10−2

GFORCE 6.13 × 10−2

GFORCE 3 5.07 × 10−2

HLL 1.11 × 10−1

Table 5.3: L1 norm errors in density for the blast-wave test, evaluated over the whole domain. All

simulations used the van Leer limiter, CFL 0.99, and the first-order reduction for the first five time-steps.

5.1.3 Perturbed Density Test

We now turn to the perturbed density test given by (3.53), which shows the effect of the multi-staging

more clearly. As previously noted, there is no analytic solution to this problem, and so any reference to

exact solution is to the result of a numerical evolution using the SLIC scheme based on FORCE 1, with

a CFL of 0.99, the van Leer limiter, and 20 000 cells which we believe to have converged to very close to

the correct solution since it is visually indistinguishable from that using 10 000 cells.

An example evolution, using 400 cells and the SLIC scheme based on FORCE, is shown in Figure 5.4.

Points to note are that the three sharp peaks are not particularly well captured, and that the final peak

at the right of the figure is clipped. We note that Del Zanna and Bucciantini manage to capture the

peaks somewhat better than we do whilst using half the number of cells.

Figure 5.5 shows the results for various schemes, focusing on the region 0.6 ≤ x ≤ 1. Now we see that

increasing the number of stages used improves the capturing of the three peaks and the knees at x ≈ 0.67

and x ≈ 0.85. The ordering of the plots has been chosen to show a progressive increase in accuracy. We

see that multi-staging GFORCE out-performs HLL, and that multi-staged FORCE still produces better

accuracy than multi-staged GFORCE, though possibly at the risk of being unstable.
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Figure 5.4: Results for the density for density perturbation initial conditions. The SLIC scheme based

on FORCE 1 was used, with 400 cells, a CFL 0.99, and the van Leer limiter. The “exact” solution (see

main text) is given by the solid line.
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Figure 5.5: Close-ups of density results from the density pertubation test. For all results, a CFL of 0.99

and the van Leer limiter were used, on a grid of 400 cells.
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Figure 5.6: Evolution of the blast wave test, equation (3.52) using a base grid of 100 cells, with the

van Leer slope-limiter, GFORCE 1, CFL 0.95, and 3 levels of AMR, giving an effective resolution of 800

cells. The final grids are shown underneath.

5.1.4 One-dimensional AMR

We can also check the AMR parts of the algorithm in one dimension. We use the blast wave test of

(3.52) and evolve it on a uniform domain with 100 cells, but using three levels of refinement factor two,

taking the effective resolution to 800 cells. The refinement criterion we use is that we flag a refinement

point on a grid level k (coarsest level is zero) if

ρ2
,x

ρ2
> 4 · 22k . (5.1)

The results are shown in Figure 5.6. The total number of cells advanced, summed over all time-steps

and sub time-steps, for this calculation was 129 960 cells, about 27% of the equivalent figure for a single

grid of 800 cells, 484 000 cells (i.e. 605 time steps with 800 cells at each step). The times are less than

favourable, though, as the AMR calculation took 44.2s and the uniform calculation took 22.0s. These

timings, however, will be improved upon for multi-dimensions, where the overhead due to AMR, in

particular the regridding which we carried out here after every time-step, is proportionally far less.

The maximum density for the AMR simulation was 8.99, and that for an equivalent simulation on
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Figure 5.7: Blast wave test, evolved using two different grids. The red + signs show the evolution on a

grid with 400 equally spaced cells, and the green o signs show the evolution on a grid with 400 cells which

are concentrated towards the right-hand end of the grid.

a single grid of 800 cells was 8.91. While not identical, these are very close, suggesting that the AMR

techniques are working robustly, and to the correct order of accuracy.

5.1.5 One-dimensional non-uniform grid

We should also test whether our algorithm is capable of attaining second-order accuracy on non-

uniform grids as well. We use a grid in the range x ∈ [0, 1] , with smoothly varying grid spacing, such

that the cells are smaller towards the right-hand end than at the left-hand end. We therefore have an

effectively increased resolution where the density peak will finally form.

We ran the simulation using the GFORCE 1 flux, the van Leer slope-limiter, and a CFL of 0.95.

The non-uniform grid we used had 400 cells. We compare the evolution on a non-uniform grid to that

on a uniform grid in Figure 5.7. The extra resolution has clearly resulted in a better capturing of the

density peak, with no apparent degradation of the solution in the relatively smooth region to the left.

The maximum density in this case was 9.22, higher than for the uniform grid.
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For the purposes of comparison, we note that the evolution with the uniform grid took 267 time-steps

and 5.49s to run, while the non-uniform grid required 271 time-steps and 5.53s to complete. We have

therefore shown that an improvement in accuracy may be obtained without a substantial increase in

computational expense if we place grid-points appropriately. We have also shown that there is no obvious

error in our implemented algorithm when applied to non-uniform grids.

5.1.6 Forcing an exact solution

We have been unable to locate any one-dimensional exact solutions to Einstein’s equations incor-

porating a fluid (even for the test-fluid approximation) for a non-Minkowski space-time (in Cartesian

coordinates), and so we use a different approach. The intention is to test the algorithm on the evolution

of a fluid in a non-Minkowski regime. The flux terms are fairly straightforward, with little difference

between those for Minkowski space and the general metric case. The source terms, however, require a

large amount of calculation, and could well be the source of errors.

One approach to testing these is to implement a forced exact solution to Einstein’s equations. This

technique can be applied to any system of equations, and can be used to track down coding errors.

Given a general set of PDEs of the form

∂u

∂t
+

∂F i(u)

∂xi
= S(u) , (5.2)

we can take an analytic function uexact(x
i, t), and define

R(xi, t) =
∂uexact

∂t
+

∂F i(uexact)

∂xi
− S(uexact) . (5.3)

We now know that the function uexact(x
i, t) is an exact solution of the set of PDEs

∂u

∂t
+

∂F i(u)

∂xi
= S(u) + R(xi, t) , (5.4)

and therefore, if we incorporate the extra source term R into our code, we can check to see whether our

calculation of R, usually generated using software such as Maple
TM

, agrees with that of F and S. We can

test fluxes and sources separately, as we use Maple
TM

to calculate both exact fluxes and exact sources, so

that the exact flux term can be combined with the numerically calculated sources, and vice-versa. Note

that we may also need to adjust any boundary conditions used in order to take into account the new

setup.

This system is not perfect for the following reasons: we do not check that the coded expressions are

correct, as such, only that the two different ways of calculating them, through Maple
TM

and through the

main code, agree. It is sufficient, however, to catch typographical errors in the implemented algorithm

and probably some errors due to algebraic manipulation.
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Even with an exact solution, the sources and fluxes will not necessarily balance, since we advance the

flux terms using a conservative scheme, and the source terms using a Runge-Kutta scheme. It is not likely

that this will be a problem for us, but there do exist systems of equations where this failure to balance is

a major problem, and much research has been done to rectify it, e.g. Hubbard and Garcia-Navarro [60].

Note that, since the new system only differs from the original by the addition of source terms, it will

have the same stability character as the original system, and therefore any error reductions in this system

will likely be present in the original system as well.

Even given all these caveats, this approach still provides another way to check whether the algorithm

and its implementation are functioning as they should. We note that it is not necessary only to look at

final numerical evolutions; we can also compare the raw source terms calculated using the two different

methods inside a debugger.

We can use this approach to test the effect of some of the numerical corrections suggested in §4.4 and

§4.7. We evolve a simple test-case using this forced-exact solution, and compare the resulting errors. The

corrections are simple variations on a theme that we know to be largely correct, so that we know that

they should be applicable to evolving fuller, unforced, systems. (Simply aiming for accurate capturing

of the fluxes and sources would tend to suggest high-order finite-difference methods, which would not be

suitable.)

The five corrections we test are:

1. Whether to limit on primitive or conserved variables (§4.7)

2. Whether or not to perform the more careful metric averaging suggested in §4.7

3. Whether or not to include the flux/source balancing term (§4.4.3 - 1D only)

4. Whether or not to use the Simpson’s rule improvement to the source calculation (§4.4.2)

5. Whether to use the combined source splitting, or Strang splitting (§4.4.1)

6. Whether to use the GFORCE flux or the HLL flux (both without multi-staging) (§4.2.3 and §4.2.4)

We test these in all possible combinations as applied to the following setup:

• Metric given by the stationary propagating gauge pulse of §3.7. This avoids having to use the metric

evolution terms. We have to use a solution of the Einstein equations here as we wish to compare

different ways of calculating the source terms that rely on Einstein’s equations holding (see §3.2).

• Ideal fluid (§3.3.2) with adiabatic index Γ = 4/3 and initial state given by

ρ = 10−1 + 10−2 cos(2πx), vx = 10−1 + 10−2 cos(2πx), p = 2 · 10−3 + 2 · 10−4 cos(2πx) (5.5)
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1 2 3 4 5 6 ‖ρerror‖∞

X × × × × GFORCE 0.013297

X × × × X GFORCE 0.012816

X × × X X GFORCE 0.012765

× × × X X GFORCE 0.012753

× X × X X GFORCE 0.012656

Table 5.4: We show a short chain of gradual improvements to the evolution of a fluid on a curved space-

time. The key to the columns is as follows: 1) Primitive variable limiting (§4.7) 2) Metric averaging

correction (§4.7) 3) Flux-source balancing (§4.4.3) 4) Simpson’s Rule correction (§4.4.2) 5) Flux-source

combination (§4.4.1) 6) GFORCE or HLL scheme (§4.2.3 and §4.2.4)

• Periodic boundary conditions (the initial conditions are periodic, and this removes any problems

caused by boundary effects)

• Extra forcing term calculated so as to keep the fluid fixed at its initial state, assuming no numerical

errors in the evolution.

• Evolve on a domain [−1, 1], with 100 cells, i.e. ∆x = 1/50 up to time T = 0.1.

In order to compare the methods, we calculate the error that occurs in each of the variables ρ, vx, and

p, and take two norms of this, the L∞ norm and the L1 norm. The effect of the corrections is, in most

cases, sufficiently small for these tests that whether the correction appears to be beneficial depends on

the variable and norm used.

As an example, we show in Table 5.4 the sequence of changes made between the greatest and least

errors in the maximum error in ρ. As we can see, the improvement overall is only about 5%, and we have

chosen to show this chain for the variable and norm showing the greatest improvement.

Looking at the combinations that give the smallest error for each of the variables and error norms,

we see that we should

1. Limit on the conserved variables

2. Use the more careful metric averaging

3. Not use the flux/source balancing term

4. Possibly use the Simpson correction, which only contributes to the least error for the velocity

5. Use combined source splitting (only fails to contribute to the least error when taking the L∞ norm

of the pressure)
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6. Use the GFORCE flux (only fails to contribute for L∞ norm of velocity)

We have performed more general checks where we see how often setting a specific option to one state

reduces the error as compared to the identical setup with the option set to its other state. These are not

completely conclusive either, except that using the combined sources almost always helps and that using

the metric averaging correction usually helps. The Simpson correction helps to reduce the L∞ norm, not

the L1 norm.

We emphasise, however, that the previous tests were carried out in fairly simple situations, and may

not reflect the performance of the numerical schemes proposed in far more testing regimes. Also, most

of these schemes require extra computation, and so it may be more beneficial to reduce the error by

increasing the resolution, rather than introducing new schemes. This applies in particular to our method

of combining the sources with the fluxes.

5.2 Two-dimensional SRHD Tests

In this section we run some tests of the fluid evolution that test the two-dimensional aspects of the

algorithm. We first run a two-dimensional Riemann problem, and compare our results to some already

published. We then proceed to check the accuracy and robustness of our algorithm with regard to

overlapping grids and the interpolation required. We then test our corrections as in §5.1.6 and find some

improvements over the one-dimensional results.

5.2.1 Two-dimensional Quadrants test

In this section we show the results for the two-dimensional Riemann problem given in §3.6.2. Figure 5.8

shows the results for two different schemes, FORCE and GFORCE, both using the van Leer limiter. The

resolution used is 400 cells in each direction, using a CFL of 0.95. Although there is no exact solution for

this initial data, the results compare favourably with those of [117]. We note that the long density peak

in the upper-right of the figure is more pronounced in our scheme than in [117], but that the feature just

below and to the left of the centre is somewhat less well-defined in our plot than in [117]. It is in fact

that case that, within this region, the density drops to a very small value indeed, of the order of 10−6.

It is also the case, although not entirely clear on the plots shown, that the discontinuities are slightly

narrower for the GFORCE scheme than for the FORCE scheme.
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(a) FORCE 1 scheme (b) GFORCE 1 scheme

Figure 5.8: The quadrants problem evolved at a resolution of 400 × 400, with a CFL of 0.95, using the

FORCE 1 and GFORCE 1 schemes with the van Leer slope-limiter. We plot the log of the density ρ, using

30 equally spaced contours from ln 0.1 = −2.303 to ln 3.927 = 1.368

5.2.2 Adaptive Mesh Refinement

Although we are essentially evolving the Riemann problem for more than one time-step in order to

calculate the multi-staged flux, this is in no way related to the time-stepping of each grid, and so does

not affect the standard approach to AMR.

The efficiency of the AMR approach is evaluated by comparing the CPU times between constant

cell-width and adapted results (of the same effective resolution). The timings are shown in Table 5.5, and

some results are shown in Figure 5.9, where the boxes show the regions where the mesh has been refined.

The benefits of AMR are well known and the timings shown illustrate these since as the resolution of the

coarsest grid decreases, the run-time reduces, even though the effective resolution is the same.

The timings also demonstrate the effect of multi-staging. Each additional stage adds approximately

the same amount of time to the simulation as a result of having to calculate the fluxes more often.

We note that the density peak values are roughly independent of the number of refinement levels used,

showing that AMR has been correctly implemented.

Figure 5.9 shows the same plots as Figure 5.8, except that we now show evolutions performed at a

resolution of 100 cells in each direction with two extra levels of refinement factor two, and we can see

that the finest grid level contains the regions where we would expect most resolution to be needed in

order to obtain an accurate solution. The main differences between the uni-grid and AMR simulations

100



Resolution 400 × 400 200 × 200 (× 2) 100 × 100 (× 2 × 2)

Scheme Max. ρ Time (s) Max. ρ Time (s) Max. ρ Time (s)

FORCE1 3.685 356.6 3.746 258.1 3.663 244.0

FORCE2 4.437 463.1 4.505 302.9 4.743 289.5

FORCE3 4.967 571.1 5.060 359.5 5.519 328.4

GFORCE1 3.928 442.5 3.945 294.8 3.999 271.2

GFORCE2 4.351 594.2 4.372 374.1 4.484 357.8

GFORCE3 4.639 742.2 4.654 454.6 4.854 435.8

HLL1 4.247 564.2 4.283 338.6 4.387 326.3

HLL2 4.470 875.8 4.492 505.1 4.693 465.1

HLL3 4.625 1188.5 4.669 656.4 4.883 606.3

Table 5.5: Comparison of run-times and maximum densities attained when evolving the quadrants problem

in AMR, all for an effective resolution of 400×400. The notation n×n(×r) refers to a base grid of n×n

with one level of refinement of factor r. All the schemes stated are embedded in the SLIC scheme, using

the van Leer slope limiter.

are the smoothing of the region below and to the left of centre and the fairly significant diffusion of the

shocks leaving to the grid at the left and the bottom.

In Table 5.6 we quantify the convergence properties of AMR for various numerical schemes. We

see that we do not achieve second order convergence, but this would not be expected anyway due to

the presence of discontinuities in the data. The convergence rates, however, are somewhat in excess of

first-order, and so we conclude that our approach has been designed and implemented correctly to retain

second-order convergence.

However, we also conclude that the algorithm may be ill-equipped to deal with shocks in some cases,

as we have seen greater diffusion than for a single grid. This may require some further investigation into

the refinement criteria, particularly at the start of the simulation, where the shocks were not sufficiently

well refined.
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Scheme Resolution Est. ‖ρ‖1 Error Time (s) Order

GFORCE1

100 6.83 × 10−2 11.1

1.37100 × 2 2.64 × 10−2 75.6

100 × 2 × 2 1.02 × 10−2 416.7

GFORCE2

100 6.32 × 10−2 13.7

1.41100 × 2 2.38 × 10−2 88.8

100 × 2 × 2 8.97 × 10−3 498.2

GFORCE3

100 9.60 × 10−2 16.3

0.78100 × 2 5.60 × 10−2 107.4

100 × 2 × 2 3.26 × 10−2 592.0

HLL1

100 6.05 × 10−2 10.6

1.36100 × 2 2.35 × 10−2 74.1

100 × 2 × 2 9.17 × 10−3 414.0

HLL2

100 6.17 × 10−2 13.5

1.23100 × 2 2.64 × 10−2 96.3

100 × 2 × 2 1.13 × 10−2 552.6

HLL3

100 5.95 × 10−2 16.4

1.20100 × 2 2.59 × 10−2 118.7

100 × 2 × 2 1.12 × 10−2 697.8

Table 5.6: Orders of convergence for the Quadrants test problem for various schemes using a base grid of

resolution 100, and varying numbers of levels of refinement. All calculations were done using CFL 0.95

and the van Leer slope limiter. The errors were estimated using Richardson extrapolation, using a tool

available in Overture.
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(a) Evolved using FORCE 1 (b) Evolved using GFORCE 1

Figure 5.9: The quadrants problem evolved at a resolution of 100(×2× 2), with a CFL of 0.95, using the

FORCE 1 and GFORCE 1 schemes with the van Leer slope-limiter. We plot the log of the density ρ, using

30 equally spaced contours from ln 0.1 = −2.303 to ln 3.927 = 1.368. The boxes show the edges of the

grids with the finest resolution. The refinement to the resolution of 200 cells covers the whole domain,

which explains the apparent presence of only one refinement level.

103



Figure 5.10: Grid for testing curvi-linear and overlapping routines. An annulus is superimposed on a

Cartesian grid and used to replace part of that grid. The Cartesian grid has its vertices at (±0.5, ±0.5),

a resolution of 400 × 400, and the annulus resolution matches that of the Cartesian grid at the inner

circumference. We only show every fourth gridline in this plot for clarity.

5.2.3 Shock propagation across an overlapping grid

It is important to test the accuracy of evolution across a set of curvi-linear, overlapping grids in order

to validate these approaches. To this end, we evolve a Riemann problem with a known solution across

the two-dimensional domain shown in Figure 5.10, where the Cartesian grid has resolution 400×400, and

the annulus matches its resolution to that of the Cartesian grid at its inner circumference. Note that

the entire space is covered, so that we are not testing any outgoing boundary conditions on the annulus.

Also, it is necessary for testing purposes that we use a two dimensional grid since, in one dimension,

the Jacobian and the inverse coordinate derivative multiply to give one, thus simplifying the calculation

somewhat. We use flat Minkowski space-time for the evolution, and as initial conditions we use the
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Figure 5.11: Cross-section of the evolution of the mildly relativistic shock-wave across the grid shown

in Figure 5.10. The run was performed using the GFORCE 1 scheme at a CFL of 0.95, and using

the van Leer slope-limiter. The green + signs are the numerical solution on the overlapping grid, the

red circles are from an equivalent simulation on a single Cartesian grid, and the blue line is the exact

solution for the problem. The two numerical solutions have been interpolated from along the line x = y.

Riemann problem

(ρ, vx, vy, p) =















(10, 0, 0, 13.3) if x + y < 0 ,

(1, 0, 0, 10−6) if x + y > 0 ,

(5.6)

so that the shock is propagating diagonally across the grid.

As this is only a 1D test evolved on a 2D grid, the exact solution can be found as in §3.6.1. We

perform the evolution using the grid described in Figure 5.10, and sample the solution at 400 points

(corresponding to the Cartesian grid’s resolution) along the line x = y, parallel to the shock direction, at

a time of t = 0.4. Figure 5.11 shows the results from using the GFORCE 1 flux solver, with a CFL of 0.95

and the van Leer limiter. We can see that the solutions on the plain Cartesian grid and on the overlapping

grid are very close together indeed. The solution on the overlapping grid has a small oscillation at the

base of the rarefaction wave, but is otherwise clean. In fact, the solution from the Cartesian grid has a
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Figure 5.12: Contour plot of the evolution across an overlapping grid as described in Figure 5.11. We

show contours of density at ρ = 1, 2, . . . , 10 and the location of the annular grid.

similar, but smaller oscillation.

We also show in Figure 5.12 the contour lines resulting from the evolution on the overlapping grid.

The location of the annulus grid is also shown overlaid. Ignoring the effect of using simple transmissive

outer boundary conditions for the Cartesian grid, the contour lines are fairly straight. In particular, there

are no deviations noticeable at the edges of the annular grid. It therefore appears that the algorithm is

capable of evolving a shock cleanly on an overlapping grid.

5.2.4 Front-facing step

In order to test the overlapping grid approach in the case of a non-trivial boundary, we apply our

algorithm to the problem of a fluid shock hitting a solid front-facing step. This test has been used by

Lucas-Serrano et al. [71]. Due to constraints on the way grid boundaries can interact in Overture, we

cannot use a sharp corner, but we replace it with a curved corner to the step, provided by a smoothed

polygon. The grid is shown in Figure 5.13. This accounts for the difference in solution between our

results and those of [71].

The fluid is defined to have an initial density of 1.4, with an adiabatic index of 1.4. The fluid comes

in from the left-hand boundary at velocity vx = 0.8, and at Mach 3. Initially, the fluid is given constant

density and velocity, and it is then evolved to time t = 10. The resulting flow pattern is shown in Figure

5.14, where we plot iso-contours of the log of the density.

In performing this evolution, we have also used AMR, refining where ∇·S < −0.1, and in Figure 5.15
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Figure 5.13: Grid used for the front-facing step problem. The grid is made up of three separate grids:

one for the incoming channel, one for the rest of the channel, and one for the step itself. The last has

stretched grid cells that become narrower towards the edge of the step. For clarity we only show every

other grid line.

Figure 5.14: Solution at t = 10 for a shock hitting a front-facing step. The fluid has adiabatic index

Γ = 1.4, velocity v = 0.8 and is travelling at Mach 3. The scheme used was GFORCE 1 with the van Leer

slope-limiter, and with CFL 0.95. We plot 30 contours of the log of the density.

we show the refined grid structure at the end of the simulation. Most of the grid has been refined, except

for the region at the very left of the domain, just before the step.
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Figure 5.15: We show adaptively refined grid at the end of the evolution shown in Figure 5.14. Again we

only show every other grid-line. Each grid is given a different colour.

5.2.5 Reflective cylinder

Since we intend to apply this algorithm to problems in General Relativity, we demonstrate a problem

that is somewhat similar in its grid setup and initial conditions to that of a fluid accreting onto a black

hole. In this problem, we immerse a solid cylinder in a fluid with adiabatic index Γ = 1.4, travelling

with constant velocity 0.8c at Mach 3, and allow it to evolve to steady-state. This general setup has

been much studied in the Eulerian case, and we expect to see qualitatively similar results here. Our grid

is constructed from a Cartesian channel, containing an annulus, the inner circumference of which is a

reflective boundary. The channel’s walls are given transmissive boundary conditions, with the exception

of the left boundary, which is an inflow boundary. The initial grid is shown in Figure 5.16.

The state of the simulation at time t = 10 is shown in Figure 5.17. In order to demonstrate the grid

setup possible with AMR, we show a split diagram where the upper half shows the numerical result and

the lower half shows the adaptive grid structure. Here our criterion for refining the grid is ∇·S < −0.05.

We see that the result is qualitatively similar to the well-known case of a cylinder embedded in a

non-relativistic flow.
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Figure 5.16: Grid used for the problem of a shock hitting a reflective cylinder. The main channel has

length 10 and width 5, composed of 100 × 200 cells. The annulus has inner radius 0.5 and outer radius

1.25, with 168 cells in the angular direction, and 32 cells in the radial direction, where an exponential

stretching function has been applied in the radial direction to restrict the radial size of cells nearer the

inner boundary. For clarity, we only show every other grid line.

Figure 5.17: Contours of ρ at time t = 10 of a reflective cylinder initially immersed in a constant velocity

flow of Mach 3, velocity 0.8c, adiabatic index Γ = 1.4, and density 1.4. The grid used was that of

Figure 5.16, with one level of refinement factor 2. The scheme used was GFORCE 1, with the van Leer

slope-limiter, at a CFL of 0.95. There are 30 contours, equally spaced between 0 and 10.
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(a) Solution for two reflective cylinders (b) Grid used for multi-cylinder flow, showing only every

other grid line for clarity.

Figure 5.18: We plot 30 contours of ρ from 0 to 10 for two solid cylinders initially immersed in a fluid of

constant state, Mach 3 and velocity 0.8, with density 1.4 and adiabatic index 1.4. The solution is shown

at time 10. The GFORCE 1 scheme was used, with the van Leer slope-limiter, and a CFL of 0.95.

5.2.6 Multiple reflective cylinders

In Figure 5.18(a) we show an extension of this problem, to the case where there is more than one

reflective cylinder in the domain. The same constant state initial data was used, this time incoming

from the right. This simulation required no more extra setup over and above the single cylinder than

generating a new grid using ogen, the interactive overlapping grid generator that comes with Overture.

Although there are no prior solutions with which to compare it, the resulting flow appears qualitatively

correct, and no numerical problems are visible in the vicinity of the overlapping regions.

5.2.7 Forcing an exact solution

In §5.1.6, we displayed the results for applying some corrections to our evolution of a one-dimensional

solution that we forced to be exact. Here we apply a very similar test to a two-dimensional grid and

display the equivalent results.

The grid we use for this test is the one in Figure 5.10, with periodic boundary conditions, and 100

cells in each direction on the Cartesian grid. The problem setup is otherwise identical to the 1D case.

Although the problem itself is entirely 1D, the 2D nature of the curvi-linear grid means that the y-velocity

will not remain zero as it should. We therefore want to reduce the error in the y-velocity as far as possible.

110



1 2 3 4 5 6 ‖vy‖∞

X X X × × GFORCE 1.3665 × 10−2

X X X X × GFORCE 7.9786 × 10−3

X × X X × GFORCE 1.2234 × 10−3

X × × X × GFORCE 5.0693 × 10−4

Table 5.7: Here we show the L∞ norm of vy after the evolution of the two-dimensional fluid test on

a curved metric. The key to the columns is as follows: 1) Primitive variable limiting (§4.7) 2) Metric

averaging correction (§4.7) 3) Simpson’s Rule correction (§4.4.2) 4) Free-streaming correction (§4.6.3) 5)

Flux-source combination (§4.4.1) 6) GFORCE or HLL scheme (§4.2.3 and §4.2.4)

Some of the results for the L∞ norm of the error in vy are shown in Table 5.7. From this we see

that the free-streaming correction makes a large improvement to the error. Further, removing the metric

averaging correction and the Simpson’s rule correction actually reduces the error. This may be due to the

fact that both of these cause some mixing between the different Cartesian components when performed

on a curvi-linear grid, thereby transferring some errors from the x-component to the y-component. For

example, the metric averaging correction does tend to reduce the L∞ norm of the error in vx at the

expense of that in vy.

Overall, these results are not conclusive, and more investigation would need to be done to find ways

of making these simple schemes more accurate.

5.3 One-dimensional Metric Tests

In this section we give the results of some tests of the metric evolving aspects of our algorithm.

Firstly we apply our numerical methods to a specialised system of Einstein’s equations, in order to test

the suitability of our methods for evolving large systems. We then proceed to apply our algorithm to

some standard test-cases for metric evolution, and demonstrate similar accuracy to other, more elaborate,

methods.

5.3.1 Medium System Tests

In this section we describe some results we obtained using the Medium system defined in §3.4. The

main purpose of this section is to demonstrate the accuracy of the GFORCEk schemes when applied to

a set of equations based on a specialised form of Einstein’s equations. In particular, the Medium system

includes second derivatives of the metric among its variables, and we therefore expect to see, and in fact

do see, discontinuities in these variables, as permitted.
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We note that Barnes et al. [16] used WENO decomposition and the Marquina solver for their evolu-

tions. Although the methods we use have a lower formal order of accuracy, we shall see that the results

show at least similar, and sometimes better, visual accuracy, particularly around discontinuities.

Decreasing Constraint Violations

The original paper of Barnes et al. [16] demonstrated sizable constraint violations near discontinuities

in either the fluid or second derivatives of the metric. We have managed to reduce these errors somewhat,

partly by our use of a simpler numerical method, and partly by a small adjustment to the boundary

conditions, which we now outline.

These tests were carried out using a simple one-dimensional code, not using Overture. However,

the numerical methods used were otherwise identical. Initial tests of the system resulted in quite large

constraint violations from the boundary. After some investigation, we discovered that this was due to

a slight inconsistency between source and flux evolutions, which was being propagated into the domain.

Our solution was to increase the number of ghost cells used at the boundary from two (as one would

expect to be used for the SLIC scheme) to three, and to solve the constraint equations (3.35) exactly for

the variables b,xx and b,xt on the ghost cell neighbouring the computational domain, at either end. This

reduced the constraint violation substantially. We note, however, that this is a somewhat specialised

solution to the problem as in this case the constraint conditions are algebraic in nature, and easily solved.

It is not easily applicable to multi-dimensional evolutions, where a more expensive elliptic solver would

be needed to perform the same adjustment.

Numerical Results

In a similar manner to that used for the 1D SRHD case, we reduce the time-step by a factor of four

for the first four time-steps. Our domain was x ∈ [−1, 1], and we used 800 cells to cover it. Following

Barnes et al. [16], we restrict our plots to the domain [−0.6, 0.6].

The results for this implementation of a simplified version of our algorithm as applied to the tests

described in §3.4 can be seen in Figures 5.19 – 5.20. We plot the same variables as in [16]. Our axes are

also identical, except for those for the constraints, and those for b,tx and b,xx for the second test. We

can see that our results are mostly visually identical to those of Barnes et al. One noticeable difference

is that for a,tx and a,xx in Test 1, where the disturbance at x ≈ 0.5 is squarer than theirs. Since their

zoomed version of that plot shows that part of the signal has propagated beyond x = 0.5, i.e. faster than

the speed of light, we assume that our results are the more correct, not having smeared the discontinuity

as much.

However, the main point of interest is that our constraint violations are somewhat smaller than those
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Figure 5.19: Results for the Medium system evolving the first test case, using a CFL of 0.95, the

GFORCE 1 scheme and the super-bee limiter.

in [16]. We attribute this partially to our improved boundary conditions, but mostly to the different

numerical scheme. We were able to use a CFL number of 0.95, whereas [16] only used 0.5, which would

lead to more smeared discontinuities, and hence larger errors nearby.

We therefore conclude that SLIC based on GFORCE is suitable for the evolution of complex systems

of equations, including those that are simplifications of Einstein’s equations.

113



−1 −0.5 0 0.5 1
−1

0

1

2

3

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−4

 

 

µ/4
v

a,tx
a,xx

b,tx

b,xx

H
M

Figure 5.20: Medium system evolving the second test case with CFL 0.95, and using GFORCE 3 with the

van Leer slope-limiter

5.3.2 Apples with Apples tests

We can use the Apples with Apples tests as outlined in §3.8 to compare the various numerical schemes.

We can also check that the convergence rates are as expected.

Robustness test

In Figure 5.21 we show the results of evolving the robustness test described in §3.8.1. We use two

approaches: the finite-volume scheme GFORCE with the van Leer limiter, and the finite-difference scheme

ICN. The finite-difference scheme damps the constraints to a greater extent than the finite-volume scheme.

Both schemes exhibit some oscillations in the constraints, as a result of the randomness of the initial

conditions. However, neither demonstrates any essential difficulty in preventing small constraint violations

from increasing in size.
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Figure 5.21: Evolution of constraint Mz for the Apples with Apples robustness test. The blue +s represent

the finite-volume scheme GFORCE, with the van Leer slope limiter, and the green ×s respresent the finite-

difference scheme ICN. Both simulations use the RK2 scheme for the source terms, and the resolution

ρ = 2. The ICN simulation did continue to time t = 1000, but the data for the last few time-steps were

lost for technical reasons.

Linearized Wave test

We evaluate the linearized wave test as described in §3.8.2. Figure 5.22 shows the difference that the

CFL parameter can make, comparing the original test-case with one where dt = cCFLdx and cCFL = 0.95.

The numerical parameters are otherwise the same. The main errors for the GFORCE scheme are that

there is a phase error in the solution, which is more pronounced for a lower CFL number, substantial

diffusion, again more pronounced for a lower CFL number, and that the solution is not vertically centred

on zero, which is most noticeable where the solution for CFL 0.95 goes below the exact solution at

x ≈ 0.25. An effect similar to the last error is seen in the results from the CCATIE BSSN solver in [11].

The diffusive effect apparent with the lower CFL condition is more pronounced when using a more

diffusive limiter. This comparison can be seen in Figure 5.23.

The ICN scheme is less diffusive than the GFORCE scheme, as we would expect. However, it gives a

much larger phase shift, which is larger for the higher CFL number. It is not mentioned in [11] that a low

CFL number is being used, and this would seem to unduly penalize methods which depend heavily on

the CFL condition. However, it is highly likely that a propagating gravitational wave far from a highly
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Figure 5.22: The effect of the CFL number on the Linearized Wave test described in §3.8.2. The green

+ signs use CFL 0.95 and the red circles used the CFL condition prescribed in the test. A resolution of

ρ = 4, corresponding to 200 cells, was used, and RK2 was used to evolve the source terms. The solid line

shows the exact solution.
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Figure 5.23: The effect of slope-limiter on the Linearized Wave test. The green + signs use the super-bee

limiter, and the red circles use the van Leer limiter. The CFL condition is that prescribed by the test,

and we use ρ = 4, the GFORCE 1 scheme, and RK2 for the source terms.

active source will effectively be subject to a low CFL number due to the high wave and gauge speeds

found in the more active regions of the domain. In this regard, the test may be more realistic than might
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Figure 5.24: The effect of different flux schemes on the Linearized Wave test. The blue + signs are for the

FORCE 1 scheme, the red × signs are for the FORCE 3 scheme, the green circles are for the GFORCE 1

scheme, and the black squares give the solution with ICN. The HLL scheme is not shown, but coincides

with the GFORCE 1 scheme. The solid line gives the exact solution.

at first be thought, and hence points up a potential weakness of the combined scheme and Bona-Massó

formulation in producing accurate gravitational wave profiles.

Keeping with the time-stepping condition given in the test case, we show in Figure 5.24 a comparison

of different schemes. All of these are done at a resolution ρ = 4, use the super-bee limiter, and the

RK2 scheme for source terms. We see that once again the GFORCE1 scheme out-performs the FORCEk

schemes, both in terms of amplitude and the phase shift error. The solution for the FORCE1 scheme is

better than that for the FORCE3 scheme. There is no visible improvement attained by multi-staging the

GFORCE1 scheme and, in fact, the results for the HLL scheme coincide with those for the GFORCE1

scheme. The ICN scheme shows quite a large phase-shift, although it shows very little diffusion, main-

taining the amplitude very well, and the wave is slightly off-centre in the vertical direction.

We also compare the results attained for different resolutions ρ = 1, 2, 4 for GFORCE 1 and for ICN

in Figure 5.25, using a CFL of 0.25 and RK2 for source terms. The GFORCE scheme uses the super-bee

slope-limiter.

Clearly, GFORCE 1 is very diffusive indeed; the solution only retains about 45% of its original am-

plitude even at resolution ρ = 4, and has almost decayed away completely for ρ = 1, 2. ICN is much less
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Figure 5.25: The effect of varying the resolution for the linearized wave test. The blue + signs are for

ρ = 1, the green circles are for ρ = 2, and the red triangles are for ρ = 4. The exact solution is given by

the solid line.

diffusive, even for low resolutions, but has a large phase shift, where ρ = 1 has a phase shift of almost a

full cycle, ρ = 2 about half a cycle, and ρ = 4 is the only resolution to come close to the exact solution.

In conclusion, we note that this demonstrates the highly diffusive nature of the schemes that we are

using, and also the relatively high phase shift when compared with other schemes and formulations used

to evolve this test.

Gowdy wave test

We now show our results for the Gowdy wave test as described in §3.8.3.

Measuring errors We first show, in Figure 5.26, six different ways of evaluating the accuracy of the

schemes used. In Figure 5.26(a), we show the L1, L2, and L∞ norms of the error in the γxx component,

and in Figure 5.26(b), we show the same norms of the Hamiltonian constraint H. We see that the

Hamiltonian constraint increases to a maximum value before decreasing in time until the run crashes due

to large accumulated errors. This is somewhat counter-intuitive, as we would expect H to increase with

time until the run ended. Indeed, this is what we see in equivalent plots in Babiuc et al. [11] where the

test is applied to various codes implementing various formulations of the Einstein equations. It is the

case, however, that H converges to zero with the appropriate order of convergence as resolution increases,

so we believe that it is correctly calculated, and that the differing behaviour is due to the Bona-Massó
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Figure 5.26: Plots showing six different ways of measuring the accuracy of our numerical solutions to the

backward Gowdy wave test. The scheme used here is the van Leer limiter, the FORCE 1 scheme, the RK2

scheme for the source terms, and a resolution of ρ = 4.

formulation rather than an error in our algorithm or its implementation. Nevertheless, from now on, we

use the L1 norm of the error in γxx to compare the different schemes used.

Method comparison In Figure 5.27 we show a comparison between the FORCE1, FORCE3 and

GFORCE1 schemes as used to evolve the Gowdy test. We used the RK2 scheme for evolving the source

terms. As we would expect from the analysis in §4.2.2, increasing the number of stages used in the

FORCE scheme increases the accuracy of the simulation. However, switching to the GFORCE scheme

instead brings a much better improvement. An improvement to the basic FORCE 1 scheme is brought

about by using the super-bee slope-limiter in place of the van Leer limiter. This is as we would expect

as the wave is entirely smooth with no discontinuities, so any slope-limiting at all actually decreases the

accuracy of the solution. There was very little difference between the results using the RK2 and the Euler

or RK4 schemes. Also, the HLL solver results were very close to those for GFORCE, and increasing the

number of stages on GFORCE did not improve upon the results, and so we do not show them. However,

the best results of all are obtained using the ICN scheme, which manages to evolve the problem nearly

up to time 600 before crashing. In fact, using the GFORCE scheme gives results fairly close to those of

ICN for early times.

Convergence rate We can further demonstrate the convergence rate of the schemes by plotting the

logarithm of the ratio of the L1 norms of the errors at ρ = 2 and ρ = 4, divided by the log of 2. This

gives a plot of the order of convergence of the method, as seen in Figure 5.28. We see that for both

GFORCE and ICN, the order of convergence starts off at around 2, and then fluctuates somewhat as
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Figure 5.28: Order of convergence varying in time, calculated using ρ = 2 and ρ = 4 for the Gowdy wave

test-case with the time-stepping condition as defined in the test description, and with RK2 for the source

evolution.

the accumulated error in the evolution means that we pass outside the domain of convergence of the

scheme. However, the order does stay above 1.8 for most of the first half of the evolution, providing

further evidence that our schemes achieve the expected convergence rate of 2 on smooth solutions.
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Conclusions The Gowdy wave evolution is deliberately designed to test a numerical scheme as there

are three orders of magnitude between the γxx and γyy coefficients, so that a mixing of the components

can lead to inaccurate arithmetic. As finite precision arithmetic is not associative, it could benefit

the accuracy of the implemented algorithm if we were to arrange the flux calculations so as to reduce

arithmetic errors. However, there is no sense in which any one variable can be said to be always larger or

smaller than another, for all possible space-times, so this would be an impossible task. The way that the

flux calculations are written is to calculate each tensor and term of equations (3.39)-(3.44) individually

and then to combine them. This leads to the most readable and easy to debug code, which is a strong

advantage. A brief experiment with optimised code generated by Maple
TM

led to longer run-times, either

due to an increase in expression complexity and hence a decrease in the compiler’s ability to optimise

further, or an increase in cache misses, so this line of thinking was abandoned.

Although the finite-volume approach required more computational time, and produced somewhat

less accurate results than ICN, we still persevere with this approach, since the Gowdy wave test is a

particularly strong test, and may well not be representative of space-times found in black hole and

neutron star interactions. ICN will only cope with smooth space-times, and we believe that we should

investigate the suitability of schemes that can cope with space-times that do not have continuous second

derivatives.

5.4 Conclusions

In this chapter, we have demonstrated that our algorithm can evolve standard test cases stably and

accurately, and that most of the features that we outlined in Chapter 4 are beneficial in reducing errors

in the evolution. In particular, we have demonstrated the following:

• Standard test cases in SRHD are easily and accurately evolved in one dimension, giving results

of similar accuracy to previously published results using more complex and more computationally

expensive schemes (§5.1.1, §5.1.2, and §5.1.3)

• AMR works in one dimension, although it does result in greater run-times, but this is due to

overheads that will become less important in higher dimensions. (§5.1.4)

• No problems are caused by the use of a non-uniform grid in one dimension (§5.1.5)

• The GFORCEk schemes all converge to second order, and increasing the number of stages k reduces

the overall error substantially.

• Evolving 1D test cases on a non-Minkowski metric shows that the introduction of source terms does

not affect the accuracy of the schemes.

121



• AMR works in two dimensions, and demonstrates greater than first-order convergence properties

for various schemes. (§5.2.2)

• The evolution of one dimensional test-cases on two dimensional overlapping grids is successful.

(§5.2.3)

• Evolution on complex overlapping grids, including the use of AMR, gives results which are quali-

tatively comparable with other similar evolutions. (§5.2.4 and §5.2.5)

• Various improvements, designed to help reduce evolution errors, particularly in the velocity, are

partly successful (§5.1.6 and §5.2.7)

In this section we have not shown any major tests in three dimensions. Our validation in three dimensions

will be specific to the application to which we intend to apply our algorithm, and we present the relevant

background and equations in Chapter 7.

As a result of the test cases examined in this chapter, we conclude that the methods are sufficiently

accurate to evolve GRHD problems, and so we look for an application in this area.

We shall not apply our algorithm to any problems which require evolving the metric. Although we

have seen performance similar to other formulations on standard tests, we do not have the necessary

features of gauge evolution or constraint damping which are likely to be needed for physically interesting

problems. However, we have shown that the methods we use are applicable to large systems of equations,

and this is a result in itself.
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Chapter 6

Software development issues

In this chapter we describe some of the technical aspects of the code we have written for this thesis.

We include a short description of Overture, and investigate some performance issues with our code.

6.1 Overture

Overture is a framework for developing software to solve PDEs on overlapping grids. It is developed

by Henshaw, Quinlan, and Chand [57], and is written in C++ and FORTRAN, and hence can be compiled

and run on any Linux based operating system. It is open source, which allows for careful examination

of the code when results are not quite as expected, and for the addition of any features not already

implemented.

Overture allows for the generation of arbitrary grids and the interpolation of numerical solutions

between them. Although Overture does not provide any numerical methods itself, it does provide all the

information, such as local derivatives of the grid mappings, required to construct codes which can apply

any numerical method required. Furthermore, it is parallelised.

Although extensive documentation is available for Overture, much of it is designed for researchers

developing codes which use Overture. We present a short overview of how the various Overture classes

that we have used fit together.

6.1.1 Distributed arrays

Overture uses the A++/P++ set of classes, developed by Quinlan (see relevant documentation at [57])

to distribute data over multiple processors. These allow for the creation of multi-dimensional arrays

of integer, single precision, or double precision values. The arrays can be built on one processor only,

or distributed across all or some of the processors being used. The data is distributed as evenly as
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possible, and allows for the use of ghost values, where some data is duplicated in order to allow numerical

methods to access all the data they require without having to fetch data from other processors, requiring

time-consuming communication.

Although the A++/P++ classes incorporate methods to access data given appropriate indexes, and also

operators such as +,−,×, / as well as sin, cos and similar functions which can be applied to whole arrays

at once, these methods can be somewhat slow as they may involve communication between processors

even when it is not necessary. However, A++/P++ also permits direct memory access by way of pointers,

although this requires some care to ensure that we do not attempt to access values that are not present

on the current processor.

A++/P++ uses column-major ordering1 of its elements. Then, it is usually assumed in Overture

that the coordinate indexes are the first three indexes of the array, and any solution variables stored

in the array are indexed by the fourth and subsequent component indexes. This is somewhat less than

optimal for our purposes, however, as we frequently require to treat each data-point separately, and this

requires reading values from points widely separated in memory, resulting in many cache misses and the

subsequent speed penalty. It would be possible to change this within Overture if it were found to be

appropriate.

An array’s data can be split across any number of processors in any way, although the default way

is to ensure a load-balanced approach. An advantage of using the default inter-processor distribution is

that the data for the grid geometry, also being split across the processors, is distributed in the same way.

Therefore, the grid geometry for a particular cell is on the same processor as the numerical solution data,

thus improving potential speed-up.

6.1.2 Grids

The main classes that Overture provides are those concerned with computational grids. The basic

grid is a MappedGrid, several of which can be collected into a GridCollection, which can then be

incorporated into a CompositeGrid. The CompositeGrid includes details of how various MappedGrids

are combined, with information about how they interpolate from each other, and to which AMR level

they belong.

The basic type of class used to define a grid is a Mapping. There are several types of Mapping included

in Overture, including analytically defined mappings such as SphereMappings and BoxMappings, as well

as Mappings that are designed to be applied to other Mappings such as the StretchMapping and the

1An array A of dimension 3 × 3 is stored in memory in the order A(0,0), A(0,1), A(0,2), A(1,0), ... in row-major

ordering and in the order A(0,0), A(1,0), A(2,0), A(0,1), ... in column-major ordering. C uses row-major ordering

and FORTRAN uses column-major ordering. It is therefore necessary to be careful with array access when using software

written in both C and FORTRAN.
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MatrixTransform. These all provide a mapping of the region [0, 1]m into R
n where we usually have

m = n = number of dimensions. The Mapping can also provide various information such as the derivatives

of the analytical mapping, including all the information we need for the coordinate transformation given

by (4.54).

The class MappedGrid is then derived from a specific Mapping and adds information specific to a grid,

such as the various boundary conditions and number of cells in each direction. Several MappedGrids can

then be made into a CompositeGrid. Once the overlapping grid generator ogen has been applied to the

CompositeGrid, the latter includes all the information required about how the grids will interact with

each other. Refined grids as required for AMR are incorporated into a CompositeGrid with a parameter

specifying to which level they belong.

6.2 Optimisation and Performance

In any large parallel computer code, it is important to ensure that the best performance possible is

being extracted from the hardware. Various tools are available for profiling codes in order to see where

most processing time is being consumed. In this project, much use has been made of Valgrind [79], which

has the facility to pinpoint the specific lines of source code that are taking the most time.

We note that “Premature optimisation is the root of all evil” [64], but in this case it was necessary

to optimize the code before it was fully tested in order that the tests themselves might be completed

sufficiently quickly.

Some initial optimizations included using a few lines of code specially written to invert a symmetric

3-by-3 matrix, instead of relying on a more versatile, but more computationally expensive, library rou-

tine. It was also necessary to reduce the amount of inter-processor communication being done by the

A++/P++ library. This was done using direct memory-access pointers made available by the library rather

than other more robust, but slower, routines to access elements of an array of variables distributed across

many processors. Also, we confirmed that each processor could, for example, perform a flux-evolution

update on its local grid segment, without communication with another processor. This improved the

parallel efficiency of the code. For example, before performing a flux update calculation, we first compute

all relevant derivatives of the grid mappings, which may require inter-process communication, so that the

geometry information is then stored on the processor where it will be required for the flux calculation so

that no further inter-processor communication is required for the flux-update.

A small amount of improvement could perhaps have been made if the A++/P++ arrays had been stored

in memory using row-major ordering rather than column-major ordering since extracting the variables

associated with a single grid points required accessing widely separated memory locations, with the
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Procedure Time (s) Proportion of one

time-step

Initial grid generation 17.63 79.0%

Initial overlap calculation 7.90 35.4%

Initial data 4.75 21.3%

Solution output 0.78 3.5%

Single time-step 22.32 100%

Calculate ∆t 2.84 12.7%

Advance solution - total time 19.48 87.3%

Boundary conditions 2.39 10.7%

RK2 update 0.95 4.3%

Flux update 14.77 66.2%

Interpolate 1.34 6.0%

Table 6.1: Profiling run for a three-dimensional spherical grid with medium resolution. The run was done

on two nodes of the super-computer, using four CPUs per node. Caching and communication overheads

may therefore be significant. Note that the first few operations are not performed every time-step, and so

their times are not included in the total single time-step.

substantial numbers of cache-misses that implies. Profiling finally suggested that there were no obvious

places to reduce run-time, and at this point more effort was put into perfecting the algorithm, rather

than speeding up its implementation.

We used the Intel R© C/C++ compiler for our final runs, using the compile parameters:

− O3 − ipo − xhost − fp− model precise − fp− model source,

these having been chosen to provide best speed and accuracy. We note that, presumably due to expression

rearrangements performed by the optimizer, the -fp-model options were necessary to retain the numerical

accuracy of no optimization, even when using -O3 optimization. This was evident in some tests of

recovering primitive variables from conserved variables for velocities close to the speed of light. We have

used double precision arithmetic throughout, as it is likely that the numerical methods, particularly the

primitive variable recovery, will need this level of accuracy.

We performed a profiling run of our code, to see where most of the computational time was spent.

This run was done for the base model UB1 run on a medium resolution grid as described in Table 7.2.

The timings are shown in Table 6.1.

We see that the flux calculations are by far the most computationally expensive part of the code. The
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Nodes × Processors per node Time(s) Speed-up Efficiency

1 × 1 31254.9 1.00 1

1 × 2 17441.9 1.79 0.896

2 × 1 17262.6 1.81 0.905

1 × 4 11247.6 2.78 0.695

2 × 2 10257.8 3.05 0.762

2 × 4 7130.31 4.383 0.550

Table 6.2: Speed-up statistics for the code. This was a three-dimensional run using the low resolution

grid over 1000 time steps. The speed-up is the ratio of the time taken to run the code in parallel to that

taken for a serial run. The efficiency is the speed-up divided by the number of processors.

next most expensive part is the calculation of the time-step which requires a change of coordinate basis

to get the correct time-step for a curvi-linear grid, which accounts for its relatively large contribution to

the CPU time.

The interpolation is also fairly time consuming. This is due to the fact that we use fifth-order Lagrange

interpolation. This requires information from 125 cells per interpolation point. Due to the column-major

ordering used by Overture, there will be substantial caching overheads involved here. Also, we have

interpolated the metric values as well as the fluid values, so there is some unnecessary overhead involved

here. The RK2 update is entirely local to each cell, and requires no geometric data to evaluate, and so

takes the least time.

We also tested our code to ascertain how well it had been parallelised. We ran exactly the same model

parameters in each case on various combinations of processors. The super-computer setup2 is such that

there are 4 CPUs per node, with 8GB of RAM per node, so that a reasonably sized problem could be run

even on only 1 processor, since it had 8GB available to it. We ran our simulation for 1000 time steps,

and recorded the total time for the program to run. The timings can be seen in Table 6.2.

The speed-up from one to two processes is encouraging, and suggests a reasonable level of paralleli-

sation. However, the subsequent speed-up for four processes on one node is less so. It is likely that this

is due to the super-computer’s architecture. Each node consists of two dual-core processors, so that,

when we go from one to two processes, each process sits on a different processor, with separate caches.

However, four processes will require that two processes sit on each processor, which will result in less per-

formance gain due to clashes between the cache requirements of each core. This is particularly noticeable

when comparing four processes on one node (efficiency 0.695), and two processes on each of two nodes

2We used the Darwin supercomputer of the University of Cambridge High Performance Computing Service. Details of

its architecture can be found at http://www.hpc.cam.ac.uk/services/darwin.html.
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(efficiency 0.762), so that the caching problems outweigh any communication overhead between nodes.

However, for the grid resolutions we have used, the efficiencies and timings demonstrated here are

sufficient to allow us to perform the validation and studies we need in an acceptable length of time, and

therefore we do not seek any further optimizations.

6.3 AMR

Our AMR routines work in parallel, and maintain the convergence and accuracy shown in §5.2.2.

However, the efficiency is not sufficient to give any appreciable performance gain over running on a

uni-grid resolution. We therefore have not used AMR in any of our subsequent testing.

The times taken for a run including AMR are shown in Table 6.3. These were generated for a

simulation of UB1 on a grid of slightly lower resolution than the lowest given in Table 7.2, with n = 30,

and with a single level of refinement factor two, making it equivalent to the high-resolution grid for

n = 60. The code was run on two nodes with four processes running on each, so that caching overheads

are probably significant here.

For the time-step that we used for these timings, the coarsest level contained 470 862 cells and the

refined level contained 988 828 cells. This would suggest that advancing the refined level would take

approximately
470682

2 × 988828 + 470862
= 80.8% (6.1)

of the time, which is very close to the actual value found, suggesting that AMR does not add overhead

disproportionately to different refinement levels.

We see that the interpolation at level 1 is very time consuming, almost as much as the flux update.

The interpolation contributes much more to the CPU time than for a uni-grid run; this is presumably

due to the extra effort required in checking the interpolation points for refined grid levels.
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Procedure Time (s) Proportion of one

time-step

Initial grid generation 3.30 8.0%

Initial overlap calculation 1.96 4.7%

Initial data 1.42 3.4%

Solution output 1.08 2.6%

AMR regrid 31.57 76.3%

Single time-step 41.36 100%

Calculate ∆t 1.81 4.4%

Level 0 - total time 6.07 14.7%

Boundary conditions 0.91 2.2%

RK2 update 0.35 0.8%

Flux update 3.93 9.5%

Interpolate level 0 0.50 1.2%

Store level 1 boundary cells 0.38 0.9%

Level 1 - total time 33.21 80.3%

Boundary conditions 0.15 0.4%

RK2 update 1.16 2.8%

Flux update 18.23 44.1%

Interpolate level 1 13.67 33.1%

Interpolate level 0 cells from level 1 0.27 0.7%

Table 6.3: Profiling statistics for a three-dimensional run including AMR. The first few operations are

not performed every time-step and so their times are not included in that for a single step. Also, although

we do two RK2 updates per level, these are all included in a single time, and both level 1 sub-steps are

included in the level 1 update time.

6.4 Conclusions

In this chapter we have seen some of the issues involved with implementing a substantial numerical

algorithm, and outlined the way in which this has been handled by Overture. The complexity of such

an algorithm requires a lot of time to be spent in its implementation, and the issues of arbitrary grid

geometries, overlapping grids, and parallelisation are particularly complex. Therefore, the use of Overture

as a base has saved a substantial amount of time in moving from the algorithm to its implementation.
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Further, we have outlined some issues of optimization and performance. Although we have managed

to produce a code that produces the results we needed sufficiently quickly, there are still some concerns

over computational efficiency, particularly with regard to parallelisation.
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Chapter 7

Bondi-Hoyle-Lyttleton Accretion

We have designed our algorithm to evolve both a fluid and the metric using the same numerical

methods. However, our tests show that the scheme and formulation used to evolve the metric are not

particularly well-suited to this, being somewhat less accurate than some other commonly used formula-

tions. We therefore restrict our attention to evolving a general relativistic fluid on a stationary metric

background.

The specific problem we have chosen to consider is that of Bondi-Hoyle-Lyttleton accretion. In this

chapter we outline the background of this problem, work done previously in this area, and some tests of

our code to ensure that it can produce good results for this problem.

7.1 Bondi-Hoyle-Lyttleton Accretion

Although we have analytic solutions of Einstein’s equations such as the Kerr black hole, black holes

will never exist in a complete vacuum in the physical universe. It is more likely that they will either

be close to one or more stars or that they will be moving through an interstellar gas. It is this latter

case that is known as Bondi-Hoyle-Lyttleton (BHL) accretion. BHL accretion usually refers to the more

general case of supersonic flow of a gas onto a gravitating accretor, but we specialise to a black hole for

our purposes.

The starting assumptions for BHL accretion, then, are that a stationary (fixed centre) black hole is

subject to a wind composed of a fluid coming from infinity at Mach M∞ = v∞/c∞ , where c∞ is the

sound speed in the fluid and v∞ is the fluid speed, both measured at a large distance upstream of the

black hole. The black hole has mass M and spin a, and the spin axis may be at any angle to the wind

direction. The gas may be of any composition, but we restrict ourselves to the cases of an ideal gas,

with adiabatic index Γ, and a stiff fluid. We note that by a simple transformation, this is equivalent to
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a black hole moving at some constant velocity though a stationary gaseous medium. We assume that

the accretion of the fluid onto the black hole does not change its mass significantly, i.e. we are using the

test-fluid approximation.

7.1.1 Relativistic BHL Accretion

Some axisymmetric simulations of accretion onto a moving black hole were performed by Petrich et al. [82],

although they used finite-difference methods with artificial viscosity. Following them, there is a series of

papers on numerical calculations of accretion rates by Font, Ibáñez, and Papadopoulos [40, 41, 42]. The

most general case studied was that of wind accretion onto a spinning Kerr black hole, using a range of

Mach numbers, adiabatic indices, and spin rates. However, these were done either assuming axisymmetry

or in the equatorial plane (thin disk approximation), although this latter “dimensional simplification still

captures the most demanding aspect of the Kerr background, which is encoded in the large azimuthal

shift vector near the horizon.” [42]. The reason for this was limited computational resources, which at

the time would not allow high-resolution three-dimensional calculations to be performed in a reasonable

time.

Further, the first two of these papers [40, 41] did not use excision, as such. Rather they used Boyer-

Lindquist coordinates (3.68), which have a coordinate singularity at the horizon. They made use of a

tortoise coordinate r∗ in the radial direction such that [42]

dr∗ =
r2 + a2

r2 + a2 − 2Mr
dr, (7.1)

so that on the computational grid, the outer event horizon is situated at r∗ = −∞. This defines a grid

that becomes ever more refined as it approaches the horizon, without ever reaching it. Any adverse effects

caused by not performing the excision within the horizon are thus put at a sufficiently large distance (in

computational space) that their effect on the numerical solution are minimised. The third paper in the

series [42], however, did use Kerr-Schild coordinates, and so used excision inside the horizon, although

since the setup was two-dimensional only, this was easily achieved by using plane-polar coordinates and

enforcing suitable outgoing boundary conditions at some non-zero radius.

7.1.2 Newtonian BHL accretion

Another body of work on wind accretion is due to Ruffert [92, 93, 94, 95]. These look at Newtonian

BHL accretion onto an absorbing compact object. This is similar in nature to the situation in which we

have a black hole, but we expect that relativistic effects will affect the results, possibly giving a stabilising

effect. Ruffert’s simulations were done in three dimensions for a range of accretor sizes and incident wind

directions, using a nest of Cartesian grids at various resolutions (fixed mesh refinement).
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Ruffert’s aim was to study the stability of the flows by introducing perturbations into the wind (see [94]

and [95]), and some preliminary suggestions were made, particularly in [93]. These were that instabilities

were present mainly for flow at high Mach numbers (M∞ & 3) and for small accretor size (equivalent to

low asymptotic velocity v∞ for our purposes).

We have found that our algorithm does not deal well with the very low wind velocities required to

probe the regions of parameter space in which instabilities might be expected to occur. This may be to do

with the (necessary) use of upwind boundary conditions at a finite radius, but we have not investigated

further.

7.1.3 Applications of BHL accretion

There are several applications of BHL accretion to realistic astrophysical situations, and some are

outlined in a review by Edgar [34]. The most relevant application is that of extreme mass ratio inspirals

(EMRI). These are systems where a stellar mass black hole is orbiting a super-massive black hole (SMBH).

The smaller black hole will gradually spiral in towards the larger black hole as a result of gravitational

wave emission. However, it is likely that the SMBH will be surrounded by an accretion disk or torus of

gas or dust, and if the smaller black hole is orbiting within this, then it will experience a drag due to

accretion of the disk material, which will affect its inspiral path.

Barausse and Rezzolla [15] showed that the hydrodynamic drag was of less importance than the

loss of energy due to gravitational wave emission (radiation reaction). Further, the main effect in the

hydrodynamical drag was that of the gravitational field generated by the fluid’s wake. However, it could

still be of interest to examine the effect of the drag rate and direction on the black hole.

Another application is that of high-mass X-ray binaries. In this case, a black hole (or some other

compact object), is orbiting a massive star and accreting mass from it. The accreting fluid reaches a very

high temperature due to the high speeds that result, and emits X-rays, which can be detected. In this

case, the interest would be in the effect of the spin of the black hole, or any inhomogeneity of the wind,

on the X-ray luminosity, which could be detected by conventional electromagnetic spectrum telescopes.

7.2 Model Description

As stated above, we use a Kerr-Schild coordinate system for the black hole. The inner excision

boundary is always placed between the outer horizon at r+ and the inner horizon at r−, although its

precise location varies depending on the spin parameter. The outer boundary always lies at 50M .

As initial data for our fluid we use constant density, constant pressure, and constant velocity (in

Kerr-Schild coordinates) over the whole domain, and allow these to evolve to a stationary state. The
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density and pressure are defined so as to give a constant sound speed of c∞ if required (it is not, for

example, required for a stiff fluid where the sound speed is always c = 1). The velocity is normalised as

follows: given a wind direction vector, ni, and a velocity at spatial infinity, v∞, the wind velocity at a

point is defined as

vi =
v∞ni

√

γklnknl
. (7.2)

We also allow for the fluid to have a non-uniform density or velocity upstream of the black hole, following

Ruffert, who defines the density and velocity to be

ρ∞ = ρ0

(

1 − 1

2
tanh

[

2ǫρ
y

RA

])

,

vx∞ = v0

(

1 +
1

2
tanh

[

2ǫv
y

RA

])

, vy∞ = vz∞ = 0 ,

(7.3)

where the accretion radius is defined to be

RA =
2GM

v2
0

, (7.4)

although Font and Ibáñez use a different definition:

ra =
M

v2
∞ + c2

∞
. (7.5)

One would ordinarily use a linear modulation for the density or velocity perturbations but, for sufficiently

large ǫρ or ǫv, this leads to negative velocity or density at large distances from the black hole. Ruffert

therefore uses the tanh variation as it is approximately linear near the origin but tends to ±1 as r → ∞,

and so avoids this problem while maintaining approximately the same problem setup. In our setup, the

pressure is defined such that the sound speed is given by a constant value c∞ upstream.

Following (7.3), therefore, we generalise to the case of a non-flat metric, and our initial density and

velocity are given by

ρ(x) = ρ∞

(

1 − 1

2
tanh

[

2ǫρ
x · p
RA

])

,

vi(x) =
v∞ni

√

γklnknl

(

1 +
1

2
tanh

[

2ǫv
x · p
RA

])

, with RA =
2M

v2
∞

,

(7.6)

where ni gives the wind direction, and p is orthogonal to n, and specifies the direction in which the

perturbation occurs. The vectors n and p are unit vectors defined at spatial infinity, so that the notions

of orthogonality and normalisation are defined in terms of the flat-space Euclidian metric δi
j = ηi

j . We

note that we could allow the density and velocity perturbations to be in different directions, but this

would add significantly to the size of our parameter space, and so we do not follow this variation.
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7.3 Numerical parameters

In this section we detail the specific numerical schemes that we use, and also the grid structure that

we use for the problems described above.

7.3.1 Evolution methods

From our previous validation experiments, and from a desire to use as little computing power as

possible, we have decided to use the GFORCE1 scheme for flux evaluation, using piecewise-linear recon-

struction, with the van Leer slope-limiter. We use the RK2 scheme for evaluating source terms, and a

CFL parameter of 0.95. The dimensionally split scheme is used as it is far less computationally expensive,

and has been found to be stable for our problems. We also use the correct metric averaging approach

from §4.7, the free-streaming correction §4.6.3, and we limit on the primitive variables. None of the other

corrections referred to in §5.1.6 and §5.2.7 have been used, as they tend to take a substantial amount of

computational time for very little improvement.

7.3.2 Grid setup

There are several possibilities for creating a spherical grid with no polar singularities. The most well-

known are the Yin-Yang grid [62], where two identical grids mesh to form the entire sphere and the cubed

sphere, where six identical patches are used to cover the sphere, arranged like the sides of a cube. The

latter is the approach used by Zink et al. [118] and adapted to cover a full spherical domain if necessary

by the inclusion of a central seventh grid.

However, for our simulations, we have used a scheme as follows to remove the polar singularity:

• Take two identical hollow spheres

• Remove their polar singularities by restricting the latitudinal coordinate to θ ∈ [0.18π, 0.82π]

• Rotate one sphere through π/2 about a line perpendicular to its axis.

• Combine the two spheres and form an overlapping grid.

The resulting grid is shown in Figure 7.1.

As stated in §4.10.1, we have defined our grid so that the grid cells are always approximately cubic.

To this end, we have used a stretching transformation that makes the grid spacing in the radial direction

proportional to the radius. Further, the numbers of cells in the φ (longitudinal) and θ (latitudinal)

directions are determined so that the cells are approximately cubic. The numbers of cells in the φ and θ
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Figure 7.1: Overlapping grid structure used for three-dimensional simulations. It is formed from two

hollow spheres. The blue sphere is not wholly present as parts of it have been removed where it covers the

same regions as the red sphere.

directions are defined as

φcells = 1 + 4
⌈π

4
rinnern

⌉

, θcells = 1 + 2
⌈

(θmax − θmin)
π

4
rinnern

⌉

(7.7)

where n is a number characterising the resolution of the grid, and rinner is the excision radius. The

number of radial cells is then defined as

rcells =
⌈n

2
krinner

⌉

, where k = ln

(

router

rinner

)

, (7.8)

and the transformation of the radial coordinate is defined as

r∗ = rinner exp

(

k
r − rinner

router − rinner

)

. (7.9)

This is a transformation from [rinner, router] to itself, and dr∗

dr ∝ r∗ as required.

Although the resolution parameter n does not have a trivial relationship to the number of cells in the

grid, the setup remains such that doubling n will multiply by eight the number of cells in the grid overall.

The relation with the minimum grid-cell size is not as trivial, however, due to the non-linear mapping

from computational space onto physical space.

Although the outer horizon of a spinning black hole is not spherical, we always use a spherical

excision boundary. The ellipsoidal outer horizon has a circular cross-section in the equatorial plane, with

(Cartesian) radius
√

x2 + y2 + z2 =

√

2 + 2
√

1 − a2 , (7.10)

and the minor axis of the horizon lies on the z-axis, and corresponds to a radius

√

x2 + y2 + z2 = 1 +
√

1 − a2 . (7.11)
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Spin a 0 0.5 0.9

r+(θ = 0, π) 2 1.866 1.436

r+(θ = π/2) 2 1.932 1.695

Excision radius 1.4 1.477 1.307

Table 7.1: Set of radii at which we perform spherical excision, ensuring that the excision is inside the

outer horizon.

We therefore ensure that our spherical excision boundary is within the latter radius, so that the whole

of the region (up to a large spatial distance) outside the outer horizon is covered by the computational

grid. The excision radii for the three spins we use are given in Table 7.1. The scheme used to calculate

them also ensures that the two ghost cells inside the excision boundary still lie outside the inner horizon.

Our reason for using this particular grid setup is that within Overture there is no explicit mapping

for a cubed sphere or the Yin-Yang grid. However, one could be written and incorporated into our

implementation using the analytic mappings available in the literature [62, 118]. Alternatively, Overture

allows for the definition of a grid from its vertices alone, and this could be more easily implemented. This

does tend to lead to lower accuracy, however, as the mapping derivatives have then to be calculated using

finite differences, rather than from an analytic mapping. These calculations are also more computationally

expensive than the analytic mappings. The parameters of the grids we have used for our results are shown

in Table 7.2. There are three resolutions, which we will refer to as low, medium, or high, corresponding

to n = 35, 50, 60 respectively.
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Resolution low medium high

n 35 50 60

θ cells 37 53 63

φ cells 113 161 193

r cells 69 98 118

cells per grid 288 489 836 234 1 392 768

total cells 576 978 1 672 468 2 785 536

interpolation points 62 928 120 736 171 808

∆θ 5.58×10−2 3.86×10−2 3.24×10−2

Minimum ∆φ at r = 2M 6.01×10−2 4.21×10−2 3.50×10−2

Maximum ∆φ at r = 2M 1.12×10−1 7.84×10−2 6.56×10−2

Minimum ∆r 5.87×10−2 4.08×10−2 3.37×10−2

Maximum ∆r 2.77 1.96 1.63

Table 7.2: Grid cell statistics for the resolutions used. Points removed by the overlapping grid routines

are still included in these counts. These statistics are given for the case when a = 0. In this case, the

inner grid radius is 1.4M , and the outer grid radius is 50M . For spins a 6= 0, the inner radius changes

as in Table 7.1, thereby changing the radial spacing, but the numbers of cells in all dimensions and the

angular resolutions remain fixed.

7.4 Post-processing of results

After running the simulations, we must process them in order to extract useful conclusions from them

and to compare different models in a quantitative way.

7.4.1 Mass and momentum accretion

In order to calculate the mass accretion rate Ṁ from our numerical output, we note that [82]

∂µ(
√−gJµ) =

√−g∇µJµ = 0 ,

where Jµ = ρuµ is the conserved four current, and
√−g = α

√
γ .

(7.12)

Then, the mass M inside a volume V is given by

M =

∫

V

√
γρWdV =

∫

V

√−gJ0dV since u0 = W/α ,

so that Ṁ =

∫

V

∂

∂x0
(
√

γD) dV =

∫

V

∂

∂x0
(
√−gJ0) dV

=

∫

V

√−g»»
»»:

0∇µJµ − ∂i(
√−gJ i) dV (7.13)
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= −
∫

S

√−gρui dSi

= −
∫

S

α
√

γρW

(

vi − βi

α

)

dSi .

In order to evaluate this numerically, we interpolate the integrand at evenly spaced points in the θ and

φ coordinates around a sphere with some radius r and sum them weighted by the infinitesimal area

dSi = γijn
jdA at those points. We use 150 points in the θ (latitudinal) direction and 300 points in the

φ (longitudinal) direction. This is sufficient as we show in §7.5.2.

We carry out the calculation in Kerr-Schild coordinates, as opposed to Font and Ibáñez, who calculated

in Boyer-Lindquist coordinates. As the result is a scalar, it should be the same in both coordinate systems.

In [83], however, the density ρ in the above is replaced by n =
√

ρ, the baryon density, and so for

comparisons with their exact solution, we use this slightly altered expression when dealing with a stiff

fluid.

We also approximate the rate of accretion of linear momentum onto the black hole in the manner

suggested by Petrich et al. [82]:

ṗi = −
∫

∂V

T ij√−g dSj . (7.14)

This is only an approximation since it neglects long-range gravitational effects, and also needs to be

evaluated at a large radius in flat space-time, whereas we evaluate it at the same radius as the mass

accretion rate.

7.4.2 Velocities

In order to provide a suitable comparison with previous work, we transform the velocities we obtain

into those in Boyer-Lindquist coordinates, using the transformation (3.72). This is only possible outside

the horizon of the black hole, and so results derived from these cannot extend inside the black hole. We

can calculate the total velocity v =
√

γijvivj and, in some cases, locate the stagnation point of the flow,

which lies downstream of the black hole.

We can also extract some more information about the flow structure by calculating streamlines. These

are found from a single snapshot of the flow, and so would not be streamlines in the strict sense, except

that, since we reach steady state, the flow has no time dependence. When plotting streamlines, we use

the vector

w =

√

γijvivj

δijvivj
(vx, vy, vz) , (7.15)

which satisfies

w2 = δijw
iwj = γijv

ivj = v2, (7.16)
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and then requires no further alterations to Overture’s streamline plotter, which is designed for Newtonian

flows.

7.4.3 Shock angles

In §8.2 we shall see that under some circumstances, including the ones we investigate, a shock-cone

forms. Far from the black hole, the sides of the cone become straight, and we use this part of the flow to

calculate the opening angle of the cone.

In order to find the shock location, we plot the velocity
√

γijvivj in Boyer-Lindquist coordinates

around circles centred on the origin, at various radii. We can then take the centre of the jump in velocity

as the shock location, since conserved schemes preserve the shock location (see §4.2). The circles are in

the plane containing the wind direction and the y-axis (or the perturbation direction, if different). We

show one of these plots in Figure 7.2, where we see that, although the shock is spread over about 11◦,

the centre of the shock is fairly easy to find. In particular, we note that the centre of the shock in the

angular direction corresponds to the centre of the shock in the velocity component, as we would expect

from the conservation property of finite-volume methods. The data points are interpolated; however,

we interpolate to the same number of points as there are grid cells, so there is a close correspondence

between the data points and the actual values computed.

However, since the shock-cone is not centred at the origin, we then have to calculate the actual angle

of the shock with the wind direction as

θ = tan−1

(

r1 sin θ1 − r2 sin θ2

r1 cos θ1 − r2 cos θ2

)

, (7.17)

where (r1, θ1) and (r2, θ2) are two points on the shock. This formula is derived to find the angle of the

line passing through these two points to the horizontal axis. The radii used here should be sufficiently

large that the shock has become straight. In practice, we use r1 = 20M and r2 = 30M . We calculate the

angle of the shock-cone both above and below the axis. This is illustrated in Figure 8.1 in Chapter 8.
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Figure 7.2: Example of how to calculate the shock angle from a plot of velocity. The upper and lower

horizontal lines mark the upper and lower bounds of the shock, the central horizontal line is midway

between these, and the shock location is taken to be where this crosses the numerical solution, at 45◦ in

this case. The plot is of v against angle around a circle at radius r = 30M for the model UB1 (see

Chapter 8).

7.4.4 Observable effects

In practice, it is hard to resolve the fluid flow of real black hole systems at anywhere near the

required resolution to distinguish the above effects, using current technology. However, two effects may

be observable:

Firstly, the high densities and temperatures which occur near the black hole horizon lead to very

high fluid temperatures, and therefore to the fluid emitting X-rays, which can be detected using current

technology. An approximate procedure for calculating the X-ray luminosity can be found in [101]. An

extension to include relativistic effects can be found in [100]. Since this makes a significant difference, of

around 50%, to the luminosity, and would take substantial effort to calculate, including a generalisation

of the argument in [100] to non-axisymmetric effects, we did not perform the calculation, but it could be

performed in theory using the results we have obtained.

Secondly, when applied to the problem of EMRI, outlined in §7.1.3, the different drag rates could

affect the rate of inspiral, although the overall impact will be low. This inspiral rate could be detected,

although gravitational wave detectors may be required to provide accurate data.
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7.5 Validation of numerical schemes

Although we have validated our algorithm in simple 1D cases, and also in 2D cases, we have not

yet shown that our setup is robust enough to evolve three-dimensional flows for very long periods of

time accurately. Further, there may be boundary condition issues, both at the excision boundary and at

spatial infinity that need to be rectified. We therefore seek to test our implemented algorithm against

known results in this area.

7.5.1 Exact solutions

Analytical results exist for some special cases of wind accretion. The first involves a perfect fluid

with adiabatic index Γ. The special case in which M∞ = v∞ = 0 is known as Bondi-accretion in the

non-relativistic case, and the equivalent relativistic result is that the rate of mass accretion is: [101]

Ṁ = 4πλsM
2ρ∞c−3

∞ ,

where c∞ =

√

p∞Γ

ρ∞
and λs =

(

1

2

)(Γ+1)/2(Γ−1) (

5 − 3Γ

4

)−(5−3Γ)/2(Γ−1)

.

(7.18)

Note that this result is for a non-rotating black hole, and applies only when equilibrium has been estab-

lished, which is why there is no radial dependence.

Secondly, there is a surprisingly general solution for wind accretion, derived by Petrich, Shapiro, and

Teukolsky [83]. Here, an exact, stationary solution for the accretion of a stiff fluid (see §3.3.1) onto a

Kerr black hole in Boyer-Lindquist coordinates is presented. The solution is given for any spin, and for

any direction of incidence of the wind, by the components of the four-velocity uµ and the density n as

follows:

n · ut = −u0
∞,

n · ur = − (r2
+ + a2)

u0
∞
∆

+ u∞ cos θ cos θ0 + u∞ℜ
(

[1 + ia(r − M + ia)/∆]

× sin θ sin θ0 ei(φ−φ0−χ)
)

,

n · uθ = −uθ(r − M) sin θ cos θ0 + u∞ℜ[(r − M + ia) cos θ sin θ0 ei(φ−φ0−χ)],

n · uφ = −u∞ℑ[(r − M + ia) sin θ sin θ0 ei(φ−φ0−χ)],

n2 =
[

(r2 + a2)u0
∞ − a · (n · uφ)

]2
/(Σ∆) − [(nuφ) − a sin2 θ(u0

∞)]2/(Σ sin2 θ)

− (∆/Σ)(nur)
2 − (nuθ)

2/Σ,

(7.19)

where

χ =
1

2
√

a(M2 − a2)
ln

(

r − r−
r − r+

)

and Σ = r2 + a2 cos2 θ . (7.20)
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The incident direction angles θ0 and φ0 are extracted from the vector vi, being the polar angles corre-

sponding to the wind direction, and ∆ is defined in equation (3.68).

The mass accretion rate is then found to be

Ṅ =
4π(r2

+ + a2)n∞
√

1 − v2
∞

, (7.21)

and the stagnation point of the fluid is at

r = M

[

1 +

√

1 +
4

v∞

]

(7.22)

for the case of zero spin.

Even more remarkably, a similar solution for the (charged) Kerr-Newman black hole was presented

by Babichev et al. [10]. We do not follow this extension here, but note that that reference makes the

definition of the basic fluid variables in terms of the potential somewhat clearer.

This solution is not quite as we would like, however, as it uses Boyer-Lindquist coordinates which are

singular at the horizon. We therefore use the coordinate transformation given by (3.72) to transform the

velocity to the Kerr-Schild coordinate system that we use. The transformation is implemented in the

code itself as the final expressions involved are too complex for Maple
TM

to handle easily. This is not a

problem in terms of computational expense, however, as the calculation is only performed for the initial

conditions.

7.5.2 Validation results

We now present the results of applying our algorithm to the exact solution of Petrich et al. presented

above. When taking cross sections of the solutions, we do so along the x-axis, since we have the wind

coming in from x = −∞ by default. We do not plot actual values of the solution, however, but interpolate

800 equally spaced points between x = ±50M . Therefore, our plots show the correct shape of our

evolved solution, but not exact numerical values. We note that for the low resolution grid (see Table 7.2),

100M/∆rmin ≈ 1700, so this is certainly not too many points to use for the interpolation, at least near

the horizon.

Evolving the solution of Petrich et al. will test all aspects of our algorithm, as it requires the capturing

of effects that do not have spherical or Cartesian symmetry, so that all flux components are tested, along

with our implementation of evolution on curvilinear grids. The suitability of both the inner and outer

boundary conditions will also be tested.

Unless otherwise stated, the following tests are all carried out using a low resolution grid (see Table

7.2) with an inner boundary at r = M and an outer boundary at r = 50M . We use a fluid velocity at

infinity of v∞ = 0.6, so as to compare to Petrich et al.’s plot.
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Figure 7.3: The exact solution of Petrich et al. [83] is used as initial data for the simulation and evolved

to time t = 200M . We plot the difference between the exact solution and the evolved solution at this time.

We see that the solutions are very close, except near to the excision boundary.

Our first test of the algorithm is to begin with the exact solution and to evolve it for some time. In

Figure 7.3 we show a comparison of the simulated solution with the exact solution.

The density is within about 0.2% of the exact solution outside r = 5M and within 2% outside the

horizon at r = 2M . The x-velocity is everywhere within about 0.015 of the exact solution. We also

compare the mass accretion rates for the evolved exact solution with the analytic value, and this is shown

in Figure 7.4. We see that the accretion rate stabilises slightly above the exact solution. However, the

limiting value is within 1.2% of the exact solution.

We now perform the same evolution with the constant density and velocity initial data that we intend

to use for later problems. A comparison of the exact and numerical solutions is shown in Figure 7.5. The

differences between the exact solution and the numerical solution is shown in Figure 7.6. We see that

although the solutions appear fairly close except near the outer boundaries, the relative difference between

the exact and numerical solutions are somewhat larger than those from evolving the exact solution as

initial data.

The mass accretion rate, shown in Figure 7.7, stabilises to a constant limit after a time of about

130M . The limit is again slightly in excess of the analytic value, exceeding it by about 4.3%.

We have repeated these plots for different resolutions with results as in Table 7.3, and we observe that

the numerical solution does not converge to the analytic solution. We have eliminated some possibilities

for this discrepancy as follows:

1. Generating the exact solution using our numerical code and then calculating the mass accretion

rate from that yields a value within 10−4 % of the exact value. The low resolution of the grid is

therefore not an issue, and we are calculating the mass accretion rate correctly.
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Figure 7.4: Mass accretion rate resulting from evolving Petrich et al.’s exact solution to time t = 200M ,

evaluated at radius r = 5M . The solid line shows the exact solution, and the crosses the numerical

solution.
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Figure 7.5: Comparison of the numerical and exact solutions for log ρ and vx. The numerical solution is

given by the blue +s and the exact solution is given by the green ∇s.

2. Varying the radius at which we calculate the mass accretion rate allows for some variation, as shown

in Table 7.3. However, they do not vary sufficiently to encompass the exact solution.

3. Varying the outer radius of the grid does not alter the limiting value significantly.
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Figure 7.6: A stiff fluid with an initial state of ρ = 1 and
√

vivi = 0.6 is evolved to time t = 197M . We

plot the difference between the exact and evolved solutions at this time.
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Figure 7.7: Mass accretion rate resulting from evolving constant intial conditions to time t = 200M ,

evaluated at radius r = 5M . The solid line shows the exact solution, and the +s the numerical solution.

Further, plotting
√

v2/u0 in Boyer-Lindquist coordinates for a high resolution run gives a plot visually

very close to that given in [83], as shown in Figure 7.8.

Applying our code to a stiff fluid accretion onto a black hole with spin a = 0.5 results in the mass

accretion rate shown in Figure 7.9. We again see that the limiting value resulting from the evolved

solution is slightly in excess of the analytic solution, this time by about 4.1%.
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Resolution Radius Ṁnum/Ṁexact

n = 35

2.50 1.029

3.00 1.033

3.80 1.037

5.00 1.043

6.00 1.043

n = 50

2.50 1.028

3.00 1.031

3.80 1.033

5.00 1.036

6.00 1.037

n = 60

2.50 1.028

3.00 1.030

3.80 1.032

5.00 1.034

6.00 1.035

Table 7.3: Final steady state accretion rates for various resolutions and extraction radii. The mass

accretion rates are calculated at a time T = 200M , where the solution has settled down to a steady state

for all simulations.
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Figure 7.8: Contours of
√

v2/u0 in Boyer-Lindquist coordinates of the accretion of a stiff fluid onto a

non-rotating black hole with v∞ = 0.6. The high resolution grid was used (with inner radius r = M),

and the simulation ran to a time t = 400M . The contour levels are at 0.08, 0.17, 0.26, 0.35, with figure

limits at ±7M , the same as in the plot in [83]. The stream-lines are calculated using velocities in Boyer-

Lindquist coordinates, which have a coordinate singularity at the horizon, which is why the streamlines

do not continue to the excision boundary. The grid lines for the z = 0 plane are shown, and the regions

of overlap can be seen.
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Figure 7.9: Variation in time of the mass accretion rate of a stiff fluid with velocity v∞ = 0.6 onto a

Kerr black hole with spin a = 0.5. The analytic solution as derived by Petrich et al. is shown by the line,

and the numerical solution is shown by the +s.
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7.5.3 Conclusions

We have demonstrated that our algorithm is capable of reproducing the exact solution of Pet-

rich et al. to a good accuracy. The fact that the solution converges to a steady state shows that the

appropriate quantities are conserved. It is clear that our outer boundary conditions, although only de-

fined at a finite radius, are sufficiently far away not to affect the solution adversely. Further, the results

have been obtained at a relatively low resolution, which points to the overall accuracy of our method.

Although the mass accretion rate converges with increased resolution, it does not converge to the

exact solution. We suspect that the reason is concerned with the implementation of the outer boundary

conditions for a subsonic flow.

Therefore, we conclude that our numerical methods are robust and accurate, and that the results and

conclusions we present in the next chapter are therefore valid.
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Chapter 8

Numerical study of

Bondi-Hoyle-Lyttleton Accretion

In this chapter we present the results of the simulations of Bondi-Hoyle-Lyttleton accretion that we

have performed.

In order to understand the general properties of the accretion flow, we first show the results of some

simulations also performed by Font and Ibáñez, but now including the addition of some effects that we

can investigate using our newly implemented and validated algorithm. We then select one of these models

and perform a full parametric study on it, exploring some new effects now open to exploration due to the

features of our implemented algorithm.

8.1 Base model parameters

In order to comprehend the range of flow patterns covered by Bondi-Hoyle-Lyttleton accretion, we

make use of some models suggested by Font and Ibáñez [41]. We present the parameters for these in

Table 8.1. For a more direct comparison with [41], we have scaled the mass accretion rate in the same

way as Font and Ibáñez, by a factor
4πλsM

2ρ∞
(v2

∞ + c2
∞)3/2

, (8.1)

where λs was defined in equation (7.18).

In Figure 8.1 we show the results for running the UB1 model to time t = 400M on a medium resolution

grid (see Table 7.2). We have plotted the same contour levels and used the same figure limits as Font and

Ibáñez [41]. The main difference is that our results are shown at a later time than theirs. However, since

we are evolving to steady state, this should not be important. For the velocity plot, we have transformed
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Model c∞ Γ M∞ v∞

UB0 0.570 4/3 0.6 0.342

UC0 0.810 5/3 0.6 0.486

UA1 0.310 1.1 1.5 0.465

UB1 0.570 4/3 1.5 0.855

Table 8.1: Test model parameters, as taken from Font and Ibáñez [41]. We emphasise that the values for

the sound speed are exact.

into Boyer-Lindquist coordinates.

The plot of density shows that we have found higher densities than those of Font and Ibáñez. The

velocity plot shows the stagnation point as being further downstream than that found by Font and Ibáñez,

but the contours look otherwise the same. In Figure 8.2 we plot the mass accretion rate as a function

of time. As expected, it tends to a constant limit since we have reached a steady state. Evaluating the

mass accretion rate at a smaller radius does not affect the limiting value, either, again showing that the

flow is at a steady state.

However, the final rate is somewhat higher than the final (scaled) mass accretion rate found in [41],

which suggested it to be Ṁ = 27.0. The difference in the evolution of the mass accretion rates (ours

shows a peak at time t ≈ 10M , while [41] shows a monotonic increase to the final limit) is explained by

the difference in coordinate systems, and hence initial conditions, as we specified initial velocity to be

constant in Kerr-Schild coordinates, as opposed to Font and Ibáñez’s use of Boyer-Lindquist coordinates.
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(a) Plot of log10(ρ). The dashed lines indicate the shock-

cone angle, θ, which for this case is the same above and

below the axis.

(b) Plot of
√

v2, evaluated in Boyer-Lindquist coordinates,

so that the contours cannot be calculated inside the horizon.

The stagnation point is marked.

Figure 8.1: Steady-state fluid for model UB1 with uniform flow and a non-spinning black hole at time

t = 400M . The medium resolution grid was used, and the axes are scaled in terms of the accretion radius

ra = 0.92M .
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Figure 8.2: Mass accretion rate for the UB1 model evaluated at r = 2.5M (circles) and r = 5M (+ signs).
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8.2 General flow morphology

We examine the effect of varying the adiabatic index, Γ, and the flow velocity, using some models

suggested by Font and Ibáñez, as given in Table 8.1. Qualitatively, our results are the same as those of

Font and Ibáñez, although there are some differences in the numerical values that we find.

In order to have our numerical solution converge to steady state in a reasonable time, we have chosen

all our models to be ultra-relativistic, meaning that the sound speed in the fluid upstream of the black

hole is close to its theoretical maximum of
√

Γ − 1. The effect of the black hole can therefore propagate

throughout the computational domain in a fairly short period of time, of the order of a few hundred M .

We use the medium resolution grid whose parameters are given in Table 7.2.

As well as testing the base models, we also test variations on these models with a spinning black hole

and a density perturbation. We use a spin of a = 0.9, with the spin-axis along the z-axis, and a density

perturbation of ǫρ = 0.2, perturbing along the y-axis (i.e. p = ey in (7.6)). The fluid direction is along

the x-axis in all cases.

The DVD accompanying this thesis includes, for each model examined here, the final steady-state of

the fluid in terms of its density, velocity, and streamlines of the flow. More details about these plots can

be found in the main results section, §8.4.

8.2.1 Features common to all models

Upstream of the black hole, the fluid motion is mostly undisturbed by the presence of the hole,

although the fluid is always attracted towards the singularity. Some fluid will fall directly into the black

hole. Some fluid will only be slowed by the gravity of the black hole, but be moving fast enough to go

past it, before finally being turned around to fall into the hole from the downwind direction. The rest

of the fluid will be affected by the hole, but will ultimately escape to infinity, downstream of the hole.

There will therefore be a stagnation point, where the fluid has zero velocity, downstream of the black

hole, which denotes a critical point between fluid which ultimately falls into the black hole, and fluid

which escapes. As a result of the fluid which initially passes the black hole before falling in, there is

always a region of high density on the downstream portion of the horizon.

Extending the idea of the stagnation point, we can also identify a region at a large distance upstream

of the hole, inside which fluid will eventually fall onto the hole, and outside which it will not do so. In the

case of symmetrical Bondi-Hoyle-Lyttleton accretion, this region always has a circular cross-section, and

is therefore referred to as the accretion cylinder. We shall see that our variations cause the cross-section

to deviate from the circular, and so we refer to it instead as the accretion region.

When considering fluid velocities, we always use Boyer-Lindquist coordinates (via the transformation
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(a) Equally spaced contours of log ρ. (b) Velocity contours evaluated in Boyer-Lindquist coordi-

nates. The stagnation point is marked.

Figure 8.3: Contour plots of density and velocity for a uniform subsonic flow past a non-spinning black

hole with flow parameters given by model UB0. The plots are evaluated at time t = 400M .

given in (3.72)), which have a coordinate singularity at the horizon. In these coordinates, therefore, the

fluid velocity approaches the speed of light at the horizon, although this is not the case in Kerr-Schild

coordinates.

We now split our discussion into two cases, those of subsonic and supersonic flow.

8.2.2 Subsonic models

The subsonic models that we have tested are UC0 and UB0 (see Table 8.1), with a Mach number of

M = 0.6. These models differ primarily in their adiabatic indices, although the fluid velocity has to be

changed to allow for the maximum velocity permitted by cs <
√

Γ − 1. We run the simulations to time

t = 400M , and the results are shown in Figures 8.3 and 8.4.

For both models we see that the density contours near the hole are nearly circular, but offset slightly

in the downstream direction relative to the centre of the hole so that the density at the horizon is higher

on the downstream side. Model UC0, with the higher adiabatic index, gives a lower fluid density close

to the horizon than does model UB0, since the fluid is less compressible for higher adiabatic index.

The fluid velocity contour plots are smooth, showing the features we would expect, namely, that the

fluid falls in with increasing velocity, and that there is a stagnation point downstream. The velocity at a

given distance upstream of the singularity is higher for model UC0, and the velocity at a given distance
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(a) Equally spaced contours of log ρ. (b) Velocity contours evaluated in Boyer-Lindquist coordi-

nates. The stagnation point is marked.

Figure 8.4: Contour plots of density and velocity for a uniform subsonic flow past a non-spinning black

hole with flow parameters given by model UC0. The plots are evaluated at time t = 400M , and the axes

are in units of M .

downstream of the hole is higher for model UB0, the stagnation point for which lies further downstream

than for model UC0.

In Figures 8.5 and 8.7 we show the effect on these models of including spin a = 0.9 and density

perturbation ǫρ = 0.2. The flow is still in the equatorial plane of the black hole, however. In both cases

the flow is wrapped around the horizon significantly, in the direction of the spin. The density contours

now have slight indentations, showing that there is a line of slightly lower density fluid. This is more

evident for model UB0. Examination of cross-sections for other values of z, such as z = 1 (see Figure 8.6),

shows that the indentation is more prominent to either side of the z = 0 plane.

The velocity contours show the development of two regions of lower velocity flow. From the form of the

ellipse-shaped contours extending into the lower-left of the plots, it seems that the main flow morphology

has been twisted around the horizon by about 45◦, although there are now no stagnation points, due

to the added effect of the fluid rotating around the hole before falling in. Examining iso-surfaces of the

velocity shows that neither are there are any stagnation points away from the z = 0 plane.

These flow features arise because the spin of the black hole tends to pull fluid in the lower half of the

plot around in the anti-clockwise direction, while fluid in the upper half of the plot is decelerated in the

same (angular) direction. The fluid from the lower half therefore moves further anti-clockwise around

the black hole than it would otherwise have done before it is decelerated sufficiently to fall into the black
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(a) Equally spaced contours of log ρ. (b) Velocity contours evaluated in Boyer-Lindquist coordi-

nates.

Figure 8.5: Contour plots of density and velocity for a subsonic flow with density perturbed by ǫρ = 0.2

past a black hole with spin a = 0.9 and flow parameters given by model UB0. The plots are evaluated at

time t = 400M , and the axes are in units of M .

Figure 8.6: Density as in Figure 8.5, now evaluated on z = 1 plane.

hole. This accounts for the change in the locations of the regions of low velocity.

The density perturbation gives a higher density towards the bottom of the plot (on the left of the

figure, upstream of the black hole). The effect of the perturbation is similar to that caused by the spin in
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(a) Equally spaced contours of log ρ. (b) Velocity contours evaluated in Boyer-Lindquist coordi-

nates.

Figure 8.7: Contour plots of density and velocity for a subsonic flow with density perturbed by ǫρ = 0.2

past a black hole with spin a = 0.9 and flow parameters given by model UC0. The plots are evaluated at

time t = 400M , and the axes are in units of M .
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Figure 8.8: Accretion regions for all four subsonic models. The solid line shows the accretion region for

a = 0, ǫρ = 0, and the dashed line shows the accretion region for a = 0.9, ǫρ = 0.2.

that, due to the lower momentum of the fluid at the top of the plot (being less dense), the fluid coming

from the lower part of the plot (being more dense) can travel further around the black hole before being
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Figure 8.9: Variation of mass accretion rate with time for two subsonic models. In both plots the +

signs correspond to the uniform, non-spinning case, and the circles correspond to the perturbed, ǫρ = 0.2,

spinning, a = 0.9 case. The accretion rates are evaluated on a sphere of radius 5M .

decelerated sufficiently to fall into it.

The cross-sections of the accretion regions upstream of the black hole are shown in Figure 8.8. As

expected by symmetry, the accretion regions for the unperturbed, non-spinning cases are circular. The

plots also show that the combined effect of the spin and density perturbation is to deflect fluid from the

upper half of the domain away from the black hole so that it does not accrete onto it. We also see that

the accretion regions for the higher adiabatic index (model UC0) are somewhat smaller than those for

model UB0.

We note that the tilted form of the flow and the development of a line of lower density are features

that also appear in Ruffert’s simulations involving a density perturbed fluid onto a compact object [95].

This suggests that the major changes to the flow features are the result of the density perturbation,

rather than the spin of the black hole, as such an effect was not included in Ruffert’s simulations, not

being relevant in the Newtonian regime.

In Figure 8.9 we show the mass accretion rates for the four subsonic models we have presented. We see

that although all the rates have reached a nearly constant value, not showing any short-period oscillations,

the rates for model UB0 are slowly decaying. However, the fact that the rates are very nearly constant

shows that we have attained steady-state flow, thus validating our numerical methods.

In both cases we see that the joint effect of the spinning black hole and the density perturbation is to

lower the rate at which mass is accreted onto the black hole. This is as suggested by the reduction in the

size of the accretion regions. The reasons for this will be discussed in the full parametric study in §8.4.

Note that the mass accretion rates for the two models cannot be compared directly, as they have

already been scaled by the factor given in equation (8.1).
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Figure 8.10: Evolution of stagnation point locations with time for the subsonic models UB0 (+ signs) and

UC0 (circles).

In Figure 8.10 we show the evolution of the stagnation point for the two non-spinning, non-perturbed

models we have presented. We see that they both reach a constant state by the end of the evolution.

These plots are derived from interpolating the total velocity along the x-axis (the direction of the wind

in this case) at equally spaced points, and finding the location of the minimum. This accounts for the

discrete nature of the points at which the stagnation point is located.

The streamlines for the perturbed model UB0 with spinning black hole are shown in Figure 8.11.

Overall, these show the flow being diverted from its original direction by the presence of the black hole.

However, at the base of the main outgoing tracer pattern, we see a concave feature, which suggests that

the fluid is forming two vortices. We shall see this feature developed more strongly in supersonic flows.

The streamlines for the perturbed and spinning UC0 model are shown in Figure 8.12. These essentially

show only that the flow has been diverted from its original direction by the black hole. However, there

is a small feature at the bottom of the main circle of tracers. This may well be an undeveloped version

of the vortex structure previously referred to.
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Figure 8.11: Plot of streamlines for a perturbed flow with ǫρ = 0.2, model UB0, parallel to the equatorial

plane, onto a Kerr black hole with spin a = 0.9.
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Figure 8.12: Plot of streamlines for a perturbed flow with ǫρ = 0.2, model UC0, parallel to the equatorial

plane, onto a Kerr black hole with spin a = 0.9.
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(a) Equally spaced contours of log ρ. (b) Velocity contours evaluated in Boyer-Lindquist coordi-

nates. The stagnation point is marked.

Figure 8.13: Contour plots of density and velocity for a uniform supersonic flow past a non-spinning

black hole with flow parameters given by model UA1. The plots are evaluated at time t = 300M .

8.2.3 Supersonic models

The supersonic models we have tested are UA1 and UB1, at Mach number M = 1.5, and the results

for the density and velocity are shown in Figures 8.13 and 8.14. The main feature of these plots is the

shock-cone that has formed downstream of the black hole, in a manner similar to that of a solid body

immersed in an Eulerian flow in flat space-time. Analogously to that case, the opening angle of the shock-

cone at a large distance from the hole should be sin−1(1/M), with higher Mach numbers corresponding

to a narrower shock-cone (see Appendix B in [82] and references therein for more details).

For a particularly stiff fluid, corresponding to a high adiabatic index, the shock-cone can detach from

the black hole and begin upstream of it. However, we do not show any models with this feature here,

although some examples can be seen in Font and Ibáñez [41].

In both cases, the density of the fluid increases sharply across the shock-cone, and also increases as

the horizon is approached, both from the downstream direction and from the upstream direction. We

now have a considerably larger ratio between the density on the upstream and downstream sides of the

horizon than for the subsonic models, with a high density inside the shock-cone as fluid is focused through

it onto the horizon. The UA1 model, with the lower adiabatic index, exhibits a higher density inside the

shock-cone and, in particular, at the horizon, than the UB1 model. As in the subsonic case, this is due

to the fact that the fluid with the higher adiabatic index is less compressible.
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(a) Equally spaced contours of log ρ. (b) Velocity contours evaluated in Boyer-Lindquist coordi-

nates. The stagnation point is marked.

Figure 8.14: Contour plots of density and velocity for a uniform supersonic flow past a non-spinning

black hole with flow parameters given by model UB1. The plots are evaluated at time t = 300M , and the

axes are in units of M .
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Figure 8.15: Accretion regions for all four supersonic models. The solid line shows the accretion region

for a = 0, ǫρ = 0, and the dashed line shows the accretion region for a = 0.9, ǫρ = 0.2.

Upstream of the black hole, the velocity contours are almost circular and show the fluid increasing in

velocity as it approaches the horizon. As the fluid passes through the shock, it is decelerated significantly.
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(a) Equally spaced contours of log ρ. (b) Velocity contours evaluated in Boyer-Lindquist coordi-

nates.

Figure 8.16: Contour plots of density and velocity for a supersonic flow with density perturbed by ǫρ = 0.2

past a black hole with spin a = 0.9 and flow parameters given by model UA1. The plots are evaluated at

time t = 400M , and the axes are in units of M .

Close to the horizon inside the shock-cone, the contours are once again circular arcs, but upstream the

contours distort to surround the stagnation point. The flow for model UB1 has its stagnation point

closer to the black hole than that for model UA1 but upstream, outside the shock-cone, the flow velocity

is lower for model UB1. Since both models have the same Mach number, M = 1.5, we see that both

shock-cones have approximately the same opening-angles.

In Figures 8.16 and 8.18 we show the effect on these models of including a spin of a = 0.9 and a

density perturbation of ǫρ = 0.2. The flow is still in the equatorial plane of the black hole, however. We

see that the shock-cone is pulled round the hole in the positive (anti-clockwise) direction. This effect

is so significant near to the black hole that the shock-cone attaches to the upstream side of the horizon

and far from the horizon the cone is still at an angle to the horizontal. We also see that there is a line

of significantly lower density dividing the shock-cone into two sections. This is a more extreme case of

the effect we noticed in the subsonic regime. Examining iso-surfaces of the density reveals that there

are two regions of lower density either side of the z = 0 plane that extend down towards the horizon.

Unsurprisingly, model UA1 still has a higher density near to the horizon than model UB1.

The velocity contour plots show similar twisting and distortion to the subsonic case. The velocity drops

significantly across the shock-cone, and outside the cone, the contours retain their circular appearance.

There are then two regions of low velocity. It is not clear from the numerical solution whether either of
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Figure 8.17: Plot of streamlines for a perturbed flow with ǫρ = 0.2, model UA1, parallel to the equatorial

plane, onto a Kerr black hole with spin a = 0.9.

these contain stagnation points.

It is more instructive, however, to examine the streamlines (shown in Figure 8.19). For the tracers

that we choose to examine for model UB1, we see that all of those approaching the black hole where it

is rotating against the flow direction fall into it, whereas none of those approaching it on the co-rotating

side do so. The flow is compressed in from the sides, and the tracers that escape the domain downstream

of the black hole form a tear-drop shape.

For model UA1, where the streamlines are shown in Figure 8.17 we note that the tracers were started

on a larger radius circle, but we still see a qualitatively fairly similar flow. However, at the top of the
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(a) Equally spaced contours of log ρ. (b) Velocity contours evaluated in Boyer-Lindquist coordi-

nates.

Figure 8.18: Contour plots of density and velocity for a supersonic flow with density perturbed by ǫρ = 0.2

past a black hole with spin a = 0.9 and flow parameters given by model UB1. The plots are evaluated at

time t = 300M , and the axes are in units of M .

tear-drop, we see that two vortices have developed in the flow. These correspond to the two low density

regions mentioned above.

The cross-sections of the accretion regions upstream of the black hole are shown in Figure 8.15. Again

the accretion regions corresponding to the unperturbed, non-spinning cases are circular. We also see that

the combined effect of the spin and perturbation is to move the accretion region towards the top of the

domain, and to cause it to decrease in size. We also see that the accretion regions for the higher adiabatic

index (model UB1) are somewhat smaller than those for model UA1.

Again, the gross flow features are borne out by an examination of Ruffert’s simulations in a density

perturbed flow [95]. We also note that the angle by which the shock-cone is tilted is approximately the

same in both models.

In Figure 8.20 we show the mass accretion rates for the four supersonic models we have presented.

The rates for model UA1 have not quite reached a constant value at time t = 400M , but those for model

UB1 have already attained their limit at t = 250M . Again we see that the effect of spinning the black

hole and introducing a density perturbation is to lower the mass accretion rate, as suggested by the

decrease in area of the accretion regions.

In Figure 8.21 we show the evolution of the stagnation point for the two non-spinning, non-perturbed

supersonic models we have presented. We see that they both reach a constant state by the end of the
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Figure 8.19: Plot of streamlines for a perturbed flow with ǫρ = 0.2, model UB1, parallel to the equatorial

plane, onto a Kerr black hole with spin a = 0.9.

evolution.
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Figure 8.20: Variation of mass accretion rate with time for two supersonic models. In both plots the +

signs correspond to the uniform, non-spinning case, and the circles correspond to the perturbed, ǫρ = 0.2,

spinning, a = 0.9 case.
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Figure 8.21: Evolution of stagnation point locations with time for the supersonic models UA1 (+ signs)

and UB1 (circles). A loss of data, for technical reasons, caused model UB1 to stop earlier, rather than

any numerical effects.

8.2.4 Comparison with previous results

We show the limiting values for the mass accretion rates in Table 8.2, with Font and Ibáñez’s re-

sults [41] for comparison. Although our results are similar in magnitude to those previously found,
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Model Ṁ ṀFI [41] Ṁ/ṀFI

UB0 5.39 4.6 1.17

UC0 23.33 21.0 1.11

UA1 5.53 3.7 1.49

UB1 34.32 27.0 1.27

Table 8.2: Comparison of mass accretion rates found using our algorithm with those of Font and Ibáñez.

Both sets of results were evaluated at r = 5M and scaled in the same way.

Model xstag/M xFI
stag/ra [41] ra/M xFI

stag/M

UB0 6.70 2.70 2.2 5.94

UC0 4.44 3.88 1.1 4.27

UA1 11.95 3.24 3.2 10.37

UB1 5.19 5.22 0.92 4.80

Table 8.3: Comparison of stagnation point locations found using our algorithm with those of Font and

Ibáñez, which are then scaled to be in units of M rather than of ra.

our rates are persistently higher, by up to 50%. Although our results will become more accurate with

increased resolution, the results in Table 7.3 suggest that the effect will not be substantial.

In Table 8.3 we show the location of the stagnation points for the four non-spinning unperturbed

models we have presented above. An examination of the velocity plots in [41] suggests that the stagnation

point locations are written in units of the accretion radius ra. The location of the stagnation points found

using our algorithm is similar to, but consistently further out than those found by Font and Ibáñez.

The results we have found, therefore, are sufficiently similar to those of previously published results

to give us confidence in the accuracy of our algorithm, and in our results.

8.2.5 Conclusions

In this section we have shown some of the flow morphologies that can arise from accretion onto a

black hole. We have, to a large extent, confirmed the results of Font and Ibáñez, although there is a

slight disagreement in the mass accretion rates and locations of the stagnation points.

We have also demonstrated the combined effects of allowing a spinning black hole and a fluid whose

density is perturbed upstream. These show significant alterations in the flow properties, some of which

were demonstrated by Ruffert in the Newtonian regime. In particular, including spin and a density

perturbation cause the flow to twist around the spin-axis of the black hole. The flow also develops
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complex features; all the models show the development of a line of lower density in the z = 0 plane, and

one model develops vortices.

The overall effect for all the models is to lower the mass accretion rate, and to change the area and

location of the accretion region. However, in order to understand these effects more fully, we shall need to

perform a parametric study, examining the separate and combined effects of spin, density perturbation,

and wind direction.

8.3 Parametric study setup

Within the framework of Bondi-Hoyle-Lyttleton flow, we have the following parameters that can be

varied entirely independently of each other:

M Black hole mass

a Black hole spin (0 ≤ a < 1)

M Upstream asymptotic Mach number of the flow

v∞ Upstream asymptotic velocity of the flow (The sound speed is c∞ = v∞/M)

Γ Adiabatic index of ideal fluid

ni Incident wind direction

pi Perturbation direction

ǫρ Strength of density perturbation (ǫρ ≪ 1)

ǫv Strength of velocity perturbation (ǫv ≪ 1)

Varying these in all possible combinations would lead to a vast and unwieldy set of results, and so we

seek to find representative sample of the parameter space to investigate.

Since it is just a scaling parameter, we fix the black hole to have mass M = 1. The spin axis is

fixed to be the z-axis, and so we vary the incident wind direction n in the y = 0 plane, at angles of

θw = 0, π/6, π/3, π/2 to the x-axis. This corresponds to n · ey = 0 and n · ez = cos θw.

The perturbations will have most effect if they occur perpendicular to the wind direction. Due to the

asymmetry induced by any spin that might be present, this still leaves us with one degree of freedom, and

we fix the perturbation direction to be parallel to the y-axis (i.e. p = ey in (7.6)). The various vectors

can be seen in Figure 8.22.

Since low spins do not seem to affect the flow by a large amount, according to the results of Font and

Ibáñez, we use three spin parameters: a = 0, 0.5, and 0.9.

Ruffert et al. have used ǫρ = 0, 0.03, 0.2. Since we have specified the spin always to be positive, we

have to allow for this handedness and use negative values for the perturbations as well, where appropriate.

We have chosen not to perturb the fluid velocity for this study.
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Figure 8.22: Geometric setup of wind accretion parametric study. The black hole spin is always in a

positive direction around the z-axis, the wind direction is in the x-z plane at an angle θw to the x-axis,

and any fluid perturbations are in the y-direction (positive y goes into the page).

8.3.1 Models

We choose to apply perturbations to one of the models suggested by Font and Ibáñez: UB1. This is

an ultra-relativistic flow of a medium stiffness fluid at a moderate Mach number. Note that the sound

speed cs = 0.57 is close to the maximum permitted value of
√

Γ − 1 ≈ 0.57735 (see (3.15)). This model

has the advantage that it converges fairly quickly to steady state as seen in Figure 8.2.

We allow for the following perturbations to the base solution:

a = 0, 0.5, 0.9 ,

θw = 0, π/6, π/3, π/2 ,

and ǫρ = −0.2, −0.03, 0, 0.03, 0.2 ,

(8.2)

These are applied in all possible combinations, although some combinations are not necessary as they

duplicate others. For example, θw is irrelevant when a = 0, as shown in the next section.

8.3.2 Further validation

Although our grid setup is spherical, it does not have spherical symmetry, due to the overlapping

grid structure (see Figure 7.1). In Table 8.4, we show the effect of θw on the mass accretion rate for

a non-spinning black-hole when using the low resolution grid. In theory, of course, there should be no

difference due to the symmetry of the situation. We do, however, see a small difference in the accretion
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θw Ṁ

0 34.26

π/6 34.19

π/3 34.19

π/2 34.28

Table 8.4: Effect of θw on mass accretion rate for non-spinning black hole, at time t = 300M , evaluated

at radius r = 5M . The low resolution grid was used.

rates. The fact that the results for θw = 0, π/2 and θw = π/6, π/3 are very similar suggests that the

problem is either linked to the angle with a Cartesian axis, or to the interpolation boundary at θw = π/4.

The effects we have noticed here, though, are smaller than the effects we have found in the results of

our study. We therefore conclude that we can safely use the low resolution grid to obtain good results,

although it may be necessary to confirm our findings at a later date using a higher resolution grid.

8.4 Parametric study results

In this section we present the results of our parametric study. As performing a parametric study

is very CPU-intensive, we calculated these results at the low resolution. However, from our validation

results, we believe that the effects of the low resolution on our results are not significant.

8.4.1 Flow morphology

Before showing the processed results for all the simulations we performed, we show how the qualitative

form of the flow varies depending on the spin of the black hole, the wind direction, and the strength of

the density perturbations.

Accompanying DVD

In selecting plots for this thesis, we encountered two difficulties. Firstly, it was not possible to present

the streamlines of the flow adequately in a two-dimensional plot, although we have produced plots showing

the main features thereof for inclusion in this thesis. Secondly, although we have selected plots which

demonstrate the essential properties of the flows encountered, we felt that there would be a benefit in

making available the results for all the parametric variations simulated.

We have therefore included a DVD with this thesis that presents all the results of the simulations in

an interactive form. The starting point is to open the file index.html in any web browser with an Adobe
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Flash
TM

Player compatible plugin. In the sections below, we explain the information included for each

model.

Streamlines

We generate streamlines of the flow by starting a set of tracers on a circle at a distance of 40M

upstream of the black hole, and with radius 8M , and evolving them forwards in time. This is done on

the final state of the velocity at t = 300M , using velocity vectors in the Boyer-Lindquist coordinate basis

as described in §7.4. These are shown on the DVD, with a fly-around of the three-dimensional plot, and

in this thesis we show the streamlines from different viewpoints to emphasise the relevant features.

The streamlines show up some slight issues with the low resolution used, such as the fact that for

the base model with no spin and uniform flow, the cross-section of the streamlines at the end is seen

to be not quite circular. The higher resolution simulations described in §8.2 do not have this problem,

but otherwise display the same flow features. We are therefore justified in drawing conclusions from the

lower-resolution plots.

The streamline algorithm has also been used to determine the size and shape of the accretion region,

by starting a set of streamlines covering a circle at a distance of 40M upstream of the black hole and

checking which tracers fall into the hole. From this we can determine the shape of the accretion region,

shown on the DVD for each model, and also in Figures 8.35-8.37.

Density and Velocity plots

The DVD included with this thesis also contains a fly-around of the final steady state of the fluid for

the simulations performed. We plot the logarithm of the density, and also the fluid speed as evaluated in

Boyer-Lindquist coordinates. These are plotted on three orthogonal planes: the y = 0 plane, the plane

containing the y-axis and the wind direction, and a third plane orthogonal to the first two.

Mass accretion rates

The mass accretion rates are calculated on the surface of a sphere radius r = 5M . Although we

have found some discrepancy between our results for mass accretion and those of Font and Ibáñez, we

note that our plots always tend to a constant limit, as opposed to some simulations in [42] which exhibit

oscillations even at late times in the simulation. A plot of the mass accretion rate, as well as the final

value, is shown with the density plot on the DVD for each simulation.
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Plot parameters

All the plots in the following sections are standardised for easy comparison. We plot the density with

equally spaced contours at ln ρ = −0.5, 0, 0.5 , . . . , 4 , 4.5. The outer horizon of the black hole is shown

with a dashed line at r = r+ (and is non-circular when the spin-axis is not perpendicular to the plot

plane), and the plot ranges are ±15M . The plane in which we plot the contours contains the y-axis and

the incoming wind direction. That is, for θw = 0, the black hole spin axis is normal to the plot, and for

θw = π/2, the spin axis lies in the plot plane, from left to right. The wind direction is always from the

left of the plot.

Increasing the spin of the black hole

In Figure 8.23, we see the effect of varying the spin of the black hole for a uniform flow. The flow is

parallel to the equatorial plane of the hole, and we expect our results to be close to those of Font and

Ibáñez [42], although their results were for the thin-disc approximation, not the fully three-dimensional

results we have here.

As we increase the spin of the black hole, the points where the shock cone meets the horizon move

around in the direction of spin. The fluid on the co-rotating side of the hole is pulled further round by

the black hole before it is decelerated sufficiently to fall into the hole and, on the counter-rotating side,

it is decelerated by the black hole spin so that it falls in earlier.

Although the flow is altered near the horizon, the effect further out is far less, and is nearly in-

distinguishable from that of the non-spinning case. This is particularly evident from the results when

measuring the shock angles, as we shall see in §8.4.2.

Examining the streamlines for the a = 0.9 case (Figure 8.24) shows that fluid on the co-rotating

side of the hole can escape to infinity when it starts from a smaller radius as compared to fluid on the

counter-rotating side, and the minimum impact parameter for which fluid can escape is smaller for higher

spin. This is evident in the accretion region which for spin a = 0.9 is entirely in the upper half of the

domain.

Perturbing the density for a non-spinning black hole

Perturbing the density of the flow onto a non-spinning black hole gives results as in Figure 8.25. The

density upstream of the black hole increases down the page.

The shock-cone is visibly skewed round in the anti-clockwise direction in both cases, although more

so for ǫρ = 0.2, and this effect persists far away from the hole, unlike the effect of the spin. There is also

a line of lower density in the upper part of the shock-cone, so that there are almost two separate cones,
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(a) a = 0.5, log ρ (b) a = 0.9, log ρ

(c) a = 0.5,
√

v2 (d) a = 0.9,
√

v2

Figure 8.23: Effect of increasing black hole spin on uniform wind accretion parallel to the equatorial

plane of a Kerr black hole. We plot the log of the density in Kerr-Schild coordinates, and the velocity in

Boyer-Lindquist coordinates. The black hole spin is in the positive direction.

although this is only really visible for ǫρ = 0.2. These features are similar to those for highly perturbed

Newtonian flow seen in [95].

This effect arises because fluid approaching the black hole on the higher density side has a larger

momentum than that approaching on the lower density side, and will therefore continue further around
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Figure 8.24: Plot of streamlines for a uniform flow parallel to the equatorial plane onto a Kerr black hole

with spin a = 0.9.

the black hole before it has lost enough momentum to fall in.

From the plots of the accretion region (Figure 8.35), which moves down as the perturbation increases,

we see that some fluid from the upper-half domain is deflected by the higher density fluid to such an

extent that it does not accrete onto the black hole. The streamlines seen in Figure 8.26 also demonstrate

this, since the fluid is seen to be deflected upwards by the black hole, more so for the larger perturbation.

The streamlines also show the fluid forming a pair of vortices as it moves downstream.

177



(a) ǫρ = 0.03, log ρ (b) ǫρ = 0.2, log ρ

(c) ǫρ = 0.03,
√

v2 (d) ǫρ = 0.2,
√

v2

Figure 8.25: Effect of density perturbation on accretion in the equatorial plane of a non-spinning Kerr

black hole, with density increasing down the page. We plot the log of the density in Kerr-Schild coordinates,

and the velocity in Boyer-Lindquist coordinates.

Perturbing the density for a spinning black hole

If we add spin to the most perturbed case, we obtain the results shown in Figure 8.27. Now we expect

to see a combination of the effects explored in the previous two sections.

For ǫρ = 0.2, the perturbation takes the point where the shock-cone attaches to the horizon round to
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Figure 8.26: Plot of streamlines for flow with density perturbation ǫρ = 0.2 onto a non-spinning Kerr

black hole.

the upstream region of the flow. A large distance downstream of the black hole, this effect is still present

as we would expect from the non-spinning case above and, at the horizon, the shock-cone has wrapped

further around in the anti-clockwise direction due to the added effect of the spin.

For ǫρ = −0.2, the effect of the perturbation a long way downstream of the black hole is the reverse

of that for the non-spinning positive perturbation. At the horizon, we expect the spin to take the point

where the shock-cone attaches round in the anti-clockwise direction, and the negative perturbation to

take it in the clockwise direction. We see that the effect of the spin is dominant, in that the point of

attachment has overall moved in an anti-clockwise direction.
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(a) ǫρ = −0.2, log ρ (b) ǫρ = 0.2, log ρ

(c) ǫρ = −0.2,
√

v2 (d) ǫρ = 0.2,
√

v2

Figure 8.27: Effect of density perturbation on accretion in the equatorial plane of a Kerr black hole with

spin a = 0.9. We plot the log of the density in Kerr-Schild coordinates and the velocity in Boyer-Lindquist

coordinates. The black hole spin is in the positive direction.

For both cases, the divided shock-cone is still visible. For the ǫρ = 0.2 case, the effect has increased,

so that the contour lines extend further towards the horizon, demonstrating a deepening of the division.

For ǫρ = −0.2, the effect has reduced, showing a shallower division in the cone.

For the perturbation ǫρ = −0.2, the flow streamlines in Figure 8.28 appear similar to that for the
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Figure 8.28: Plot of streamlines for a perturbed flow with ǫρ = −0.2 onto a Kerr black hole with spin

a = 0.9.

non-spinning case, although the two vortices have now been moved apart from each other to some extent.

For ǫρ = 0.2, we now see a qualitatively different flow (Figure 8.29), in that no vortices are visible, but

the ends of the streamlines form a tear-drop shape downstream of the black hole. From an examination

of the streamlines for the intermediate case of spin a = 0.5 and perturbation ǫρ = 0.2 in Figure 8.30,

it appears that the effect of the positive spin is to elongate the two vortices in the vertical direction, at

the same time moving them closer together, so that the tear-drop is composed of the inner sides of the

original vortices. Starting the streamline tracers at a larger radius would then reveal the outer sides of

the vortices.
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Figure 8.29: Plot of streamlines for a perturbed flow with ǫρ = 0.2 onto a Kerr black hole with spin

a = 0.9.

The effect on the accretion region in the case of ǫρ = 0.2 as compared to ǫρ = 0, as seen in Figure 8.37,

is to move it back towards the centre from its position for the unperturbed case. It has now also deformed

into a kidney shape. For the case ǫρ = −0.2, the accretion region has now moved significantly above the

centre, and has a slight tear-drop shape.

Increasing the spin for flow along the spin axis

We now orient the flow so that it comes in along the spin-axis of the black hole. The result of increasing

the spin in this case is shown in Figure 8.31. In this case we hardly see any change to the qualitative

182



Figure 8.30: Plot of streamlines for a perturbed flow with ǫρ = 0.2 onto a Kerr black hole with spin

a = 0.5.

features of the flow. The maximum density in this plane is less than that for accretion parallel to the

equatorial plane, but still increases with spin. There is no apparent change in the streamlines (shown in

Figure 8.32) from the non-spinning case, although the area of the accretion region reduces slightly as the

spin is increased.

The relative lack of change is due to the fact that the direction of spin is perpendicular to the

streamlines. There is some evidence from the streamlines that the flow has been pulled round by the

black hole but, again, the effect is only very slight, due to the high velocity of the flow.
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(a) a = 0.5, log ρ (b) a = 0.9, log ρ

(c) a = 0.5,
√

v2 (d) a = 0.9,
√

v2

Figure 8.31: Effect of increasing black hole spin on uniform wind accretion along the spin axis of a

spinning Kerr black hole. The axis of spin is the horizontal axis, and the spin direction goes into the page

in the upper half of the plot. We plot the log of the density in Kerr-Schild coordinates, and the velocity

in Boyer-Lindquist coordinates.

Perturbing the density for flow along the spin axis

The effect of perturbing the upstream density of flow by ǫρ = 0.2 along the spin axis of a black

hole with spin a = 0.9 is shown in Figure 8.33. The shock-cone is still tilted away from the symmetric
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Figure 8.32: Plot of streamlines for a uniform flow along the spin-axis of a Kerr black hole with spin

a = 0.9.

position, but the perturbation makes little difference to the maximum density that occurs at the horizon

as compared to the unperturbed, non-spinning case. The contours in the x = 0 plane do not demonstrate

any splitting of the shock cone as we saw in, for example, Figure 8.25. However, the splitting can still be

seen in the y = 0 plane, where the line of minimum density is slightly less pronounced than for the flow

parallel to the equatorial plane.

The streamlines (Figure 8.34) show that there is still a pair of vortices emerging along the shock-cone,

but that they have been distorted by the spin, starting to merge into each other. The accretion region

only changes slightly as the spin is increased, decreasing in area, and still located slightly off-centre in
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(a) x = 0 plane, log ρ (b) y = 0 plane, log ρ

(c) x = 0 plane,
√

v2 (d) y = 0 plane,
√

v2

Figure 8.33: Effect of density perturbation ǫρ = 0.2 on wind accretion along the spin axis of a Kerr black

hole with spin a = 0.9. The axis of spin is the horizontal axis, and the spin direction goes into the page

in the upper half of the plots.

the domain.
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Figure 8.34: Plot of streamlines for a perturbed flow with ǫρ = 0.2 along the spin-axis of a Kerr black

hole with spin a = 0.9.
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Figure 8.35: These plots show how changing the density perturbation via ǫρ affects the accretion volume

for a non-spinning black-hole. The axis tick-marks are at −15M, −10M, . . . , 10M, 15M .

8.4.2 Processed results

We now proceed to show the processed results, with the effect of the density perturbation and black

hole spin on the overall flow characteristics.

Accretion regions

The accretion region plots are shown in Figures 8.35–8.37. The effect of each change is only very

slight, but the cumulative effect of each change can be seen by comparing, for example, the plots for

θw = 0 and θw = π/2 or ǫρ = −0.2 and ǫρ = 0.2.

The effect of increasing θw is only very slight, but the trend is that the accretion region decreases in

area for ǫρ < 0, and shifts in the negative y-direction. As we would expect from symmetric arguments,

the plot for θw = π/2, ǫρ = 0 is circular in aspect. As ǫρ increases, the accretion region moves appreciably

in the negative y direction, and increasing θw brings about an increase in area.

Mass accretion rate

In Figures 8.38 and 8.39 we show the effect of varying the density perturbation parameter on the mass

accretion rate for spins of a = 0, 0.5, 0.9. The overall effect on the mass accretion rate is fairly small, at

less than 10%.

When the wind direction is along the spin axis (θw = π/2), the direction of the perturbation does not

affect the mass accretion rate, as we would expect from symmetry considerations. The greatest effect on

the mass accretion rate occurs when the wind is parallel to the equatorial plane of the black hole.

Increasing the (positive) spin of the black hole moves the accretion region in the positive y-direction,

as material in the y > 0 half-space is decelerated more strongly, so that the radius inside of which material

finally ends up inside the black hole increases for positive y. Similarly, the acceleration of the flow in the

y < 0 half-space caused by the spin means that the accretion radius decreases for negative y.

The upshot of this is that the accretion region moves in the positive y-direction for increased spin,
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as we see from Figures 8.35–8.37. For negative ǫρ, this means that the accretion region will contain

more material as a result of the density being higher there, and the mass accretion rate will therefore

increase. For positive ǫρ, the accretion region will contain less material, and so the mass accretion rate

will decrease. There is also the additional effect that the accretion region changes in size as a result of

the density perturbation altering the flow.

From Figure 8.39, we see that for flow parallel to the equatorial plane, the mass accretion rate is

reduced more strongly by increased perturbation than for flow along the spin axis, since the area of the

accretion region has a wider variation for θw = 0 than for θw = π/2. The effect of the change with

perturbation is once again the result of two combined effects: change in location and size of the accretion

region and change in available material in that region due to density perturbation.

Shock angle

In Figures 8.40 and 8.41 we show the effect of spin and density perturbation on the asymptotic angle

of the shock cone. As a specific example, we note that the shock-cone opening angle for zero spin and

no perturbation is found to be 38◦, which is less than the analytical value from sin−1(1/M) = 41.8◦, but

greater than that found by Font and Ibáñez, θ = 35◦.

We have seen earlier that both the spin and the perturbation affect the innermost regions of the flow

very strongly, but that the only major effect on the shock cone a long way from the black hole is the

density perturbation. This is confirmed by Figure 8.40.

Further, we now see from Figure 8.41 that varying the angle between the equatorial plane and the

wind direction has no effect on the angle between the shock-cone edges and the wind direction, within

numerical and shock location errors. The spin of the black hole does not appear to have any effect on

the shock-cone angle either.

However, the effect of the perturbation is very noticeable, varying the direction of the shock-cone by

nearly 30◦ overall. The total opening angle of the shock-cone is unaffected by the perturbation.

Angles of Drag

In Figures 8.42 and 8.43 we show the angle of drag on the black hole in the plane containing the y-axis

and the wind direction. These were calculated from momentum accretion rates at r = 5M . We have not

plotted the drag angles in the yz-plane as these were smaller, and would not contribute as large an effect.

As spin increases for a uniform flow, Figure 8.42 shows that the black hole is dragged at a progressively

steeper angle in the negative y-direction. This is in the same direction as would occur from the Magnus

effect, although clearly the mechanism is entirely different. The relative dependence of the drag angle

on perturbation is essentially independent of the spin, as can be seen from the similar shape of all of
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the lines in Figure 8.43. A negative perturbation causes the drag angle to become more negative, and

a positive perturbation causes it to become more positive. In fact, for a perturbation corresponding to

ǫρ > 0, the drag angle becomes positive, and the black hole is dragged in the positive y-direction for zero

spin, i.e. into the less dense part of the medium.

By symmetry, the drag angle is zero for ǫρ = 0 when the wind is directed along the spin-axis θw = π/2,

but as the wind direction moves round to lie parallel to the equatorial plane, the angle of drag becomes

more negative. When the wind is directed along the spin-axis, the spin apparently causes a slight

counterbalance to the perturbation effect as the drag angle is slightly lower for higher spin (quantitatively,

the drag angle is reduced by about 7% from a = 0 to a = 0.9).
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θw = 0 θw = π/6 θw = π/3 θw = π/2

Figure 8.36: These plots show how changing the wind direction via θw and the density perturbation

via ǫρ affect the accretion region for a black hole with spin a = 0.5. The axis tick marks are at

−15M, −10M, . . . , 10M, 15M .
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Figure 8.37: These plots show how changing the wind direction via θw and the density perturbation

via ǫρ affect the accretion region for a black hole with spin a = 0.9. The axis tick marks are at

−15M, −10M, . . . , 10M, 15M .
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Figure 8.38: Plot of mass accretion rate against density perturbation for different spins. The wind

direction is parallel to the equatorial plane of the black hole in all cases.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
31

31.5

32

32.5

33

33.5

34

34.5

35

ǫρ

Ṁ

 

 

θ
w

=0

θ
w

=π/6

θ
w

=π/3

θ
w

=π/2

(a) Spin a = 0.5

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
31

31.5

32

32.5

33

33.5

34

34.5

35

ǫρ

Ṁ
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Figure 8.39: Plot of mass accretion rates against density perturbation. The labels refer to the angle

between the equatorial plane and the wind direction.
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Figure 8.40: Plot of shock angles against density perturbation, varying the spin of the black hole. The

wind direction is in the equatorial plane of the black hole in all cases.
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Figure 8.41: Plot of shock-cone angles against density perturbation. The angles are all taken in the plane

containing the wind direction and the y-axis. The data points above and below the axis correspond to

the shock-angles above and below the wind-direction axis. The labels correspond to the angle between the

equatorial plane of the black hole and the wind direction.
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Figure 8.42: Plot of drag angle in the xy-plane against density perturbation, varying the spin of the black

hole. The wind direction is in the equatorial plane of the black hole in all cases, i.e. along the x-axis with

θw = 0.
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Figure 8.43: Plot of drag angles against density perturbation. The angle is measured in the plane con-

taining the y-axis and the wind direction. The labels correspond to the angle between the equatorial plane

of the black hole and the wind direction.
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8.4.3 Independence of initial conditions

Although we have consistently found steady final states of the flows that we have simulated, all of

these have derived from the same initial conditions. In order to confirm the universality of our results,

we should test whether changing the setup of the model part way through a simulation affects its final

state.

We examine two scenarios. Firstly, we test whether a tilted shock-cone, formed as the result of a

perturbed flow, is resilient to a change of the upwind flow to a uniform state. Secondly, we test the effect

on the flow of giving the black hole an extra kick of spin.

Perturbed flow reverting to a uniform flow

The scenario we test here is that of a perturbed flow that has settled down to steady-state having its

upwind inflow conditions reverted to uniform flow. We use as initial conditions for our test the steady-

state solution given by a black hole with spin parameter a = 0.9 and density perturbation ǫρ = 0.2, with

θw = 0, and change the inflow boundary condition to be that for an unperturbed flow, ǫρ = 0.

It turns out that the final state of the simulation is identical to the state that resulted from specifying

ǫρ = 0 initially. The plots are identical to Figure 8.23b,d and therefore we do not show them. The way

the flow pattern changes in time is also unremarkable, in that the shock-cone smoothly changes to its

final position, and the two parts of the divided shock-cone merge smoothly to form a single one.

In Figure 8.44 we show the rate of mass accretion resulting from this simulation. Up to time t = 300M

the density is perturbed by ǫρ = 0.2, and after that it reverts to ǫρ = 0. The solid line shows the final

mass accretion rate from the simulation where the density was not initially perturbed. The kink in the

rate at t ≈ 350M corresponds to the time when the effect of the changed upstream conditions reaches

the black hole (recall that the outer boundary is at r = 50M). Following that, the accretion rate then

climbs monotonically to its final value.

Spinning-up a previously non-spinning black hole

In the close encounter of two black holes, it is possible that they will interact so as to result in a black

hole with a spin somewhat larger than before the interaction. As a simple model of this we examine what

happens to the steady-state accretion flow when the spin of the black hole is instantaneously increased.

The specific setup we use is that of the case where a greatly perturbed fluid with ǫρ = 0.2 is accreting

onto a non-spinning black hole, and the flow is in steady state. We then change the black hole to have

spin a = 0.9 and allow the simulation to again reach a steady state. At the change-over point, the fluid

variables were converted to their primitive form in the original metric, and then converted to conserved

form in the new metric with spin.
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Figure 8.44: Mass accretion rate plot for an initially perturbed model with ǫρ = 0.2, but reverting to

ǫρ = 0 upstream at time t = 300M . The black hole has spin a = 0.9 and the wind is in the equatorial

plane. The solid line shows the final mass accretion rate from the equivalent flow with ǫρ = 0 throughout.

As with the previous example, the final state of the simulation is identical to that resulting from the

simulation that maintained a = 0.9 throughout, as seen in Figure 8.27b,d. We show the results for the

mass accretion rate in Figure 8.45. We see a discontinuity in the mass accretion rate at the time when

the black hole is “kicked” (t = 300M). The accretion rate falls slightly below its final value, then rises

above it and oscillates slightly before quickly reaching a steady state.
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Figure 8.45: Mass accretion rate plot for a perturbed density flow onto a non-spinning black hole which

recieves a kick at time t = 300M , increasing its spin to a = 0.9. The solid line shows the final mass

accretion rate from the equivalent flow with a = 0.9 throughout.

8.5 Conclusions

In this chapter, we have demonstrated the effects of introducing spin and a density perturbation into

Bondi-Hoyle-Lyttleton accretion simulations. We have investigated the effect of these on both subsonic

and supersonic flows, before applying an extensive parametric study to one supersonic base model.

We have seen that the qualitative effects of adding spin and having a perturbed density upstream of

the black hole are independent of the velocity, Mach number, and adiabatic index of the fluid. In all

cases presented in §8.2 we saw that the flow was wrapped around the black hole in the spin direction

and that the fluid developed regions of lower density, as well as being deflected by the black hole. The

extent to which these effects were seen was, however, dependent on the flow properties. In particular,

only the subsonic models demonstrated any large change in the flow upstream of the black hole, as we

would expect.

Investigating the supersonic model UB1 more extensively, we discovered how the separate effects of

spin and density perturbation affected the flow structure.

• For a uniform flow, the effect of the spin on the flow structure is mostly restricted to the region close

to the black hole, where the points at which the shock-cone meets the horizon are pulled round in
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the spin direction. The mass accretion rate reduces slightly as the spin rate increases, but not to

any great extent.

• Moving the flow direction from being in the equatorial plane to being along the spin axis removes

any deflection of the flow by the black hole, and also slightly reduces the mass accretion rate.

• Perturbing the density changes the flow most dramatically. The flow is appreciably deflected from its

original direction, and this effect persists to large distances downstream of the black hole. Vortices

develop in the flow, on either side of the plane containing the wind and perturbation directions. The

mass accretion rate changes by as much as 10%, although the sign of the change and its magnitude

depends strongly on the spin of the black hole, and the angle of the incoming wind to the spin axis.

• The angle of the shock-cone to the wind-direction, at large distances downstream of the black hole,

is independent of the spin of the black hole and the angle of the wind direction to the spin-axis.

However, it is strongly dependent on the extent to which the density is perturbed, varying by about

30◦ over the range of ǫρ that we use.

• The angle at which the black hole is dragged, relative to the wind direction, depends strongly

on the spin, density perturbation, and angle of wind to the spin-axis. The drag angle in general

increases with spin, and is largest when the wind direction is perpendicular to the spin-axis. The

relative dependence of the drag angle on the density perturbation is independent of the spin and

wind direction.

• All the flows we have tested are steady, although this was expected, as none of them approached

the region which Ruffert [38] has identified as possibly containing unstable flows.

• The final flow structures are apparently independent of any past history of the flow. This was

demonstrated by changing firstly the perturbation and secondly the spin of a flow after it had

settled into its steady state, and seeing that the flow rapidly became identical to the flow that

would have developed had the parameters not begun with separate values.

8.6 Wind Accretion onto a Binary Black Hole system

As a further test to demonstrate the full range of our algorithm’s capabilities, we perform a test of

wind accretion onto a binary black hole system. We use the Brill-Lindquist data from §3.9, and keep

it stationary. This is not physically accurate, as we should be evolving the metric to allow the black

holes to orbit each other. However, since our algorithm is not capable of evolving the metric sufficiently

accurately to perform this, we leave it stationary.
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8.6.1 Simulation setup

As our flow parameters, we use adiabatic index Γ = 4/3, Mach number M = 1.5, and asymptotic

upstream sound speed c∞ = 0.1. Font and Ibáñez [41] show that when accreting onto a single black hole,

this flow results in a wide shock-cone which is almost detached from the upwind side of the horizon.

We set our initial metric from equation (3.73), where we specify the black holes to have unit mass

and be positioned at (0, ±5, 0), with the flow coming along the x-axis. We evolve the flow to a time

t = 2000M , and note that the time to merger of a pair of equal mass black holes at this separation is

of the same order as the simulation time, so there are not any grounds for suggesting that such a flow

might develop on a time scale much shorter than it takes the black holes to move appreciably.

The simplest grid structure we can use for this problem is to have a pair of grids covering a hollow

sphere for one of the black holes, with its outer boundary at a radius of 50M , and then a second pair

of grids for the second black hole, with a smaller outer radius so that they lie entirely inside the first

pair of grids. A cross-section of this grid is shown in Figure 8.46. Grid lines from all four grids can be

seen. Portions of the blue grid have been removed in order to allow the red and purple grids to take

precendence, so that the upper black hole can be excised. The cell-sizes where the grids overlap are

not necessarily identical, due to the radial scaling. This is an issue particularly around the lower black

hole, where the green grid cells are very small, but are interpolating with the relatively large red cells.

However, the cells to either side, at (±8, 0), are of similar size where they overlap.

However, this grid structure is not symmetric with respect to the black holes in two ways. Firstly,

the cell-sizes where the grids interpolate from each other do not match, so that the interpolation may

not be as accurate as it could be. Secondly, the spherical outer boundary is centred on the first black

hole, so that the boundary conditions are not symmetric with respect to the second black hole. If we had

an infinite spatial domain, this latter point would not matter, but for a finite computational domain, it

could be important.

In practice, we found that evolving the flow on this grid system was successful up to about t = 1000M .

However, the flow then became unstable, in an asymmetric way, so that we deduce that the reason for

this was the asymmetric grid setup.

We therefore turned to the more complex, but symmetric, grid setup shown in Figure 8.47. Here, we

have used two small pairs of grids that do not overlap to excise the two black holes, covered them with

a Cartesian grid, and finally encased the Cartesian grid in a third pair of spherical grids, centred at the

origin, and extending out to 50M . Portions of the (green) Cartesian grid have been removed in order to

allow the two excision spheres to be captured smoothly. The outer pair of spherical grids extend into the

inner black hole grids; this should be avoided in general, but removing this would require the Cartesian

grid to be made much larger, resulting in a larger number of grid cells.
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Figure 8.46: Cross-section of the first grid structure used for the binary black hole simulation, in the

z = 0 plane. The two black holes are centred at (0, ±5, 0). One pair of grids (green and blue) cover a

sphere that captures both the inner excision for one black hole and the outer spatial boundaries, and the

second pair of grids (red and purple) capture the inner excision boundary for the second black hole. Total

number of grid points: 2 457 504, total number of interpolation points: 244 587.

The two pairs of grids covering the black holes have inner radii 1.4M and outer radii 4M so that

they do not overlap. The Cartesian grid covers the region −10M ≤ x, y, z ≤ 10M , and the outer pair of

grids have inner radius 6M and outer radius 50M . This grid setup is now symmetric with respect to the

black holes. However, we note that it requires 70% more grid points compared to, and twice as many

interpolation points as, the first grid structure.
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Figure 8.47: Cross-section of the second grid structure used for the binary black hole simulation, in the

z = 0 plane. The two black holes are centred at (0, ±5, 0). Two pairs of spherical grids (black and cyan,

and blue and magenta) are used to capture the excision boundaries of the black holes, a Cartesian grid

(green) surrounds them, and a third pair of spherical grids (blue and red) is used to capture the outer

spatial boundary at 50M . Total number of grid points: 4 195 765, total number of interpolation points:

500 516.

8.6.2 Results

A three-dimensional view of the resulting flow at t = 2000M is shown in Figure 8.48. We see that a

wide shock-cone has developed, although it is now detached from both of the black hole horizons. There

are regions of high density to either side of the gap between the holes, as well as some regions of lower
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Figure 8.48: Result of a fluid flowing onto a binary black hole system, with the metric kept stationary.

There are two black holes with unit mass at (0, ±5, 0) in the Brill-Lindquist metric. The fluid upstream

of the binary system has adiabatic index Γ = 4/3, Mach number M = 1.5, and asymptotic sound speed

c∞ = 0.1. We show the density, with contours evenly spaced between ρ = 0 and ρ = 21.

density on the outside edges of the horizons.

Some more qualitative results are shown in Figure 8.49. The density plot shows the shock cone

forming upstream of the black holes, with density increasing towards them. The density also increases

as the black holes are approached from the downstream direction, and the region of highest density is

located symmetrically between the black holes, slightly downstream of their centres. The velocity plot

also shows the shock-cone, and that the flow decelerates across it. We see regions of low velocity both
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Figure 8.49: Contour plots for accretion onto a system of two unit-mass black holes at (0, ±5, 0) using

the Brill-Lindquist metric. The fluid state upstream is given by M∞ = 1.5, c∞ = 0.1, and Γ = 4/3.

downstream and upstream of the black holes.

Similar movies to those shown for single black hole evolutions are presented on the DVD. The stream-

lines are calculated using the velocity vectors vi in the Brill-Lindquist metric.

In Figure 8.50 we show the rate at which mass accretes onto the two black holes, evaluated on a sphere

of radius r = 10M , i.e. enclosing both black holes. The simulation has clearly not reached a steady state

even at t = 2000M .

Although the contour plots Figure 8.49 are (virtually) symmetric about the horizontal axis, the

streamline plots in Figure 8.52 show that there is some problem with maintaining a symmetric flow

overall as the streamlines are not symmetric about the vertical axis. The reason for this is not immediately

apparent, but could either be due to asymmetries in the numerical solution not visible in the contour

plots, or in the way the velocities for the streamlines are interpolated from the final numerical solution.

So, although some of the features shown in Figure 8.52 are perhaps not reliable, we can see that the

fluid emerges from the binary system having been compressed in the direction perpendicular to the line

joining the black holes, and forming two regions of outflow that can be interpreted as the combination

of two shock-cones, one from each black hole. The accretion region shown in Figure 8.51 is only slightly

distorted from being circular, having a minor axis length of 22.6M and a major axis length of 23.9M .
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Figure 8.50: Mass accretion rate for the binary black hole simulation. This was calculated on a sphere

radius 10M .
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Figure 8.51: Cross-section of the accretion region for the binary black hole simulation.

205



Figure 8.52: Plot of streamlines for uniform flow onto a binary black hole system with Brill-Lindquist

metric. The tracers were started on a circle of radius 24M at a distance 40M upstream of the black holes.

Note that although the problem setup is symmetric in the vertical plane, the streamlines are not. This

may be due to problems in the numerical solution itself, or the way in which velocities for the streamlines

were interpolated from the solution data.
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8.6.3 Comments

We have shown that our methodology is capable of being applied to a problem where the grid setup

is not trivial, and requires the features of Overture to generate the interpolation correctly. We have

also seen that some care may be required in ensuring that the grid structure is suited to the problem

being evolved. If we were to apply our algorithm to the case of inspiralling black holes, we would need

to generate two moving pairs of spherical grids for the two black holes, and then a Cartesian grid that

adapted itself to only just contain the two small spherical grids. The outer pair of grids going to spatial

infinity could, however, remain fixed.
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Chapter 9

Conclusions

In this thesis, we have demonstrated the development of a numerical algorithm that is capable of

evolving a relativistic fluid on a general system of curvilinear grids on a general space-time metric. The

algorithm can also be applied to the evolution of the space-time metric on similar grid systems, but

the formulation we chose to perform the evolution is not sufficiently accurate or stable to compete with

existing well established formulations such as those that are capable of evolving BBH systems.

As a conclusion, therefore, we provide an overview of the new work that has been performed in this

thesis, and how it will be relevant to the wider NR community.

9.1 Computational infrastructure and numerical methodologies

The algorithm that has been developed through this thesis is, as far as we are aware, the first to

be capable of evolving general relativistic hydrodynamical problems on general curvi-linear overlapping

grids, with Adaptive Mesh Refinement. It is also capable of evolving the space-time metric, although the

formulation used is not robust enough for general use.

The features of the algorithm that will be generally beneficial to Numerical Relativity are as follows:

• Curvilinear grids enable both the local and global symmetries of an evolution to be captured

accurately. For example, a pair of neutron stars could be evolved with each star on its own locally

spherical grid patch, and with the global domain being another sphere, capable of being extended

to large radii with only a modest number of grid points, and therefore low computational expense.

• AMR will be similarly beneficial as it will enable the focusing of computational resources on areas

of interest, or areas where the numerical error might otherwise be large. We note that some NR

codes have the ability to use AMR, but only in the context of Cartesian grids.
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• We have also demonstrated that it is possible to obtain accurate evolutions without using a Riemann

solver based method. Again, this observation will be of benefit as Riemann solvers tend to be the

most computationally expensive parts of a code.

• Also, in the use of Overture, we have shown that there are already available general codes that

have the above features, and can be built upon to produce a mature NR code, for substantially less

effort than would be needed to develop a new code from scratch.

We have documented and explained these features throughout this thesis, with the intention that other

researchers will be able to short-cut some of the problems that we had to overcome in developing our

algorithm and implementing it in software.

9.2 Numerical schemes

We have demonstrated the accuracy and suitability of centred finite-volume schemes such as slope-

limited GFORCE for evolving strongly relativistic fluid dynamical problems. The methods have been

validated on standard test problems, and shown to be of similar accuracy to other, more complex,

numerical schemes.

We have also elaborated some considerations that need to be made when developing an algorithm for

evolving GRHD on curvi-linear grids, and made explicit the generalisations that have to be made in this

case.

Further, we have used the same schemes to evolve the space-time metric and, on application to some

standard test problems, we have shown that they perform to a similar accuracy as other more mature and

robust formulations, although more they would need more work before they could be applied to problems

such as the merger of two black holes.

9.3 Bondi-Hoyle-Lyttleton accretion

We have applied our algorithm to the problem of perturbed Bondi-Hoyle-Lyttleton accretion onto

a spinning black hole. This is the first time that such simulations have been done for full general

relativity in three dimensions. We have demonstrated that we can reproduce previous results obtained in

axisymmetry, and also an exact solution, to a reasonable degree of accuracy. We note that our numerical

solution does not converge to the exact solution, so that more work may be required to track down this

problem. However, the results are sufficiently close that we can draw valid conclusions from our other

simulations.
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Following two previous sets of papers on Bondi-Hoyle-Lyttleton accretion, we have combined their

approaches. We first duplicated some test-cases from one of the papers, giving an overview of the types

of flow structure that could develop in both subsonic and supersonic flow. We have demonstrated the

effect of a spinning black hole and a perturbed upstream density on the flows, showing effects similar to

those obtained by Ruffert.

We have performed a full parametric study of a supersonic flow, demonstrating the dependence of the

flow structure on the fluid and black hole parameters. We have seen the development of flow features

very similar to those found in the case of Newtonian Bondi-Hoyle-Lyttleton accretion, and explained

the effects in terms of the flow parameters. We have done this by considering the effects of the flow

parameters both separately and in combination, examining the fluid density and velocity via contour

plots and streamlines. This has led us to discover some interesting effects that were not apparent in

previous investigations of accretion.

We have also shown an extensive quantitative analysis of the flow, aiming to discover effects that

might be observable in distant accretion flow using current technology, although we have not found any

conclusive results for this.

Finally, we have demonstrated an accretion flow onto a binary black hole system, showing that our

methodology is easily applied to the solution of accretion flow on geometries more complex than a single,

stationary black hole. However, this has also shown that some work may be needed in fine-tuning the

grid structure used for these flows.
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Chapter 10

Future Work

The implementation of the algorithm that we have written for this thesis is so far only a demonstration

of the full potential of the methodologies included in the algorithm. However, our choice to build on the

Overture infrastructure was with a more long-term purpose in mind. Having demonstrated that the

principles are sound, we can now continue to develop a mature code for evolving general space-times

containing various different fluid types.

10.1 Code structure

Now that we have determined which numerical features are the correct ones to use, and how we should

implement them, we should reimplement the algorithm from scratch. This could be done in a modular

way, in a similar fashion to Cactus [5], so that the incorporation of new numerical methods, formulations,

or equations into the algorithm would be relatively straightforward, and could be done independently of

the adaptations required to use curvi-linear overlapping grids.

It would be possible, within this framework, to implement the most up-to-date formulations of Ein-

stein’s equations, with various choices for gauge conditions. Various different fluid types could also be

included in the algorithm. These would require very little effort to include in such a modular code, if we

do not require Riemann solvers to be implemented for each new system of equations, something we have

demonstrated to be feasible and to produce good results.

10.2 Numerical Methods

Similarly, more up-to-date numerical methods could be implemented, again in a modular fashion, so

that we can take advantage of the latest developments in this field. Further, we could introduce magnetic
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fields into our algorithm, although this would require some work, such as the inclusion of constrained

transport, to ensure that the magnetic field constraints were preserved.

Features that are implemented by Overture that we envisage could be useful for NR include moving

grids and automatic grid generation. These would permit a general space-time to be evolved, with a

suitable grid being generated that would take into account, for example, the location of any apparent

horizons, placing an excision boundary just inside the horizon, and creating a grid that locally was of

similar shape to that horizon. This would be of use, for example, in the simulation of a fluid in a BBH

system. The advantage of a completely general grid system as made possible by Overture would be to

remove the necessity of developing either specially designed grid systems for each space-time one wished

to evolve, or special coordinate systems that keep the predicted features of the space-time aligned with

a static grid. In a conceptually similar way to AMR, moving grids would allow the grid to adapt to the

movement of singularities through the space-time.

Numerical techniques that could be included in such an algorithm, beyond those we have already

demonstrated in this thesis, would be proper flux correction at AMR boundaries, and the ability for

more general AMR setups such as varying refinement ratios, and different ways of interpolating sub-

cycled grid levels’ boundaries.

Given the potential for the use of a spherical grid at large radii, more appropriate boundary conditions

could be implemented, and better extraction of gravitational waves could be performed as compared to

evolutions carried out on Cartesian grids. Further, given that Overture is capable of solving elliptic

equations on the general grid structure that it uses, via PETSc [14], the constraint equations could be

solved, either just initially, or after every few time-steps.

Also, it might be possible to derive flux-source balanced schemes for evolving a fluid on a general

metric on a general curvi-linear grid, so that a static solution would remain static. However, as well

as requiring large amounts of effort to derive such a scheme, any resulting algorithm would quite likely

introduce a large amount of computational expense into the scheme. Throughout this thesis, we have not

seen the necessity for such an approach, although there might be some cases where non-balancing effects

became important.

10.3 Bondi-Hoyle-Lyttleton Accretion

We have only simulated a small part of the parameter space of Bondi-Hoyle-Lyttleton accretion. As

suggested by our problem setup, we envisage testing the effect of velocity perturbations. We can also

vary the direction in which the perturbations occur, as allowed for by equation (7.6).

As suggested by Foglizzo et al. [37], it would be interesting to investigate the stability of accretion
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onto a black hole, and whether relativistic effects stabilise such a flow, or whether the existence of the

instability is affected by the spin of the black hole.

10.4 Final remarks

In conclusion, therefore, we believe that we have demonstrated that an algorithm making use of general

overlapping grids with AMR has many advantages for solving problems of General Relativity, and that

it does not require prohibitively large amounts of effort to implement such an algorithm, particularly if

use is made of mature tools and software libraries widely available in the CFD community.
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