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Abstract 
 
 
The calcium-sensing receptor (CaS receptor) plays a pivotal role in extracellular calcium homeostasis 

and germline loss- and gain-of-function mutations cause familial hypocalciuric hypercalcaemia 

(FHH) and autosomal dominant hypocalcaemia (ADH), respectively. CaS receptor signal transduction 

in the parathyroid glands is likely regulated by G-protein subunit α11 (Gα11) and adaptor-related 

protein complex-2 sigma subunit (AP2σ), and recent studies have identified germline mutations of 

these proteins as a cause of FHH and/or ADH. Calcimimetics and calcilytics are positive and negative 

allosteric modulators of the CaS receptor that have potential efficacy for symptomatic forms of FHH 

and ADH. Cellular studies have demonstrated that these compounds correct signalling and/or 

trafficking defects caused by mutant CaS receptor, Gα11 or AP2σ proteins. Moreover, mouse model 

studies indicate that calcilytics can rectify the hypocalcaemia and hypercalciuria associated with 

ADH, and patient-based studies reveal calcimimetics to ameliorate symptomatic hypercalcaemia 

caused by FHH. Thus, calcimimetics and calcilytics represent targeted therapies for inherited 

disorders of the CaS receptor signalling pathway. 

 

Abbreviations: ADH, autosomal dominant hypocalcaemia; ADH1, autosomal dominant 

hypocalcaemia type 1; ADH2, autosomal dominant hypocalcaemia type 2; ADIS, agonist-driven 

insertional signalling; AP2σ, adaptor-related protein complex-2 sigma subunit; Ca2+
o, extracellular 

calcium; Ca2+
i, intracellular calcium; CaS receptor, calcium-sensing receptor; DAG, diacylglycerol; 

Dsk7, Dark skin 7; ENU, N-ethyl-N-nitrosourea; ER; endoplasmic reticulum; FHH, familial 

hypocalciuric hypercalcaemia; FHH1, familial hypocalciuric hypercalcaemia type 1; FHH2, familial 

hypocalciuric hypercalcaemia type 2; FHH3, familial hypocalciuric hypercalcaemia type 3; Gα11, G-

protein subunit α11; GPCR, G-protein coupled receptor; IP3, inositol 1,4,5-trisphosphate; MAPK, 

mitogen-activated protein kinase; NSHPT, neonatal severe hyperparathyroidism; Nuf, nuclear flecks; 

PIP2, phosphatidylinositol 4,5-bisphosphate;  PKC, protein kinase C; PLC, phospholipase C; PTH, 

parathyroid hormone; TMD, transmembrane domain. 
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Introduction 

 

The extracellular calcium (Ca2+
o)-sensing receptor is a dimeric cell-surface protein that belongs to the 

glutamate (family C) class of G-protein coupled receptors (GPCRs). The calcium-sensing receptor, 

also referred to as CaS receptor (Alexander et al., 2017), is highly expressed in calcitropic tissues 

such as the parathyroid glands and kidneys, and also in non-calcitropic tissues such as the pancreatic 

islets (Babinsky et al., 2017; Hannan, Babinsky & Thakker, 2016). The CaS receptor plays a key role 

in systemic calcium homeostasis by detecting increases in the prevailing Ca2+
o concentration, which 

initiates signalling via multiple intracellular pathways. These include the G-protein subunit α11 (Gα11)-

dependent stimulation of phospholipase C (PLC) activity, which leads to an accumulation of inositol 

1,4,5-triphosphate together with the rapid mobilisation of intracellular Ca2+ (Ca2+
i), and also activates 

the mitogen-activated protein kinase (MAPK) pathway (Figure 1) (Hannan, Babinsky & Thakker, 

2016). These intracellular events mediate a decrease in parathyroid hormone (PTH) secretion and 

reduction in renal tubular calcium reabsorption (Figure 1) (Hannan, Babinsky & Thakker, 2016). The 

sensitivity of parathyroid and renal tubular cells to Ca2+
o is likely influenced by the level of CaS 

receptor cell-surface expression. This in turn is regulated by agonist-driven insertional signalling 

(ADIS), which enhances anterograde trafficking of newly synthesised CaS receptors to the plasma 

membrane (Grant, Stepanchick, Cavanaugh & Breitwieser, 2011); and also by clathrin-mediated 

endocytosis and retrograde trafficking of cell-surface CaS receptors, which is considered to involve 

the heterotetrameric adaptor-related protein complex-2 (AP2) (Figure 1) (Hannan, Babinsky & 

Thakker, 2016). 

 The central role of CaS receptor signalling and trafficking in Ca2+
o homeostasis has been 

demonstrated by the identification of mutations affecting this GPCR and its intracellular partner 

proteins, which result in alterations in serum calcium and urinary calcium excretion. For example, 

germline heterozygous loss-of-function mutations affecting the CaS receptor, Gα11, and AP2 σ-

subunit (AP2σ) lead to familial hypocalciuric hypercalcaemia (FHH) types 1 to 3, respectively; 

whereas germline heterozygous gain-of-function mutations of the CaS receptor and Gα11 cause 
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autosomal dominant hypocalcaemia (ADH) types 1 and 2, respectively (Figure 1, Table 1) (Hannan et 

al., 2012; Nesbit et al., 2013a; Nesbit et al., 2013b). FHH is an autosomal dominant condition 

characterised by mild-to-moderate elevations of serum calcium concentrations, normal or elevated 

circulating parathyroid hormone (PTH) concentrations, and inappropriately low urinary calcium 

excretion (Hannan & Thakker, 2013). FHH is usually an asymptomatic condition, however, some 

patients may develop symptomatic hypercalcaemia or recurrent pancreatitis, and low bone mineral 

density values as well as cognitive dysfunction has been noted in some FHH type 3 (FHH3) patients 

(Table 1) (Hannan et al., 2015a). Moreover, the offspring of parents affected with FHH type 1 

(FHH1) may harbour heterozygous, homozygous or compound heterozygous CaS receptor mutations 

that cause neonatal severe hyperparathyroidism (NSHPT). This life-threatening disorder is 

characterized by severe hypercalcaemia and hyperparathyroid skeletal disease leading to fractures and 

respiratory distress (Table 1) (Hannan & Thakker, 2013). Occasionally, patients harbouring 

heterozygous or homozygous loss-of-function CaS receptor mutations have been reported to develop 

primary hyperparathyroidism in adulthood (Table 1) (Hannan & Thakker, 2013). Autosomal 

dominant hypocalcaemia is characterised by the opposite biochemical phenotype to FHH, and patients 

thus have low serum calcium concentrations, normal or low PTH concentrations, and a relative or 

absolute hypercalciuria (Hannan, Babinsky & Thakker, 2016). Approximately 50% of ADH1 patients 

have symptomatic hypocalcaemia and >30% of patients have renal and/or intracerebral calcifications 

(Table 1) (Hannan, Babinsky & Thakker, 2016). Some ADH1 patients with severe gain-of-function 

CaS receptor mutations may additionally have Bartter syndrome type V, which is characterised by 

hypokalaemic alkalosis, renal salt wasting and hyperreninaemic hyperaldosteronism (Table 1) 

(Watanabe et al., 2002).  

The management of NSHPT and severe hypercalcaemia due to FHH generally involves 

surgical neck exploration and parathyroidectomy, as conventional medical therapies such as 

bisphosphonates have limited efficacy for these disorders (Waller et al., 2004). Symptomatic ADH 

patients are commonly managed with calcium and active vitamin D preparations, however their use 

predisposes patients to the development of marked hypercalciuria, nephrocalcinosis, nephrolithiasis 

and renal impairment (Hannan, Babinsky & Thakker, 2016; Nesbit et al., 2013a). ADH patients have 
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also been treated with recombinant PTH (1-34) (teriparatide), however, this peptide therapy may not 

always prevent hypercalciuric renal complications (Theman et al., 2009). Calcimimetic and calcilytic 

compounds are positive and negative modulators of the CaS receptor, respectively (Nemeth & 

Goodman, 2016), and have the potential to correct the underlying pathophysiological alterations in 

parathyroid and kidney function caused by loss-of-function or gain-of-function mutations affecting 

this receptor or its intracellular partner proteins. This article will provide an overview of calcimimetic 

and calcilytic compounds and discuss the cellular, mouse model and patient-based studies that have 

evaluated their use for the management of calcitropic and non-calcitropic phenotypes associated with 

FHH, NSHPT and ADH. 

 
 
Classification & structure of calcimimetics & calcilytics 

 

Calcimimetics 

Calcimimetics are ligands that mimic or enhance the effects of Ca2+
o at the CaS receptor, and are 

divided into two types: type I calcimimetics are agonists, which include naturally occurring ligands 

such as polyvalent cations; and type II calcimimetics are positive allosteric modulators that increase 

the sensitivity of the CaS receptor to Ca2+
o, thereby shifting the concentration-response curve of cells 

expressing this receptor to the left (Hannan, Babinsky & Thakker, 2016; Nemeth, 2004). Some type II 

calcimimetics may also have intrinsic agonist actions, and are referred to as allosteric agonists (Leach 

et al., 2016). The first generation of type II calcimimetics are phenylalkylamine compounds that were 

derived from the structure of fendiline, which is a voltage-gated calcium channel blocker (Nemeth et 

al., 1998). NPS R-568 (also known as tecalcet) is a fendiline analogue (Figure 2) and was the first 

calcimimetic to be evaluated in clinical trials. This compound was shown to decrease plasma PTH 

concentrations in patients with primary hyperparathyroidism (Silverberg et al., 1997), secondary 

hyperparathyroidism due to end-stage renal failure (Antonsen, Sherrard & Andress, 1998), or 

parathyroid carcinoma (Collins, Skarulis, Bilezikian, Silverberg, Spiegel & Marx, 1998). However, 

NPS R-568 had a variable pharmacokinetic profile and was superseded by cinacalcet (also known as 
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NPS 1493 and AMG073) (Figure 2). Cinacalcet is an NPS R-568 analogue characterised by an 

improved pharmacokinetic profile with higher bioavailability and more reliable dose-effect 

relationships in individual patients (Nemeth et al., 2004). Cinacalcet was the first GPCR allosteric 

modulator to obtain regulatory approval, and is approved as a daily oral therapy for patients with 

either: secondary hyperparathyroidism due to end-stage renal failure; inoperable forms of primary 

hyperparathyroidism; or parathyroid carcinoma (Nemeth & Goodman, 2016). More recently, a type II 

calcimimetic known as AC265347, which has a novel benzothiazole structure (Figure 2) has been 

identified (Ma et al., 2011). In vitro studies involving cultured fibroblasts indicate AC265347 to have 

greater potency and efficacy than cinacalcet (Ma et al., 2011). Furthermore, AC265347 has been 

shown to be more potent than cinacalcet at lowering serum PTH when administered subcutaneously, 

but less potent when administered orally in studies involving wild-type rats (Ma et al., 2011). 

Whereas, the efficacy of these two compounds on serum PTH concentrations is similar by either route 

of administration (Ma et al., 2011; Nemeth et al., 2004).  In addition, AC265347 has been shown to 

have greater intrinsic agonist properties than cinacalcet, and to enhance CaS receptor signalling 

responses in the absence of Ca2+
o to a larger extent (Ma et al., 2011). Etelcalcetide (also known as 

AMG416) is a synthetic polycationic peptide (Figure 2) that forms a transient covalent disulphide 

bond with the Cys482 residue located in the CaS receptor extracellular domain, and acts as a type II 

calcimimetic and agonist of this GPCR (Alexander et al., 2015; Nemeth & Goodman, 2016). 

Etelcalcetide is administered intravenously and has a longer circulating half-life than cinacalcet in 

renal failure patients, and has recently been approved for the management of secondary 

hyperparathyroidism in adult patients on haemodialysis (Block et al., 2017). 

 
Calcilytics 

Calcilytics are negative allosteric modulators that reduce the sensitivity of the CaS receptor to Ca2+
o, 

thereby shifting the concentration-response curve of cells expressing this receptor to the right 

(Nemeth & Goodman, 2016). Calcilytics comprise two main classes of orally active compounds, 

which are the amino alcohols (e.g. NPS 2143, ronacaleret, NPSP795 (also known as SB-423562) and 

JTT-305/MK-5442 (also known as encaleret)) and quinazolinones (e.g. ATF 936 and AXT 914) 



	 7	

(Figure 2) (Nemeth & Goodman, 2016). Calcilytics were originally investigated as potential therapies 

for osteoporosis, as these compounds stimulated transient PTH secretion, which had the potential to 

induce anabolic effects on bone mass (Nemeth et al., 2001). NPS 2143 was the first potent and 

selective calcilytic to be identified, and pre-clinical studies revealed this calcilytic to lead to sustained 

increases in PTH secretion, which did not alter bone mass (Gowen et al., 2000). NPS 2143 was 

subsequently modified to generate compounds such as ronacaleret and NPSP795 (Figure 2), which 

induced a more short-lived rise in PTH secretion (Kumar et al., 2010). However, a phase II clinical 

trial involving ronacaleret showed a lack of efficacy for post-menopausal osteoporosis (Fitzpatrick et 

al., 2011). The JTT-305/MK-5442 and AXT 914 calcilytic compounds have also been evaluated in 

postmenopausal subjects, and been shown not to increase bone mineral density or markers of bone 

formation, respectively (Halse et al., 2014; John et al., 2014). 

 

Mechanism of action of calcimimetics & calcilytics 

 

Calcimimetics and calcilytics are predicted to bind within a cavity located between the mid-portion 

and extracellular aspect of the CaS receptor transmembrane domain (TMD) (Leach et al., 2016). 

Within this binding cavity, the Glu837 residue has been shown to be critical for binding both 

phenyalkylamine calcimimetics and amino alcohol calcilytics, such that a loss of this negatively 

charged Glu837 residue attenuated the effects of these compounds (Jacobsen, Gether & Brauner-

Osborne, 2017; Leach et al., 2016; Miedlich, Gama, Seuwen, Wolf & Breitwieser, 2004; Petrel, 

Kessler, Dauban, Dodd, Rognan & Ruat, 2004). At the entrance to this binding cavity, the Glu767 and 

Arg680 residues have also been demonstrated to bind cinacalcet and NPS 2143, respectively (Leach 

et al., 2016). Thus, these compounds bind to similar regions within the TMD cavity, whereas the 

structurally distinct AC265347 compound has been shown to bind deeper within this cavity. This 

finding may help to explain differences in the pharmacological actions of AC265347 compared to the 

phenyalkylamines and amino alcohols (Leach et al., 2016). Calcimimetics are considered to act by 

stabilising the TMD in a conformation that facilitates G-protein coupling, whereas calcilytics stabilise 
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the TMD in an inactive conformation (Jacobsen, Gether & Brauner-Osborne, 2017). However, the 

mechanisms by which cinacalcet and NPS 2143 induce opposing effects on CaS receptor function 

despite binding to almost identical regions within the TMD remain to be elucidated. Recent 

mutagenesis studies have begun to delineate TMD residues such as Trp818 and Tyr825, which may 

mediate the potentiating effects of cinacalcet, and also identified that the Leu776 residue may mediate 

the inhibitory effects of NPS 2143 (Leach et al., 2016). Moreover, it has been shown that 

calcimimetics are required to bind to only one monomer of the dimeric CaS receptor to potentiate 

GPCR function, whereas calcilytics are required to bind to both monomers to achieve full inhibition 

of CaS receptor function (Jacobsen, Gether & Brauner-Osborne, 2017). 

 Calcimimetic and calcilytic compounds have been shown to influence CaS receptor-mediated 

Ca2+
i and MAPK signalling responses in a concentration-dependent manner (Davey, Leach, Valant, 

Conigrave, Sexton & Christopoulos, 2012; Nemeth et al., 2001; Nemeth et al., 1998). Furthermore, 

the structurally different classes of allosteric modulators have distinct effects on biased signalling 

(Davey, Leach, Valant, Conigrave, Sexton & Christopoulos, 2012). Thus, the phenylalkylamine 

calcimimetic and amino alcohol calcilytic compounds show greater positive and negative allosteric 

modulation of Ca2+
i mobilization, respectively, compared to their effects on MAPK responses (Davey, 

Leach, Valant, Conigrave, Sexton & Christopoulos, 2012). Whereas, the AC265347 calcimimetic, 

which is a benzothiazole compound, biases signalling towards the MAPK cascade (Leach et al., 

2016). These biased signalling responses may arise from the ability of structurally distinct modulators 

to stabilise CaS receptor conformations that activate different signalling pathways (Davey, Leach, 

Valant, Conigrave, Sexton & Christopoulos, 2012). In addition to the effects of calcimimetics and 

calcilytics on signal transduction, these compounds influence both the total cellular expression and 

plasma membrane expression of the CaS receptor. Thus, one study showed the NPS R-568 

calcimimetic to increase expression of wild-type and loss-of-function mutant CaS receptors, whilst 

demonstrating that the NPS 2143 calcilytic decreased the expression of wild-type and gain-of-

function mutant receptors (Huang & Breitwieser, 2007). Whereas, another study showed that NPS 

2143 had no significant effect on the cell-surface expression of wild-type or gain-of-function mutant 

CaS receptors, but increased the cell-surface expression of loss-of-function mutant receptors (Leach, 
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Wen, Cook, Sexton, Conigrave & Christopoulos, 2013). The mechanism underlying the effects of 

allosteric modulators on CaS receptor expression may involve these compounds binding to the TMD 

of newly synthesised receptors within the ER (Figure 3). Thus, the allosteric modulators may act as 

pharmacochaperones to facilitate correct protein folding and biosynthesis, thereby ensuring that the 

nascent receptors are not targeted for proteasomal degradation, but instead undergo post-translational 

modifications such as glycosylation, and are trafficked from the ER to the Golgi and plasma 

membrane (Figure 3) (Breitwieser, 2014). Calcimimetics may additionally increase CaS receptor 

expression by enhancing signalling from plasma membrane-localized receptors, which act via ADIS 

to increase receptor biosynthesis and trafficking to the cell surface (Figure 3) (Grant, Stepanchick & 

Breitwieser, 2012). In keeping with these findings, in vivo studies have shown calcimimetic treatment 

to upregulate parathyroid CaS receptor expression in a rat model for secondary hyperparathyroidism 

(Mizobuchi et al., 2004), and also in patients on dialysis (Sumida et al., 2013). 

 
 
Calcimimetic treatment for hypercalcaemic disorders of the CaS receptor signalling pathway 
 

Familial hypocalciuric hypercalcaemia type 1 (FHH1) and neonatal severe hyperparathyroidism 

(NSHPT) 

Calcimimetic drugs represent a targeted therapy for symptomatic forms of FHH1 and NSHPT (Table 

2), and have been demonstrated to improve the EC50 values and maximal responses of loss-of-

function mutant CaS receptors in vitro (Lu, Yang, Gnacadja, Christopoulos & Reagan, 2009; Rus et 

al., 2008). However, acute exposure to the NPS R-568 calcimimetic had no effect on receptors that 

were truncated and/or had reduced cell-surface expression (Rus et al., 2008). Whereas, prolonged 

exposure of CaS receptor-expressing cells to NPS R-568 or cinacalcet increased the cell-surface 

expression of the majority of loss-of-function mutant CaS receptors, indicating that these 

calcimimetics are likely acting as pharmacochaperones to enhance mutant receptor biosynthesis and 

trafficking (Huang & Breitwieser, 2007; Leach, Wen, Cook, Sexton, Conigrave & Christopoulos, 

2013; White, McKenna, Cavanaugh & Breitwieser, 2009). However, the AC265347 calcimimetic 

compound did not influence mutant CaS receptor cell-surface expression, most likely due to its 
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reduced membrane permeability, which will prevent its actions as a pharmacochaperone (Cook et al., 

2015). Thus, AC265347 may be more suitable for the treatment of loss-of-function CaS receptor 

mutations that selectively impair signal transduction, whilst cinacalcet treatment may be more 

appropriate for loss-of-function mutations that impair receptor signalling and trafficking (Cook et al., 

2015; Leach, Wen, Cook, Sexton, Conigrave & Christopoulos, 2013).  

 Cinacalcet has been used to treat symptomatic hypercalcaemia in FHH1 patients (Table 2), 

and the acute effects of cinacalcet on serum PTH and calcium concentrations in these patients have 

been characterized (Festen-Spanjer, Haring, Koster & Mudde, 2008; Timmers, Karperien, Hamdy, de 

Boer & Hermus, 2006). Thus, a single 30 mg oral dose of cinacalcet was found to maximally lower 

serum PTH concentrations at 2 hours post-dose, with the PTH concentrations returning to baseline by 

12 hours post-dose (Festen-Spanjer, Haring, Koster & Mudde, 2008; Timmers, Karperien, Hamdy, de 

Boer & Hermus, 2006). However, this single 30 mg cinacalcet dose had no effect on serum calcium 

concentrations (Festen-Spanjer, Haring, Koster & Mudde, 2008; Timmers, Karperien, Hamdy, de 

Boer & Hermus, 2006), whereas a single 60 mg dose of cinacalcet did decrease gradually the serum 

calcium concentrations over a 12 hour period after administration (Timmers, Karperien, Hamdy, de 

Boer & Hermus, 2006). Moreover, repetitive daily dosing with 30 mg cinacalcet administered once or 

twice daily has been shown to result in a sustained lowering of serum calcium concentrations in 

FHH1 patients, and also to increases in urinary calcium excretion (Festen-Spanjer, Haring, Koster & 

Mudde, 2008; Rasmussen, Jorgensen & Schwarz, 2011). In addition, long-term cinacalcet treatment 

has been reported to improve hypercalcaemic symptoms such as muscle aches, anorexia, polydipsia 

and constipation (Alon & VandeVoorde, 2010; Rasmussen, Jorgensen & Schwarz, 2011; Sethi, 

Nagesh, Kelwade, Parekh & Dukle, 2017). In one patient with FHH1 and recurrent pancreatitis, 

cinacalcet had a dose-dependent effect on the frequency of hospital admissions due to pancreatitis 

with 90mg/day cinacalcet (administered as 30 mg three-times daily) leading to a cessation of acute 

pancreatitis episodes for >2 years (Gunganah, Grossman & Druce, 2014). Cinacalcet therapy has also 

been reported to aid post-surgical healing in a child with FHH1 who underwent a tympanoplasty for 

chronic otitis media, which was complicated by tympanosclerosis due to calcium deposition (Alon & 

VandeVoorde, 2010). Long-term cinacalcet treatment has been reported to be effective at lowering 
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serum calcium concentrations in all FHH1 patients, and without major adverse effects such as 

hypocalcaemia. In contrast, the response of NSHPT-associated hypercalcaemia to cinacalcet is 

variable and appears to depend on the underlying CaS receptor mutation. Thus, oral cinacalcet therapy 

has been reported to be effective at ameliorating hypercalcaemia and hyperparathyroidism, and in 

improving the skeletal mineralisation in NSHPT patients harbouring a heterozygous Arg185Gln CaS 

receptor mutation (Fisher, Cabrera & Imel, 2015; Gannon, Monk & Levine, 2014; Reh, Hendy, Cole 

& Jeandron, 2011). Whereas cinacalcet was ineffective in NSHPT patients harbouring bilallelic 

truncating CaS receptor mutations (Atay et al., 2014; Garcia Soblechero, Ferrer Castillo, Jimenez 

Crespo, Dominguez Quintero & Gonzalez Fuentes, 2013), and this may be due to the truncated 

mutant receptor being unable to bind cinacalcet and/or couple with downstream signalling proteins. 

 
 

Familial hypocalciuric hypercalcaemia type 2 (FHH2) 

The effectiveness of cinacalcet in rectifying the FHH2-associated loss-of-function abnormalities 

caused by the downstream Gα11 protein has been assessed by in vitro and in vivo studies. Thus, recent 

in vitro studies have shown that cinacalcet improves the signalling responses of HEK293 cells stably 

expressing the CaS receptor (HEK-CaS receptor), which have been transiently transfected with 

FHH2-associated Gα11 mutants (Babinsky et al., 2016; Gorvin et al., 2017a). Indeed, nanomolar doses 

of cinacalcet were demonstrated to rectify the impaired Ca2+
i responses associated with loss-of-

function Gα11 mutations (Table 2) (Babinsky et al., 2016; Gorvin et al., 2017a). Moreover, siRNA 

knockdown studies showed that cinacalcet enhanced the signalling mediated by the FHH2 mutant 

Gα11 proteins rather than by exerting indirect effects on endogenously expressed wild-type Gα11 

proteins (Babinsky et al., 2016). However, the response of FHH2-associated mutant cells to cinacalcet 

treatment may be influenced by the location of the mutation within the Gα11 protein. Thus, FHH2-

causing mutations located within regions of the Gα11 GTPase domain involved in GPCR binding 

(Ile200del) or PLC coupling (Phe220Ser) have been shown to require higher (40-100 nM) cinacalcet 

concentrations for rectifying responses (Babinsky et al., 2016; Gorvin et al., 2017a), than the FHH2-
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causing Leu135Gln mutation, which is located in the guanine nucleotide-stabilising Gα11 helical 

domain and which responded to treatment with 10 nM cinacalcet (Babinsky et al., 2016). 

 A patient with FHH2 due to a heterozygous germline Phe220Ser Gα11 mutation has been 

treated with cinacalcet (Table 2). The patient had hypercalcaemia in association with headaches, 

constipation and pruritus, and was initially commenced on cinacalcet 30 mg daily, which failed to 

normalize his elevated serum calcium concentrations over a period of 3 months (Gorvin et al., 2017a). 

However, the hypercalcaemia of this FHH2 patient did normalize following treatment with 60 mg 

daily of cinacalcet (Gorvin et al., 2017a). These findings are in keeping with cellular studies, which 

showed that a higher (100 nM) cinacalcet concentration was required to rectify the loss-of-function of 

the Phe220Ser Gα11 mutation in vitro compared with other FHH2-causing mutations, which have 

responded to 10-40 nM concentrations of cinacalcet (Babinsky et al., 2016; Gorvin et al., 2017a). 

Although the cinacalcet was effective in ameliorating the hypercalcaemia, the calcimimetic did not 

improve the symptoms and it was therefore discontinued after a period of 4 months (Gorvin et al., 

2017a). 

 

Familial hypocalciuric hypercalcaemia type 3 (FHH3) 

Cinacalcet has also been evaluated as a therapy for symptomatic hypercalcaemia associated with 

FHH3. In vitro studies revealed this calcimimetic to rectify the loss-of-function associated with all 

three reported FHH3-causing AP2σ mutations (Table 2) (Howles et al., 2016). Indeed, administration 

of 10 nM cinacalcet corrected the impaired Ca2+
i and MAPK signalling responses of HEK-CaS 

receptor cells expressing Arg15Cys, Arg15His or Arg15Leu AP2σ mutant proteins (Howles et al., 

2016). In vivo, cinacalcet has been administered to three FHH3 patients, who each harboured a 

heterozygous Arg15Cys, Arg15His or Arg15Leu AP2σ mutation, and had symptoms such has fatigue, 

musculoskeletal pain and headaches (Howles et al., 2016). Treatment with cinacalcet 30-60mg daily 

led to >20% reductions in serum calcium concentrations in all three FHH3 patients, and also lowered 

serum PTH concentrations, which remained within the normal range (Howles et al., 2016). 

Cinacalcet, which was administered for >30 months in these patients, also led to a symptomatic 

improvement and did not cause adverse effects such as nausea, vomiting or hypocalcaemia (Howles et 



	 13	

al., 2016). Cinacalcet (30-60mg daily) lowered serum calcium concentrations into the lower half of 

the normal range in a child with hypercalcaemia due to an Arg15Leu AP2σ mutation and a 

chromosome 22q11.2 deletion syndrome (Tenhola et al., 2015). However, the child developed 

hypocalcaemic symptoms such as paraesthesia and numbness, and the calcimimetic was therefore 

stopped after three years of treatment (Tenhola et al., 2015). These studies show that cinacalcet-

mediated allosteric modulation of the CaS receptor can rectify the loss-of-function and symptomatic 

hypercalcaemia that are associated with the three types of FHH3-causing Arg15 AP2σ mutations 

(Table 2). However, long-term surveillance of cinacalcet-treated FHH patients is required to assess 

the safety of this calcimimetic and prevent life-threatening hypocalcaemia (Howles et al., 2016). 

	
 
Calcilytic treatment for hypocalcaemic disorders of the CaS receptor signalling pathway	 
	

Autosomal dominant hypocalcaemia type 1 

Calcilytic compounds have been assessed for the management of ADH1 (Table 2), and in vitro studies 

have shown the calcilytic, NPS 2143, to rectify the increased signalling responses associated with 

ADH1-causing CaS receptor mutations (Table 2) (Hannan et al., 2015b; Leach, Wen, Cook, Sexton, 

Conigrave & Christopoulos, 2013; Letz et al., 2010). However, NPS 2143 may have limited efficacy 

for severe gain-of-function ADH1 mutants, and was shown not to alter the Ca2+
i responses of the 

constitutively active Ala843Glu mutant (Leach, Wen, Cook, Sexton, Conigrave & Christopoulos, 

2013), which causes Bartter syndrome type V. Interestingly, the responsiveness of severe gain-of-

function ADH1 mutants to NPS 2143 could be improved by co-expressing them with wild-type CaS 

receptors (Letz et al., 2010). The in vitro efficacy of NPS 2143 can be also reduced by some 

mutations affecting the TMD binding cavity (Letz et al., 2010), although the quinazolinone-derived 

calcilytic drugs (ATF 936 and AXT 914) have been reported to ameliorate the excessive signalling 

responses of all ADH1 mutants, including those mutations leading to constitutive activation and/or 

Bartter syndrome type V (Letz et al., 2014). 

The in vivo effects of calcilytics and their ability to rectify the hypocalcaemia associated with 

ADH1 have been assessed in mouse models that harbour germline gain-of-function CaS receptor 
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mutations (Table 2). In one study, NPS 2143 was administered as a single dose to a mutant mouse 

model known as Nuclear flecks (Nuf), which was generated by chemical mutagenesis involving the 

isopropyl methane sulfonate (iPMS) alkylating agent (Hough et al., 2004). Nuf mice have 

hypocalcaemia, reduced plasma PTH concentrations and ectopic calcification in association with a 

germline gain-of-function mutation, Leu723Gln, located within the CaS receptor TMD (Hannan et al., 

2015b; Hough et al., 2004). A single intraperitoneal injection of NPS 2143 significantly increased 

plasma calcium and PTH concentrations in heterozygous and homozygous Nuf mice at 1-hour after 

administration, with the values returning to baseline after 4-hours. The elevations in plasma calcium 

concentrations induced by NPS 2143, were not associated with any increase in urinary calcium 

excretion (Hannan et al., 2015b). Longer-term in vivo studies involving the JTT-305/MK-5442 

calcilytic compound have been undertaken in two knock-in mouse models, which harbour ADH1-

causing germline heterozygous Cys129Ser and Ala843Glu gain-of-function CaS receptor mutations 

(Dong et al., 2015).  Administration of JTT-305/MK-5442 by daily oral gavage over a 12-week period 

led to sustained increases in serum calcium concentrations with significant reductions in urinary 

calcium excretion (Dong et al., 2015). Moreover, treatment with JTT-305/MK-5442 in mouse models 

harbouring the ADH1-causing Cys129Ser or Ala843Glu CaS receptor mutations prevented the 

development of nephrocalcinosis, which was observed in mice treated with the drug vehicle or 

recombinant PTH (1-34) (Dong et al., 2015). The NPSP795 calcilytic compound has also been 

evaluated in a phase IIa clinical trial involving five ADH1 patients harbouring germline CaS receptor 

mutations (Ramnitz et al., 2015). Intravenous administration of NPSP795 significantly increased 

plasma PTH concentrations and reduced urinary calcium excretion (Table 2) (Ramnitz et al., 2015). 

However, circulating calcium concentrations were not altered in this study, and the optimal dosing 

regimen for NPSP795 remains to be established in ADH1 patients (Ramnitz et al., 2015). 

 

Autosomal dominant hypocalcaemia type 2 (ADH2) 

In vitro studies have shown that NPS 2143 can rectify the increased signalling responses of HEK-CaS 

receptor cells expressing the ADH2-associated Arg181Gln or Phe341Leu Gα11 mutant proteins (Table 

2) (Babinsky et al., 2016). However, in keeping with studies involving the FHH2-associated Gα11 
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mutant proteins, the response to NPS 2143 appeared to be related to the location of the mutation 

within the Gα11 protein (Babinsky et al., 2016). Thus, the Phe341Leu mutation, which is located 

within the C-terminal region of the Gα11 GTPase domain that is involved in GPCR binding, required a 

3-fold increase in the NPS 2143 dose to rectify the gain-of-function compared to the Arg181Gln 

mutation, which is located at the interface between the Gα11 helical and GTPase domains (Babinsky et 

al., 2016).  

The effect of NPS 2143 on the hypocalcaemia associated with ADH2 has been evaluated in 

two mouse models (Gorvin et al., 2017b; Roszko et al., 2017). In one mouse model, which is known 

as Dark skin 7 (Dsk7) and was generated by N-ethyl-N-nitrosourea (ENU) chemical mutagenesis, 

NPS 2143 was administered as a single dose by oral gavage (Gorvin et al., 2017b). Treatment with 

NPS 2143 rectified the hypocalcaemia and increased plasma PTH concentrations of the Dsk7 mice, 

which harbour a germline gain-of-function Ile62Val Gα11 mutation (Gorvin et al., 2017b). Indeed, this 

calcilytic induced 4-5 fold elevations in plasma PTH concentrations of heterozygous and homozygous 

Dsk7 mice, and this was associated with a 0.25-0.50 mmol/L increase in plasma calcium 

concentrations (Gorvin et al., 2017b). In the other ADH2 mouse model, which was generated by 

CRISPR-Cas9 gene editing and harbours a human ADH2-causing germline Arg60Cys Gα11 mutation, 

intraperitoneal injection of a single dose of NPS 2143 significantly increased blood ionised calcium 

and PTH concentrations (Roszko et al., 2017). Moreover, NPS 2143 significantly lowered urinary 

calcium excretion in mice harbouring the Arg60Cys Gα11 mutation (Roszko et al., 2017). Thus, these 

single dose in vivo studies have demonstrated that calcilytics can rectify the hypocalcaemia caused by 

ADH2 without leading to hypercalciuria (Table 2) (Gorvin et al., 2017b; Roszko et al., 2017). 

 
 
Effect of calcilytic treatment on the impaired glucose tolerance of an ADH1 mouse model 
 
 
The CaS receptor is highly expressed in pancreatic islet β-cells and α-cells, where it is considered to 

regulate insulin and glucagon secretion, respectively (Gray et al., 2006). Moreover, studies involving 

the Nuclear flecks (Nuf) mouse model have highlighted a role for this GPCR in systemic glucose 

homeostasis (Babinsky et al., 2017). Thus, Nuf mice, which harbour a germline gain-of-function CaS 
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receptor mutation, were found to have significantly impaired glucose tolerance in association with 

hypoinsulinaemia and also a lack of glucose-mediated suppression of glucagon secretion (Babinsky et 

al., 2017). These findings demonstrate that germline CaS receptor mutations may give rise to non-

calcitropic phenotypes as well as influencing Ca2+
o homeostasis. To determine whether calcilytic 

treatment may rectify the impaired glucose tolerance of Nuf mice, ronacaleret was administered by 

twice-daily oral gavage over a period of 5 days. This calcilytic was shown to ameliorate the impaired 

glucose tolerance of heterozygous (Nuf/+) and homozygous (Nuf/Nuf) mice (Table 2) (Babinsky et 

al., 2017). However, the mechanisms underlying the glucose-lowering effects of ronacaleret remains 

to be fully elucidated, as this calcilytic only improved insulin secretion in Nuf/+ mice, but not in 

Nuf/Nuf mice, and also had no effect on glucagon secretion (Babinsky et al., 2017). One possibility is 

that ronacaleret acting via the CaS receptors, which are expressed in skeletal muscle and adipose 

tissue, may have sensitised these peripheral tissues to the actions of insulin, and thereby improved 

glucose tolerance (Babinsky et al., 2017).  

 

Conclusions 
 

Calcimimetic and calcilytic therapies provide a targeted approach to rectifying the molecular and 

pathophysiological alterations caused by germline mutations of the CaS receptor and its intracellular 

partner proteins. Thus, cellular studies indicate that these compounds can rectify signalling and/or 

trafficking defects caused by mutant CaS receptor, Gα11 or AP2σ proteins. Calcimimetics have been 

shown to be effective at lowering serum calcium and PTH concentrations in patients with FHH types 

1-3, and also in some patients with NSHPT. In addition, calcilytics can rectify the hypocalcaemia and 

hypercalciuria in mouse models for ADH types 1 and 2. Moreover, these allosteric modulators have 

potential benefit for non-calcitropic phenotypes such as the impaired glucose tolerance caused by a 

germline gain-of-function CaS receptor mutation. 
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Nomenclature of Targets and Ligands  

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to 

PHARMACOLOGY (Southan et al., 2016), and are permanently archived in the Concise Guide to 

PHARMACOLOGY 2017/18 (Alexander et al., 2017). 
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Table 1. Hypercalcaemic and hypocalcaemic disorders of the calcium-sensing receptor (CaS receptor) and partner proteins (Gα11 and AP2σ). 
 
Disorder OMIMa Inheritance Geneb  Chromosomal 

localisation 
Clinical features 

Hypercalcaemic disorders      
Familial hypocalciuric hypercalcaemia type 1 (FHH1) 145980 Autosomal dominant 

 
CASR 3q21.1 Asymptomatic in majority of patients 

 
Familial hypocalciuric hypercalcaemia type 2 (FHH2) 145981 Autosomal dominant 

 
GNA11 19p13.3 Asymptomatic in majority of patients 

 
Familial hypocalciuric hypercalcaemia type 3 (FHH3) 600740 Autosomal dominant AP2S1 19q13.3 Hypercalcaemic symptoms in >20% of patients 

Low bone mineral density in >50% of patients 
Childhood cognitive deficits in >75% of patients 
 

Neonatal severe hyperparathyroidism (NSHPT) 239200 Autosomal recessive or 
dominant 
 

CASR 3q21.1 Hyperparathyroid bone disease 
Hypercalcaemic symptoms  
 

Adult-onset primary hyperparathyroidism (PHPT) - Autosomal recessive or 
dominant 
 

CASR 3q21.1 Nephrolithiasis in >40% of patients 
Low bone mineral density in >25% of patients 
 

Hypocalcaemic disorders      
Autosomal dominant hypocalcaemia type 1 (ADH1) 601198 Autosomal dominant CASR 3q21.1 Hypocalcaemic symptoms in ~50% of patients  

Ectopic calcifications in ~35% of patients 
 

Autosomal dominant hypocalcaemia type 2 (ADH2) 615361 Autosomal dominant GNA11 19p13.3 Hypocalcaemic symptoms in >75% of patients 
Short stature reported in two kindreds 
 

Bartter syndrome type V 601198 Autosomal dominant CASR 3q21.1 Renal salt wasting and hypokalaemia 
Hypocalcaemic symptoms in >75% of patients 
 

 
aOnline Mendelian Inheritance in Man. bCASR encodes the CaS receptor; GNA11 encodes Gα11; and AP2S1 encodes AP2σ.  
Adapted from Hannan FM, Babinsky VN, Thakker RV. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium 
homeostasis. J Mol Endocrinol. 2016; 57(3): R127-42.  
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Table 2. Summary of key studies assessing effectiveness of calcimimetics and calcilytics for FHH, NSHPT and ADH. 
 
Disorder In-vitro studies In-vivo studies 

Hypercalcaemic disorders   

FHH1/NSHPT NPS R-568 and cinacalcet enhance the signalling responses and cell-
surface expression of loss-of-function FHH1/NSHPT-causing mutant 
CaS receptors (Huang & Breitwieser, 2007; Leach, Wen, Cook, 
Sexton, Conigrave & Christopoulos, 2013; Rus et al., 2008; White, 
McKenna, Cavanaugh & Breitwieser, 2009) 
 
 

Cinacalcet lowers serum calcium and PTH concentrations, and improves hypercalcaemic 
symptoms in FHH1 patients (Festen-Spanjer, Haring, Koster & Mudde, 2008; 
Rasmussen, Jorgensen & Schwarz, 2011; Timmers, Karperien, Hamdy, de Boer & 
Hermus, 2006) 
 
Cinacalcet lowers serum calcium and PTH concentrations in NSHPT patients harbouring 
a heterozygous Arg185Gln CaS receptor mutation, but is ineffective for NSHPT caused 
by biallelic truncating CaS receptor mutations (Atay et al., 2014; Fisher, Cabrera & 
Imel, 2015; Gannon, Monk & Levine, 2014; Reh, Hendy, Cole & Jeandron, 2011) 
 

FHH2 Cinacalcet enhances the signalling responses of cells expressing loss-
of-function FHH2-causing Gα11 mutants (Babinsky et al., 2016) 
 

Cinacalcet normalises serum calcium concentrations in an FHH2 patient (Gorvin et al., 
2017a) 
 

FHH3 Cinacalcet enhances the signalling responses of cells expressing loss-
of-function FHH3-causing Arg15Cys, Arg15His, or Arg15Leu AP2σ 
mutations (Howles et al., 2016) 

Cinacalcet lowers serum calcium and PTH concentrations, and improves hypercalcaemic 
symptoms in FHH3 patients with Arg15Cys, Arg15His or Arg15Leu AP2σ mutations 
(Howles et al., 2016) 

Hypocalcaemic disorders   

ADH1 
 
 
 
 
 

NPS 2143 reduces the signalling responses of cells expressing gain-of-
function ADH1-causing CaS receptor mutants, but has limited efficacy 
for constitutively active CaS receptor mutants (Leach, Wen, Cook, 
Sexton, Conigrave & Christopoulos, 2013; Letz et al., 2010) 
 
ATF 936 and AXT 914 rectify the gain-of-function caused by 
constitutively active CaS receptor mutants (Letz et al., 2014) 
 

Acute administration of NPS 2143 and JTT-305/MK-5442 increases serum calcium and 
PTH concentrations in mouse models for ADH1 (Dong et al., 2015; Hannan et al., 
2015b) 
 
Administration of JTT-305/MK-5442 over 12 weeks reduces urinary calcium excretion 
and prevents nephrocalcinosis in mouse models for ADH1 (Dong et al., 2015) 
 
Administration of ronacalceret over 5 days rectifies the impaired glucose tolerance in a 
mouse model for ADH1 (Babinsky et al., 2017) 
 
Intravenous infusion of NPSP795 increases serum PTH concentrations and reduces 
urinary calcium excretion in ADH1 patients (Ramnitz et al., 2015) 
 

ADH2 NPS 2143 reduces the signalling responses of cells expressing gain-of-
function ADH2-causing Gα11 mutants (Babinsky et al., 2016; Gorvin et 
al., 2017b; Roszko et al., 2017) 

NPS 2143 increases serum calcium and PTH concentrations in mouse models for ADH2 
(Gorvin et al., 2017b; Roszko et al., 2017) 
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Figure legends 
 
 
Figure 1. Overview of calcium-sensing receptor signalling and trafficking. The binding of calcium 

(Ca2+) to the CaS receptor extracellular domain leads to Gα11-dependent activation of phospholipase 

C-β (PLC-β) and the production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) from 

membrane bound phosphatidylinositol 4,5-bisphosphate (PIP2). The increase in intracellular IP3 levels 

facilitates the release of Ca2+ from intracellular stores such as the endoplasmic reticulum (ER). DAG 

activates protein kinase C (PKC) and the mitogen-activated protein kinase (MAPK) pathway. These 

signalling events lead to a decrease in parathyroid hormone (PTH) secretion and reduction in renal 

tubular calcium reabsorption, and also enhance insulin release from pancreatic islets. CaS receptor 

cell-surface expression is regulated by agonist-driven insertional signalling (ADIS) (Grant, 

Stepanchick, Cavanaugh & Breitwieser, 2011) and also by an endocytic complex comprising clathrin, 

β-arrestin and the AP2 complex, which may traffic this GPCR to the endosomal-lysosomal 

degradation pathway or recycle the CaS receptor back to the cell-surface (Breitwieser, 2014). Loss- 

and gain-of function mutations of the CaS receptor lead to FHH1 and ADH1, respectively; loss- and 

gain-of function mutations of the Gα11 subunit are associated with FHH2 and ADH2, respectively; and 

loss-of-function mutations of the AP2σ subunit lead to FHH3. 

 

Figure 2.  Structure of synthetic calcimimetic and calcilytic compounds. A. Synthetic type II 

calcimimetics comprise a structurally diverse group of compounds, which include phenylalkylamines 

such as: NPS R-568 and cinacalcet; AC265347, which has a benzothiazole structure; and 

Etelcalcetide, which is a polycationic peptide. B. All calcilytics described to-date are synthetic 

compounds and are divided into two classes: amino alcohols such as NPS 2143, ronacaleret, 

NPSP795 and JTT-305/MK-5442; and the quinazolinone-derived calcilytics such as AXT 914 and 

ATF 936. 
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Figure 3. Effect of calcimimetics and calcilytics on calcium-sensing receptor signalling and 

trafficking. Calcimimetic (red) and calcilytic (blue) compounds bind to the transmembrane domain of 

the plasma membrane-expressed CaS receptor and modulate Ca2+
o-mediated signalling responses. 

These signalling responses may influence CaS receptor biosynthesis via the agonist-driven insertional 

signalling (ADIS) mechanism (Grant, Stepanchick, Cavanaugh & Breitwieser, 2011). The 

hydrophobic nature of most CaS receptor allosteric modulators may allow these drugs to enter the 

endoplasmic reticulum (ER), where they act as pharmacochaperones to influence protein folding, 

post-translational modifications and proteasomal degradation of newly formed CaS receptors. Thus, 

calcimimetics and calcilytics may influence the proportion of receptors that pass the conformational 

checkpoints for ER release and are trafficked to the cell surface (Breitwieser, 2014). 
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