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In this paper, we study the Levenberg–Marquardt algorithm with the trust region

strategy to iteratively solve the ill-posed impact-force reconstruction problem. This

particular problem is interesting because the impact-force particularly those of the

pulse-type are difficult to be measured directly. In the present approach, the necessity

contributes a systematic approach to locate the optimal solution by tracking the

Levenberg–Marquardt parameter. The proposed method is evaluated by solving two

typical problem existed in the inverse problem of the impact-force reconstruction.

Reasonable accurate impact-forces were produced from the both evaluations.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The inverse analysis of an impact-force has presented researchers with a dilemma. The analysis is extremely useful
because it allows us to inversely estimate the pulse-type impact-force, which is difficult to be measured directly.
Unfortunately, the problem of inversely determining the pulse-type impact-force is ill-posed in sense of Hadamard’s
criteria [1]. The method of solution of the problem is difficult, its computational cost is high, and most important of all, it is
difficult to obtain an accurate solution. The difficulty arises from the ill-posed nature of the governing equation; thus, some
sort of numerical stabilization or regularization is necessary to produce a computable and acceptable solution [2]. The
computational cost is relatively high by one or more orders because many solutions for various degrees of regularization
have to be calculated, from which an optimal solution can be selected according to a specific objective function.
Commonly, the objective function is a combination of a residual term and an error term. An accurate solution is also hard
to find because the governing equation of the ill-posed problem tends to increase errors contained in data by several-folds
depending on the severity of the problem. In a linear inverse problem, for an example, the perturbation analysis has shown
that the error in the data propagates into the solution proportional with the magnitude of the condition number of the
problem [3]; therefore, for the present problems that have condition number in order of 105, an extremely small error in
the data can easily produce an erroneous solution without proper regulation.

The ill-conditioning nature arising in the inverse problems of the impact-force reconstruction has been recognized
since early of 1980s [4,5]. Some earlier solutions [6–11] were developed on the basis of the Wiener filter [12], which
basically minimizes the error in the solution without any attempt to regularize the solution. The standard solution method
of the ill-posed problem, i.e., the singular value decomposition (SVD) method, has also been adopted for solving the ill-
posed force reconstruction problem [13,14]. The SVD-based method is widely regarded as the best method, with respect to
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accuracy of the solution, to solve any ill-posed problem [2] because using the method, we can decompose the problem and
the data into their spectral contents; hence, the effect of the data error to the solution can be minimized. However, the
decomposition requires a relatively high computational cost, the highest among the direct solution methods [15]; thus, the
SVD-based method is only feasible to be used to solve small-size inverse problems.

The Wiener filter is basically feasible and efficient to solve large-size inverse problems due to the existence of the fast
Fourier transformation [16], but without a regularization, the solution provided by the method is often unacceptable
unless the condition number is relatively small in order of few hundreds. For the reason, we proposed a regularized Wiener
filter in Ref. [17] where an additional filter term was introduced to regularize the solution, and the filter parameters were
optimally selected to minimize Tikhonov’s objective function for the ill-posed problem. In addition, Tikhonov regulariza-
tion has also been employed to estimate the impulse-type impact-force acting on a nonlinear system [18].

Rather different solution methods can be seen in Juang and Hu [19] and Leclere and Pezerat [20]. The former
regularized the solution by controlling the vibration modes, and the latter adopted a low-pass filter approach where the
equation of motion was resolved using the finite difference approach.

Furthermore, we proposed a number of solution methods [21–23], which in general, taking into account the possible
profile of the impact-force as priori information of the solution. We approximated the impact-force profile, firstly, with a
B-spline [21], then with a quadratic spline [22]—a lower order spline, and finally, with a new set of the basis functions that
allows us to approximate accurately the loading and unloading phases of the impact-force profile [23].

The SVD-based method is only suitable for small-size inverse problems, and an iterative regularization is more
desirable for the medium and large-size problems [2]. However, there are very limited developments in the iterative
regularization particularly for reconstructing the pulse-type impact-force. In Ref. [24], we adopted the iterative
regularization of the conjugate gradient (CG) method, and proposed a termination scheme that is suitable for the
problems. The selection of the conjugate gradient method among many iterative methods was strengthened by Kurpisz
and Nowak [25] whom assert that the iterative method of the conjugate-gradient type is the most suitable for inverse
analysis. Two main reasons are: the CG method, unlike the Newton-based methods, does not require the inverse of the
Hessian matrix or its approximation, which for the ill-posed problem is difficult to compute accurately, and the second
reason is: the CG method has inherent regularization where the degree of regularization decreases by increasing the
iteration.

Although the CG method has some advantages over the Newton-based methods, the latter converge faster than the
former as shown in many studies particularly in solving well-posed problems. In this paper, we extend the Levenberg–
Marquardt (LM) method, a variant of the Gauss–Newton methods, to solve the ill-posed pulse-type impact-force inverse
problem in conjunction with a trust region strategy. The trust region strategy is used to stabilize the iteration in the LM
method. Furthermore, we also study the effects of the trust region parameters to the convergence of the LM method.
Finally, we evaluate the solution method by solving two typical problems in the impact-force reconstruction.

2. Governing equation of the impact-force reconstruction

From the mathematical standpoint, the force reconstruction problem discussed in this paper involves a convolution
integral equation of Z t

0
hðt�tÞf ðtÞ dt¼ eðtÞ, (1)

where h(t) is the impulse response function, f(t) is the impact-force, and e(t) is the induced elastic response. The integral
equation can easily be expressed in the form of the finite dimensional linear system as follows:

Hf ¼ e, (2)

which can directly be obtained from the integral equation via a numerical discretization. The discretization is simply by,
firstly, representing the continuous independent variable t with ti ¼ ði�1ÞDt where i is an integer index in ½0,ðN�1Þ� and Dt

is a sampling time. Secondly, the function f(t), e(t), and h(t) must be re-sampled at those discrete time. The discretization of
the function h(t) will naturally lead to a matrix, so-called the convolution matrix H, that has Toeplitz structure [26–28].

It is well-known that for the ill-posed problem, the solution f of the linear system of Eq. (2) is very sensitive to data
errors. An attempt to solve directly the equation will likely lead to an erroneous solution. Obtaining a meaningful solution
is possible by using some sort of numerical regularization or stabilization, among which Tikhonov regularization [2]:

min
f
½JHf�eJ2

2þl
2
JfJ2

2�, (3)

where l is the regularization parameter, has outstanding popularity.

3. Levenberg–Marquardt method

The Levenberg–Marquardt algorithm [29,30] is designed to address the problem of the nonlinear least squares. This
paper discusses a special case, that is a linear least squares problem with the Toeplitz structure of the Jacobian matrix. In
this section, we adopt a notation system that widely used in the theory of optimization, although few notations conflict to
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those that usually used in publications of the force reconstruction; but the meaning of each notation should be clear by
referring to its context.

The problem is to find a solution of Ax¼ b that minimizing the least squares function, f ðxÞ:

f ðxÞ ¼ 1
2rðxÞT rðxÞ, (4)

where rðxÞ is the residue such that rðxÞ ¼Ax�b. It is easy to show that the gradient of Eq. (4) is

gðxÞ ¼rf ðxÞ ¼AT rðxÞ: (5)

A rapid reduction of f ðxÞ can be obtained by updating x in the Gauss–Newton direction:

sðxÞ ¼ �ðAT AÞ�1 gðxÞ (6)

Eq. (6) can be solved if AT A is not only a matrix that has full column rank but also must be uniformly bounded and well
conditioned.

For the ill-posed problems, the Levenberg–Marquardt method stabilizes Eq. (6) by adding a regularization parameter or
a Levenberg–Marquardt parameter, n, such that

sðxÞ ¼�ðAT AþnIÞ�1 gðxÞ, (7)

where I is the identity matrix. With respect to the general optimization approach, the regularization is applied during the
line search strategy. Selection of the regularization parameter n is the subject of the next discussion. We note that, in this
paper, Eq. (7) is solved using the QR decomposition.

3.1. Regularization parameter by the trust region method

Let that xc is the current point or solution. The quadratic model of the linear least squares objective function allows us
to predict the next solution, xþ , based on Newton’s approach. The approach theoretically estimates the reduction of the
objective function, Df theo, by

Df theo ¼�gðxcÞ
T
ðxc�xþ Þ, (8)

while the actual reduction, Df act, can be easily obtained by

Df act ¼ f ðxcÞ�f ðxþ Þ: (9)

The regularization parameter, n, should be adjusted such that xþ reduces f ðxÞ sufficiently. The sufficiency is measured
by a variable, r, which is a relative magnitude of the actual reduction over the theoretical reduction:

r¼
Df act

Df theo

: (10)

For the ill-posed problem, the small n tends to produce large xþ in sense of its Euclidian norm, which in turn increases
Df theo, and consequently, reduces the r. The regularization parameter n is adjusted by use of a trust region approach that
adjusts n by comparing the r to the trust region parameters: m0, mlow, and mhigh.

If r is smaller than m0, the solution contains the noise excessively, then n will be increased by a factor of oup, and xþ is
recomputed by the following steps:

Ac ¼ AT AþnI,

and

d¼ A�1
c gðxcÞ,

and finally,

xþ ¼ xc�d: (11)

The LM parameter is also increased by the same factor if r lies between m0 and mlow; but for such a case, xþ is accepted
as the next solution, xkþ1. The LM parameter is optimal if it gives r in the interval of mlow and mhigh; and it is reduced if r is
larger than mhigh. Fig. 1 graphically describes the regulation.
Fig. 1. Trust region method for selection of the LM parameter, n. The symbol nk means the parameter is reduced by a factor of odown; nm denotes the

parameter is increased by a factor of oup; n- means the parameter is kept; and xU denotes that the point is recomputed. The factors odown and oup are

the penalty parameters.
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3.2. Termination criterion

The most difficult problem in solving the ill-posed problems is finding an appropriate regularization parameter.
According to Kilmer and O’Leary [31], the existing method such as the discrepancy principle, the generalized cross
validation (GCV) method, and the L-curve method have severe flaws. Finding an appropriate regularization parameter
becomes a subject of interest of many publications especially in connection with the iterative solution method.

In Ref. [24], we proposed a variant of the discrepancy principle that used to terminate the conjugate gradient iteration.
It shows that the CG method exhibits a semi-convergent behavior that the iteration seemingly convergences in the
beginning of the iteration before they eventually turn to diverge. Such a phenomenon happens because the method
reduces the degree of regularization continuously along iteration. As far as the solution, xk, is not too close to the true
solution, the residual norm, JAxk

�bJ, is quite large and the solution norm, JxkJ, is relatively small, negligible as compared
to the size of the residual. By increasing the iteration, JAxk

�bJ shrinks, while JxkJ increases. Eventually, the iteration will
provide an optimal solution. A regularization parameter that slightly lower than its optimal value will increase JxkJ

abruptly, and then further iteration will increase JxkJ significantly. Therefore, the optimal iteration can be easily detected
by JAxk

�bJ2
2þJxkJ2

2rJAxkþ1
�bJ2

2þJxkþ1J2
2.

A smooth evolution of the regularization parameter also appeared in an iterative solution method by use of a modified
Newton method as proposed in Ref. [32]. In addition to its smoothness, the sequence of the regularization parameter
approaches the optimal regularization from one side. Hence, the iteration can be terminated when the regularization
parameter is steady.

None of such smoothness can be expected from the present approach because the trust region method suddenly
changes the regularization parameter by an amount of the penalty parameters: odown and oup. However, at the steady
state, we can expect that the regularization parameter fluctuates harmonically in a certain range. In Section 4.1, we
empirically devise a method to find the optimal regularization parameter.

For the Levenberg–Marquardt method, Hanke [33] presented a theoretical development that shows that the
discrepancy principle given in Eq. (12) provides a well-defined and stable approximation of Ax¼ b, with t41 is another
parameter and d is a parameter that describes the noise:

JAxk
�bJrtd: (12)

For the practical application, it is difficult to use such an approach because lack of information of d, and accuracy of the
solution strongly depends on selection of t.
4. Numerical studies

4.1. Single degree of freedom system

4.1.1. Model description

Consider a single degree of freedom system (SDOF) that is subjected to an impact-force f(t). The system consists of a
mass, a spring and a damper. The impulse response function of the system can be expressed as hðtÞ ¼ 1=
ðmodÞe

zont sinðodtÞ, where on and od denote the circular natural and the circular damped frequencies. Both the
parameters can be computed by on ¼

ffiffiffiffiffiffiffiffiffiffi
k=m

p
¼ 2pf n and od ¼on

ffiffiffiffiffiffiffiffiffiffiffiffi
1�z2

q
. In the present study, the following data are

selected: m¼ 1:0 kg, k¼ 1� 1011 N=m, and z¼ 0:2.
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Fig. 2. The normalized elastic response of the SDOF system corrupted by the Gaussian random noise of variance of 2 percent.
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Fig. 4. Evolution of the Levenberg–Marquardt parameter, n, and the relative estimation error along iteration.
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Fig. 2 shows the elastic response data that is corrupted by the Gaussian random noise of variance of 2 percent of the
maximum of the elastic strain data. The data plotted in the figure were normalized by its Euclidian norm. The data were
sampled at a time-step of 0:4 ms. The impact-force is a shifted full-sine function. To provide a sense of the ill-posedness of
the problem, Fig. 3 shows the dimensionless estimated impact-force that is directly obtained by solving Eq. (2) by means of
the least squares method without a regularization.
4.1.2. Convergence of the Levenberg–Marquardt method

We study various parameters that are crucial for determining the termination criterion in the Levenberg–Marquardt
iteration. Those parameters are the objective function, the natural criterion, the ratio r, and the regularization parameter, n.
However, during the analysis we kept in mind that the regularization parameter n should be minimum to maintain the
originality of the problem. In this study, we adopt Ref. [34] for the trust region parameters as follows: m0 ¼ 0:1, mlow ¼ 0:25,
mhigh ¼ 0:75, oup ¼ 2, and odown ¼ 0:5; and perform the analysis for 200 iterations.

The computational results show that the objective function and the gradient norm steadily decrease by increasing the
iteration, while the relative estimation error that was defined by

Relative error¼
Jxexact�xestimationJ

JxexactJ

decreases and then harmonically oscillates (see Fig. 4). Thus, the objective function and the gradient norm can hardly be
used as the termination criterion.

In addition to the estimation error, Fig. 4 also shows the history of the regularization parameter, n. When the number of
iterations is larger than 25, the regularization parameter is also oscillating harmonically. The harmonic oscillation
phenomenon of the regularization parameter can be easily understood by observing the ratio r that is presented in Fig. 5.

Those figures show that at the steady condition, the penalty parameter oup regularly penalized the regularization
parameter when the regularization parameter becomes too small such that the ratio r is smaller than m0. As the iteration
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continues, the trust region method reduces the regularization parameter gradually until m0 is violated, then the previous
process is repeated. Therefore, it is natural to select the best solution that has the smallest regularization parameter but do
not violate the minimum trust region parameter. This criterion provides a regularization parameter that is marked as a
circle, ‘J’, in Fig. 4. In the same figure, we can see that this regularization parameter provides a solution that has the
smallest relative estimation error, and Fig. 6 shows the associated estimated impact-force. The figure also shows the
under-regularized solution that was obtained by reducing the regularization parameter slightly, and the solution obtained
by the Tikhonov-SVD method.

The nature of the convergence depicted in Fig. 4 is rather similar to that is shown in Fig. 5 of Ref. [35] where an adaptive
Tikhonov regularization method is developed and employed to solve a nonlinear finite element model updating problem.
4.1.3. Effect of the trust region parameters

We also study various configurations of the trust region parameters: m0, mlow, mhigh, oup, and odown. Fig. 7 shows a
notable result that the oscillation of the estimation error is damped down rapidly when m0 is increased from 0.1 to 0.25.
4.2. Pre-cracked one-point bend specimen

4.2.1. Model description

Consider a one-point bend specimen that was depicted in Fig. 8. By using the Euler–Bernoulli beam theory, Kishimoto
et al. [36] have derived a convolution integral equation that relates the stress intensity factor KI(t) to the impact-force f(t);
and in the other side, Dally and Sanford [37] show that the stress intensity factor is proportional to the strain at near the
crack-tip; therefore, the impact-force can be related to the strain at near the crack-tip by the convolution integral equation.
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Fig. 8. One-point bend specimen.
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According to Kishimoto et al. [36], the impulse response function of the Euler–Bernoulli beam can be expressed as

hðx,tÞ ¼
t

rAS
þ
X1

m ¼ 1

Ymð
1
2ÞYmðxÞ

omWmS
sinðomtÞ, (13)

where x¼ x=S, r is the density, S is the specimen span, a is the crack length, A is the cross-sectional area, YmðxÞ are the
normal modes, and om are the natural angular frequencies. The normal modes YmðxÞ are expressed as

Y0ðxÞ ¼ const,

YmðxÞ ¼ cos
lm

2
�cosh

lm

2

� �
ðcos lmxþcosh lmxÞþ sin

lm

2
þsinh

lm

2

� �
ðsin lmxþsinh lmxÞ:

And the natural frequencies are

o2
0 ¼ 0,

o2
m ¼

lm

S

� �2 EI

rA
,

where E is the elastic modulus, I is the area of moment of inertia of the gross cross-section, and lm is the m-th root of the
following equation:

cos
lm

2
sinh

lm

2
þsin

lm

2
cosh

lm

2
þ

DI

2S
lm cos

lm

2
cosh

lm

2
�1

� �
¼ 0: (14)

The D in Eq. (14) is defined as

D¼
2ð1�n2ÞW

I
Vða=WÞ,

where

VðaÞ ¼ a
1�a

� �2

ð5:58�19:57aþ36:82a2�34:94a3þ12:77a4Þ:

Having the impulse response function hðx,tÞ, then one can calculate the displacement on the neutral plane by

uðx,tÞ ¼

Z t

0
f ðtÞhðx,t�tÞ dt, (15)
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which, further, can be related to the stress intensity factor by

KIðtÞ ¼ kd½uð
1
2,tÞ�uð0,tÞ�, (16)

where

kd ¼
Ks

f ðtÞ
P1

m ¼ 1

Y2
mð

1
2Þ

o2
mWmS

, Wm ¼ 2rA

Z 1=2

0
Y2

mðxÞ dx,

and a¼ a=W .
The Ks is the stress intensity factor for a three-point-bend specimen, and it is written as

Ks ¼
f ðtÞS

BW3=2gðaÞ
,

with

gðaÞ ¼ 3a1=2½1:99�að1�aÞð2:15�3:93aþ2:7a2Þ�

2ð1þ2aÞð1�aÞ3=2
:

The dynamic stress intensity factor can also be measured experimentally by using the gage method of Dally and Sanford
[37]:

KIðtÞ ¼ Eex00 ðtÞ
ffiffiffiffiffiffiffiffi
8
3pr

q
, (17)

where ex00 ðtÞ is the strain-time history measured using a strain-gage that bonded ahead of the crack-tip (see Fig. 9). The r is
a distance from the crack-tip to the gage position.

4.2.2. The finite element analysis

The impact event of the one-point bend specimen with an impactor was simulated numerically by means of the finite
element method on ANSYS/LS-DYNA finite element package. In this event, the both impactor and specimen were made of
steel material having an elastic modulus and density of 200 GPa and 8100 kg/m3, respectively.

The both were discretized using solid element-type, SOLID164, with eight nodes per element, and each node is having
three degree of freedoms (ux, uy, and uz) [38]. Fig. 10 shows the detailed finite element mesh of the impactor and the
specimen; Only a quarter of the specimen and the impactor were modeled due to symmetry.

The geometry of the one-point specimen is 10 mm wide, 10 mm high, and 100 mm long. The crack in the specimen is
assumed to be 5 mm in length. The impactor is 10 mm high and 50 mm long. It has a round end, as shown in Fig. 10, with a
radius of 5 mm.

Initially, the impactor touched the specimen along the impact line, and then, all nodes on the impactor were
accelerated with the same initial velocities of 30 m/s. The symmetric constraints were applied to all nodes laying on the
symmetric planes of the impactor and specimen.

In the simulation, a strain-gage is assumed to be bonded at 2 mm ahead of the crack-tip and at an orientation of 451
following suggestion of Rizal and Homma [39].

The element mesh-size and the analysis time-step were adjusted such that a realistic impact event was obtained. This
could be assessed by evaluating the depth of the penetration of the impactor onto the specimen.
Fatigue crack

Saw cut crack

Strain gage

θ

X"
y"

r

Fig. 9. The location of the strain-gage in the method of Dally and Sanford.
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Fig. 11, for an example, shows the displacements of the two coincided nodes, one on the impactor and the other on the
specimen, during the impact event. The figure indicates that the impactor fully contacted the specimen for a duration of
about 50 ms before the impactor and specimen lost contact. This duration is equivalent with the time for the longitudinal
waves to propagate on the impactor from the impact end and return to the same end. Therefore, we concluded that the
finite element analysis reasonably reproduced the impact event.

4.2.3. Inverse analysis results

In this section, we present the results of the inverse analysis that reconstructed the applied impact-force based on the
elastic strain data recorded at the gage location obtained from the previous finite element analysis. The elastic strain data
are reproduced in Fig. 12 after a normalization with the Euclidian norm of the data.

Based on those data, the Levenberg–Marquard algorithm, then, applied to compute the impact-force; the results are
presented in Figs. 13 and 14. The regularization parameter, n, rapidly reached its harmonic state, which clearly indicates
that the optimal solution is that at the 6-th iteration of the LM method.

Meanwhile, Fig. 14 shows the corresponding optimal solution by the Levenberg–Marquard method. On the same figure,
the impact-force that is obtained from the finite element analysis is also presented. Evidently, the figure shows that the
solution is acceptable within a relative estimation error of 9 percent at the peak of the force.

5. Conclusion

Recent study on the ill-posed impact-force reconstruction problems has provided a new technique, on the basis of the
Levenberg–Marquardt iterative solution method, to find the optimal solution of the problem iteratively. Current finding
suggests that the evolution of the regularization parameter, n, during iteration provides information of the iteration
associated with the optimal solution. The method, unlike the SVD-based method, requires significantly less the computer
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memory; therefore, for a problem that cannot be solved by the SVD-based method due to limitation on the computer
memory, the problem should be able to address using the proposed method. However, one should note that the current
proposal, similar with the CG method (see for examples: [21,24]), requires us to maintain the history of the solution along
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the iteration. It is still not clear which methodology, the CG method or the LM method, is more effective to solve the
present ill-posed problem. The CG method has a quadratic convergence rate during the iteration before an optimal solution
is reached; meanwhile, the LM method convergence rate varies along the iteration depending on the trust region
parameter n.
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