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a b s t r a c t

This paper reports experimental results of the debonding propagation of bundled-fibers
specimens subjected to a tensile stress wave. In addition, the paper also presents a dynamic
debonding model for the problem on the basis of the cohesive zone model, and verifies the
model by comparing the predicted debonding to the experimental data. The established
numerical model is used to study the propagation mode of the debonding, and the result
suggests that in this particular specimen design and loading condition, the debonding ini-
tiated in a mixed mode condition. However, the mode II quickly increased and dominated
the mode I during an early debonding propagation up to certain extend where the mode
mixity became constant.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Damages in a composite structure may occur by various mechanisms such as fiber fracture, matrix cracking, debonding,
delamination, and fiber buckling. Among those damage types, the fiber fracture possess the greatest threat to the structure
integrity because the fiber plays major role in transferring the load; therefore, its failure will significantly reduce the struc-
ture load transfer capability. However, the fiber can only be effective in sustaining the load when a good bond exists in the
interface of the fiber and matrix beside those interfaces between laminae in a laminated composite structure. Consequently,
debonding, or decohesion along fiber–matrix interface, plays an important role in maintaining the integrity of the composite
structure.

For those reasons, many systematic investigations have been performed to study the debonding despite existence of
many challenges particularly in the experimental aspects. Within this respect, one major issue is related with the specimen
design in which the specimen should allow one to easily produce the debonding on various loading conditions, to easily ob-
serve the debonding process, and to easily measure parameters related to the debonding.

The experiments in studying the debonding phenomenon can mainly be divided into two groups: the fiber pull-out test-
ing method and the fiber push-out testing method. The fiber pull-out test particularly using a single fiber has been widely
used with great success [1–4] on various conditions such as on a transversal loading condition [5], and on a microscopic con-
dition using a drop of the matrix as called the microbond test method [3,4,6]. In addition, the method has also been studied
analytically [7] by taking into account the friction effect [8,9], the thermal stress, and the residual stress [10]. Not only using
a single fiber, the pull-out testing method has also been used in the debonding involving a bundle of fibers [11–14]. The use
of a bundle instead of a single fiber is particularly interesting when dealing with a very small fiber diameter such as natural
fibers. The kenaf natural fiber, for an example, only has a diameter in range of 40–70 lm [15]. Even in an experiment
. All rights reserved.
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Nomenclature

cd longitudinal wave speed
cs shear wave speed
cR Rayleigh wave speed
D a damage parameter
E Young’s modulus
En elastic stiffness of the interface in the normal direction
Es elastic stiffness of the interface in the shear direction
Gc

n critical cohesive energy in the normal mode
Gc

s critical cohesive energy in the shear mode
K1 stress intensity factor of the normal mode
K2 stress intensity factor of the shear mode
l0 characteristic length of an interface crack
r distance from a crack-tip
T traction vector
Tn normal traction
Ts shear traction
Tc

n critical normal traction
Tc

s critical shear traction
Dn normal separation
Ds shear separation
Dmix mix mode separation
D separation vector
� oscillatory index of an interface crack
en strain in the normal direction
es strain in the shear direction
l shear modulus
m Poisson’s ratio
q material density
rn normal stress
rs shear stress
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involving an synthetic fiber, Ref. [16] suggested that using a bundled fibers allowed a better control and better visualization
of the failure process. Therefore, a debonding test using a bundle of fibers is easier in a number of circumstances. In addition
to the fiber pull-out testing method, the debonding phenomenon has also been studied by means of the fiber push-out test-
ing method [16–18]. Ref. [17] has provided a theoretical analyses of the method, on the basis of the fracture mechanics, and
has also compared the results to those of the fiber pull-out method. The fiber push-out method seems to offer a simple tech-
nique to study the debonding in dynamic loading conditions, specifically in conjunction with the Hopkinson testing method
[16,18].

This paper reports experimental results of the debonding propagation on bundled-fibers specimens subjected to a tensile
stress-wave. In addition, the paper also presents a dynamic debonding model by adopting the approach of Xu and
Needleman [29] and verifies the model by comparing the predicted debonding against the experimental data. Finally, the
established numerical model is used to study the propagation mode of the debonding.
2. Dynamic debonding experiment

2.1. Specimen

For the purpose of this study, a cylindrical-type specimen, as schematically shown in Fig. 1, was designed such that the
debonding could easily be produced when a stress pulse passes through the specimen. The data related to the specimen
geometry are given in Table 1.

The specimen has a bundle of glass fibers that placed along its axis. The bundle was fabricated from glass fibers where
each glass fiber has a nominal diameter of 7 lm. Two types of the specimens were produced; the first type has 1 mm of
the bundle diameter of glass fibers, and the second type is that of 2 mm of the bundle diameter.

The specimen was simply manufactured in the laboratory by the following process. Firstly, a tubular mold, made of an
aluminum alloy, with a nominal diameter of 10 mm was prepared; then, the fiber-bundle was placed along the axis of
the mold; and then, unsaturated polyester resin was poured into the mold with a great attention such that the air bubbles
trapped in the specimen could be minimized. Finally, the specimen was cured at 75 �C in an autoclave for two hours and then
cooled down to a room temperature.
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Fig. 1. Geometry of the cylindrical-type specimen.

Table 1
Geometry data in mm of the specimen.

Descriptions Values (mm)

Length L 200
Diameter d 9.5
Diameter of the fiber-bundle df 1, 2
Location of the notcha Ln 90
Depth of the notch c 3
Gage locationb b 20

a Measured from the impact-site.
b Measured from the notch.
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Using a lathe machine, the specimen diameter was reduced to 9.5 mm; and then, a notch was made at the prescribed
location. This process allowed us to produce specimens having negligible variation in diameter, which is very important
to produce consistent experimental data. The notch has a depth of 3 mm, and formed an angle of 60�.

The mechanical properties of the hardened polyester and glass fiber were obtained in independent experiments. For the
glass fiber, these properties were 76.0 GPa for the Young’s modulus, 0.23 for the Poisson’s ratio, and 1165 kg/m3 for density.
Meanwhile, for the hardened polyester, these properties are 5.4 GPa, 0.32, and 2450 kg/m3. In addition, the longitudinal
wave speed cd, the shear wave speed cs, and the Rayleigh wave speed cR that defined as [19]:
cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1� mÞ

qð1þ mÞð1� 2mÞ

s
;

cs ¼
ffiffiffiffi
l
q

r
; and

f ðcRÞ ¼ 2� cR

cs

� �2
" #2

� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cR

cd

� �2
" #

1� cR

cs

� �2
" #vuut ¼ 0;
where E is the Young’s modulus, m is the Poisson’s ratio and l is the shear modulus were obtained as following:
cd = 8696 m/s, cs = 5150 m/s, and cR = 4718 m/s for the glass fiber. As for the hardened polyester, cd = 1776 m/s, cs = 914 m/
s, and cR = 850 m/s.

2.2. Experimental apparatus and procedures

The stress pulse was generated by striking a load transfer rod with a steel ball in a gas gun system as schematically shown
in Fig. 2. Prior the experiment, the helium gas in the gas tank was pumped into the reservoir where the pressure can be con-
trolled accurately. In the experiment, the solenoid valve was used to regulate the flow of the helium gas from the reservoir
into the barrel.

The load transfer rod was made of a steel material having a length of 1 m, and a diameter of 20 mm.
Prior the test, four strain gages were glued to each specimen, and the impact-site of the specimen was attached to the end

of the load transfer rod. Alignment of the load transfer rod and the specimen was carefully controlled. Among those four
strain gages, two of them were placed before the notch; the others two were placed after the notch. Each pair of the strain
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Fig. 2. The schematic diagram of the air gun impact system.
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gages was connected to a Wheatstone bridge in a half-bridge configuration; hence, the strains due to the bending wave, if
any, could be canceled out.

The data from the bridge were recorded in a computer via a transient converter and a signal conditioner. The signal con-
ditioner was that of CDV/CDA-700A manufactured by Kyowa, and the transient converter was TDS-700, and is a transient
memory that could sample the data at a rate of 0.1 ls.

The experimental procedures were as following: each specimen was impacted once, the strains were recorded, and then,
occurrence of the debonding was firstly observed with a naked eye. The specimen having visible debonding, as typically
shown in Fig. 3, was further sectioned with a fine cutter, then the debonding length was measured using a digital micro-
scope. From the test, we established a relation between the maximum strain due to the reflected-tensile stress-wave corre-
sponding to the debonding length.

2.3. Experimental results

The main results from experiments were the debonding length and the maximum strains of the reflected stress-wave at
the rear of the notch. Those data were collected and reproduced in Fig. 4 for the 1 mm fiber-bundle specimen and in Fig. 5 for
the 2 mm case. Basically, the maximum strain data were selected from the strain-history data. Typically, the strain-history
data at a certain impact level are shown in Fig. 6 as a solid line. It needs to be noted that the strain depicted in the figure is
associated to a case where the matrix ahead of the notch fractured completely, but the debonding has not occurred yet. At a
higher impact load, the typical strain-history data are shown in Fig. 7 for 1 mm fiber-bundle and Fig. 8 for 2 mm fiber-bun-
dle. When the impact stress was increased slightly than this level, the debonding was observed on the majority of the
specimens.
3. Numerical analysis

As the experimental results, shown as circles ‘�’ in Figs. 4 and 5, have established a relationship between a macroscopic
parameter, i.e. the maximum of the strain–time history, and the debonding process parameter, i.e. the debonding length,
Fig. 3. The debonding on a specimen.
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Fig. 4. The maximum strain of the reflected stress-wave at the rear gage versus the debonding length of 1 mm bundled fiber diameter specimen.
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Fig. 5. The maximum strain of the reflected stress-wave at the rear gage versus the debonding length of 2 mm bundled fiber diameter specimen.
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Fig. 6. The solid line is the strain–time history recorded at the rear-gage of the 1 mm bundled fiber diameter specimen when the matrix ahead of the notch
fractured, and the circle ‘�’ denotes the simulation results.
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then it is necessary to establish a mechanical model that is able to link the macroscopic parameter to the debonding process.
This issue will be discussed in this section. In addition, the section will also present the stress and fracture analysis of the
dynamic debonding event.

The maximum of the strain–time history is selected as the primary macroscopic parameter on the basis of the following
reasons: Since all the experiments were performed by use similar spherical projectiles in size and geometry, the resulted
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Fig. 7. The solid line is the strain–time history recorded at the rear-gage of the 1 mm bundled fiber diameter specimen when the debonding on the matrix–
fiber interface was about to occur, the circle ‘�’ denotes the simulation results.
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Fig. 8. The solid line is the strain–time history recorded at the front-gage of the 2 mm bundled fiber diameter specimen when the debonding occurred on
the matrix–fiber, the circle ‘�’ denotes the simulation results.
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strain–time history data were essentially similar from one experiment to other in their profiles across the time, and the only
differences were in their amplitudes. However, the strain time history followed an event of debonding was different than
that without the debonding. The change of the projectile velocity only significantly affected the magnitude of the strain–time
history data. Therefore, the maximum of the strain–time history data of the tensile reflected stress-wave were selected as a
variable that determines the magnitude of the applied load.

Furthermore, the present computational model involves a phenomenological fracture model of the cohesive zone model
[20–22], which was employed into the model such that the model would allow us to propagate the debonding on a pre-
scribed direction. The same fracture model has also been adopted in Ref. [14] for a similar debonding problem but in the
static loading condition. However, the problem of the interface fracture mechanics particularly in the dynamic regime is sub-
stantially more complex. The fracture toughness, for an example, is depending on the mode mixity where the experimental
evidents seem to indicate the fracture toughness increases as the mode mixity increasing [23]. Furthermore, since the stress
field ahead of an interface crack is not only singular but also oscillating as described by the following formula [24]:
rn þ |rs ¼
K1 þ |K2ffiffiffiffiffiffiffiffiffi

2pr
p r

l0

� �|�

;

where rn is the normal stress, rs is the shear stress, K1 and K2 are respectively the stress intensity factors of the normal and
shear modes, r is the distance from the crack-tip, l0 is the characteristic length, and � is the oscillatory index; hence, the
fracture toughness will involve a definition of the characteristic length l0, which its own definition has been a subject of
interest of many researchers. Many ideas have been proposed in regard to the characteristic length: Ikeda [25] proposed
the size of the process zone, Tang and Zehner [26] proposed a distance measured from the crack-tip to a point where the
log(rn) crossess log(rs), Sun and Jih [27] proposed the crack length, and finally, Bjerkén and Christer [28] proposed the size
of the finite element ahead of the crack-tip.
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Although the interfacial fracture mechanics is complex due to a number of factors such as dependence of the energy
release rate on the crack speed, the mode mixity, and the crack growth, but Xu and Needleman [29] has shown that in an
interface, the crack initiates when the work of separation in the cohesive zone model equals to the generalization of Rice’s
J-integral [30,31]. This phenomenon was observed during the crack initiation and during some short interval following the
initiation, but the value of J heavily oscillated about the work of separation at the later stage of the crack propagation where
the oscillation begun at a shift from a mode I dominant to a mode II dominant, and the oscillation frequency increased with
the development of the contact zone at the ahead of the crack. In spite of that fact, this particular model is interesting
because it could be defined using only a few parameters but seems to be able to predict the propagation of a crack in an
interface reasonably; therefore, the same approach was adopted in the present work.

3.1. Theory

In this paper, the cohesive constitutive model, or the traction–separation model [22], that relates the traction T to the
separation D at the interface is governed by a bilinear softening model [32] as schematically shown in Fig. 9. The both trac-
tion and separation are having two components, namely, the normal and shear components:
T ¼ Tn Tsf gT
; and D ¼ Dn Dsf gT

; ð1Þ
where the subscript n denotes the normal direction and s denotes the shear or tangential direction. In addition, the super-
script c denotes the critical value, which is a material constant. Therefore, Tc

n and Tc
s denote the interface normal strength and

shear strength, respectively. The symbol Dc denotes the displacement when a complete separation occurs.
In this paper, the cohesive model is implemented on zero thickness elements; therefore, the nominal strains can be de-

fined as
en ¼ Dn; and es ¼ Ds: ð2Þ

The elastic part of the traction–separation model can then be written as
T ¼
Tn

Ts

� �
¼

En 0
0 Es

� � en

es

� �
¼ Ee; ð3Þ
where the normal and shear deformations are uncoupled. The symbols En and Es denote the elastic moduli for the normal and
shear modes, respectively.

The cohesive zone model basically combines strength-based analysis with fracture mechanics to predict the debonding
initiation and to predict the debonding propagation. In the current approach, the debonding is assumed to initiate when a
quadratic interaction involving the nominal stress ratios reaches one, or mathematically speaking:
Tnh i
Tc

n

� �2

þ Ts

Tc
s

� �2

¼ 1; ð4Þ
where h�i is the Macaulay brackets that set any negative values to zero. Hence, a pure compression deformation or stress
state does not initiate debonding. However, when the debonding has initiated by an amount of D, where 0 6 D 6 1, the mate-
rial strengths degrade to:
Tn ¼
ð1� DÞTn; Tn P 0
Tn otherwise

(
ð5Þ
for the normal traction, and to
Ts ¼ ð1� DÞTs ð6Þ
for the shear traction. The symbols Tn and Ts are the stress components predicted by the elastic traction–separation behavior
for the current strains without debonding.
G
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Fig. 9. The bilinear traction–separation model.
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The debonding variable D is computed by
D ¼
Dc

mix Dmax
mix � D0

mix

	 

Dmax

mix Dc
mix � D0

mix

	 
 ; ð7Þ
where those mix mode displacements are computed by
Dmix ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dnh i2 þ D2

s

q
: ð8Þ
In Eq. (7), the D0
mix denotes the displacement at the onset of damage, and the Dc

mix denotes the displacement when complete
separation has occurred. The both D0

mix and Dc
mix can be easily derived from the cohesive model parameters of the elastic mod-

ulus, the critical cohesive strength, and the critical cohesive energy. The Dmax
mix refers to the maximum value of the effective

displacement attained during the loading history.
Therefore, as can be also seen in Fig. 9, after the onset of debonding D0, the interface strengths in both the normal and

shear modes gradually decrease to zero. The area under the traction–separation curve is the critical cohesive energies, Gc
n

and Gc
s:
Z Dn

0
TnðDnÞdDn ¼ Gc

n; ð9Þ
for the normal mode, and
Z Ds

0
TsðDsÞdDs ¼ Gc

s ; ð10Þ
for the shear mode. The critical cohesive energy on the mix mode can be defined based on a power law fracture criterion:
Gn

Gc
n

� �a

þ Gs

Gc
s

� �a

¼ 1: ð11Þ
The power law criterion with a = 1 was found to be suited to predict failure of thermoplastic matrix composites because the
results were comparable to the more sophisticated criteria, while using fewer independent variables [21]; therefore, in this
study, the a is assumed to be equal to one.

This mechanical model assumes the debonding or the de-cohesion process as the only dissipative mechanism and ignores
the fact that the energy may also be dissipated due to strain-rate dependency (material viscoelasticity or viscoplasticity) and
local-scale temperature rise among others. Regarding the material viscoelasticity, some separated tests using long rod spec-
imens (as long as 0.5–1 m) made of the same material have shown that the mechanism significantly affected the strain–time
history. However, when the specimen is short like the one used in the present study, the viscoelasticity has rather negligible
effect as shown by the strain history data. In addition, we attached the strain-gage at 20 mm away from the notch where the
fracture took place. We expect within this close distance, the elastic assumption should provide a good approximation of the
viscoelastic material. Regarding the local-scale temperature rise, the model assumes its magnitude is significantly smaller
than the energy required to produce the debonding. Besides, it is rather difficult to take into account this factor considering
the material is not a good conductor.

3.2. The finite element model and fracture parameters

The finite element method was used to establish a mechanical model that relates the maximum strain to the debonding
length. Fig. 10 shows the finite element mesh around the notch. We evaluated three finite element models as tabulated in
Table 2. Model 2 was by obtained by broken down each element in Model 1 into four similar elements. Using the same pro-
cedure, Model 3 was derived from Model 2.

All of those models were utilized in the study; however, only Model 3 provided results that match the experimental data
reasonably well on various conditions, from the onset of the debonding until its final position and for the both specimen
types. Therefore, only the results of Model 3 were presented in the paper.

To anticipate occurrence of the debonding and matrix fracture, zero thickness cohesive elements were implemented
along the lines denoted by matrix–matrix interface and fiber–matrix interface in the figure. The cohesive elements in the
matrix–matrix interface were employed to anticipate the matrix fracture; and in the meantime, the same type of elements
in the fiber–matrix interface was for the debonding. Clearly, this approach assumed the fracture process zone occurred along
a prescribed line.

The applied load was a pressure that applied uniformly across the area on the left end of the specimen. The pressure
varied in time following a sine function where its peak and period were adjusted such that the strain–time history of the
model matched well to those recorded in the experiment.

It is clear that the maximum strain at a point associated with the measurement point could easily be obtained from the
model. As for the debonding length, we adopted an approach by Shet and Chandra [20], whose defined the cohesive crack-tip
as a point in the interface where the normal traction reaches its critical value.



Bundled Fiber

Matrix

Matrix

Cohesive element

FiberAxisymmetric constraint
Fiber-matrix 
interface

M
at

rix
-m

at
rix

 in
te

rfa
ce

Fig. 10. The axisymmetric finite element mesh model around the notch of the bundled fiber specimen and the applied constraints.

Table 2
Three evaluated models.

Number of elements Number of nodes Element length (mm)

Model 1 17,603 18,440 2.50 � 10�1

Model 2 144,808 146,897 1.25 � 10�1

Model 3 272,013 275,355 6.25 � 10�2
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The identification of the cohesive zone model’s parameters—the strength and the critical cohesive energy—were per-
formed in two steps. Those parameters related to the cohesive zone model in the matrix–matrix interface were established
in the first step, and followed by the calibration for the parameters of the fiber–matrix interface. The calibration of those
material parameters were completely performed on the basis of the data obtained from the tests of the 1 mm fiber-bundle
specimens.

In the first step, initially we set the strength and the critical cohesive energy of all interfaces—the matrix–matrix interface
and the fiber–matrix interface—to high values such that fracture or debonding would not take place upon an application of
the impact pressure. Then, we applied a pressure having a magnitude slightly lower than that required to break the matrix–
matrix interface obtained in the experiment. From this study, we registered the maximum stress on the matrix–matrix inter-
face, and assumed the maximum stress to be equivalent with the strength of the matrix–matrix interface. We incorporated
the matrix–matrix interface strength into the model, and applied the pressure that fractured the matrix–matrix interface.
Finally, we reduced the cohesive energy subsequently until all elements in the matrix–matrix interface broke completely
at once, and we assumed this cohesize energy to be equivalent with the critical cohesive energy of the matrix–matrix
interface.

In the second step, we incorporated the above material data into the model. Then, we applied a pressure, slightly lower
than the pressure required to initiate debonding that obtained in the experiment, and registered the maximum stress on the
fiber–matrix interface. This value was taken as the strength of the fiber–matrix interface, and was subsequently incorporated
into the model. Finally, we adjusted the fiber–matrix cohesive energy until the predicted debonding length matching the
experimental data for various pressure magnitudes. This final analysis gave us the critical cohesive energy of the fiber–
matrix interface.

The calibration results: for the matrix–matrix interface, the tensile strength was 72 MPa, and the critical cohesive energy
in tension was 2 MPa mm; for the fiber–matrix interface: the tensile strength was 54 MPa, the shear strength was 67 MPa,
and the critical cohesive energy was 2 MPa mm for the both modes. Although a dominant mixed mode fracture occurred on
the fiber–matrix interface, but the matrix–matrix interface fractured in a pure normal mode.



2740 F.E. Gunawan / Engineering Fracture Mechanics 78 (2011) 2731–2745
3.3. Discussion

In this section, we discuss the model predictions, comparisons to the experimental data, and the deformation and stress
state during the debonding propagation.

Fig. 6 shows the strain–time history calculated by the finite element analysis and those obtained from the experiments for
the 1 mm bundled fiber diameter. The duration of the applied pressure, its magnitude, and the cohesive zone model’s
parameters were adjusted such that the strain–time history of the model matched reasonably well to the experimental data
particularly when the stress-waves passed through the measurement points. The figure clearly shows that the model slightly
over predicted the magnitude of the compressive stress-wave, slightly under predicted the magnitude of the reflected tensile
stress-wave, but the model prediction fairly deviated from the measured strain–time history along an interval time between
the time of the compressive stress-wave and that of the tensile stress-wave. In this particular interval, the model prediction
resembled a result of an idealized specimen where the diameter of the bundled fiber is uniform across the specimen length,
and the bundled is perfectly align to the specimen axis; which were extremely difficult to achieve during the manufacturing
of the specimen. As for the 2 mm bundled fiber specimen, the comparison is shown in Fig. 8. For this case, a significant devi-
ation exists during the unloading duration; however, good agreements were obtained during the compressive and tensile
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Fig. 11. The normal stress–time history at a point on the interface ahead of the notch where the debonding was initiated.

Fig. 12. The deformation around the notch area.
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loadings. In spite of those deviations, the model successfully reproduced the stress propagation in the specimen during the
experiment.

Besides Figs. 6, 4 also compares the experimental data to the analysis results for the 1 mm bundled fiber diameter. Using
those experimental data, depicted as ‘�’ in the figure, the cohesive zone model’s parameters were adjusted to best match the
model predictions to the experimental data. One should note that the maximum strains in the figure are those associated
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Fig. 14. The normal Dn and tangential Ds separations at time 142.6 ls and 144.3 ls.
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Fig. 15. The normal Dn and tangential Ds separations at time 145.6 ls and 147.4 ls.
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with the reflected tensile stress-waves. In this comparison, unlike the comparison of the strain–time history, reasonable
deviations existed between those two data. The deviations were mainly due to scattering of the maximum strain and
debonding length data obtained from the experiments; meanwhile, the relation between the maximum strain and the deb-
onding length obtained from the model was more consistent. However, from a statistical point of view, the experimental
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Fig. 16. The normal Dn and tangential Ds separations at time 150.0 ls and 152.0 ls.
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Fig. 17. The shear component of the Cauchy stress at a time of 136.9 ls.
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Fig. 18. The normal component of the Cauchy stress at a time of 136.9 ls.
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data seems to scatter around the model predicted data within an acceptable band. Therefore, we concluded the model
acceptably predicted the debonding experiment for the case of 1 mm bundled fiber specimen.

The final comparison is shown in Fig. 5 where the relation between the maximum strain and the debonding length ob-
tained from the experiment of the 2 mm bundled fiber diameter were plotted beside those of the model predictions. The
experimental data were also scatter similar to the data of the previous case. However, the model predicted data shown a
stair-like phenomenon due to the finite element approach in the debonding propagation. Regardless of this fact, the model
also reasonably reproduced the experimental data for the 2 mm bundled fiber diameter.

In many studies on composite fractures particularly due to a low velocity impact, the applied energy often becomes a
parameter of interest related to the fracture. However, in the current case, the amount of the applied energy is rather pro-
portional to the maximum strain. Therefore, Figs. 4 and 5 also provide an insight on effect of the applied energy to the deb-
onding length.

The reflected tensile stress-wave reached the notch ligament at about 126 ls as shown by the stress–time history in
Fig. 11. Shortly after that time, at about 136.8 ls the debonding had initiated at the interface of the bundled fiber and the
matrix; Fig. 12 shows an amplified deformation around the notch at this instant.

The analysis indicated that the debonding propagated in a short time interval; started at 136.9 ls and finished at
152.8 ls. Furthermore, the analysis also revealed the mode of deformation during the debonding propagation. Figs. 13–16
reproduced the separations, in the normal and tangential directions, of the interface of the bundled fiber and the matrix
at some instants on the interval. The debonding in the interface initiated and propagated in following manners:

Prior the matrix–matrix interface fractured, the tangential separation at a point on the fiber–matrix interface in front of
the notch root was very small, significantly smaller than the normal separation. However, when the matrix–matrix interface
fractured such that the crack which initiated at the notch root had propagated to the fiber–matrix interface, the tangential
separation at this point suddenly increased to a magnitude comparable to the normal separation as shown in the left panel in
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Fig. 19. The shear component of the Cauchy stress at a time of 150.0 ls.
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Fig. 13. One should note that the crack-tip location was measured from a plane where the root of the notch was located.
Therefore, when the crack-tip was located at 0.0 mm, the crack propagated in a mixed mode where the mode I was slightly
bigger than the mode II (see the left panel of Fig. 13). However, the mode II contribution quickly increased; and when the
crack length had reached 0.5 mm as shown in the right panel of Fig. 13, the mode II had dominated the mode I by a factor
about two. The mode II continuously increased as depicted in Figs. 14 and 15, while the mode I was relatively constant until
the crack reached a length of 2.5 mm. From this instant forward, the debonding propagated nearly at a constant mode mixity
where the mode II dominated the mode I as shown in Fig. 16.

The analysis also provided the rate of the debonding propagation. The debonding initially grew at a rate about 15% of the
Rayleigh wave speed of the hardened polyester, steadily increased to reach the maximum speed at about 50% of the Rayleigh
wave speed, quickly decreased, and finally stopped at a crack length of 3.75 mm.

The stress field around the notch at an instant of 136.9 ls is reproduced in Fig. 17 for the shear stress and in Fig. 18 for the
normal stress. For an instant of 150.0 ls, the stress field is reproduced in Figs. 19 and 20.

The both shear and normal stresses on the fiber–matrix interface were low before the matrix ahead of the notch fractured.
When the matrix had fractured at 136.9 ls, the both stresses suddenly increased, but their magnitudes were relatively com-
parable. Along the debonding propagation, the shear stress around the crack-tip quickly increased but the normal stress de-
creased and then steadied at a fraction of the maximum shear stress.
4. Conclusions

This research on the debonding strength of bundled glass fibers subjected to stress pulse loading has provided an insight
of the debonding initiation and propagation along the interface of the bundled fibers and the hardened polyester. On the
basis of the finite element method and the cohesive zone model, a mechanical model has been established and used to study
the debonding propagation. The model parameters were adjusted such that the model responses matched well to the exper-
imental data. The mechanical model revealed that the debonding on the interface was initiated at a condition where the
mode I component slightly dominated the mode II. However, upon the propagation of the debonding, the mode II component
quickly increased and dominated the mode I; and finally, the ratio of the mode II to the mode I became a constant when the
debonding reached certain length. Although the cohesive zone model was very simple, but a comparison of the model pre-
diction to the experiment data suggested the cohesive zone model provided an acceptable prediction regardless the fact that
the interfacial fracture mechanics is a complex issue.
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