Article Info

Title : A system for real-time passenger monitoring system for bus rapid tran-

sit system

Author : Jonathan Samuel Lumentut, Fergyanto E Gunawan, Wiedjaja Atmadja,

Bahtiar S Abbas

Book Chapter: Intelligent Information and Database Systems, Volume 9012 of the se-

ries Lecture Notes in Computer Science pp. 398-407

Conf. : The 7th Asian conference on intelligent information and database sys-

tems (ACIIDS), Bali, Indonesia, March 23-25, 2015

Indexing : Scopus

Publisher : Springer

URL : http://link.springer.com/chapter/10.1007%

2F978-3-319-15705-4_39

Ngoc Thanh Nguyen Bogdan Trawiński Raymond Kosala (Eds.)

Intelligent Information and Database Systems

7th Asian Conference, ACIIDS 2015 Bali, Indonesia, March 23–25, 2015 Proceedings, Part II

Part II

Lecture Notes in Artificial Intelligence

9012

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada
Yuzuru Tanaka
Hokkaido University, Sapporo, Japan
Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann

DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

Ngoc Thanh Nguyen · Bogdan Trawiński Raymond Kosala (Eds.)

Intelligent Information and Database Systems

7th Asian Conference, ACIIDS 2015 Bali, Indonesia, March 23–25, 2015 Proceedings, Part II

Editors
Ngoc Thanh Nguyen
Ton Duc Thang University
Ho Chi Minh city
Vietnam

and

Wroclaw University of Technology Wroclaw Poland

Bogdan Trawiński Wrocław University of Technology Wrocław Poland Raymond Kosala Bina Nusantara University Jakarta Indonesia

ISSN 0302-9743 Lecture Notes in Artificial Intelligence ISBN 978-3-319-15704-7 DOI 10.1007/978-3-319-15705-4 ISSN 1611-3349 (electronic) ISBN 978-3-319-15705-4 (eBook)

Library of Congress Control Number: 2015932661

LNCS Sublibrary: SL7 - Artificial Intelligence

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

Preface

ACIIDS 2015 was the seventh event in the series of international scientific conferences for research and applications in the field of intelligent information and database systems. The aim of ACIIDS 2015 was to provide an internationally respected forum for scientific research in the technologies and applications of intelligent information and database systems. ACIIDS 2015 was co-organized by Bina Nusantara University, Indonesia and Wrocław University of Technology, Poland in cooperation with Ton Duc Thang University, Vietnam and Quang Binh University, Vietnam, and with IEEE Indonesia Section and IEEE SMC Technical Committee on Computational Collective Intelligence as patrons of the conference. It took place in Bali, Indonesia during March 23–25, 2015.

Conferences of series ACIIDS have been well established. The first two events, ACIIDS 2009 and ACIIDS 2010, took place in Dong Hoi City and Hue City in Vietnam, respectively. The third event, ACIIDS 2011, took place in Daegu, Korea, while the fourth event, ACIIDS 2012, took place in Kaohsiung, Taiwan. The fifth event, ACIIDS 2013, was held in Kuala Lumpur in Malaysia while the sixth event, ACIIDS 2014, was held in Bangkok in Thailand.

We received more than 300 papers from about 40 countries all over the world. Each paper was peer reviewed by at least two members of the International Program Committee and International Reviewer Board. Only 117 papers with the highest quality were selected for oral presentation and publication in the two volumes of the ACIIDS 2015 proceedings.

Papers included in the proceedings cover the following topics: semantic web, social networks and recommendation systems, text processing and information retrieval, intelligent database systems, intelligent information systems, decision support and control systems, machine learning and data mining, multiple model approach to machine learning, innovations in intelligent systems and applications, artificial intelligent techniques and their application in engineering and operational research, machine learning in biometrics and bioinformatics with applications, advanced data mining techniques and applications, collective intelligent systems for e-market trading, technology opportunity discovery and collaborative learning, intelligent information systems in security and defense, analysis of image, video and motion data in life sciences, augmented reality and 3D media, cloud-based solutions, Internet of things, big data, and cloud computing.

Accepted and presented papers highlight new trends and challenges of intelligent information and database systems. The presenters showed how new research could lead to new and innovative applications. We hope you will find these results useful and inspiring for your future research.

We would like to express our sincere thanks to the Honorary Chairs, Prof. Harjanto Prabowo (Rector of the Bina Nusantara University, Indonesia) and Prof. Tadeusz Więckowski (Rector of the Wrocław University of Technology, Poland) for their supports.

VI Preface

Our special thanks go to the Program Chairs, Special Session Chairs, Organizing Chairs, Publicity Chairs, and Local Organizing Committee for their work for the conference. We sincerely thank all members of the International Program Committee for their valuable efforts in the review process which helped us to guarantee the highest quality of the selected papers for the conference. We cordially thank the organizers and chairs of special sessions which essentially contributed to the success of the conference.

We also would like to express our thanks to the Keynote Speakers (Prof. Nikola Kasabov, Prof. Suphamit Chittayasothorn, Prof. Dosam Hwang, and Prof. Satryo Soemantri Brodjonegoro) for their interesting and informative talks of world-class standard.

We cordially thank our main sponsors, Bina Nusantara University (Indonesia), Wrocław University of Technology (Poland), Ton Duc Thang University (Vietnam) Quang Binh University (Vietnam), and patrons: IEEE Indonesia Section and IEEE SMC Technical Committee on Computational Collective Intelligence. Our special thanks are due also to Springer for publishing the proceedings, and to other sponsors for their kind supports.

We wish to thank the members of the Organizing Committee for their very substantial work and the members of the Local Organizing Committee for their excellent work.

We cordially thank all the authors for their valuable contributions and other participants of this conference. The conference would not have been possible without their supports.

Thanks are also due to many experts who contributed to making the event a success.

March 2015

Ngoc Thanh Nguyen Bogdan Trawiński Raymond Kosala

Organization

Honorary Chairs

Harjanto Prabowo Bina Nusantara University, Indonesia Tadeusz Więckowski Wrocław University of Technology,

Poland

General Chairs

Ngoc Thanh Nguyen Wrocław University of Technology, Poland Ford Lumban Gaol Bina Nusantara University, Indonesia

Program Chairs

Bogdan Trawiński Wrocław University of Technology, Poland Raymond Kosala Bina Nusantara University, Indonesia Tzung-Pei Hong National University of Kaohsiung, Taiwan

Hamido Fujita Iwate Prefectural University, Japan

Organizing Chairs

Harisno Bina Nusantara University, Indonesia
Suharjito Bina Nusantara University, Indonesia
Marcin Maleszka Wrocław University of Technology, Poland

Special Session Chairs

Dariusz Barbucha Gdynia Maritime University, Poland John Batubara Bina Nusantara University, Indonesia

Publicity Chairs

Diana Bina Nusantara University, Indonesia

Adrianna Kozierkiewicz-

Hetmańska Wrocław University of Technology, Poland

Local Organizing Committee

Togar Napitupulu

Bina Nusantara University, Indonesia

Nilo Legowo

Bina Nusantara University, Indonesia

Benfano Soewito

Bina Nusantara University, Indonesia

Fergyanto

Bina Nusantara University, Indonesia

Zbigniew Telec

Wrocław University of Technology, Poland

Bernadetta Maleszka

Wrocław University of Technology, Poland

Marcin Pietranik

Wrocław University of Technology, Poland

Steering Committee

Ngoc Thanh Nguyen (Chair) Wrocław University of Technology, Poland University of Technology Sydney, Australia Tu Bao Ho Japan Advanced Institute of Science and

Technology, Japan

Tzung-Pei Hong National University of Kaohsiung, Taiwan Lakhmi C. Jain University of South Australia, Australia

Geun-Sik Jo Inha University, Korea Jason J. Jung Yeungnam University, Korea

Hoai An Le-Thi Paul Verlaine University – Metz, France

Toyoaki Nishida Kyoto University, Japan

Leszek Rutkowski Częstochowa University of Technology, Poland

Suphamit Chittayasothorn King Mongkut's Institute of Technology

Ladkrabang, Thailand

Ford Lumban Gaol Bina Nusantara University, Indonesia Ali Selamat Universiti Teknologi Malaysia, Malyasia

Keynote Speakers

Nikola Kasabov Auckland University of Technology, New Zealand

Suphamit Chittayasothorn King Mongkut's Institute of Technology

Ladkrabang, Thailand

Dosam Hwang Yeungnam University, Korea

Satryo Soemantri Brodjonegoro Indonesian Academy of Sciences, Indonesia

Special Sessions Organizers

1. Multiple Model Approach to Machine Learning (MMAML 2015)

Tomasz Kajdanowicz Wrocław University of Technology, Poland Edwin Lughofer Johannes Kepler University Linz, Austria Bogdan Trawiński Wrocław University of Technology, Poland

2. Special Session on Innovations in Intelligent Systems and Applications (IISA 2015)

Shyi-Ming Chen National Taiwan University of Science and

Technology, Taiwan

3. Special Session on Innovations in Artificial Intelligent Techniques and Its Application in Engineering and Operational Research (AITEOR 2015)

Pandian Vasant Universiti Teknologi PETRONAS, Malaysia Vo Ngoc Dieu HCMC University of Technology, Vietnam Irraivan Elamvazuthi Universiti Teknologi PETRONAS, Malaysia Mohammad Abdullah-Al-Wadud King Saud University, Saudi Arabia

Ahamed Khan Universiti Selangor, Malaysia

Timothy Ganesan Universiti Teknologi PETRONAS, Malaysia Perumal Nallagownden Universiti Teknologi PETRONAS, Malaysia

4. Special Session on Analysis of Image, Video and Motion Data in Life Sciences (IVMLS 2015)

Kondrad Wojciechowski Polish-Japanese Institute of Information

Technology, Poland

Marek Kulbacki Polish-Japanese Institute of Information

Technology, Poland

Jakub Segen Gest3D, USA

Andrzej Polański Silesian University of Technology, Poland

5. Special Session on Machine Learning in Biometrics and Bioinformatics with Application (MLBBA 2015)

Piotr Porwik University of Silesia, Poland Marina L. Gavrilova University of Calgary, Canada Rafał Doroz University of Silesia, Poland Krzysztof Wróbel University of Silesia, Poland

6. Special Session on Collective Intelligent Systems for E-market Trading, Technology Opportunity Discovery and Collaborative Learning (CISETC 2015)

Tzu-Fu Chiu Aletheia University, Taiwan Chia-Ling Hsu Tamkang University, Taiwan Feng-Sueng Yang Aletheia University, Taiwan

7. Special Session on Intelligent Information Systems in Security & Defence (IISSD 2015)

Andrzej Najgebauer Military University of Technology, Poland Dariusz Pierzchała Military University of Technology, Poland Ryszard Antkiewicz Military University of Technology, Poland

Ewa Niewiadomska-

Szynkiewicz Warsaw University of Technology, Poland Zbigniew Tarapata Military University of Technology, Poland Richard Warner IIT/Chicago-Kent College of Law, USA

Adam Zagorecki Cranfield University, UK

8. Special Session on Advanced Data Mining Techniques and Applications (ADMTA 2015)

Bay Vo Ton Duc Thang University, Vietnam
Tzung-Pei Hong National University of Kaohsiung, Taiwan

Bac Le Ho Chi Minh City University of Science, Vietnam

X Organization

9. Special Session on Cloud-Based Solutions (CBS 2015)

Ondrej Krejcar University of Hradec Králové, Czech Republic Vladimir Sobeslav University of Hradec Králové, Czech Republic

Peter Brida University of Žilina, Slovakia

Kamil Kuca University of Hradec Králové, Czech Republic

10. Special Session on Augmented Reality and 3D Media (AR3DM 2015)

Atanas Gotchev Tampere University of Technology, Finland Janusz Sobecki Wrocław University of Technology, Poland

ADUMA S.A., Poland Zbigniew Wantuła

11. Special Session on Internet of Things, Big Data, and Cloud Computing (IoT 2015)

Adam Grzech Wrocław University of Technology, Poland

Andrzej Ruciński University of New Hampshire, USA

International Program Committee

Muhammad Abulaish Jamia Millia Islamia, India El-Houssaine Aghezzaf Ghent University, Belgium University of Basra, Iraq Haider M. AlSabbagh

Universiti Teknologi Malaysia, Malaysia Toni Anwar

Ahmad Taher Azar Benha University, Egypt

Amelia Badica University of Craiova, Romania Costin Badica University of Craiova, Romania

Emili Balaguer-

Peter Brida

Ballester Bournemouth University, UK

Zbigniew Banaszak Warsaw University of Technology, Poland Dariusz Barbucha Gdynia Maritime University, Poland John Batubara Bina Nusantara University, Indonesia

Gazi University, Turkey Ramazan Bayindir

Maumita Bhattacharya Charles Sturt University, Australia

Maria Bielikova Slovak University of Technology in Bratislava,

Slovakia

Veera Boonjing King Mongkut's Institute of Technology

> Ladkrabang, Thailand University of Silesia, Poland

Mariusz Boryczka Urszula Boryczka University of Silesia, Poland Abdelhamid Bouchachia Bournemouth University, UK

National University of Singapore, Singapore Stephane Bressan

University of Žilina, Slovakia

Wrocław University of Technology, Poland Piotr Bródka

Andrej Brodnik Grażyna Brzykcy The Duy Bui

Robert Burduk David Camacho Frantisek Capkovic

Oscar Castillo Dariusz Ceglarek Stephan Chalup Bao Rong Chang Somchai Chatvichienchai

Rung-Ching Chen Shyi-Ming Chen

Suphamit Chittayasothorn

Tzu-Fu Chiu Kazimierz Choroś Dorian Cojocaru Phan Cong-Vinh Jose Alfredo Ferreira Costa

Keeley Crockett Boguslaw Cyganek

Ireneusz Czarnowski Piotr Czekalski Paul Davidsson Roberto De Virgilio

Tien V. Do

Pietro Ducange El-Sayed M. El-Alfy

Vadim Ermolayev Rim Faiz Victor Felea

Thomas Fober

Dariusz Frejlichowski

Mohamed Gaber Patrick Gallinari Dariusz Gąsior University of Ljubljana, Slovenia

Poznań University of Technology, Poland

VNU University of Engineering and Technology,

Vietnam

Wrocław University of Technology, Poland Universidad Autónoma de Madrid, Spain Institute of Informatics, Slovak Academy

of Sciences, Slovakia

Tijuana Institute of Technology, Mexico Poznań School of Banking, Poland University of Newcastle, Australia

National University of Kaohsiung, Taiwan

University of Nagasaki, Japan

Chaoyang University of Technology, Taiwan National Taiwan University of Science and

Technology, Taiwan

King Mongkut's Institute of Technology

Ladkrabang, Thailand Aletheia University, Taiwan

Wrocław University of Technology, Poland

University of Craiova, Romania

NTT University, Vietnam

Universidade Federal do Rio Grande

do Norte, Brazil

Manchester Metropolitan University, UK AGH University of Science and Technology, Poland

Gdynia Maritime University, Poland Silesian University of Technology, Poland

Malmö University, Sweden

Universita' degli Studi Roma Tre, Italy Budapest University of Technology and

Economics, Hungary University of Pisa, Italy

King Fahd University of Petroleum and Minerals, Saudi Arabia

Zaporozhye National University, Ukraine

University of Carthage, Tunisia

Alexandru Ioan Cuza University of Iasi, Romania

University of Marburg, Germany

West Pomeranian University of Technology,

Poland

Robert Gordon University, UK LIP6 - University of Paris 6, France

Wrocław University of Technology, Poland

Andrey Gavrilov Janusz Getta Dejan Gjorgjevikj

Daniela Godoy Gergö Gombos Fernando Gomide

Vladimir I. Gorodetsky

Janis Grundspenkis Adam Grzech Slimane Hammoudi Habibollah Haron Tutut Herawan Francisco Herrera

Bogusława Hnatkowska

Huu Hanh Hoang Natasa Hoic-Bozic Tzung-Pei Hong Wei-Chiang Hong Mong-Fong Horng

Sheng-Jun Huang

Zbigniew Huzar Dosam Hwang Dmitry Ignatov

Lazaros Iliadis Hazra Imran Mirjana Ivanovic Konrad Jackowski Chuleerat Jaruskulchai Joanna Jędrzejowicz Piotr Jedrzejowicz

Janusz Jeżewski

Gordan Jezic Geun-Sik Jo Kang-Hyun Jo Jason J. Jung Janusz Kacprzyk Novosibirsk State Technical University, Russia

University of Wollongong, Australia

Saints Cyril and Methodius University of Skopje,

Macedonia

ISISTAN Research Institute, Argentina Eötvös Loránd University, Hungary State University of Campinas, Brazil St. Petersburg Institute for Informatics

and Automation, Russia

Riga Technical University, Latvia

Wrocław University of Technology, Poland

ESEO Institute of Science and Technology, France

Universiti Teknologi Malaysia, Malaysia

University of Malaya, Malaysia University of Granada, Spain

Wrocław University of Technology, Poland

Hue University, Vietnam University of Rijeka, Croatia

National University of Kaohsiung, Taiwan Hangzhou Dianzi University, China

National Kaohsiung University of Applied

Sciences, Taiwan

Nanjing University of Aeronautics

and Astronautics, China

Wrocław University of Technology, Poland

Yeungnam University, Korea

National Research University Higher School

of Economics, Russia

Democritus University of Thrace, Greece

Athabasca University, Canada University of Novi Sad, Serbia

Wrocław University of Technology, Poland

Kasetsart University, Thailand University of Gdańsk, Poland Gdynia Maritime University, Poland

Institute of Medical Technology and Equipment

ITAM, Poland

University of Zagreb, Croatia Inha University, Korea University of Ulsan, Korea Yeungnam University, Korea

Polish Academy of Sciences, Poland

Tomasz Kajdanowicz Nikola Kasaboy Arkadiusz Kawa

Muhammad Khurram Khan

Pan-Koo Kim Yong Seog Kim Attila Kiss Frank Klawonn Goran Klepac

Joanna Kołodziej Marek Kopel Józef Korbicz Raymond Kosala

Leszek Koszałka Adrianna Kozierkiewicz-

Hetmańska Ondrej Krejcar Dalia Kriksciuniene Dariusz Król

Marzena Kryszkiewicz

Adam Krzyzak Elżbieta Kukla Marek Kulbacki

Kazuhiro Kuwabara

Halina Kwaśnicka Helge Langseth

Annabel Latham Hoai An Le Thi Kun Chang Lee Philippe Lenca Horst Lichter

Sebastian Link Rey-Long Liu

Edwin Lughofer Lech Madeyski Bernadetta Maleszka Marcin Maleszka Yannis Manolopoulos

Urszula Markowska-Kaczmar

Francesco Masulli Tamás Matuszka

Wrocław University of Technology, Poland Auckland University of Technology, New Zealand

Poznań University of Economics, Poland King Saud University, Saudi Arabia

Chosun University, Korea Utah State University, USA

Eötvös Loránd University, Hungary

Ostfalia University of Applied Sciences, Germany

Raiffeisen Bank, Croatia

Cracow University of Technology, Poland Wrocław University of Technology, Poland University of Zielona Góra, Poland

Bina Nusantara University, Indonesia Wrocław University of Technology, Poland

Wrocław University of Technology, Poland University of Hradec Králové, Czech Republic

Vilnius University, Lithuania

Wrocław University of Technology, Poland Warsaw University of Technology, Poland

Concordia University, Canada

Wrocław University of Technology, Poland Polish-Japanese Institute of Information

Technology, Poland

Ritsumeikan University, Japan

Wrocław University of Technology, Poland

Norwegian University of Science and Technology,

Norway

Manchester Metropolitan University, UK

University of Lorraine, France Sungkyunkwan University, Korea Telecom Bretagne, France

RWTH Aachen University, Germany University of Auckland, New Zealand

Tzu Chi University, Taiwan

Johannes Kepler University of Linz, Austria Wrocław University of Technology, Poland Wrocław University of Technology, Poland Wrocław University of Technology, Poland Aristotle University of Thessaloniki, Greece Wrocław University of Technology, Poland

University of Genoa, Italy

Eötvös Loránd University, Hungary

XIV Organization

João Mendes-Moreira University of Porto, Portugal

Jacek Mercik Wrocław School of Banking, Poland

Saeid Nahavandi Deakin University, Australia Kazumi Nakamatsu University of Hyogo, Japan

Grzegorz J. Nalepa AGH University of Science and Technology,

Poland

Mahyuddin K.M. Nasution Universiti Kabangsaan Malaysia, Indonesia

Prospero Naval University of the Philippines, Philippines

Fulufhelo Vincent Nelwamondo Council for Scientific and Industrial Research,

South Africa

Linh Anh Nguyen University of Warsaw, Poland

Thanh Binh Nguyen International Institute for Applied Systems

Analysis, Austria

Adam Niewiadomski Lodz University of Technology, Poland

Toyoaki Nishida Kyoto University, Japan

Yusuke Nojima Osaka Prefecture University, Japan Mariusz Nowostawski University of Otago, New Zealand

Manuel Núñez Universidad Complutense de Madrid, Spain Richard Jayadi Oentaryo Singapore Management University, Singapore

Shingo Otsuka Kanagawa Institute of Technology, Japan
Jeng-Shyang Pan National Kaohsiung University of Applied

Sciences, Taiwan

Mrutyunjaya Panda Gandhi Institute for Technological Advancement,

Bhubaneswar, India

Tadeusz Pankowski Poznań University of Technology, Poland Marcin Paprzycki Systems Research Institute, Polish Academy

of Sciences, Poland

Jakub Peksiński West Pomeranian University of Technology,

Szczecin, Poland

Danilo Pelusi University of Teramo, Italy Xuan Hau Pham Quang Binh University, Vietnam

Dariusz Pierzchała Military University of Technology, Poland Marcin Pietranik Wrocław University of Technology, Poland Niels Pinkwart Humboldt University of Berlin, Germany

Elvira Popescu University of Craiova, Romania Piotr Porwik University of Silesia, Poland Bhanu Prasad Florida A&M University, USA

Andrzej Przybyszewski University of Massachusetts Medical School, USA

Paulo Quaresma University of Évora, Portugal
Héctor Quintián University of Salamanca, Spain
Christoph Quix Fraunhofer FIT, Germany
Monruthai Radeerom Rangsit University, Thailand

Ewa Ratajczak-Ropel Gdynia Maritime University, Poland

Rajesh Reghunadhan Przemysław Różewski

Leszek Rutkowski Henryk Rybiński Alexander Ryjov Virgilijus Sakalauskas Daniel Sanchez Juergen Schmidhuber Bjorn Schuller Jakub Segen

Alexei Sharpanskykh Quan Z. Sheng Andrzej Siemiński Dragan Simic Gia Sirbiladze Andrzej Skowron

Adam Słowik Janusz Sobecki

Ali Selamat

Kulwadee Somboonviwat

Zenon A. Sosnowski Serge Stinckwich Stanimir Stoyanov Jerzy Światek Andrzej Świerniak Edward Szczerbicki Julian Szymański Ryszard Tadeusiewicz

Yasufumi Takama Pham Dinh Tao Zbigniew Telec Krzysztof Tokarz Behcet Ugur Toreyin Bogdan Trawiński Krzysztof Trawiński Maria Trocan Hong-Linh Truong Olgierd Unold

Pandian Vasant

Central University of Bihar, India

West Pomeranian University of Technology,

Szczecin, Poland

Częstochowa University of Technology, Poland Warsaw University of Technology, Poland Lomonosov Moscow State University, Russia

Vilnius University, Lithuania University of Granada, Spain Swiss AI Lab IDSIA, Switzerland Technical University Munich, Germany

Gest3D, USA

Universiti Teknologi Malaysia, Malaysia

Delft University of Technology, The Netherlands

University of Adelaide, Australia

Wrocław University of Technology, Poland

University of Novi Sad, Serbia Tbilisi State University, Georgia University of Warsaw, Poland

Koszalin University of Technology, Poland Wrocław University of Technology, Poland King Mongkut's Institute of Technology

Ladkrabang, Thailand

Białystok University of Technology, Poland University of Caen Lower Normandy, France Plovdiv University "Paisii Hilendarski", Bulgaria Wrocław University of Technology, Poland Silesian University of Technology, Poland University of Newcastle, Australia

Gdańsk University of Technology, Poland AGH University of Science and Technology,

Poland

Tokyo Metropolitan University, Japan

INSA-Rouen, France

Wrocław University of Technology, Poland Silesian University of Technology, Poland

Cankaya University, Turkey

Wrocław University of Technology, Poland European Centre for Soft Computing, Spain Institut Superieur d'Electronique de Paris, France

Vienna University of Technology, Austria Wrocław University of Technology, Poland Universiti Teknologi PETRONAS, Malaysia

XVI Organization

Joost Vennekens Katholieke Universiteit Leuven, Belgium Jorgen Villadsen Technical University of Denmark, Denmark

Bay Vo Ton Duc Thang University, Vietnam

Yongkun Wang University of Tokyo, Japan

Izabela Wierzbowska Gdynia Maritime University, Poland Marek Wojciechowski Poznań University of Technology, Poland

Myongji University, Korea Dong-Min Woo

Wrocław University of Technology, Poland Michał Woźniak Marian Wysocki Rzeszow University of Technology, Poland Guandong Xu University of Technology Sydney, Australia

Xin-She Yang Middlesex University, UK Zhenglu Yang University of Tokyo, Japan

Chinese Academy of Sciences, AMSS, China Lean Yu Slawomir Zadrozny Systems Research Institute, Polish Academy

of Sciences, Poland

Drago Žagar University of Osijek, Croatia

Danuta Zakrzewska Lodz University of Technology, Poland

Faisal Zaman Dublin City University, Ireland

Constantin-Bala Zamfirescu Lucian Blaga University of Sibiu, Romania Katerina Zdravkova Ss. Cyril and Methodius University in

Skopje, Macedonia

Wrocław University of Technology, Poland Aleksander Zgrzywa National University Corporation Tsukuba Jianwei Zhang

University of Technology, Japan

Southeast University, China Min-Ling Zhang

Zhongwei Zhang University of Southern Queensland, Australia

Zhi-Hua Zhou Nanjing University, China

Program Committees of Special Sessions

Multiple Model Approach to Machine Learning (MMAML 2015)

Emili Balaguer-Ballester Bournemouth University, UK Urszula Boryczka University of Silesia, Poland Abdelhamid Bouchachia Bournemouth University, UK

Robert Burduk Wrocław University of Technology, Poland Tijuana Institute of Technology, Mexico Oscar Castillo Rung-Ching Chen Chaoyang University of Technology, Taiwan Suphamit Chittayasothorn King Mongkut's Institute of Technology

Ladkrabang, Thailand

Federal University of Rio Grande do Norte, Brazil José Alfredo F. Costa Bogusław Cyganek

AGH University of Science and Technology,

Poland

Ireneusz Czarnowski Gdynia Maritime University, Poland Patrick Gallinari Pierre et Marie Curie University, France Fernando Gomide State University of Campinas, Brazil University of Granada, Spain Francisco Herrera

Tzung-Pei Hong National University of Kaohsiung, Taiwan Konrad Jackowski Wrocław University of Technology, Poland Piotr Jedrzejowicz Gdynia Maritime University, Poland Tomasz Kajdanowicz Wrocław University of Technology, Poland

Yong Seog Kim Utah State University, USA

Bartosz Krawczyk Wrocław University of Technology, Poland

Kun Chang Lee Sungkyunkwan University, Korea

Edwin Lughofer Johannes Kepler University Linz, Austria

University of Salamanca, Spain Héctor Quintián

Andrzej Siemiński Wrocław University of Technology, Poland

Dragan Simic University of Novi Sad, Serbia

Adam Słowik Koszalin University of Technology, Poland Zbigniew Telec Wrocław University of Technology, Poland Wrocław University of Technology, Poland Bogdan Trawiński Krzysztof Trawiński European Centre for Soft Computing, Spain Wrocław University of Technology, Poland Olgierd Unold Pandian Vasant Universiti Teknologi PETRONAS, Malaysia Wrocław University of Technology, Poland Michał Woźniak Zhongwei Zhang University of Southern Queensland, Australia

Zhi-Hua Zhou Nanjing University, China

Special Session on Innovations in Intelligent Systems and Applications (IISA 2015)

I-Cheng Chang National Dong Hwa University, Hualien, Taiwan Shyi-Ming Chen National Taiwan University of Science and

Technology, Taipei, Taiwan

Li-Wei Lee

St. John's University, New Taipei City, Taiwan Po-Hung Chen Shou-Hsiung Cheng Chienkuo Technology University, Changhua,

Taiwan

Mong-Fong Horng National Kaohsiung University of Applications,

Taiwan

Lunghwa University of Science and Technology, Wei-Lieh Hsu

Taoyuan, Taiwan

National United University, Miaoli, Taiwan Feng-Long Huang Pingsheng Huang Ming Chuan University, Taoyuan County, Taiwan Ming Chuan University, Taoyuan County, Taiwan **Bor-Jiunn Hwang** Chinese Culture University, Taipei, Taiwan Huey-Ming Lee

De Lin Institute of Technology, New Taipei City,

Taiwan

Chung-Ming Ou Kainan University, Taoyuan County, Taiwan

XVIII Organization

Jeng-Shyang Pan Harbin Institute of Technology, China

Victor R.L. Shen National Taipei University, New Taipei City,

Taiwan

Chia-Rong Su Chang Gung University, New Taipei City,

Taiwan

An-Zen Shih Jinwen University of Science and Technology,

Taiwan

Chun-Ming Tsai Taipei Municipal University of Education,

Taiwan

Wen-Chung Tsai Chaoyang University of Technology, Taichung,

Taiwan

Cheng-Fa Tsai National Pingtung University of Science and

Technology, Taiwan

Cheng-Yi Wang National Taiwan University of Science and

Technology, Taipei, Taiwan

Chih-Hung Wu National Taichung University of Education,

Taiwan

Special Session on Innovations in Artificial Intelligent Techniques and Its Application in Engineering and Operational Research (AITEOR 2015)

Gerhard-Wilhelm Weber Middle East Technical University, Turkey

Junzo Watada Waseda University, Japan Kwon-Hee Lee Dong-A University, South Korea

Hindriyanto Dwi Purnomo Satya Wacana Christian University, Indonesia Charles Mbohwa University of Johannesburg, South Africa

Gerardo Maximiliano Mendez Instituto Tecnológico de Nuevo León, Mexico Leopoldo Eduardo Cárdenas

Barrón Tecnológico de Monterry, Mexico

Petr Dostál Brno University of Technology, Czech Republic Erik Kropat Universität der Bundeswehr München, Germany Timothy Ganesan Universiti Teknologi PETRONAS, Malaysia Vedpal Singh Universiti Teknologi PETRONAS, Malaysia

Gerrit Janssens Hasselt University, Belgium Suhail Oureshi UET Lahore, Pakistan

Monica Chis SIEMENS Program and System Engineering,

Romania

Michael Mutingi National University of Singapore, Singapore Ugo Fiore University of Naples Federico II, Italy

Utku Kose Uşak University, Turkey

Nuno Pombo University of Beira Interior, Portugal Kusuma Soonpracha Kasetsart University, Thailand Armin Milani Islamic Azad University, Iran Leo Mrsic University College of Law and Finance Effectus

Zagreb, Crotia

Igor Litvinchev Nuevo Leon State University, Mexico

Goran Klepac Raiffeisen Bank, Croatia

Herman Mawengkang University of Sumetera Utara, Indonesia

Special Session on Analysis of Image, Video and Motion Data in Life Sciences (IVMLS 2015)

Aldona Drabik Polish-Japanese Institute of Information

Technology, Poland

Leszek Chmielewski Warsaw University of Life Sciences, Poland

André Gagalowicz Inria, France David Gibbon AT&T, USA

Celina Imielinska Vesalius Technologies, USA

Ryszard Klempous Wrocław University of Technology, Poland Ryszard Kozera Warsaw University of Life Sciences, Poland Marek Kulbacki Polish-Japanese Institute of Information

Technology, Poland

Aleksander Nawrat Silesian University of Technology, Poland Lyle Noakes The University of Western Australia, Australia

Jerzy Paweł Nowacki Polish-Japanese Institute of Information

Technology, Poland

Eric Petajan Directv, USA Gopal Pingali IBM, USA

Andrzej Polański Polish-Japanese Institute of Information

Technology, Poland

Andrzej Przybyszewski University of Massachusetts, USA Jerzy Rozenbilt University of Arizona, Tucson, USA

Jakub Segen Gest3D, USA

Aleksander Sieroń Medical University of Silesia, Poland Konrad Wojciechowski Polish-Japanese Institute of Information

Technology, Poland

Special Session on Machine Learning in Biometrics and Bioinformatics with Application (MLBBA 2015)

Marcin Adamski Białystok Technical University, Poland

Ryszard Choraś Uniwersytet Technologiczno-Przyrodniczy, Poland

Nabendu Chaki University of Calcutta, India Rituparna Chaki University of Calcutta, India Rafał Doroz University of Silesia, Poland Marina Gavrilova University of Calgary, Canada

Phalguni Gupta Indian Institute of Technology Kanpur, India

XX Organization

Anil K. Jain Michigan State University, USA
Hemant B. Kekre NMIMS University, India
Vic Lane University of London, UK
Davide Maltoni Università di Bologna, Italy

Ashu Marasinghe Nagaoka University of Technology, Japan Nobuyuki Nishiuchi Tokyo Metropolitan University, Japan Javier Ortega-García Universidad Autónoma de Madrid, Spain Giuseppe Pirlo Università degli Studi di Bari, Italy Piotr Porwik University of Silesia, Poland Arun Ross Michigan State University, USA Khalid Saeed Białystok Technical University, Poland

Refik Samet Ankara University, Turkey

Michał Woźniak Wroclaw University of Technology, Poland

Krzysztof Wróbel University of Silesia, Poland

Special Session on Collective Intelligent Systems for E-market Trading, Technology Opportunity Discovery and Collaborative Learning (CISETC 2015)

Ya-Fung Chang Tamkang University, Taiwan

Peng-Wen Chen Oriental Institute of Technology, Taiwan

Kuan-Shiu Chiu Aletheia University, Taiwan Tzu-Fu Chiu Aletheia University, Taiwan Chen-Huei Chou College of Charleston, USA Tamkang University, Taiwan Chia-Ling Hsu Fang-Cheng Hsu Aletheia University, Taiwan Kuo-Sui Lin Aletheia University, Taiwan Min-Huei Lin Aletheia University, Taiwan Yuh-Chang Lin Aletheia University, Taiwan Pen-Choug Sun Aletheia University, Taiwan Leuo-Hong Wang Aletheia University, Taiwan Ai-Ling Wang Tamkang University, Taiwan

Henry Wang Chinese Academy of Sciences, China

Feng-Sueng Yang Aletheia University, Taiwan Ming-Chien Yang Aletheia University, Taiwan

Special Session on Intelligent Information Systems in Security & Defence (IISSD 2015)

Ryszard Antkiewicz Military University of Technology, Poland Leon Bobrowski Białystok University of Technology, Poland

Urszula Boryczka University of Silesia, Poland

Mariusz Chmielewski Military University of Technology, Poland Rafał Kasprzyk Military University of Technology, Poland Jacek Koronacki Polish Academy of Sciences, Poland Leszek Kotulski AGH University of Science and Technology,

Poland

Krzysztof Malinowski Warsaw University of Technology, Poland Andrzej Najgebauer Military University of Technology, Poland Ewa Niewiadomska-Szynkiewicz Warsaw University of Technology, Poland Dariusz Pierzchała Military University of Technology, Poland Jarosław Rulka Military University of Technology, Poland Białystok University of Technology, Poland Zenon A. Sosnowski Zbigniew Tarapata Military University of Technology, Poland Richard Warner IIT/Chicago-Kent College of Law, USA Marek Zachara AGH University of Science and Technology,

Poland

Adam Zagorecki Cranfield University, UK

Special Session on Advanced Data Mining Techniques and Applications (ADMTA 2015)

Bay Vo Ton Duc Thang University, Vietnam Tzung-Pei Hong National University of Kaohsiung, Taiwan

Bac Le Ho Chi Minh City University of Science, Vietnam

Chun-Hao Chen Tamkang University, Taiwan

Chun-Wei Lin Harbin Institute of Technology Shenzhen Graduate

School, China

Wen-Yang Lin National University of Kaohsiung, Taiwan Guo-Cheng Lan Industrial Technology Research Institute, Taiwan

Yeong-Chyi Lee Cheng Shiu University, Taiwan

Le Hoang Son Ha Noi University of Science, Vietnam

Le Hoang Thai Ho Chi Minh City University of Science, Vietnam Vo Thi Ngoc Chau Ho Chi Minh City University of Technology,

Vietnam

Van Vo Ho Chi Minh University of Industry, Vietnam

Special Session on Cloud-Based Solutions (CBS 2015)

Ana Almeida Porto Superior Institute of Engineering, Portugal
Oliver Au The Open University of Hong Kong, Hong Kong
Zoltan Balogh Univerzita Konštantína Filozofa v Nitre, Slovakia
Jorge Bernardino Polytechnical Institute of Coimbra, Portugal

Peter Brida University of Žilina, Slovakia

Jozef Bucko Technical University of Košice, Slovakia
Tanos Costa Franca Military Institute of Engineering, Brazil

Bipin Desai Concordia University, Canada Ivan Dolnak University of Žilina, Slovakia

Elsa Gomes Porto Superior Institute of Engineering, Portugal

XXII Organization

Alipio Jorge University of Porto, Portugal

Ondrej Krejcar CBAR, University of Hradec Králové,

Czech Republic

Kamil Kuca Biomedical Research Center, University Hospital

of Hradec Králové, Czech Republic

Juraj Machaj University of Žilina, Slovakia Norbert Majer The Research Institute of Posts and

Telecommunications (VUS), Slovakia

Goreti Marreiros Porto Superior Institute of Engineering, Portugal Peter Mikulecký University of Hradec Králové, Czech Republic

Marek Penhaker VSB – Technical University of Ostrava,

Czech Republic

Teodorico Ramalho University of Lavras, Brazil Maria Teresa Restivo Universidade do Porto, Portugal

Tiia Ruutmann Tallinn University of Technology, Lativia
Ali Selamat Universiti Teknologi Malaysia, Malaysia
José Salmeron Universidad Pablo de Olavide, Seville, Spain
Vladimir Sobeslav University of Hradec Králové, Czech Republic

Vassilis Stylianakis University of Patras, Greece

Jan Vascak Technical University of Košice, Slovakia

Special Session on Augmented Reality and 3D Media (AR3DM 2015)

Jędrzej Anisiewicz ADUMA, Poland

Robert Bregovic Tampere University of Technology, Finland
Piotr Chynał Wrocław University of Technology, Poland
Bogusław Cyganek AGH University of Science and Technology,

Poland

Irek Defee Tampere University of Technology, Finland

Piotr Hrebeniuk Cohesiva, Poland

Marcin Sikorski Polish-Japanese Institute of Information

Technology, Poland

Mårten Sjöström Mid Sweden University, Sweden Jarmo Viteli University of Tampere, Finland Jakub Wójnicki ADUMA MOBILE, Poland

Special Session on Internet of Things, Big Data and Cloud Computing (IoT 2015)

Jorgi Mongal Batalla National Institute of Telecommunications, Poland

Adam Grzech Wrocław University of Technology, Poland

Jason Jeffords DeepIS, USA

Krzysztof Juszczyszyn Wrocław University of Technology, Poland

Piotr Krawiec National Institute of Telecommunications, Poland

Jacek Lewandowski Coventry University, UK

Marek Natkaniec AGH University of Science and Technology,

Poland

Andy Rindos IBM Research, USA

Joel Rodrigues University of Beira Interior, Portugal Andrzej Ruciński University of New Hampshire, USA Henry Salveraj University of Nevada-Las Vegas, USA Edward Szczerbicki University of Newcastle, Australia

Paweł Świątek Wrocław University of Technology, Poland Halina Tarasiuk Warsaw University of Technology, Poland

David Zydek Idaho State University, USA

Contents – Part II

Bio-inspired Optimization Techniques and Their Applications	
Swarm Based Mean-Variance Mapping Optimization for Solving Economic Dispatch with Cubic Fuel Cost Function	3
Multiobjective Optimization of Bioactive Compound Extraction Process via Evolutionary Strategies	13
Hybrid Swarm Intelligence-based Optimization for Charging Plug-in Hybrid Electric Vehicle	22
A Genetic Algorithm with Grouping Selection and Searching Operators for the Orienteering Problem	31
Solving the Set Covering Problem with a Shuffled Frog Leaping Algorithm Broderick Crawford, Ricardo Soto, Cristian Peña, Wenceslao Palma, Franklin Johnson, and Fernando Paredes	41
Machine Learning in Biometrics and Bioinformatics with Applications	
Automatic Evaluation of Area-Related Immunogold Particles Density in Transmission Electron Micrographs	53
Fusion of Granular Computing and k-NN Classifiers for Medical Data Support System	62
Lip Print Recognition Method Using Bifurcations Analysis	72
Detecting the Reference Point in Fingerprint Images with the Use of the High Curvature Points	82

Kinect-Based Action Recognition in a Meeting Room Environment Faisal Ahmed, Edward Tse, and Marina L. Gavrilova	92
Advanced Data Mining Techniques and Applications	
Analyzing Users' Interests with the Temporal Factor Based on Topic Modeling	105
Classifying Continuous Classes with Reinforcement Learning RULES Hebah ElGibreen and Mehmet Sabih Aksoy	116
Fuzzy Association Rule Mining with Type-2 Membership Functions	128
Dependence Factor for Association Rules	135
Collective Intelligent Systems for E-market Trading, Technology Opportunity Discovery and Collaborative Learning	
A Novel Framework of Consumer Co-creation for New Service Development	149
Recognizing and Evaluating the Technology Opportunities via Clustering Method and Google Scholar	159
Raising EFL College Learners' Awareness of Collocations via COCA Yuh-Chang Lin	170
Effects of Question Prompts and Self-explanation on Database Problem Solving in a Peer Tutoring Context	180
Intelligent Information Systems in Security and Defense	
FP-tree and SVM for Malicious Web Campaign Detection	193
Simulation of Human Behavior in Different Densities as a Part of Crowd Control Systems	202

Jolanta Saczko, Magda Dubińska-Magiera, and Małgorzata Kotulska

XXVIII Contents - Part II

Registration of Ultrasound Images for Automated Assessment of Synovitis Activity	307
Quantifying Chaotic Behavior in Treadmill Walking	317
Augmented Reality and 3D Media	
Human Detection from Omnidirectional Camera Using Feature Tracking and Motion Segmentation	329
Automatic Fast Detection of Anchorperson Shots in Temporally Aggregated TV News Videos	339
Combined Motion Estimation and Tracking Control for Autonomous Navigation	349
Eye Tracking in Gesture Based User Interfaces Usability Testing Jerzy M. Szymański, Janusz Sobecki, Piotr Chynał, and Jędrzej Anisiewicz	359
Maximization of AR Effectiveness as a Didactic Tool with Affective States Recognition	367
A Method of the Dynamic Generation of an Infinite Terrain in a Virtual 3D Space	377
Accuracy Evaluation of a Linear Positioning System for Light Field Capture	388
A System for Real-Time Passenger Monitoring System for Bus Rapid Transit System	398

https://dx.doi.org/10.1007/978-3-319-15705-4 39

A System for Real-Time Passenger Monitoring System for Bus Rapid Transit System

Jonathan Samuel Lumentut¹, Fergyanto E. Gunawan²(⋈), Wiedjaja Atmadja³, and Bahtiar S. Abbas³

Abstract. TransJakarta is a BRT-based mass transportation system operating in Jakarta, the capital of Indonesia. Currently, the system delivers rather low level of service; as a result, the number of passengers is rather low in comparison to that of the other BRT-based systems. In this work, we propose a design of the passenger counting system for BRT-based system, which is very important for the BRT fleet management to increase the system level of service. The counting system is established by deploying computer vision techniques. A few algorithms are evaluated and the Adaptive Median Filtering with the sampling rate of 13 produces the highest level of precision and recall.

Keywords: Computer vision · Passenger counting system · Background substraction · Bus rapid system

1 Introduction

Traffic congestion is a major issue faced by many large cities across the globe. Jakarta, the capital of Republic of Indonesia, also deals with the problem in the daily basis. The congestion has caused the city setback in various sectors. In the economic sector, the predicted loss due the congestion is about Rp 65 trillion per year or about 5 billion USD. Within this number, about Rp 35 trillion per year or about 2.8 billion USD are due to the lost in the vehicle operation [1]. The congestion also has negative impacts in health, environment, and social sectors.

Metropolitan cities require structured mass transportation systems to lessen the level of congestion [2]. The system can be based on rail system or on bus system. The bus system is often called as the Bus Rapid Transit (BRT) system. The rail-based system has larger capacity, but requires longer development time and higher cost. In the other side, the BRT system has smaller capacity, but requires shorter development time and lower cost.

The adoption rate of the BRT system is higher than that of the rail-based system since the last decade. The adoption rates of the both systems are shown in Fig. 1.

School of Computer Science, Bina Nusantara University, Jakarta 11480, Indonesia
 Binus Graduate Programs, Bina Nusantara University, Jakarta 11480, Indonesia
 f.e.gunawan@gmail.com

³ Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia

[©] Springer International Publishing Switzerland 2015 N.T. Nguyen et al. (Eds.): ACIIDS 2015, Part II, LNAI 9012, pp. 398–407, 2015. DOI: 10.1007/978-3-319-15705-4-39

Fig. 1. The number of development of the train-based and BRT-based public transportation systems across the globe [3]

Jakarta also adopts the BRT system and was firstly constructed in 2004. The system is called TransJakarta BRT. By 2014, TransJakarta already has 12 corridors with 180 km busway length in total. Table 1 lists the monthly number of passengers of TransJakarta in 2013.

Table 1. The Number of Monthly Passengers of TransJakarta on a number of corridors in 2013

Corridor	Jan	Feb	Mar	Apr	May	Jun
1	1722650	1753109	1753109	2144327	2208102	2240811
2	608449	607270	701911	656851	678055	726560
3	651398	695467	821056	793286	799330	844527
4	519565	519701	576392	580012	575861	573580
6	661385	652530	726278	726278	724563	703151
9	984900	1012136	1145375	1127795	1122989	1143005

Corridor	Jul	Aug	Sep	Oct	Nov	Dec
1	226959	1856363	2217651	2185972	2199600	2367065
2	712579	674294	730465	712963	708227	769027
3	797685	751904	862652	846839	841850	873630
4	583415	519188	646062	646242	650763	668191
6	691517	598530	708459	708459	731415	757512
9	1164793	1020026	1210573	1235085	1218115	1251486

Source: http://transjakarta.co.id/

The transportation system can be divided into two sub-systems: the supply-side system and the demand-side system. The transportation system should be designed to balance the capacity of the both sub-systems. If the level of demand is higher, then the level of service of the system will drop. If the level of the supply is higher, the system may be not operating efficiently. For this reason, monitoring the two sides of the transportation system is important for designing a cost-effective system.

To operate the transportation system efficiently and effectively, we need to monitor the both sides of the system. In the case of the BRT system, the fleet of buses is the main constituent of the supply side; meanwhile, the BRT passengers are the main constituent of the demand side. The bus fleet can now be monitored using various technologies such the Global Positioning System (GPS) [4–7]. However, the passenger monitoring system is extremely limited. This work intends to propose a monitoring system for the passenger using computer vision techniques.

Many previous studies have been performed to develop methodology to track moving objects using computer vision. In this article, those methods will be further developed for monitoring BRT passengers.

Reference [8] develops method to track the movement of many human objects in real-time utilizing the Conditional Density Propagation algorithm. Three improvement were made in his work: the use of an effective template for the human form using self-organizing map; the use of the hidden Markov model for modeling the dynamic of the human shape; and the use of a competition rule to separate a person from others. In addition, Ref. [9] study passenger detection using the characteristics of the head area. They intend to track the pedestrian movement. The tracking is achieved in two steps: applying the background difference algorithm, dynamic threshold algorithm, and the method of morphological processing to filter the image noise; and applying head matching algorithm using a mask template.

In addition, Ref. [10] develops an algorithm for estimating the volume of a passenger flow. Reference [11] discuss on tracking human motion in outdoor environment. Reference [12] develop real-time video processing on Android platform.

In this work, we develop a method for counting the number of passengers in a BRT station. The method is developed using computer vision techniques where the passengers are detected and tracked by background subtraction algorithms. We evaluate the following algorithms: Pixel-based Adaptive Segmenter algorithm [13], Godbehere-Mitsukawa-Goldberg algorithm [14], and approximated median filtering [15].

2 Methods

2.1 Design Consideration of Bus Rapid Transit System

The Bus Rapid Transit (BRT) system is the bus-in-steroid system. The system eliminates aspects that slowing down the traditional bus system in serving large number of passengers. The system delivers high performance by deploying a number of design considerations [16].

Those design considerations mainly are: the BRT bus lanes are designed to be located on the high-demand segments, off-vehicle fare collection, the busway is separated and physically protected from the mixed traffic.

The use of the dedicated lane is a very important design consideration. And, the lane is placed in the road center to minimize conflict with the mixed traffic,

pedestrians spilling into the roadway, man-powered vehicles, and other conflicting factors. The off-vehicle fare collection, instead of the on-vehicle fare collection of the traditional bus system, is important to increase the passenger transfer rate.

In addition to those main design aspects, the BRT stations are designed on the median of the road and are used to share by both directions of service; see Fig. 2. Thus, the required number of stations is less and it can save cost with fewer stations. However, with this design, the BRT requires special buses which can serve passengers from the two sides of the bus.

Fig. 2. A typical design and location of the TransJakarta BRT station

2.2 Proposed Monitoring Strategy

Figure 2 shows a typical TransJakarta BRT station. The station is clearly constructed by considering the design factors discussed in Sec. 2.1. Passengers arrive on the station by using the elevated stair. The TransJakarta BRT stations tend to be narrow but long. Thus, the station can serve more than one bus simultaneously.

The proposed real-time monitoring system for such station design is shown in Fig. 3. The system consists of a central processing unit, a number of image acquisition units (CCTVs or IP cameras), wireless data communication unit, and server. The acquisition unit records the moving images of the movement of passengers across the access point. The recorded images will be sent to a central processing unit where the passenger counting will be performed. The algorithms in the CPU should be able to count the remaining passengers in the station. The data including the associated time-stamp data, will then be submitted to a server via a wireless network.

2.3 Passenger Counting Using Background Subtraction Algorithms

In the following, we will discuss three computer vision algorithms for background subtraction, which are evaluated for the purpose of passenger counting. For the detail exposition, the reader is advised to consult Ref. [15].

Fig. 3. The proposed passenger monitoring system for TransJakarta BRT station

In the following, we use notations: $I_t^c(x,y)$ to denote the value of channel c of the pixel at location (x,y) at time t and $B_t^c(x,y)$ is the background model.

Godbehere-Mitsukawa-Goldberg. The Godbehere-Mitsukawa-Goldberg (GMG) algorithm combines statistical background image estimation, per-pixel Bayesian segmentation, and an approximate solution to the multi target tracking problem using a bank of Kalman filters and Gale-Shapley matching. A heuristic confidence model enables selective filtering of tracks based on dynamic data. Figure 4 describes the GMG algorithm.

Fig. 4. GMG algorithm block diagram. An image I(k) is quantized in color-space, and compared against the statistical background image model, $\hat{\mathcal{H}}(k)$, to generate a posterior probability image. This image is filtered with morphological operations and then segmented into a set of bounding boxes, $\mathcal{M}(k)$, by the connected components algorithm. The Kalman filter bank maintains a set of tracked visitors $\hat{\mathbb{Z}}(k)$, and has predicted bounding boxes for time $k, \check{\mathbb{Z}}(k)$. The Gale-Shapley matching algorithm pairs elements of $\mathcal{M}(k)$ with $\check{\mathbb{Z}}(k)$; these pairs are then used to update the Kalman Filter bank. The result is $\hat{\mathcal{Z}}(k)$, the collection of pixels identified as foreground. This, along with image I(k), is used to update the background image model of $\hat{\mathcal{H}}(k)$. This step selectively updates only the pixels identified as background [14].

Adaptive Median Filtering. The median filtering algorithm is actually derived from the non-recursive techniques median filtering [15]. Reference [17] propose a recursive technique that is easy to estimate the median. This technique is also used for background modeling at traffic monitoring. In the algorithm, the estimated median is added by 1 if the input pixel is larger than the previos estimated median. Inversely, the median is subtracted. Mathematically, it is written:

$$B_{t+1}^{C} = \begin{cases} B_{t}^{C} + 1 & \text{if} \quad I_{t}^{C} > B_{t}^{C} \\ B_{t}^{C} - 1 & \text{if} \quad I_{t}^{C} < B_{t}^{C} \\ B_{t}^{C} & \text{if} \quad I_{t}^{C} = B_{t}^{C} \end{cases}$$

$$(1)$$

Pixed-based Adaptive Segmenter. Pixel-Based Adaptive Segmenter or called PBAS is a non-parametric background modeling technique [13]. The background is modeled on the basis of the observed pixel value history. The foreground decision depends on a decision threshold. The background update is based on a learning parameter. This algorithm uses dynamic per-pixels state variables and introduce dynamic controllers for each of them. The PBAS algorithm is summarized in the flowchart in Fig. 5. For the detail, we advice the reader to consult Ref. [13].

2.4 Experimental Setup

Figure 6 shows a typical access point of a typical BRT station. We draw the red virtual line and use the line to separate the region into two regions: Region A and Region B. Region A is located to the left of the line. We attach a camera to the

Fig. 5. PBAS algorithm block diagram. Variable $I(x_i)$ denotes the current pixel value, $B(x_i)$ is the background model, $R(x_i)$ is the per-pixel threshold, $T(x_i)$ is the learning parameter, $F(x_i)$ is the foreground segmentation mask [13].

top of that access point and record any passenger movement around the access point. When a BRT bus arrives at the station, the bus door will be align to the access point. The bus door will be in Region A. To board the bus, the passenger should walk across the red line and enter the bus. In the experiment, we record the activity in this access point for a duration of 30 minutes. We should note that in practice, passengers often wait for the bus along the red line, resulted in the counting error.

Fig. 6. An access point to a typical BRT station. The image recording system is located on the top. The red is a virtual line which is constructed to separate Region A, to the left of the line, and Region B, to the right of the line.

3 Implementation and Results

This section reports the empirical data collected during verification of the proposed method. The verification is performed as the following. In the experiment, the three algorithms are utilized and the results of each algorithms are reported.

The experimental results are tabulated in Table 2 for the PBAS, GMG, and AMF algorithms. The other results are tabulated in Table 3 for the AMF algorithm with varying the sampling rate. We should note that in this experiment the recorded image is rather low in resolution and contains high level of noise. As the results, the algorithms PBAS and GMG are not able to recall any object crossing the line and only detect the noise. In addition, the both algorithms require rather long processing time. Only the AMF algorithm can identify the object with reasonable level of accuracy and precision.

On the basis of the previous results, we further investigate the perform of the AMF algorithm by varying the sampling rate. We vary the sampling rate as 1, 3, 5, 9, and 13. The results are presented in Table III, and it indicates that the precision of the AMF algorithm tends to be strongly affected by the sampling rate. The precision level increases as the sampling rate increasing.

Table 2. The Experimental Results for PBAS, GMG, and AMF algorithms. The AMF uses the sampling rate of 1.

Parameters	PBAS Algorithm		GMG Algorithm		AMF Algorithm	
	$A \rightarrow B$	$B \to A$	$A \rightarrow B$	$B \to A$	$A \to B$	$B \to A$
The number of object cap-	19	16	66	80	9	6
tured by the algorithm						
The number of correct	0	0	0	1	2	3
object captured by the algo-						
rithm						
The number of the actual	3	4	3	4	3	4
object						
Recall	0	0	0	0.25	0.67	0.75
Precision	0	0	0	0.25	0.22	0.50

Table 3. The Effect of the Sampling Rate to the Counting using AMF Algorithm

Parameters	Sampling	g Rate = 5	Sampling	Rate = 9	Sampling	g Rate = 13
	$A \rightarrow B$	$B \to A$	$A \rightarrow B$	$B \to A$	A o B	$B \to A$
The number of object cap-	11	10	12	10	12	9
tured by the algorithm						
The number of correct	2	4	2	4	2	4
object captured by the						
algorithm						
The number of the actual	3	4	3	4	3	4
object						
Recall	0.67	1.00	0.67	1.00	0.67	0.44
Precision	0.18	0.40	0.17	0.40	0.67	1.00

4 Conclusion

This research proposes a system for counting the number of passengers waiting in a BRT station. The system is designed to provide the real-time data of the number of passengers. This data is very important for the BRT fleet management. The passenger counting system utilizes computer vision technique to track the movement of passengers across the station access point. In the image of the access point, a virtual line is drew, and the passenger is counted upon crossing the line. The image can be recorded using any recording devices such as IP TV, mobile TV, or CCTV. In the designed system, the recorded image will be sent to a central processing unit for processing the passenger counting on each access point, to determine the number of the total passengers in the station, and to submit the data to a dedicated server. In the current development, only one access point is considered. The developed system is used to count the passenger crossing the access point. Then, the result is compared to the manual counting. The empirical findings suggest that the AMF algorithm provides the best results in term of the accuracy in comparison to the PBAS and GMG algorithms. The result of the AMF algorithm can also be improved by increasing the sampling rate. The required time for analysis is also lower for the AMF algorithm.

Acknowledgement. We offer our highest appreciation to Directorate General Higher Education of Republic of Indonesia for their support via the National Competitive Research Grant No.: 017.A/DRIC/V/2013.

References

- 1. Hartawan, T.: Macet terus, jakarta rugi rp 65 triliun per tahun (2013). http://www.tempo.co/read/news/2013/03/24/214468984/Macet-Terus-Jakarta-Rugi-Rp-65-Triliun-per-Tahun (retrieved on December 2013)
- 2. Morichi, S.: Long-term strategy for transport system in asian megacities. Journal of the Eastern Asia Society for Transportation Studies 6, 1–22 (2005)
- 3. Campo, C.: Bus rapid transit: Theory and practice in the united states and abroad. Master's thesis, School of civil and environmental engineering, Georgia Institute of Technology (2010)
- 4. Chandra, F.Y., Gunawan, F.E., Glann, G., Gunawan, A.A.: Improving the accuracy of real-time traffic data gathered by the floating car data method. In: The 2nd International Conference on Information and Communication Technology (ICoICT), Bandung, Indonesia (2014)
- 5. Gunawan, F.E.: Real-time traffic monitoring system. In: International Conference and Advanced Informatics: Concepts, Theory and Applications (ICAICTA), Bandung, Indonesia (2014)
- 6. Gunawan, F.E., Chandra, F.Y.: Optimal averaging time for predicting traffic velocity using floating car data technique for advanced traveler information system. Procedia Social and Behavioral Sciences 138, 566–575 (2014)
- 7. Gunawan, F.E., Chandra, F.Y.: Real-Time Traffic Monitoring System using Floating Car method. Lambert Academic Publishing (2014b)

- 8. Kang, H.-G., Kim, D.: Real-time multiple tracking using competitive condensation. Pattern Recognition **38**, 1045–1058 (2005)
- 9. Wang, B., Chen, Z., Wang, J., Zhang, L.: A fast passenger detection algorithm based on head area characteristics. In: International Workshop on Information and Electronic Engineering (IWIEE), Harbin, China, pp. 184–188. Elseiver (2012)
- 10. Zhou, D.: Bus passenger recognition and track of video sequence. Journal of Multimedia 8, 262–269 (2013)
- 11. Haritaoglu, I., Davis, L.: W4: Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence **22**, 809–830 (2000)
- 12. Saipullah, K., Anuar, A., Ismail, N., Soo, Y.: Real-time video processing using native programming on android platform. In: IEEE 8th International Colloquium on Signal Processing and Its Applications (2012)
- 13. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: The pixel-based adaptive segmenter. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 38–43 (2012)
- 14. Godbehere, A., Matsukawa, A., Goldberg, K.: Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. In: American Control Conference (ACC), 4305–4312 (2012)
- 15. Parks, D., Fels, S.: Evaluation of background subtraction algorithms with post-processing. In: IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance 2008, AVSS 2008, pp. 192–199 (2008)
- 16. Weinstock, A., Hook, W., Replogle, M., Cruz, R.: Recapturing global leadership in bus rapid transit: A survey of select u.s. cities. Technical report, Institute for Transportation and Development Policy (2011)
- 17. McFarlane, N., Schofield, C.: Segmentation and tracking of piglets in images. Machine Vision and Applications 8(3), 187–193 (1995)