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RESUMO EXPANDIDO

Introdução
Os avanços nos computadores, nas tecnologias da informação e na Internet
nos levaram a produzir um enorme volume de informações. O fácil acesso
a dispositivos como desktops, notebooks, tablets e smartphones é uma reali-
dade para uma parcela significativa da população mundial. As redes sociais
e uma variedade de aplicações para produzir e compartilhar conteúdo são co-
muns em um dia tı́pico de pessoas que vivem atualmente. A combinação
desses fatores cria o que alguns autores denominam como sobrecarga de
informações, ou seja, dificuldade de tomar decisões como resultado do grande
volume de informações e da capacidade limitada de processamento.
Para superar o problema de sobrecarga de informações, sistemas de suporte
à decisão foram propostos. O objetivo desses sistemas é ajudar as pessoas
a lidar com a enorme quantidade de informações e melhorar os resultados
de suas decisões. Sistemas de recomendação são um tipo de sistema de fil-
tragem de informação no qual o objetivo é recomendar a informação mais
relevante para a necessidade especı́fica de um usuário. Para conseguir isso, o
sistema de recomendação precisa ter algum conhecimento sobre a relevância
da informação para qualificá-la como uma resposta à necessidade do usuário.
A função de relevância permite ao sistema de recomendação classificar a
informação em relevante ou não a um determinado usuário. Um grupo de
técnicas, conhecido como filtragem colaborativa, foi proposto para inferir a
função de relevância baseada nas avaliações feitas pelos usuários em relação
aos items.
Com base na aprendizagem de máquina descrevemos como os sistemas de
recomendação são capazes de aprender a relevância de algum item para re-
solver a necessidade de um usuário. Naturalmente, a noção de utilidade ou
preferência das coisas nos permite ranqueá-las em alguma ordem de relevância.
Essa ideia orientou o desenvolvimento de uma área especializada em apren-
dizagem de máquina, responsável pela aprendizagem de ranqueamento de
informação.
Pouca atenção foi dedicada a escalabilidade dos algoritmos na literatura de
aprendizagem de ranqueamento. No entanto, essa questão tornou-se cada
vez mais importante hoje em dia, especialmente devido à disponibilidade de
dados em grande escala que podem ser usados para o treinamento de modelos
de aprendizagem de ranqueamento.
Um tópico que orienta o desenvolvimento de técnicas de aprendizagem de
máquina está relacionado a disponibilidade dos dados no processo de apren-



dizagem. No paradigma incremental, os dados são recebidos continuamente
pelo sistema e são usados para ampliar o conhecimento do modelo existente.
A principal vantagem desta abordagem está relacionada à sua baixa com-
plexidade de memória o que possibilita escalabilidade, uma vez que apenas a
informação processada precisa estar em memória - no paradigma em lote, to-
das as informações precisam estar em memória. A desvantagem está no com-
prometimento da velocidade de aprendizagem devido ao fato de possuı́rmos
um número restrito de informações.
A restrição entre baixa complexidade de memória e velocidade de apren-
dizado na aprendizagem incremental para classificar os modelos aplicados
no problema de filtragem colaborativa é o foco deste trabalho. Nosso ob-
jetivo é melhorar a velocidade de aprendizado do algoritmo, mantendo sua
baixa complexidade de memória e obtendo um ganho na precisão do modelo
de forma mais rápida.
Objetivos
Propor uma versão acelerada de um algoritmo incremental de aprendizagem
de ranqueamento no contexto do problema de filtragem colaborativa.
Os objetivos especı́ficos do trabalho são: delinear e formalizar o problema de
filtragem colaborativa no contexto de aprendizagem incremental; descrever
e discutir os trabalho relacionados; propor um algoritmo acelerado aderente
ao problema; avaliar o algoritmo proposto em instâncias reais do problema e
analisar os resultados dos experimentos.
Metodologia
A investigação deste trabalho foi orientada pelo pressuposto de que a taxa de
convergência do algoritmo base poderia ser melhorada pela adoção de uma
técnica de aceleração de otimização.
Especificamente, aplicamos uma técnica de aceleração ao método de otimização
do algoritmo base no contexto de aprendizagem de ranqueamento incremen-
tal aplicado ao contexto de filtragem colaborativa.
Resultados
Os resultados obtidos através dos experimentos realizados confirmam estatis-
ticamente a efetividade da técnica de aceleração aplicada ao algoritmo base.
O principal benefı́cio obtido nesse contexto pode ser visualizado no desem-
penho superior do algoritmo proposto nas iterações iniciais, demonstrando
uma aceleração no processo de aprendizagem.



RESUMO

O enorme volume de informação hoje em dia aumenta a complexidade e
degrada a qualidade do processo de tomada de decisão. A fim de melhorar a
qualidade das decisões, os sistemas de recomendação têm sido utilizados com
resultados consideráveis. Nesse contexto, a filtragem colaborativa desem-
penha um papel ativo em superar o problema de sobrecarga de informação.
Em um cenário em que novas avaliações são recebidas constantemente, um
modelo estático torna-se ultrapassado rapidamente, portanto a velocidade de
atualização do modelo é um fator crı́tico. Propomos um método de apren-
dizagem de ranqueamento incremental acelerado para filtragem colaborativa.
Para atingir esse objetivo, aplicamos uma técnica de aceleração a uma abor-
dagem de aprendizado incremental para filtragem colaborativa. Resultados
em conjuntos de dados reais confirmam que o algoritmo proposto é mais
rápido no processo de aprendizagem mantendo a precisão do modelo.

Palavras-chave: Sistemas de Recomendação. Filtragem Colaborativa. Apren-
dizagem de Máquina. Aprendizagem Incremental.





ABSTRACT

The enormous volume of information nowadays increases the complexity of
the decision-making process and degrades the quality of decisions. In order
to improve the quality of decisions, recommender systems have been applied
with significant results. In this context, the collaborative filtering technique
plays an active role overcoming the information overload problem. In a sce-
nario where new ratings have been received constantly, a static model be-
comes outdated quickly, hence the rate of update of the model is a critical
factor. We propose an accelerated incremental listwise learning to rank ap-
proach for collaborative filtering. To achieve this, we apply an acceleration
technique to an incremental collaborative filtering approach. Results on real-
word datasets show that our proposal accelerates the learning process and
keeps the accuracy of the model.

Keywords: Recommender Systems. Collaborative Filtering. Machine Learn-
ing. Incremental Learning.
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1 INTRODUCTION

Advances in computers and information technologies and the Internet
led us to produce a huge volume of information. Easy access to computers
like desktops, notebooks, tablets and smartphones is a reality to a significant
portion of the world population. Social networks and a variety of applica-
tions to produce and share content are common in a typical day of people
living today. The combination of these factors create what some authors de-
nominate as information overload (EPPLER; MENGIS, 2004). Also known
as infobesity or infoxication (HIMMA, 2007), it refers to the difficulty of
making decisions as a result of the limited capacity of process information.

To overcome the information overload problem some decision support
systems have been proposed. The goal of these systems is to help people to
deal with the massive amount of information and to improve the results of
their decisions. This can be done in two ways: helping in the rational process
of decision, when all available information are considered in a prescriptive
manner and the best decision is suggested; or focusing in the descriptive as-
pects, trying to reveal the process of decision. Information filtering systems,
a kind of decision support system, assist judgements recommending rele-
vant information based on the understanding of the user’s decision process
(HANANI; SHAPIRA; SHOVAL, 2001).

Recommender systems are a type of information filtering system whom
goal is recommend the most relevant information for a user’s specific neces-
sity. To accomplish that, the recommender system needs to have some knowl-
edge about the information relevance in order to qualify it as an answer to the
user’s necessity. Seems reasonable that the system needs to learn a relevance
function, enabling it to classify the information in some manner. The capacity
of learning the relevance function was the natural evolution of recommender
systems (BOBADILLA et al., 2013).

A group of techniques, known as collaborative filtering, have been
proposed to infer the relevance function based only on rating data (evaluations
given by users to items). The underlying assumption is that if a person has
the same opinion as other person about an item, this person is more likely to
have the other’s person opinion on a different item than that of a randomly
chosen person (RICCI et al., 2011).

Learning something can be understood as the acquisition, modification
or reinforcement of knowledge about some subject. With some other pro-
cesses as attention, memory, judgment, reasoning, planning, problem solving
and decision making, it constitutes cognition - all the mind process studied
in cognitive science area and related to knowledge found in humans, ani-
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mals and machines (MILLER, 2003). Based on artificial intelligence, or more
specifically through machine learning, we build the bridge that explains how
recommender systems are able to learn the relevance of some item to solve a
user’s necessity.

Naturally, the notion of utility or preference of things allow us to ar-
range them in some order of relevance. This idea guided the development
of a specialized area in machine learning, responsible for learning to rank
information. Initially developed in the field of information retrieval, learn-
ing to rank techniques started to be used in recommender system to improve
recommendations (LIU, 2009).

In the literature of learning to rank, researchers have paid a lot of at-
tention to the design of model, but somehow overlooked the scalability of
algorithms. This however, has become a more and more important issue
nowadays, especially due to the availability of large-scale data that can be
used to train the learning to rank models (LIU, 2009).

A topic that guides the development of machine learning techniques
is when data becomes available to the learning process. In the incremental
learning paradigm, data is continuously received by the system and is used to
extend the existing model’s knowledge (FIAT, 1998). The main advantage of
this approach is related to its low memory complexity which provides scala-
bility, since that only the information been processed needs to be in memory -
in the batch paradigm, all the information needs to be in memory. The draw-
back is that with less available information, the speed of learning is compro-
mised which impacts on the accuracy of the model.

The trade-off between low memory complexity and speed of learning
in incremental learning to rank models applied in collaborative filtering prob-
lem is the focus of this thesis. Our goal is to improve the speed of learning
of the algorithm, keeping its low memory complexity and impacting in the
accuracy of the model.

1.1 GENERAL OBJECTIVE

Propose an accelerated version of an incremental learning to rank al-
gorithm in the context of the collaborative filtering problem.

1.2 SPECIFIC OBJECTIVES

Achieving the general objective of this thesis encompasses the follow-
ing specific objectives:
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• Delineate and formalize the collaborative filtering problem in the in-
cremental learning context;

• Describe and discuss previous work related to the problem;

• Propose an accelerated algorithm adherent to the problem;

• Evaluate the proposed algorithm in real-world instances of the problem;

• Analyze the evaluation results and take conclusions.

1.3 SCOPE

The scope of this thesis is in the collaborative filtering techniques,
in the area of recommender systems. The same warning is directed to the
listwise learning to rank approach, in the machine learning area. Lastly, the
scope is delimited by the incremental learning paradigm, based on online
optimization techniques.

1.4 THESIS OVERVIEW

This thesis is organized in the follow structure. In Chapter 1, an intro-
duction of the theme is presented, with general and specific objectives, and
the scope of the thesis. In Chapter 2, the background knowledge, problem
definition, and previous work are presented. In Chapter 3, the proposal is pre-
sented. In Chapter 4, we describe the design of the experiment and discuss
the results of the experiments. Finally, in Chapter 5, we conclude and present
the future work.
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2 THEORETICAL FOUNDATION

Our objective at this chapter is to provide a concise and relevant back-
ground knowledge necessary to understand the scope of this thesis, as pre-
sented at Section 1.3, provide a formal definition of the incremental collabo-
rative filtering problem and discuss the previous work in the area. In the last
section, we justify the general objective of this thesis, as described at Section
1.1.

2.1 BACKGROUND

2.1.1 Recommender System

Recommender systems are software tools responsible for suggest an
item of interest to a user. The items recommended can be of many different
types, like movie, music, book, product or even a new relationship in the con-
text of a social network. Considering this, recommender systems are defined
as a type of information filtering system, removing redundant and unwanted
information from the information stream managing the information overload
problem (RICCI et al., 2011). To accomplish this objective, a relevance func-
tion that describes the relevance of an item to a user is inferred and used to
select the most relevant items among a huge set of it (RICCI et al., 2011).

Researching in recommender systems field is a interdisciplinary effort
including disciplines like cognitive science, artificial intelligence, machine
learning, data mining, mathematics, and statistics. Particular techniques are
used in the design of a recommender system and are grouped according to the
data that is used in the recommendation process. Recommender systems can
be classified depending the type of information used to infer the model as:
content-based, collaborative filtering, context-aware, knowledge-based and
hybrid (JANNACH et al., 2010).

The main concept in the content-based approach is the user’s profile.
It is built with content and metadata information of the items that user has
liked or interacted in the past. This profile indicates prefered items of user
and is used to recommend new items that are in accordance with it. In the
recommendation process, the search for new items to recommend are made
looking for items with an elevate degree of similarity with the user’s profile
(JANNACH et al., 2010).

The collaborative filtering approach uses only data from ratings of
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users about items. This ratings can be in the form of numerical, binary (like
or dislike) or unary values (an interaction with an item). There is two main
approaches used in collaborative filtering: the memory-based and the model-
based (JANNACH et al., 2010).

In the memory-based or neighborhood approach, the data is kept in
memory and an algorithm is used to find out similarities, based on a metric,
between users and items. This approach can still be divided into user-based
and item-based, depending whether the used similarity is in relation of the
user or the item.

In the model-based a model is built based on the ratings that represents
the relevance of an item to a user. Many techniques from machine learning
are used to build this kind of models. Once the model is built, it’s possible to
use it to predict the relevance of an unseen item to the user and recommend it
or not.

The context-aware recommender systems are those in which the con-
textual information is used in the process of recommendation. Contextual
information like space and time can influence a recommendation. There are
three different paradigms to incorporate contextual information in the rec-
ommendation process: contextual pre-filtering, post-filtering, and modeling
(JANNACH et al., 2010). Those paradigms describe the moment that the
contextual information is used in the recommendation process. In the pre-
filtering, the items are filtered based on the contextual information before the
recommendation. Otherwise, in the post-filtering, the items are filtered based
on the contextual information after the recommendation. In the modeling
paradigm, the contextual information is used directly in the model.

Knowledge-based recommender systems are used in specific knowl-
edge domains and are based on how some items satisfy users needs (JAN-
NACH et al., 2010). One case of this kind of system are the cased-based,
where a similarity function evaluates how much the user needs (problem)
match the recommendations (solution). Another type is the constraint-based,
where instead of using a similarity function the system explores a knowledge
base with rules about how to relate user needs with recommendations.

In the hybrid context, two or more aforementioned approaches are
combined. The goal of this combination is to use the advantages of some ap-
proach to fix the disadvantages of the other. Diverse techniques to make this
combination have been proposed in the literature (JANNACH et al., 2010).
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2.1.2 Machine Learning

Inductive reasoning is a kind of reasoning in which the premises are
viewed as evidence of the truth of the conclusion. Differently from deductive
reasoning, where the conclusion is ensured, in inductive reasoning the con-
clusion is probable, based on evidences. Generalization is a type of inductive
reasoning that starts from a premise about a sample to a conclusion about the
population. The inductive reasoning is inherently uncertain (MITCHELL,
1997).

Machine learning is the research area in artificial intelligence that tries
to create or reproduce the human ability to learn in machines. To achieve this,
algorithms that generalize from data are studied. These algorithms induce a
model from data that is used in prediction or decision making (MITCHELL,
1997).

One informal definition of machine learning is that: “A computer pro-
gram is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E” (MITCHELL, 1997). In this definition, the
experience E is viewed as the available data related to the task T learned by
the algorithm and the performance measure P is the evaluation metric used
to evaluate the machine learning algorithm. The main objective of a machine
learning algorithm is to have a good performance when exposed to unseen
sample of data related to task T. Overfitting is a concept in machine learn-
ing that describes when an algorithm have a good performance with available
data but a poor performance with unseen data.

There are three main divisions in machine learning, depending of the
feedback available to the system: supervised learning (labeled data), unsuper-
vised learning (unlabeled data) and reinforcement learning (MOHRI; ROS-
TAMIZADEH; TALWALKAR, 2012).

In the supervised learning, during the training phase, the inputs and
outputs are presented to the system. Using the inputs the system can generate
a hypothesized output and compare this to the true output. This comparison
generates a feedback that is used to learn the correct model.

Unlike the previous approach, in unsupervised learning only the inputs
are available to the system. There is not the true output to the system compare
and guide the learning process. Thereby, the main goal of the algorithm is find
hidden structure in data.

Reinforcement learning is the paradigm of machine learning where
the system interacts with the environment with some objective and without a
teacher guiding the actions that system should take at each moment. In this
case, the system needs to learn the set of best actions to achieve its objective.
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A formal theory in the scope of supervised learning is the statistical
learning theory (VAPNIK; VAPNIK, 1998). From the statistical learning the-
ory, the principle of empirical risk minimization with regularization defines a
form of finding a predictive function based on data as in Equation 2.1.

arg min
h∈H

1
d

d

∑
k=1

L (h(xk),yk)+θr(h) (2.1)

The H is the hypothesis space of possible learnable functions h. The
size of training set is defined by d. The loss function L measures the dif-
ference between the predictable value h(x), where x is the input data, and the
real output value y. The regularization term r(h) controls overfitting and is
configured by the parameter θ .

Classification and regression are two common tasks performed by the
algorithms in the supervised learning paradigm (MOHRI; ROSTAMIZADEH;
TALWALKAR, 2012). The main difference between both is that, in classifi-
cation the output is discrete and in regression the output is continuous. Com-
mon tasks in unsupervised learning include grouping (clustering), summa-
rization (dimensionality reduction) and association (association rules) (MOHRI;
ROSTAMIZADEH; TALWALKAR, 2012). Clustering is the task where the
objects are grouped according to their similarity. Dimensionality reduction is
the task of reducing the number of considered variables generally before the
use of another machine learning technique. In association rules, the objective
is to discover valuable relationships between variables in the data.

Learning to rank is the application of techniques from machine learn-
ing in the construction of ranking models (LIU, 2011). The algorithm infers
the ranking model based on training data (lists with some partial order spec-
ified between items). This order is commonly induced by giving a numerical
or ordinal score or a binary judgment for each item. The purpose of the model
is to produce a permutation of items in an unseen list, based on the general-
ization inferred of the seen lists in the training phase. There are three main
approaches in the learning to rank area, depending in how the list is evaluated
in the learning process: pointwise, pairwise and listwise (LIU, 2011).

The pointwise approach of learning to rank can be approximated by
a regression problem. For each item in the list, an evaluation is predicted
and the list is sorted in a decreasing order. Classical techniques of supervised
learning can be applied for this purpose.

The pairwise approach approximates the learning to rank problem
learning a binary classifier. The list is sorted based on the classification of
pairs of items by relevance. The goal in this case is to minimize the average
number of inversions during the ranking.
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The main difference of the listwise approach to the others (pointwise
and pairwise) is in the evaluation during the learning phase. In the time that
the pointwise tries to predict the score of an item and the pairwise tries to
predict the preference of an item in relation to another, the listwise approach
optimize directly over the evaluation of the entire predicted list.

Machine learning algorithms can also be divided considering the mo-
ment that data is available, in incremental or online learning and batch or
offline learning (BORODIN; EL-YANIV, 2005). Incremental machine learn-
ing is a method in which data become available in a sequential order and is
used gradually to update the model. In the batch machine learning approach,
the entire data is available in the learning phase and the model is inferred just
once.

Another possible division of machine learning considers the underly-
ing theory that support the algorithms. Knowledge from mathematical opti-
mization, probability theory, information theory and, search techniques are
common examples found in machine learning algorithms. One important ex-
ample, related to the objective of this thesis, is the information theory.

From information theory (MACKAY, 2003), the concept of cross en-
tropy H(p,q) defines the measure of divergence between two discrete prob-
ability distributions p(x) and q(x), where x is a discrete random variable, as
defined in Equation 2.2.

H(p,q) =−∑
x

p(x) logq(x) (2.2)

2.1.3 Mathematical Optimization

Mathematical optimization is an area of applied mathematics con-
cerned with minimizing or maximizing the value of a function in a defined
domain regarding some constraints. A general minimization optimization
problem is represented by Equation 2.3.

argmin
x

f (x)

subject to g j(x)≤ 0, j ∈ {0, . . . ,k}
(2.3)

The function f (x) is known as objective function or loss function, in
case of a minimization problems, or as utility function or fitness function, in
case of maximization problems. The constraints, defined by inequalities g(x),
are restrictions on the domain and determine the search space composed by
the candidate or feasible solutions. A feasible solution that minimizes or
maximizes the loss function or the utility function, respectively, is known
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as optimal solution. The area of convex programming studies the problems
where the domain is a convex set (BOYD; VANDENBERGHE, 2004).

Problems in the area of mathematical optimization can be classified
by the type or characteristics of the objective function and the inequalities or
equalities constraints. For example, problems without constraints are known
as unconstrained optimization problems. Problems with more than one ob-
jective function are known as multi-objective optimization problems. And
the multi-modal optimization problems are the problems with more than one
optimal solution (CHONG; ZAK, 2013).

Different techniques can be used to find the solution of an optimiza-
tion problem. The direct methods that terminate in a finite number of steps
can find an exact solution - in the absence of rounding errors. The iterative
methods that approximate numerically the optimal solution, as the Newton’s
method or the gradient descent method. And the heuristics, that generate so-
lutions without guarantee of convergence, as genetic algorithms (CHONG;
ZAK, 2013).

Iterative methods are procedures that generate a sequence of improv-
ing approximate solutions for a problem, in which the actual solution is de-
rived from the previous one (BURDEN; FAIRES, 2011). In the context of
mathematical optimization, an iterative method is convergent if the corre-
sponding sequence of generated solutions converges from the initial approx-
imations to the optimal solution. Two important mathematical results are
considered when analyzing iterative methods: proof of convergence and rate
of convergence. The first, proof of convergence, guarantees that the itera-
tive method converges to the optimal solution. The second, rate of converge,
determines the speed of convergence.

Iterative methods in mathematical optimization differ according to
whether they evaluate Hessians, gradient, or function values. The Hessian is
a square matrix of second-order partial derivatives of a function, used in op-
timization problems within Newton-type methods. The gradient is the vector
of first-order partial derivatives of a function, used in gradient based methods.
Some methods do not require the gradient of the function and evaluate only
the function values directly, as the pattern search methods (CHONG; ZAK,
2013).

A classical gradient method is the gradient descent method, that takes
steps proportionally to the negative of the gradient of the function at the cur-
rent point, to find the minimum of the function (BOTTOU, 2010). In Equa-
tion 2.4, we observe that the f (x) decreases in the direction of the negative
gradient ∇ f (x) considering a step size γ .

xk+1 = xk− γ∇ f (xk) (2.4)
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The rate of convergence of the gradient descent method is O(1/k), where k is
the number of iterations.

Online optimization is a field of mathematical optimization that deal
with optimization problems with incomplete information - approximated Hes-
sians and approximated gradients or subgradient (SHALEV-SHWARTZ et
al., 2012). Two online optimization methods are important in the context of
this thesis: the stochastic gradient descent (SGD) method and the dual aver-
aging (DA) method.

Firstly, stochastic gradient descent method, also known as incremental
gradient descent, is a stochastic approximation of the gradient descent method
(BOTTOU, 2010). In SGD, the true gradient ∇ f (x) is approximated by a
gradient at a single point. The rate of convergence of the stochastic gradient
descent method is O(1/

√
k), where k is the number of iterations.

Secondly, the dual averaging method determines the next point in the
series by solving a simple optimization problem that involves the average of
all past subgradients (NESTEROV, 2009). The rate of convergence of the
dual averaging method is O(1/k2), where k is the number of iterations.

2.2 PROBLEM DEFINITION

In order, to succinctly define the incremental collaborative filtering
problem, consider the following definitions.

Definition 1 (Set of Users)
Consider the set of users U = {u1, . . . ,um}, where the element u is a user of
the system.

Definition 2 (Set of Items)
Consider the set of items I = {i1, . . . , in}, where the element i is an item of
the system.

Definition 3 (Set of Evaluations)
Consider the set of evaluations E = {e1, . . . ,eo}, where the element e is an
evaluation and represents the relevance of an item to a user.

Definition 4 (Rating)
A rating is a 3-tuple (u, i,e) that corresponds to the evaluation e ∈ E given
by a user u ∈U to an item i ∈I .

Definition 5 (Set of Ratings)
Consider the set of all ratings R = {(u j, ik,e)| j = 1, . . . ,m;k = 1, . . . ,n;e ∈
E }, where the element is a rating.
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Definition 6 (Set of Known Ratings)
Consider the set of known ratings Q, where Q ⊆R and corresponds to the
observed ratings.

Definition 7 (Set of Unknown Ratings)
Consider the set of unknown ratings S , where S = R \Q and corresponds
to the unobserved ratings.

Definition 8 (Relevance Function)
Consider the relevance function f : U ×I → E , that relates the set of inputs
of ordered pairs (u, i) given by the cartesian product U ×I with the set of
outputs E .

Based on the above definitions, we can describe the incremental col-
laborative filtering problem.

Problem
The collaborative filtering problem can be viewed as a matrix decomposi-
tion problem. Consider that the set R can be represented as a matrix, as in
Equation 2.5.

R =


i1 i2 · · · in

u1 e11 e12 · · · e1n
u2 e21 e22 · · · e2n
...

...
...

. . .
...

um em1 em2 · · · emn


m×n

(2.5)

The objective is to find out two matrices U and I of latent features,
based on known ratings Q, that better approximate R as in Equation 2.6. A
latent feature l is a feature that is not directly observed but is rather inferred
from other variables that are observed. The latent features are used to de-
scribe a user and an item. The matrix U with dimensions m× p represents
the user’s latent features where the row Uu is the user’s latent feature vector.
The matrix I with dimensions p×n represents the item’s latent features where
the column Ii is the item’s latent feature vector. The number of latent features
is defined by p.

R =


l1 l2 · · · lp

u1 l11 l12 · · · l1p
u2 l21 l22 · · · l2p
...

...
...

. . .
...

um lm1 lm2 · · · lmp


m×p

×


i1 i2 · · · in

l1 l11 l12 · · · l1n
l2 l21 l22 · · · l2n
...

...
...

. . .
...

lp lp1 lp2 · · · lpn


p×n

(2.6)
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Once we have matrices U and I, we can predict the unknown eval-
uations through the relevance function f with the user’s feature vector and
the item’s feature vector. Consequently, we can predict the evaluation of all
unknown ratings of the set S .

The incremental version of the collaborative filtering problem deter-
mines that the elements of set Q become available gradually over time. In
this case, the problem is extended by the requirement that existing model’s
knowledge needs to absorb new element without consuming all the available
set Q again.

2.2.1 Problem Example

In order to clarify the problem definition, we use a simple and brief
example. Consider that the set of all ratings is represented by the matrix R in
Equation 2.7.

R =


i1 i2 i3 i4

u1 2.5 2.0 2.5 2.5
u2 4.0 3.0 3.5 3.0
u3 3.5 3.0 4.0 4.5
u4 5.0 4.0 5.0 5.0


4×4

(2.7)

In the learning process, we only have access to a subset of the matrix
R, as described in matrix Q by Equation 2.8.

Q =


i1 i2 i3 i4

u1 2.0
u2 4.0 3.0 3.0
u3 4.0
u4 4.0 5.0


4×4

(2.8)

Decomposing the matrix Q in matrices U and I we can find the latent
factors that describe the characteristics of both users and items, as in Equation
2.9 and Equation 2.10.

U =


l1 l2

u1 1.0 1.0
u2 2.0 1.0
u3 1.0 2.0
u4 2.0 2.0


4×2

(2.9)
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I =
( i1 i2 i3 i4

l1 1.5 1.0 1.0 0.5
l2 1.0 1.0 1.5 2.0

)
2×4

(2.10)

Based on the latent features of users and items, we can predict the
unknow ratings. For example, suppose we want to discover the unknow rating
of user u3 for item i1. To achieve that, we need to combine the user u3 latent
feature vector with the item i1 latent feature vector as in Equation 2.11.

( l1 l2
u3 1.0 2.0

)
1×2×

( i1
l1 1.5
l2 1.0

)
2×1

= 3.5 (2.11)

We can repeat this process with the other unknow ratings of user u3,
combining its latent feature vector with the i2 and i4 item latent feature vector.
In the end, we have all the ratings of user u3 as in Equation 2.12.

( i1 i2 i3 i4
u3 3.5 3.0 4.0 4.5

)
1×4 (2.12)

We can recommend items sorting the vector in descending order of
evaluation. In this example, the recommendation would be i4, i3, i1 and i2.

2.3 PREVIOUS WORK

In this section, we present the previous work in the incremental col-
laborative filtering area. Considering the literature review, we organize the
previous work based on how the relevance function is modeled, which is the
incremental learning approach and how the proposed algorithm is evaluated.

Some concepts exposed are not directly in the scope of this thesis.
Strictly, the relevance functions - graphical model, probabilistic reward and,
knn; learning models - gaussian process and multi-armed bandit; online algo-
rithm - greedy strategy, thopmson sampling and, temporal difference learning
or temporal dynamics; and evaluation metrics - RMSE, Recall, MAE, CTR
and, MAP. More information about this topics can be found directly in the
cited paper.

In Table 1, we present previous work by the relevance function model
and ranking approach.

In Table 2, we present the previous work by incremental learning
model and online algorithm.
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Table 1: Previous work by relevance function and ranking approach

Reference Relevance Function Learning to Ranking Approach

(LING et al., 2012) Latent Variable Model
Matrix Decomposition

Pointwise
and Listwise

(DIAZ-AVILES et al., 2012a) Latent Variable model
Matrix Decomposition Pairwise

(DIAZ-AVILES et al., 2012b) Latent Variable Model
Matrix Decomposition Pairwise

(WANG et al., 2013) Latent Variable Model
Matrix Decomposition Pointwise

(SILVA; CARIN, 2012) Graphical Model Pointwise
(HARIRI; MOBASHER; BURKE, 2014) Probabilistic Reward Pointwise

(LIU et al., 2010) Knn Pointwise

Table 2: Previous work by incremental learning model and online algorithm

Reference Incremental Learning Model Online Algorithm

(LING et al., 2012) Online Optimization Stochastic Gradient Descent
and Dual Averaging

(DIAZ-AVILES et al., 2012a) Online Optimization Stochastic Gradient Descent
(DIAZ-AVILES et al., 2012b) Online Optimization Stochastic Gradient Descent

(WANG et al., 2013) Online Optimization Stochastic Gradient Descent

(SILVA; CARIN, 2012) Active Learning
(Gaussian Process) Greedy Strategy

(HARIRI; MOBASHER; BURKE, 2014) Multi-Armed Bandit Thompson Sampling

(LIU et al., 2010) Reinforcement Learning Temporal Difference Learning
Temporal Dynamics

In Table 3, we present the previous work by dataset and evaluation
metric used to evaluate the proposed model.

2.3.1 Discussion

In this section we analyze the previous work about incremental col-
laborative filtering presented in Section 2.3. Most relevant to this thesis are
the model-based collaborative filtering studies, where the relevance function
is modeled as a latent variable model (DIAZ-AVILES et al., 2012a, 2012b;
WANG et al., 2013; LING et al., 2012). All papers present the incremental
learning model as an online optimization problem and they differ mainly in
the learning to rank approach and in the evaluation process.

The work of (LING et al., 2012) proposes two approaches to incre-
mental collaborative filtering problem. These approaches are the combination
of two learning to rank algorithms with two incremental optimization tech-
niques. A pointwise learning to rank approach from (SALAKHUTDINOV;
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Table 3: Previous work by dataset and evaluation metric

Reference Dataset Evaluation Metric

(LING et al., 2012) Movielens and
Yahoo Music RMSE and NDCG

(DIAZ-AVILES et al., 2012a) Twitter Recall
(DIAZ-AVILES et al., 2012b) Twitter Recall

(WANG et al., 2013) Dating Agency,
Jester Joke and Movielens RMSE and MAE

(SILVA; CARIN, 2012) Yahoo Music RMSE

(HARIRI; MOBASHER; BURKE, 2014) Yahoo Music
and Cti Data CTR

(LIU et al., 2010) Netflix RMSE and MAP

MNIH, 2007) and a listwise learning to rank approach from (SHI; LARSON;
HANJALIC, 2010) compose the learning to rank algorithms. The two incre-
mental optimization approaches used are the stochastic gradient method and
the dual averaging method. An interesting point of this work is the applica-
tion of the dual averaging optimization method. The advantage of the use of
the dual averaging method is that it uses the integral form of the regulariza-
tion term, providing greater stability to the learning algorithm. Other positive
points are the evaluation metric and the datasets used in the experiments. In
relation to the metric, the listwise learning to rank algorithm is evaluated by
a metric that expresses objectively the quality of the recommendation. The
same comment is direct to the datasets used, both are standard datasets in
the recommender system research area. Another interesting point is the com-
parison of the incremental approaches with the batch counterpart algorithm,
demonstrating how the performance of incremental approaches approximate
the batch algorithm over time.

In the work of (DIAZ-AVILES et al., 2012a), an incremental pairwise
learning to rank approach is presented. The relevance function is modeled
based on the work of (JOACHIMS, 2002). The incremental optimization
method applied is the stochastic gradient descent. A relevant point of this
work is in the form with the received evaluations are used in the incremental
algorithm. It is possible to use only the current evaluation in the relevance
function update or to create a kind of evaluation pool and use these accu-
mulated evaluations to perform the relevance function update. Another inter-
esting point concerns with the dataset used, representing a stream of Twitter
data. Although it is an algorithm classified as pairwise in the learning of
rank context, the evaluation metric does not evaluate the quality of the rec-
ommendation ranking directly. Therefore, the negative point of this work is
its evaluation metric.

In a later work on (DIAZ-AVILES et al., 2012b), a new proposal for
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incremental pairwise learning is presented. The fundamental difference of the
previous proposal is in the way the data is sampled from the data repository.
Previously we had a fixed-size repository used to update the relevance func-
tion, and now a random sample searching for the most representative data is
used. The data set and the evaluation metric are the same as the previous
work.

Another approach, proposed by (WANG et al., 2013), presents an in-
cremental pointwise learning proposal. The main advantage of this proposal
is related to the multi-tasking approach. For each evaluation received from
an item by a user, not only the user or item vectors are updated with this
new information, but also the vectors of the other users who have already
evaluated the same item. The advantage of this approach is a better use of
the information received, unlike only the direct application of an incremental
optimization method. On the other hand, the disadvantage of this model is
related to the fact that it requires more processing, since a greater number
of updates is necessary. The data set used in the experiments is standard in
the area of recommender systems and the metric used, as it is a pointwise
approach, correctly measures its performance.

2.3.2 Baseline

Based on the previous work about incremental collaborative filtering
presented in Section 2.3 and analyzed in Section 2.3.1 the main consideration
of this thesis is introduced.

One aspect observed was the lack of compromise between predic-
tion performance and speed of convergence. All the previous work use the
stochastic gradient descent method to compose the incremental version of
the batch algorithm. Only one work, (LING et al., 2012), uses a different
approach, the dual averaging method. The dual averaging method, despite
having a lower convergence rate than the stochastic gradient descent method,
presents a better consistency given that it uses the complete regularization
terms during the optimization. The work of (LING et al., 2012) is also the
only one that uses a listwise learning to ranking approach, which is more
appropriate in the recommendation context and offers a better ranking perfor-
mance.

Based on that, we delineate the general objective of this thesis, accel-
erate an incremental learning to rank algorithm in the context of the collab-
orative filtering problem. The work of (LING et al., 2012) is the baseline of
our proposal, considering that it uses a superior approach in the learning to
rank context and a more prominent method in the incremental optimization
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context. Therefore, our objective can be interpreted as accelerate the chosen
baseline algorithm.
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3 PROPOSAL

As presented in Section 1.1 and justified in Section 2.3.2, the main ob-
jective of this thesis is propose an accelerated version of an incremental col-
laborative filtering algorithm. Firstly, we introduce how the problem of col-
laborative filtering was modeled in the baseline algorithm. After, we present
how the baseline algorithm was adapted to the incremental learning problem,
described in Section 2.2. Finally, we describe how the acceleration technique
was applied to improve the speed of learning of the baseline algorithm in the
incremental learning context.

3.1 OVERVIEW

The proposed algorithm is an accelerated version of an incremental
algorithm based on an offline learning to rank for collaborative filtering al-
gorithm. In the Figure 1 we present an overview of the algorithms hierarchy.

PMF RMF

SGD-PMF DA-PMF SGD-RMF DA-RMF

ADA-RMF

Figure 1: Algorithm Hierarchy

The Probabilistic Matrix Factorization (PMF) (MNIH; SALAKHUT-
DINOV, 2007) and the Top-one Probability Ranking Matrix Factorization
(RMF) (SHI; LARSON; HANJALIC, 2010) are two offline learning to rank
algorithms. In the work of (LING et al., 2012), the PMF and RMF were ex-
tended to an incremental version of the offline algorithms by the application
of two online optimization methods, Stochastic Gradient Descent (SGD) and
Dual-Averaging (DA) method, resulting in the SGD-PMF, DA-PMF, SGD-
RMF and DA-RMF. Our proposal is an extension of the DA-RMF, the base-
line algorithm described in Section 2.2, the Accelerated Dual Averaging-
Ranking Matrix Factorization (ADA-RMF) algorithm.
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3.2 RANKING MATRIX FACTORIZATION (RMF)

The top-one probability based ranking matrix factorization (SHI; LAR-
SON; HANJALIC, 2010) is an offline listwise learning to rank for collabora-
tive filtering algorithm. The idea is to model the probability of an item being
ranked in the top of a user’s recommendation list by a softmax or normal-
ized exponential function. The softmax function normalizes a d-dimensional
vector v of real values to a d-dimensional vector t of real values in the range
(0,1) that add up to 1 as in Equation 3.1.

s(v) j =
exp(v j)

∑
d
k=1 exp(vk)

, for j = 1, . . . ,d (3.1)

The exp(x) represents the natural exponential function.
Based on the set R of all ratings, the top-one probability of the matrix

representation of R associated with an item i in a ranking for a user u is
defined as in Equation 3.2:

pR(eui) =
exp(eui)

∑
n
k=1 1ukexp(euk)

(3.2)

Through the decomposed matrices U and I, the top-one probability of
the learned model is defined as in Equation 3.3.

pUI(gui) =
exp(gui)

∑
n
k=1 1ukexp(guk)

(3.3)

The eui is the evaluation e from a rating (u, i,e) of the set R. The
evaluation values have been mapped to interval [0,1] by (e− emin)/(emax−
emin), where emin and emax are the minimum and the maximum values of the
set E , respectively. The gui is the predicted evaluation mapped to the interval
[0,1] by the logistic function, defined as 1/(1+ exp(−UuIi)). The 1ui is the
indicator function which is equal to 1 if user u have evaluated the item i and
0 otherwise.

From information theory introduced in Section 2.1.2, cross entropy
H(p,q) measures the divergence between two discrete probability distribu-
tions p(x) and q(x). Assuming that p(x) = pR(eui) and q(x) = pUI(gui), we
approximate pR(eui) to pUI(gui) as we minimize the divergence between the
probability distributions by H(p,q).

Based on the statistical learning theory, presented in Section 2.1.2, the
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loss function defined by RMF is presented in Equation 3.4.

L =
m

∑
u=1

−
n

∑
i=1

1ui
exp(eui)

n
∑

k=1
1ukexp(euk)

log


exp(gui)

n
∑

k=1
1ukexp(guk)




+
λU

2
‖U‖2

F +
λI

2
‖I‖2

F

(3.4)

Both λU and λI are l2-regularization parameters and the ‖.‖2
F is the

frobenius norm.
As presented in Section 2.2, the objective is to find out the matrices

U and I, through the set of known ratings Q, that approximate the unknown
matrix R, composed by the elements of the set R. Once the loss function L
emphasizes the concept of measuring the difference between two ranks, rep-
resented by the two probability distributions pR and pUI , this is classified as
a listwise learning to rank approach and comprises the offline the foundation
for the baseline online algorithm.

3.3 DUAL AVERAGING RANKING MATRIX FACTORIZATION (DA-RMF)

The dual averaging ranking matrix factorization method (LING et al.,
2012) is an online learning variation of the offline top-one probability based
ranking matrix factorization (SHI; LARSON; HANJALIC, 2010). The on-
line algorithm is based on the dual averaging optimization method, exposed
in Section 2.1.3, applied for regularized stochastic learning and online opti-
mization (XIAO, 2009). The dual averaging method absorbs previous rating
information in an approximate average gradient of the loss function. Then it
updates the model by solving an tractable analytically suboptimization prob-
lem based on the average gradient. The advantage is that it explicitly exploit
the regularization structure in an online context, using the whole regulariza-
tion term, not just its subgradient.

The cross entropy loss function L used in RMF is redefined to the
objective function O without regularization terms, capturing only the cross
entropy between pR and pUI , as in Equation 3.5. The l2-regularization terms
are applied later in the suboptimization problem.

O = L −
(

λU

2
‖U‖2

F+
λI

2
‖I‖2

F

)
(3.5)

We track the average gradients ḠUu and ḠIi as the observed rating
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appears one by one, approximating the gradient of O with respect to Uu and
Ii as defined by Equation 3.6 and Equation 3.7. The Ḡtu

Uu
denotes the gradient

of O to Uu when the tu-th evaluation is revealed by user u to item i. And Ḡti
Ii

denotes the gradient of O to Ii when item i receives the ti-th evaluation.

Ḡtu+1
Uu
←

∑

k∈Qtu
u

exp(euk)

∑

k∈Qtu+1
u

exp(euk)
Ḡtu

Uu

+

 exp(gui)

∑

k∈Qtu+1
u

exp(guk)
− exp(eui)

∑

k∈Qtu+1
u

exp(euk)

g′uiIi

(3.6)

Ḡti+1
Ii ←(1−α

β×ti)Ḡti
Ii

+

 exp(gui)

∑

k∈Qtu+1
u

exp(guk)
− exp(eui)

∑

k∈Qtu+1
u

exp(euk)

g′uiUu
(3.7)

The parameters α and β control the initial decay rate and how this rate
decrease, respectively. The g′ui is the derivative of the logistic function gui.

Once the average gradients ḠUu and ḠIi are calculated, the Uu and Ii
are updated by solving a suboptimization problem:

Uu = argmin
w

{
ḠT

Uuw+λU‖w‖2
2
}

(3.8)

Ii = argmin
w

{
ḠT

Ii w+λI‖w‖2
2
}

(3.9)

Where w represents the vector we want to minimize and the λU‖w‖2
2

and λI‖w‖2
2 are the l2-regularization terms.

Both Equation 3.8 and Equation 3.9 represent an optimization prob-
lem that is convex and differentiable and can be solved analytically. Taking
the derivative equals to zero give us the update rules of Uu and Ii defined at
Equation 3.10 and Equation 3.11.

Uu←−
1

2λU
ḠUu (3.10)

Ii←−
1

2λI
ḠIi (3.11)
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The Algorithm 1 presents the DA-RMF proposed in (LING et al.,
2012).

Algorithm 1: Dual averaging ranking matrix factorization (DA-
RMF)

Data: Observation rating (u, i,e) ∈Q
Input: n,m, l,λU ,λI ,α,β
Output: U, I

1 U ∈ Rl×n; // Randomly

2 I ∈ Rl×m; // Randomly

3 ḠU ∈ Rl×n← 0; // Average gradient

4 ḠI ∈ Rl×m← 0; // Average gradient

5 SQ ∈ Rn← 0; // Sum vector

6 SUI ∈ Rn← 0; // Sum vector

7 TI ∈ Zm← 0; // Index vector

8 for (u, i,e) ∈Q do
9 ti← TI(i);

10 sr← SQ(u);
11 sui← SUI(u);
12 s′r← sr + exp(eui);
13 s′ui← sui + exp(gui);

14 ḠUu ←
sr
s′r

ḠUu +
{

exp(gui)
s′ui
− exp(eui)

s′r

}
g′uiIi;

15 ḠIi ← (1−αβ×ti)ḠIi +
{

exp(gui)
s′ui
− exp(eui)

s′r

}
g′uiUu;

16 Uu←− 1
2λU

ḠUu ;

17 Ii←− 1
2λI

ḠIi ;
18 SQ(u)← s′r;
19 SUI(u)← s′ui;
20 TI(i)← ti +1;

3.4 ACCELERATED DUAL AVERAGING RANKING MATRIX FACTOR-
IZATION (ADA-RMF)

We propose a new accelerated version of a listwise learning to rank
for collaborative filtering algorithm. The proposal is inspired in the accelera-
tion technique proposed in (NESTEROV, 1983). The work of (NESTEROV,
1983) is a method of solving convex optimization problems with convergence
rate of O(1/k2), where k is the number of iterations. Our motivation is that
combining this method with the baseline algorithm will improve its speed of
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learning.
Basically the acceleration method proposes the addition of a new point

yk that is an extrapolation point of the original point xk at each iteration. The
gradient ∇ f (yk) is calculated in terms of the new extrapolation point yk dur-
ing the update of xk, as in Equation 3.12. At each iteration, the extrapola-
tion point yk+1 is updated considering the actual point xk and some rate γ

of the difference between the previous xk−1 and actual point xk as defined in
Equation 3.14. The rate γ is updated each iteration as proposed in the work
(NESTEROV, 1983) and defined in Equation 3.13.

xk = yk− γk∇ f (yk) (3.12)

γk+1 =
(1+
√

4γk +1)
2

(3.13)

yk+1 = xk +
(γk−1)(xk− xk−1)

γk+1
(3.14)

Intuitively, the ideia is that the extrapolation preserves the direction of
the minimum of the function. We use this information to improve the speed
of convergence of the algorithm.

Based on the exposed, two extrapolation points Xu and Yi are added
and at each iteration of the tuple (u, i,e), the average gradients ḠX and ḠY
are calculated considering this two new points. The update step of Uu and Ii
is made considering the average gradients ḠXu and ḠYi , and is executed by
solving the minimization problems:

Uu = argmin
w

{
ḠT

Xuw+λU‖w‖2
2+‖w−Xu‖2

2
}

(3.15)

Ii = argmin
w

{
ḠT

Yi
w+λI‖w‖2

2+‖w−Yi‖2
2
}

(3.16)

Where w represents the vector we want to minimize and the λU‖w‖2
2

and λI‖w‖2
2 are the l2-regularization terms.

As both Equation 3.15 and Equation 3.16 are differentiable and con-
vex, we can solve it analytically. Taking the derivative equals 0, gives us the
update rules of Uu and Ii defined at Equation 3.17 and Equation 3.18.

Uu←
2Xu− ḠXu

2λU +2
(3.17)
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Ii←
2Yi− ḠYi

2λI +2
(3.18)

The difference is that we are taking the next steps of Uu and Ii based
on the average gradient of Xu and Yi instead of directly the average gradient
of Uu and Ii.

In the sequence, the objective is update the value of the extrapolation
points Xu and Yi. For that, we introduce two control variables, γu and γi. Based
on these variables, we calculate how much we will extrapolate the values of
Uu and Ii. The update of variables γu and γi are given by the equations 3.19
and 3.20, respectively. Both Equation 3.19 and Equation 3.20 are based on
the work of (NESTEROV, 1983).

γ
t+1
u = (1+

√
4γ t

u +1)/2 (3.19)

γ
t+1
i = (1+

√
4γ t

i +1)/2 (3.20)

Next step is extrapolate the values of Uu and Ii and update the values
of Xu and Yi as defined by Equation 3.21 and Equation 3.22.

X t+1
u ←U t

u +(
γ t

u−1
γ

t+1
u

)(U t
u−U t−1

u ) (3.21)

It+1
i ← It

i +(
γ t

i −1
γ

t+1
i

)(It
i − It−1

i ) (3.22)

The input sequence of γ moves X and Y in direction of U and I.
The Algorithm 2 presents the ADA-RMF proposed algorithm.
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Algorithm 2: Accelerated dual averaging ranking matrix factor-
ization (ADA-RMF)

Data: Observation triplet (u, i,e) ∈Q
Input: n,m, l,λU ,λI ,α,β
Output: U, I

1 U ∈ Rl×n; // Randomly

2 I ∈ Rl×m; // Randomly

3 X ∈ Rl×n; // Equals U

4 Y ∈ Rl×m; // Equals I

5 ḠX ∈ Rl×n← 0; // Average gradient

6 ḠY ∈ Rl×m← 0; // Average gradient

7 SQ ∈ Rn← 0; // Sum vector

8 SUI ∈ Rn← 0; // Sum vector

9 TI ∈ Ym← 0; // Index vector

10 for (u, i,e) ∈Q do
11 ti← TI(i);
12 sr← SQ(u);
13 sui← SUI(u);
14 s′r← sr + exp(e);
15 s′ui← sui + exp(gui);

16 ḠXu ←
sr
s′r

ḠXu +
{

exp(gui)
s′ui
− exp(e)

s′r

}
g′uiYi;

17 ḠYi ← (1−αβ×ti)ḠYi +
{

exp(gui)
s′ui
− exp(e)

s′r

}
g′uiXu;

18 Uu← Xu−ḠXu
λU+1 ;

19 Ii←
Yi−ḠYi
λI+1 ;

20 SQ(u)← s′r;
21 SUI(u)← s′ui;
22 TI(i)← ti +1;
23 γt+1

u = (1+
√

4γt
u +1)/2;

24 γ
t+1
i = (1+

√
4γt

i +1)/2;

25 X t+1
u ←U t

u +(
γ t

u−1
γ t+1

u
)(U t

u−U t−1
u );

26 It+1
i ← It

i +(
γ t

i−1
γ

t+1
i

)(It
i − It−1

i );
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4 EXPERIMENTAL ANALYSIS

This chapter describes the experimental analysis used in this thesis.
Our objective is that empirical results support the proposed algorithm. To
accomplish that, we evaluate the proposal algorithm in some instances of the
problem of incremental collaborative filtering. Comparisons against the base-
line algorithm are statistically tested to determine their statistical significance.

4.1 EXPERIMENT

In this section we describe the datasets used in the experiment, the
evaluation metric, the design of the experimental method, the parameters of
the algorithms and the statistical analysis used to test the results.

4.1.1 Datasets

The instances of the problem of incremental collaborative filtering are
represented by the datasets selected to evaluate the proposed algorithm. Two
contexts are defined for the empirical experiments: movie and song recom-
mendation.

From the Grouplens, a research group in recommender systems, we
selected the Movielens1 dataset in the context of movie recommendations.
From Yahoo! Research, more specifically from Yahoo Webscope Program2,
we used two datasets, Yahoo R3 in the context of song recommendations and
Yahoo R4 in the context of movie recommendations.

Information about the number of users, number of items, interval of
evaluations and number of available ratings are presented in Table 4.

Table 4: Datasets description

Dataset Movielens 100K Yahoo R4 Yahoo R3
Users 943 7.642 15.400
Items 1.682 11.916 1.000
Evaluations [1 . . . 5] [1 . . . 13] [1 . . . 5]
Ratings 100.000 221.367 365.704

1http://grouplens.org/datasets/movielens/
2http://webscope.sandbox.yahoo.com
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4.1.2 Evaluation Metric

In order to quantitatively evaluate the ranking recommended by the
proposed algorithm, we use the evaluation metric known as Normalized Dis-
counted Cumulative Gain (NDCG).

NDCG is a standard evaluation measure of learning to rank systems
(JÄRVELIN; KEKÄLÄINEN, 2002). The NDCG is defined in Equation 4.1,
where eπ(i) is the evaluation e of the item at position i on the recommended
ranking π , eπ∗(i) is the evaluation e of the item at position i on the ideal
ranking π∗ and n is the number of recommended items.

NDCG@n =
n

∑
i=1

2eπ(i) −1
log(1+ i)

/ n

∑
i=1

2eπ∗(i) −1
log(1+ i)

(4.1)

The fundamental aspect of the NDCG is that items ranked higher re-
ceive more weight than items ranked lower.

4.1.3 Design of Experiment

To evaluate the performance of the proposed algorithm we conduct ex-
periments using the same design of experiment defined at the baseline algo-
rithm (LING et al., 2012). The objective is to better represent the incremental
environment where training data is gradually available and training phase and
test phase are interleaved.

Firstly, the dataset is randomly divided in training data and test data.
This division is guided by a rate of how much data is reserved for each phase
- training phase and test phase. Then the training data is divided in partitions.
The assessment loop defines the interleaved aspect of the experiment, where
after each partition of the training data that is fed in the algorithm, an assess-
ment is realized. The assessment of the algorithm is made by the evaluation of
its recommendation, through the NDCG metric, considering each user in the
complete test data - this generates as many NDCG evaluations as the number
of users in the test data. For each assessment, a NDCG assessment mean is
calculated considering the individual NDCG evaluations.

The number of repetitions of the assessment loop represents the num-
ber of measures. The algorithm evaluation of the algorithm is given by the
mean of the NDCG assessment mean obtained at each assessment - the num-
ber of NDCG assessment mean available must be equal to the number of
measures times the number of assessments - number of partitions.

A complete execution of the steps described above is considered a
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block of the experiment. At each block execution the dataset is randomly
divided, what guarantee the independence of each algorithm evaluation, and
results in an algorithm evaluation. In the end, the overall evaluation of the
algorithm is given by the mean of the algorithm evaluations for all block
executions.

4.1.4 Parameters

A group of parameters control the internal execution of both proposed
algorithm and baseline algorithm. The parameters m and n determine the
number of users and number of items respectively - both are implicit, ob-
tained by the number of users and items from the datasets. The latent feature
dimension l determines the size of the latent feature vector, for both users
and items. The parameters λU and λI control the regularization of the model.
The parameters α and β control the decay and drop-rate of decay of items
respectively. Exclusively for the proposed algorithm, the parameters γu and
γi are used to control the degree of extrapolation.

4.1.5 Statistical Analysis

We test for statistically significant differences between proposed algo-
rithm and baseline algorithm results using an one-sided student’s test. Based
on the statistical test, we can guarantee the performance of the proposed al-
gorithm in comparison with the baseline algorithm with a statistical level of
certainty. We consider differences between runs statistically significant if the
obtained p-value is less then 0.01 and significance level of 1.00%.

4.2 EXECUTION

In this section we conduct the execution of the experiments defined in
the section 4.1. Firstly we describe the general configuration of the experi-
ments and subsequently the configuration of the parameters used to configure
the internal execution of the algorithms. In the end, the results are presented.
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4.2.1 Experiment Configuration

Based on the design of experiment presented at Section 4.1.3, we de-
fine three different settings of rates for the division of the dataset in training
data and test data, T20, T50 and, T80. The setting T20 defines 20% of data
for training and 80% of data for test, the setting T50, 50% of data for training
and 50% of data for test and the setting T80, 80% of data for training and
20% of data for test.

The number of partitions (divisions of the training data) is configured
to 5 and the the number of measures (number of repetitions of the assessment
loop) is configured to 20. Based on the number of partitions and the number
of measures, we have 100 NDCG assessment means to calculate the algorithm
evaluation.

We execute 20 blocks of the experiment for each dataset. The overall
evaluation of the algorithm is calculated considering the algorithm evaluation
resulted from each block execution.

This configuration generates the data used to evaluate the algorithms
stability on different settings of the datasets.

4.2.2 Parameters Configuration

The number of users m and number of items n are both determined
by datasets used in the experiment. For the latent feature dimension we em-
ployed l = 10 for all settings in the experiment. The better performance was
obtained with λU and λI with the value of 0.014. The values were set as 0.8
for α and 0.2 for β . The values used to control the degree of extrapolation by
γu and γi were set to 0.001.
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4.2.3 Results

Results are organized by dataset used in the experiment. For each
dataset, the NDCG mean and the standard deviation is presented. Results per
experiment with statistically significant differences are highlighted in bold.

In Table 5, we present NDCG mean and standard deviation for the
Movielens 100k, considering all the experimental settings.

Table 5: Mean and standard deviation in the Movielens 100k dataset

T20 T50 T80
Algorithm Mean Std Mean Std Mean Std
DA-RMF 0.5923 0.0092 0.6288 0.0130 0.7220 0.0059
ADA-RMF 0.6225 0.0056 0.6614 0.0064 0.7378 0.0033

The ADA-RMF has been consistently better than the DA-RMF in all
settings in the Movielens 100k dataset. The stability of the proposed algo-
rithm is confirmed by values of standard deviation. In all settings, the ADA-
RMF presented a lower standard deviation when compared with de baseline
algorithm.

In Figure 3, Figure 5 and, Figure 7, we visualize the relative frequency
and the normal distribution of the mean of NDCG of the DA-RMF algorithm
and ADA-RMF algorithm for the Movielens 100k dataset.
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Figure 2: All evaluations in T20 setting for MovieLens 100k dataset
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Figure 3: Results in T20 setting for Movielens 100K dataset
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Figure 4: All evaluations in T50 setting for MovieLens 100k dataset
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Figure 5: Results in T50 setting for Movielens 100K dataset
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Figure 6: All evaluations in T80 setting for MovieLens 100k dataset
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Figure 7: Results in T80 setting for Movielens 100K dataset
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In Table 6, we present NDCG mean and standard deviation for the
Yahoo R4 dataset, considering all the experimental settings.

Table 6: Mean and standard deviation in the Yahoo R4 dataset

T20 T50 T80
Algorithm Mean Std Mean Std Mean Std
DA-RMF 0.5187 0.0054 0.6164 0.0059 0.7675 0.0047
ADA-RMF 0.6252 0.0069 0.7014 0.0033 0.8121 0.0016

Expressively, in the Yahoo R4 dataset, the ADA-RMF is consistently
better than the DA-RMF in all experimental settings. Once more, as in the
Movielens 100k dataset, the ADA-RMF presented a lower standard deviation
when compared with de baseline algorithm, confirming the stability of the
proposed algorithm.

In Figure 9, Figure 11 and, Figure 13, we visualize the relative fre-
quency and the normal distribution of the mean of NDCG of the DA-RMF
algorithm and ADA-RMF algorithm for the Yahoo R4 dataset.
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Figure 8: All evaluations in T20 setting for Yahoo R4 dataset
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Figure 9: Results in T20 setting for Yahoo R4 dataset
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Figure 10: All evaluations in T50 setting for Yahoo R4 dataset
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Figure 11: Results in T50 setting for Yahoo R4 dataset
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Figure 12: All evaluations in T80 setting for Yahoo R4 dataset
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Figure 13: Results in T80 setting for Yahoo R4 dataset
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In Table 7, we present NDCG mean and standard deviation for the
Yahoo R3 dataset, considering all the experimental settings.

Table 7: Mean and standard deviation in the Yahoo R3 dataset

T20 T50 T80
Algorithm Mean Std Mean Std Mean Std
DA-RMF 0.5245 0.0021 0.6171 0.0023 0.7768 0.0017
ADA-RMF 0.5230 0.0077 0.6462 0.0020 0.8053 0.0017

Notably, at the T20 setting on the Yahoo R3 dataset, we don’t observe
a statistically difference between the proposed algorithm and the baseline al-
gorithm. We also observe that the proposed algorithm is more unstable in the
T20 setting, presenting a greater standard deviation. In the settings T50 and
T80, the proposed algorithm presents statistically significant better results.

In Figure 15, Figure 17 and, Figure 19, we visualize the relative fre-
quency and the normal distribution of the mean of NDCG of the DA-RMF
algorithm and ADA-RMF algorithm for the Yahoo R3 dataset.
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Figure 14: All evaluations in T20 setting for Yahoo R3 dataset
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Figure 15: Results in T20 setting for Yahoo R3 dataset
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Figure 16: All evaluations in T50 setting for Yahoo R3 dataset

0.61 0.62 0.63 0.64 0.65
Evaluation Mean

0

50

100

150

200

250

300

350

R
e
la

ti
v
e
 F

re
q
u
e
n
cy

 /
 N

o
rm

a
l 
D

is
tr

ib
u
ti

o
n

Yahoo R3 (T50)

Algorithms

ADA-RMF
DA-RMF

Figure 17: Results in T50 setting for Yahoo R3 dataset
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Figure 18: All evaluations in T80 setting for Yahoo R3 dataset
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Figure 19: Results in T80 setting for Yahoo R3 dataset
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4.3 DISCUSSION

Even with statistically better results presented by the proposed algo-
rithm when compared with the baseline algorithm in terms of NDCG eval-
uation, this does not represents a better performance in absolute terms. The
main advantage is that we reach a better performance early, but extrapolating
the number of block executions in the experiment should lead us to the same
performance at all.
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5 CONCLUSION

Collaborative filtering technique plays an active role overcoming the
information overload problem. In the incremental learning paradigm, data is
continuously received by the system and is used to extend the existing model’s
knowledge. The main advantage of this approach is related to its low mem-
ory complexity which provides scalability, since that only information been
processed needs to be in memory. The drawback is that with less available
information, the speed of learning is compromised and reflects on the accu-
racy of the model. The trade-off between low memory complexity and speed
of learning in incremental learning to rank models applied in collaborative
filtering problem was the focus of this research.

This investigation was guided by the assumption that the convergence
rate of the choosen incremental learning to rank baseline algorithm, DA-
RMF, could be improved keeping its low memory complexity. Specifically,
we applied a technique known as Nesterov’s acceleration in the dual-averaging
optimization method in the context of matrix decomposition. The accelera-
tion technique is basically an extrapolation of the gradient information used
during the optimization in the learning process. Through the combination of
the Nesterov’s acceleration technique with the baseline algorithm based on
the Dual Averaging optimization method we proposed the ADA-RMF algo-
rithm.

To evaluate the proposed algorithm we conducted experiments with
real world instances of the problem. In the context of movie recommendations
we used the Movielens and the Yahoo R4 datasets and in the context of song
recommendations we used the Yahoo R3 dataset. In order to quantitatively
evaluate the ranking recommended by the proposed algorithm, we use the
NDCG evaluation metric. The comparisons with the baseline algorithm were
statistically tested to determine their statistical significance. Our objective
with the empirical experiments was to obtain results that could support the
proposed algorithm.

Although we do not provide theoretical results, demonstrating the ef-
fectiveness of the application of the acceleration technique, empirical re-
sults showed that the proposed algorithm learn the relevance function faster
than the baseline algorithm. Statistically comproved results on all real word
datasets showed that our proposal algorithm accelerates the learning process
and keeps the accuracy of the model. Altough, it is important to note that
even with better results obtained in the experiments by the proposed algo-
rithm in comparison with the baseline algorithm, this does not represent a
better performance in absolute terms. The main advantage is that the pro-
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posed algorithm reachs a better performance early, but extending the experi-
ments should lead us to the same performance at all. In other words, the best
performance of the algorithm is achieved early, what is a great advantage in
scenarios where incremental learning is applied.

5.1 FUTURE WORK

Some directions could guide the future development of this research.
Considering these directions, we highlight the development of theoretical re-
sults, the investigation of other acceleration techniques and the hyper param-
eter optimization of the proposed algorithm as the most important.

Theoretical results should be developed in order to prove the conver-
gence of the proposed algorithm and determine its convergence rate. This also
could enable the analysis of the impact of using another type of regularization
term during the learning phase.

The investigation of the use of other acceleration techniques should be
carried out. The impact of this could be better measured with the theoretical
results previously cited.

The parameters used in the configuration of the proposed algorithm
during the experiments were defined by empirical examination. A hyper pa-
rameter optimization should be executed in order to select the best set of
parameters and improve the performance of the proposed algorithm.
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