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Experimental studies of the evolution of reproductive isolation (RI) in real time are a 32 

powerful way in which to reveal fundamental, early processes that initiate 33 

divergence. In a classic ‘speciation experiment’, populations of Drosophila 34 

pseudoobscura were subjected to divergent dietary selection and evolved 35 

significant positive assortative mating by diet. More recently, a direct role for the 36 

gut microbiome in determining this type of RI in D. melanogaster has been 37 

proposed. Manipulation of the diet, and hence gut microbiome, was reported to 38 

result in immediate assortative mating by diet, which could be eliminated by 39 

reducing gut microbes using antibiotics, and recreated by ‘adding back’ 40 

Lactobacillus plantarum. We suggest that the evolutionary significance of this result 41 

is unclear. For example, in D. melanogaster, the microbiome is reported as flexible 42 

and largely environmentally-determined. Therefore, microbiome-mediated RI would 43 

be transient and would break down under dietary variation. In the absence of 44 

evolutionary co-association or recurrent exposure between host and microbiome, 45 

there are no advantages for the gut bacteria or host in effecting RI. To explore these 46 

puzzling effects and their mechanisms further, we repeated the tests for RI 47 

associated with diet-specific gut microbiomes in D. melanogaster. Despite 48 

observing replicable differences in the gut microbiomes in flies maintained on 49 

different diets, we found no evidence for diet-associated RI, for any role of gut 50 

bacteria, or for L. plantarum specifically. The results suggest that there is no 51 

general role for gut bacteria in driving the evolution of RI in this species, and 52 

resolve an evolutionary riddle. 53 

 54 

 55 

Significance 56 

 57 

The evolutionary significance of assortative mating by diet, mediated by gut bacteria is a 58 

puzzle, but it has had a huge impact and has provided a keystone to support increasing 59 

interest in the ‘holobiome’. However, in species such as D. melanogaster that have flexible 60 

gut microbiomes, any reproductive isolation mediated by gut bacteria specific to host diets 61 

can only be transient. Here, we replicated and extended tests of this idea. Despite 62 

differences in gut microbiomes, we failed to recover previously observed patterns of non-63 

random mating, and found no evidence that mating preferences were associated with diet 64 

or gut bacteria. This suggests that the evolutionary importance of gut microbiomes in host 65 

divergence needs careful consideration on a case by case basis.  66 
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Introduction 67 

The experimental study of key elements of incipient reproductive isolation (RI) in the 68 

laboratory has provided important insights into the underlying evolutionary processes 69 

involved (1, 2).  Such data show that key components of the initiation of reproductive 70 

divergence can be observed and studied in real time (3-9). A classic study of the evolution 71 

of incipient RI, arising as a side effect of natural selection to different diets, is Dodd’s (10) 72 

experiment on replicated populations of Drosophila pseudoobscura. In this, 4 populations 73 

were each placed onto maltose- or starch-based diets and maintained for a period of 74 

approximately 1 year. Mating tests were then conducted within and between replicates 75 

maintained on each of the regimes, and significant assortative mating by diet was 76 

observed. This has become a text book example of a ‘speciation experiment’ (1), relevant 77 

to understanding speciation by host shifts (11-13). 78 

 Many aspects of the mechanisms underlying divergence associated with ecological 79 

adaptation or host shifts remain unknown (14, 15). Hence, recent studies that have 80 

described mechanistic insights into our understanding of how mate choice is associated 81 

with dietary divergence have had a wide impact. For example, there has been much 82 

interest prompted by a study that suggested a role for gut bacteria in driving assortative 83 

mating in Drosophila melanogaster (16, 17). Flies placed on different diets were reported 84 

to show instant assortative mating by diet. This was abolished following antibiotic 85 

treatment of the adults and re-established by bacterial replacement experiments - 86 

specifically by add-back of Lactobacillus plantarum. The proposed mechanism was via 87 

differential effects of gut bacteria on cuticular hydrocarbons that affect attractiveness (16, 88 

18-20). 89 

 These results stimulated intense interest in the wider role of the gut microbiome in 90 

mate choice and, potentially, speciation (21-24). They also provided a keystone for the 91 

upsurge of interest in the ‘holobiome’ concept (e.g. (25)), in which the unit of selection is 92 

seen as the sum total of the host plus its microbiome. However, the recent interest in gut 93 

microbiomes and their potential role in speciation in fruitflies, presents a significant 94 

evolutionary puzzle. Selection at the level of the holobiome, or a causal role for 95 

microbiomes in host speciation, requires coevolutionary associations, microbiome stability 96 

or recurrent exposure between hosts and microbiomes (26). In many situations in which 97 

the holobiome is thought important, these conditions may not exist. For example, natural 98 

populations of D. melanogaster are reported to exhibit fairly flexible, environmentally-99 

acquired gut microbiomes (e.g. (27-33)). Hence the composition of the gut bacterial 100 

community seems to depend largely on the ingested diet (32). Strong, and potentially co-101 
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associated, evolutionary relationships between D. melanogaster hosts and their gut 102 

bacteria have not been reported. Hence, a general role for gut bacteria in the maintenance 103 

of RI seems unlikely, given the degree of dietary flexibility exhibited by this species. In 104 

addition, it is not clear that there can be any benefit to either host or gut bacteria in the 105 

absence of any recurrent, potentially coevolved association. Hence the evolutionary 106 

significance of this type of association between gut bacteria and host is unclear (26, 34, 107 

35). 108 

 These reasons may explain the lack of consistency in tests that have investigated a 109 

general role for gut bacteria in mating associations and mate choice in D. melanogaster 110 

(16, 18, 36-38). In order to try to resolve these differences, and to investigate the potential 111 

mechanisms underlying the role of gut microbes in assortative mating, we repeated the 112 

experiments of Sharon et al. 2010 (16) (Table S1). We used two independent wild type 113 

strains of D. melanogaster (including two strains of Oregon R, the original background 114 

tested) for three test populations in total. We first described the gut microbiomes, on the 115 

basis that a precondition for assortative mating mediated by diet and / or gut microbiota, is 116 

that the microbiomes should be at least partially distinct between flies maintained on 117 

different diets. Conversely, if microbiomes are distinct, but assortative mating by diet is 118 

absent, then a role for gut bacteria would not be supported. We then conducted mate 119 

choice trials following 5, 30 and 35 generations of maintenance on ‘CMY’ or ‘Starch’ diets 120 

and manipulated gut microbiome composition by using antibiotic and L. plantarum add-121 

back treatments. The results revealed that, although there were replicated differences in 122 

the gut microbiomes in flies maintained on the different diets, there was no evidence for 123 

assortative mating associated with diet, with gut bacteria or with L. plantarum in particular. 124 

 125 

 126 

Results and Discussion 127 

Composition of the gut microbiomes of CMY and Starch flies 128 

A principal coordinate analysis (PCoA) showed that the bacterial gut microbiomes of the 129 

three populations of flies maintained on the same CMY and Starch media as in (16) for 30 130 

generations exhibited significant, tight clustering according to CMY or Starch diet (F1,11 131 

= 1.52, P < 0.001, Table 1, Fig. 1A). Independent biological replicates were generally 132 

consistent, but more variable among lines on starch (Fig. 1A). Acetobacteraceae 133 

comprised over 50% of the microbiome across all populations reared on the CMY diet, 134 

with the next most abundant group being the Lactobacillaceae (Fig. 1B). Flies reared on 135 

CMY showed a stable abundance of these core microbes across groups and independent 136 
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biological replicates. There was a log-fold reduction in the abundance of these same 137 

groups of bacteria maintained on Starch (Table S2). Instead, species of Rickettsiaceae 138 

were found in much greater abundance, particularly in both replicates of the OR2376 line 139 

and one replicate of OR25211 (Fig. 1B). This may reflect a reduction in acquisition of 140 

environmental microbes in flies reared on Starch (16, 32). The identity and relative 141 

abundances of gut microbes from the guts of flies maintained on the different diets were 142 

consistent with previous descriptions. Notably, species in the family Enterobacteriaceae 143 

were largely absent and, as reported previously, this was associated with a high frequency 144 

of Acetobacteraceae (27-29). Overall, the results showed replicated, significant differences 145 

in the gut microbiomes of the flies maintained on different diets. 146 

 147 

Assortative mating by diet 148 

We tested the mating preferences of each of the wild type lines after 5, 30 or 35 149 

generations of maintenance on CMY or Starch diets (Fig. 2). There was no significant 150 

deviation from random mating across the experiment for two of the lines (OR25211: 151 

Mantel-Haenszel (MH) test statistics χ2
1 = 1.35, P = 0.24; Dahomey: MH χ2

1 = 0.35, P = 152 

0.55). OR2376 showed a single significant deviation from random mating in one test (MH 153 

χ2
1 = 18.15, P < 0.001), but in a diet disassortative direction. There were no significant 154 

differences in the number of homogamic vs. heterogamic matings occurring across all 155 

three generations of testing (Fig. S1A; Table S3). The tests for reproductive isolation 156 

showed a weak signal for reproductive outbreeding (preference for mating with flies of the 157 

opposite diet type) at generation 5 (Table S3). However this was not evident at any 158 

subsequent time-point (Fig. S1B). Overall, the results from the mating tests on the wild 159 

type lines tested following 3 timepoints of maintenance on the different diets showed no 160 

evidence for significant assortative mating by diet. 161 

 162 

Effect of antibiotic treatment and Lactobacillus plantarum ‘add-back’ on assortative mating 163 

by diet 164 

To account for the possibility that differences in the composition of microbiomes between 165 

this study and (16) could affect mating responses, we also tested whether the elimination 166 

of gut bacteria followed by L. plantarum add-back could recreate the proposed pattern of 167 

assortative mating (16). We first treated the adults with antibiotics, which effectively 168 

eliminated gut microbiomes (SI) and then retested the flies for mating preferences at 3 169 

timepoints, as above. The results showed a pattern of random assortment of matings with 170 

respect to diet of origin and no evidence of sexual isolation (Fig. S2, S3, Table S3). L. 171 
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plantarum isolated from fly guts of each strain was then fed back to a subset of antibiotic 172 

treated adults from the same strains prior to testing mating preferences (Fig. S4). No 173 

significant mating preferences were generated by L. plantarum add-back for any of the 174 

three lines tested (Fig. 3; MH χ2
1 = 0.004, P = 0.95). There were again no differences in 175 

the number of homogamic vs. heterogamic matings and the sexual isolation indices 176 

showed no deviation from random mating across any of the three wild type lines (Fig. S5; 177 

Table S3). Hence there was no evidence that add-back of L. plantarum could create a diet 178 

assortative pattern of mating. 179 

 180 

Statistical power 181 

An analysis of the statistical power of the experiments presented here revealed that the 182 

power of our analyses exceeds that necessary to detect the effect sizes previous reported 183 

((16, 17); full results in SI). Hence the null results presented are statistically robust and 184 

show that the previous published results (16, 17) were not replicated here. 185 

 186 

Conclusions 187 

The composition of the gut microbiomes of flies held on the different diets were distinct, 188 

which is consistent with the observations of a relatively flexible microbiota in this species 189 

(27-29, 31-33). However, the mating preferences of the flies were not associated with 190 

these microbiome differences. The results showed no evidence for assortative mating by 191 

diet or gut microbiome, no excess of homogamic pairings and no evidence for significant 192 

sexual isolation between any of the wild type strains maintained for the short or long-term 193 

on different diets that were previously reported to drive significant positive assortative 194 

mating (16). The one example of significant sexual isolation was attributable to an excess 195 

of disassortative mating by diet (fewer Starch with Starch fly matings than expected) in the 196 

OR2376 line at generation 5. The pattern of random mating was not altered by antibiotic 197 

treatment, which successfully removed culturable bacteria from the fly guts. The pattern of 198 

matings remained random after L. plantarum add-back to axenic flies (i.e. there was no 199 

excess of matings between the add-back treated flies). Tested across three populations 200 

and over multiple generations of maintenance on the different diets, our results contrast 201 

with the results of (16, 17) and provide no evidence of either assortative mating by diet or 202 

that mating preference is associated with gut microbiota.  203 

 Our results suggest that any effects of gut microbes in mate choice or assortative 204 

mating in this species are highly variable and represent proximate effects, or 205 

epiphenomena derived from an as yet unidentified origin. They resolve a puzzle, as they 206 
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support the assertion that, in this scenario, the different parties (host and microbiome) 207 

have limited evolutionary interests in common. Hence, gut bacteria that exhibit flexible and 208 

transient associations with their hosts are unlikely to play a general role in host RI. In other 209 

species in which there is obligate or recurrent exposure of hosts and their microbiomes or 210 

symbionts, such effects can be important (e.g. (39-41)).  211 

We found no evidence for assortative mating by diet in any of the three lines tested 212 

in any of our experiments. The reason for the difference in comparison to the original Dodd 213 

study conducted on D. pseudoobscura (10) is unclear. The time scale of the maintenance 214 

on the different diets is comparable, so the number of generations available for the 215 

emergence of assortative mating was similar. It is possible that the strength of selection 216 

exerted by the diets on the respective host microbiota differed. In addition, the nature and 217 

transmission pattern of the microbiome of D. pseudoobscura has not yet been described 218 

and hence a role for gut microbes in mating preferences in this species remains a 219 

possibility (e.g. if there were stable, vertical transmission of the gut microbiome). We 220 

suggest that an understanding of the co-associations and transmission dynamics of 221 

microbiomes within and across hosts is essential in order to (i) understand the ultimate 222 

significance of the effects of gut microbes, and (ii) critically evaluate the likely strength of 223 

selection at the level of the holobiome. Hence, assessments of the evolutionary 224 

importance of the holobiome, and the role of gut microbiomes in host adaptation and 225 

divergence, need careful consideration on a case by case basis (26, 35).  226 

 227 

 228 

Materials and Methods 229 

Stocks and cultures 230 

We used two wild type strains - Dahomey and two lines of Oregon-R (the wild type used in 231 

(16)) (OR 2376, OR 25211; Bloomington Stock Centre). Dahomey wild-type flies were 232 

from a large laboratory population originally collected in the 1970s in Dahomey (Benin) 233 

and served as an additional, independently-derived wild type to Oregon-R. All flies were 234 

originally maintained on a standard sugar–yeast-agar (SYA) medium (50g sugar, 100g 235 

yeast, 15g agar, 30ml Nipagin (10% w/v solution) and 3ml propionic acid per liter). 236 

 237 

Generation and maintenance of lines on CMY and Starch diets 238 

We placed populations of Dahomey and the two lines of Oregon-R onto the same Starch 239 

and CMY diets as used in (16) (CMY: 0.65% agar, 7.6% cornmeal, 7.6% molasses, 5% 240 

inactivated brewer’s yeast, 0.1% methyl-4-hydroxybenzoate, 0.76% ethanol and 4% 241 
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propionic acid; Starch: 3% starch, 5% inactivated brewer’s yeast, 1% agar, 0.5% propionic 242 

acid). We then tested for assortative mating by diet after 5, 30 and 35 generations of 243 

rearing on these diets, with the lines maintained in bottle culture with discrete generations. 244 

All experiments and culturing were conducted at 25°C, 50% relative humidity on a 12:12 245 

light: dark photoperiod. At emergence for each new generation, a group of 200 females 246 

and 200 males were placed into a new bottle containing 70ml of the appropriate diet. 247 

Adults were allowed to lay eggs for 48-72h before being removed in order to maintain 248 

discrete generations. Each of the CMY and Starch lines were maintained in two 249 

independent lines of bottle culture.  250 

 251 

Composition of the gut microbiomes of CMY and Starch flies, using 16S rDNA sequencing 252 

We examined whether the composition of the microbiomes of the Starch and CMY flies 253 

differed, using 16S rDNA sequencing. We compared samples at generation 30 from each 254 

of the three lines of Drosophila on both CMY and Starch media by using Illumina 255 

sequencing of 16S rRNA genes. We first extracted the DNA by collecting n=5 adults per 256 

sample, followed by surface sterilization. The extracted gut tissue was homogenized by 257 

grinding with plastic pestles inside 2ml microcentrifuge tubes and using three freeze/thaw 258 

cycles in liquid nitrogen. Samples were then incubated with 180µl lysis buffer (20m M Tris-259 

HCl, pH 8.0, 2mM sodium EDTA, 1.2% Triton-X 100, 20mg/ml lysozyme) and incubated at 260 

37°C for 90 minutes, with brief bead beating at 45 minutes in a bead beater with 0.1mm 261 

glass beads (Fisher UK) for 3 minutes. 20µl extraction buffer (2 M Tris-HCl, pH 8.5, 2.5 M 262 

NaCl, 0.25M EDTA, 5% w/v SDS) and 15µl of Proteinase K (20mg/ml) were added and 263 

samples were incubated overnight at 55°C. After this lysis, 30µl of 3M sodium acetate was 264 

added, and the samples allowed to sit for 30 minutes, inverting tubes every 10 minutes for 265 

mixing. The samples were then centrifuged at 11,000g for 10 mins. 300 µl of 100% ice-266 

cold isopropanol was added to each sample and incubated at room temperature for 30 267 

mins, followed by centrifuging at 18000g for 30 mins. The supernatant was then discarded 268 

and the pellet washed in 70% ice cold EtOH, before air drying and resuspension in 20 µl 269 

10 mM Tris-Cl, pH 8.5.  270 

Approximately 100ng of DNA was used per sample as template for amplification of 271 

the 16s rDNA gene. Bacterial universal primers 515F and 806R were used to amplify a 272 

291bp fragment (515F: 5′-GTG CCA GCM GCC GCG GTA A-3’, 806R: 5′- GGA CTA 273 

CHV GGG TWT CTA AT-3), the reverse PCR primer was barcoded with a 12-base error-274 

correcting Golay code to facilitate multiplexing (42). PCR conditions were: initial 275 

denaturation at 98°C for 3 mins, 35 cycles at 98°C for 30 secs, 60°C for 30 secs and 72°C 276 



 9 

for 60 secs; final extension for 10 mins at 72°C. Products were pooled at equimolar ratios, 277 

and the pool cleaned with an Agencourt AMPure XP kit (Beckman Coulter). Sequencing 278 

was conducted on the Illumina MiSeq 2 × 250 platform (Earlham Institute provider) 279 

according to protocols described by (42).  280 

Sample reads were assembled with mothur v1.32 (43). Chimeric sequences were 281 

removed using the USEARCH software based on the UCHIME algorithm (44). Operational 282 

Taxonomic Units (OTUs) were selected using de novo OTU picking protocols with a 97% 283 

similarity threshold. Taxonomy assignment of OTUs was performed by comparing 284 

sequences to the Silva database. PERMANOVA with 1000 permutations was used to first 285 

identify whether differences in OTU abundances between samples were described most 286 

accurately by diet or genotype (45). Linear discriminant analysis coupled with effect size 287 

(LEfSe) was performed to identify the bacterial taxa differentially represented between the 288 

two diets at Family or higher taxonomic levels (46). Jack-knifed beta diversity of 289 

unweighted Unifrac distances was calculated with 10x subsampling, and these distances 290 

were visualized by Principal Coordinate Analysis (PCoA). The R packages Phyloseq and 291 

ggplot2 were used for data analysis and visualizing the results, respectively (47, 48). 292 

 293 

Testing for assortative mating by diet 294 

To test for significant assortative mating by diet, we examined the different wild type 295 

strains following 5, 30 and 35 generations of maintenance on CMY or Starch diets. 296 

Assortative mating tests were performed as in (16) using quartets of flies comprising 1 297 

male and 1 female from the CMY and Starch diets. As noted in the correction to the 2010 298 

study (17), only the first mating in any such quartet represents a ‘choice’ (the second 299 

mating being constrained because only one female and male remain). Hence we used the 300 

identity of the first pair to mate as the data for tests of assortative mating. For each mating 301 

assay experiment, each population was grown for one generation on CMY medium as in 302 

(16) and larvae were raised at a standard density of 100 individuals per vial, to both 303 

remove any proximate effects of nutrition on mating preference and minimize 304 

environmentally-determined differences in body size that might have impacted upon 305 

mating success. At eclosion, flies were collected and the sexes separated using light CO2 306 

anesthesia. Virgin males and females were stored 10 per vial on CMY medium until 1 day 307 

prior to mating.  All flies were then anaesthetized using light CO2 anesthesia. Half of the 308 

vials from each treatment were then selected at random and the flies within them given a 309 

small wing clip for identification.  310 
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For the mating tests, quartets of flies were aspirated into vials, a single male and 311 

female from the CMY treatment and a single male and female from the Starch treatment. 312 

Wing clipping was used to identify the males and females during the experiment, and was 313 

rotated in a factorial design (i.e. in half of all tests the CMY males and females were 314 

clipped and in half the Starch were clipped). Hence, the clipping itself was distributed 315 

equally across all tests, diet treatments and sexes such that it could not introduce any 316 

systematic confound. The setup of the mating quartets and the observations of the 317 

matings were carried out using a team of researchers who were blind to strain identity. On 318 

the day of the mating tests the two males were placed in each mating vial (empty vials 319 

each containing a moist filter paper strip) followed directly afterwards by the two females. 320 

The identity of the first pair to mate was then recorded according to the identity of the wing 321 

clips of the mating pairs. The clip patterns were decoded after the completion of the mating 322 

tests into group / treatment identity. Mating tests were conducted for 5h from the start of 323 

lights on. Pairs were given 2h to mate and those that did not mate within this time were 324 

discarded. Any vials that contained individuals that died or were immobile during the 325 

experiment were discarded. Full sample sizes of initial test numbers, number of matings 326 

and non-matings are detailed in Table S3.  327 

 328 

Effect of microbiome removal and Lactobacillus plantarum ‘add-back’ on assortative 329 

mating by diet 330 

In order to rule out the effects of variation in gut microbiome composition, we also tested 331 

the effect of gut microbiome removal and L. plantarum add-back on assortative mating by 332 

diet (SI). We treated the adults prior to the mating tests with a cocktail of antibiotics for 48h 333 

(50 μg/mL tetracycline, 200 μg/mL rifampicin, 100 μg/mL streptomycin) to remove their gut 334 

bacteria. The effectiveness of this was verified as described in the SI. The mating tests on 335 

the microbiome-removed flies were then conducted at generations 5, 30 and 35 and L. 336 

plantarum add-back experiments at generation 38. For the add-back experiment, we 337 

isolated L. plantarum from each of the three lines (identified to species level by BLAST 338 

matching to L. plantarum) and tested whether we could generate assortative mating 339 

artificially, in the manner proposed (16), by exposing half of the flies from within the same 340 

CMY or Starch diet background to ± L. plantarum, and testing for assortative mating as 341 

before (for full methods, see SI).  342 

 343 

Statistical analysis of assortative mating 344 
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We used the Mantel-Haenszel test for repeated tests of independence in order to 345 

determine whether repeated observations of mating pairs showed any deviation from that 346 

of random mating. In addition, the number of observed and total possible pairings for each 347 

pair type was calculated for each replicate. This was analyzed using JMATING v.1.0 (49) 348 

to calculate the IPSI a joint isolation index. IPSI varies from -1 to +1, with +1 being total 349 

assortative mating, and -1 dissassortative mating. Hence, a value of 0 denotes random 350 

mating. Following (50) we used IPSI to describe reproductive isolation at each of the three 351 

generational time points. Significance of the coefficient was calculated as the bootstrap 352 

probability of rejecting the null hypothesis of random distribution after 10,000 iterations of 353 

resampling. All bootstrapping was conducted in JMATING, all other statistical analyses 354 

were conducted in R v3.1.1 (51). The statistical power of our analyses in comparison to 355 

the previous study (16, 17) was then analyzed (for full details, see SI). 356 

 357 

 358 

 359 

ACKNOWLEDGEMENTS 360 

We thank Will Nash, Michael Connelly, Rachel Urquhart, Lucy Friend, Damian Smith, 361 
Elizabeth Duxbury, Janet Mason, Wayne Rostant, Michael Bolton and Irina Mohorianu for 362 
help with analyses and experiments and the reviewers for insightful comments and the 363 
BBSRC (BB/K000489/1) for funding (research grant to TC, PTL and MIH). This work was 364 
funded by the Biotechnology and Biological Sciences Research Council Research Grant 365 
BB/K000489/1 (to T.C., P.T.L., and M.I.H.). 366 
 367 

Data Archiving 368 

The individual raw 16S sequences are available in the NCBI sequence read archive (SRA) under 369 
BioProject: PRJNA415376. 370 
 371 
All chimera-checked 16S rRNA gene sequences of representative OTUs, the de-replicated, quality 372 
filtered Illumina MiSeq data set file, metadata mapping file and the final OTU distribution table, 373 
along with raw sanger sequencing reads of L. plantarum are deposited at: 374 
10.6084/m9.figshare.5469316. 375 
 376 
The chimera-checked 16S consensus sequence for L. plantarum used for bacterial add-back has 377 
been deposited in the NCBI GenBank with accession MG066537.  378 
 379 

Author Contributions 380 

PTL, MIH and TC conceived the study, PTL, NVEC and TC conducted the experiments, 381 

PTL analyzed the data and PTL and TC wrote the paper, with input from NVEC and MIH. 382 

 383 

 384 

  385 



 12 

References 386 

1. Coyne JA & Orr HA (2004) Speciation (Sinauer Associates Sunderland, MA). 387 
2. Nosil P (2012) Ecological Speciation (Oxford University Press, Oxford). 388 
3. Kilias G, Alahiotis SN, Pelecanos M (1980) A multifactorial genetic investigation of 389 

speciation theory using Drosophila melanogaster. Evolution 34:730-737. 390 
4. Markow TA (1981) Mating preferences are not predictive of the direction of 391 

evolution in experimental populations of Drosophila. Science 13:1405-1407. 392 
5. Nadeau NJ, et al. (2012) Genomic islands of divergence in hybridizing Heliconius 393 

butterflies identified by large-scale targeted sequencing. Phil Trans Roy Soc 394 
367:343-353. 395 

6. Feder JL, Egan SP, Nosil P (2012) The genomics of speciation-with-gene-flow. 396 
Trends Genet 28:342-350. 397 

7. Etges WJ, De Oliveira CC, Noor MA, & Ritchie MG (2010) Genetics of incipient 398 
speciation in Drosophila mojavensis. III. Life-history divergence in allopatry and 399 
reproductive isolation. Evolution 64:3549-3569. 400 

8. Martin SH, et al. (2013) Genome-wide evidence for speciation with gene flow in 401 
Heliconius butterflies. Genome Res 23:1817-1828. 402 

9. Seehausen O, et al. (2014) Genomics and the origin of species. Nat Rev Genet 403 
15:176-192. 404 

10. Dodd DMB (1989) Reproductive isolation as a consequence of adaptive divergence 405 
in Drosophila pseudoobscura. Evolution 43:1308-1311. 406 

11. Feder JL, et al. (2003) Allopatric genetic origins for sympatric host-plant shifts and 407 
race formation in Rhagoletis. Proc Natl Acad Sci USA 100:10314-10319. 408 

12. Via S, Bouck AC, Skillman S (2000) Reproductive isolation between divergent races 409 
of pea aphids on two hosts. II. Selection against migrants and hybrids in the 410 
parental environments. Evolution 54:1626-1637. 411 

13. Nosil P (2007) Divergent host plant adaptation and reproductive isolation between 412 
ecotypes of Timema cristinae walking sticks. Am Nat 169:151-162. 413 

14. Butlin R, et al. (2012) What do we need to know about speciation? Trends Ecol Evol 414 
27:27-39. 415 

15. Janz N, Nylin SI (2008) In: Specialization, speciation, and radiation. The 416 
evolutionary biology of herbivorous insects. Ed K. Tilmon (Univ California Press, 417 
Berkeley) pp203-215. 418 

16. Sharon G, et al. (2010) Commensal bacteria play a role in mating preference of 419 
Drosophila melanogaster. Proc Natl Acad Sci USA 107:20051-20056. 420 

17. Sharon G, et al. (2013) Correction for “Commensal bacteria play a role in mating 421 
preference of Drosophila melanogaster. Proc Natl Acad Sci USA 110:4853. 422 

18. Pavković-Lučić S (2009) Is there ethological isolation among Drosophila 423 
melanogaster strains reared for more than 35 generations on different food? Arch 424 
Biol Sci 61:105-112. 425 

19. Pavković-Lučić S, et al. (2016) Does my diet affect my perfume? Identification and 426 
quantification of cuticular compounds in five Drosophila melanogaster strains 427 
maintained over 300 generations on different diets. Chem Biodivers 13:224-232. 428 

20. Trajković J, Miličić D, Savić T, Pavković-Lučić S (2017) Sexual selection, sexual 429 
isolation and pheromones in Drosophila melanogaster strains after long-term 430 
maintaining on different diets. Behav Process 140:81-86. 431 

21. Ringo J, Sharon G, Segal D (2011) Bacteria-induced sexual isolation in Drosophila. 432 
Fly 5:310-315. 433 

22. Brucker RM, Bordenstein SR (2012) Speciation by symbiosis. Trends Ecol Evol 434 
27:4430451. 435 

23. Lizé A, McKay R, Lewis Z (2014) Kin recognition in Drosophila: the importance of 436 
ecology and gut microbiota. ISME J 8:469-477. 437 



 13 

24. Shropshire JD, Bordenstein SR (2016) Speciation by symbiosis: the microbiome 438 
and behavior. mBio 7:e01785-01715. 439 

25. Sharon G, Segal D, Zilber-Rosenberg I, Rosenberg E (2011) Symbiotic bacteria are 440 
responsible for diet-induced mating preference in Drosophila melanogaster, 441 
providing support for the hologenome concept of evolution. Gut Microbes 2:190-442 
192. 443 

26. Moran NA, Sloan DB (2015) The hologenome concept: helpful or hollow? PLoS Biol 444 
13:e1002311. 445 

27. Chandler JA, Morgan Lang J, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial 446 
communities of diverse Drosophila species: ecological context of a host–microbe 447 
model system. PLoS Genetics 7:e1002272. 448 

28. Wong CNA, Ng P, Douglas AE (2011) Low-diversity bacterial community in the gut 449 
of the fruitfly Drosophila melanogaster. Env Microbiol 13:1889-1900. 450 

29. Wong AC, Chaston JM, Douglas AE (2013) The inconstant gut microbiota of 451 
Drosophila species revealed by 16S rRNA gene analysis. ISME J 7:1922-1932. 452 

30. Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA (2013) Host species and 453 
environmental effects on bacterial communities associated with Drosophila in the 454 
laboratory and in the natural environment. PloS One 8:e70749. 455 

31. Wong ACN, Dobson AJ, Douglas AE (2014) Gut microbiota dictates the metabolic 456 
response of Drosophila to diet. J Exp Biol 217:1894-1901. 457 

32. Blum JE, Fischer CN, Miles J, Handelsman J (2013) Frequent replenishment 458 
sustains the beneficial microbiome of Drosophila melanogaster. mBio 4:e00860–459 
00813. 460 

33. Early AM, Shanmugarajah N, Buchon N, Clark AG (2017) Drosophila genotype 461 
influences commensal bacterial levels. PLoS One 12:e0170332. 462 

34. Chandler JA, Turelli M (2014) Comment on "The hologenomic basis of speciation: 463 
Gut bacteria cause hybrid lethality in the genus Nasonia". Science 345:1011. 464 

35. Douglas AE, Werren JH (2016) Holes in the hologenome: why host-microbe 465 
symbioses are not holobionts. mBio 7:e02099-02015. 466 

36. Koukou K, et al. (2006) Influence of antibiotic treatment and Wolbachia curing on 467 
sexual isolation among Drosophila melanogaster cage populations. Evolution 468 
60:87-96. 469 

37. Najarro MA, Sumethasorn M, Lamoureux A, Turner TL (2015) Choosing mates 470 
based on the diet of your ancestors: replication of non-genetic assortative mating in 471 
Drosophila melanogaster. PeerJ 3:e1173. 472 

38. Arbuthnott D, Levin TC, Promislow DEL (2016) The impacts of Wolbachia and the 473 
microbiome on mate choice in Drosophila melanogaster. J Evol Biol 29:461-468. 474 

39. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids 475 
and their symbiotic bacteria Buchnera. Ann Rev Entomol 43:17-37. 476 

40. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of 477 
heritable bacterial symbionts. Ann Rev Genet, 42:165-190. 478 

41. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of 479 
invertebrate biology. Nat Rev Microbiol 6:741-751. 480 

42. Caporaso JG, et al. (2011) Global patterns of 16S rRNA diversity at a depth of 481 
millions of sequences per sample. Proc Natl Acad Sci USA 108:4516-4522. 482 

43. Schloss PD, et al. (2009) Introducing mothur: open-source, platform-independent, 483 
community-supported software for describing and comparing microbial 484 
communities. Appl Environ Microbiol 75:7537-7541. 485 

44. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves 486 
sensitivity and speed of chimera detection. Bioinformat 27:2194-2200. 487 

45. Kelly BJ, et al. (2015) Power and sample-size estimation for microbiome studies 488 
using pairwise distances and PERMANOVA. Bioinformat btv183. 489 



 14 

46. Segata N, et al. (2011) Metagenomic biomarker discovery and explanation. 490 
Genome Biol 12:R60. 491 

47. Wickham H (2011) ggplot2. Wiley Interdisciplin Rev: Comp Stat 3:180-185. 492 
48. McMurdie PJ, Holmes S (2012) Phyloseq: a bioconductor package for handling and 493 

analysis of high-throughput phylogenetic sequence data. Pac Symp Biocomput NIH 494 
Public Access:235. 495 

49. Carvajal-Rodriguez A, Rolan-Alvarez E (2006) JMATING: a software for the 496 
analysis of sexual selection and sexual isolation effects from mating frequency data. 497 
BMC Evol Biol 6:40. 498 

50. Coyne JA, Elwyn S, Rolán-Alvarez E (2005) Impact of experimental design on 499 
Drosophila sexual isolation studies: direct effects and comparison to field 500 
hybridization data. Evolution 59:2588-2601. 501 

51. R Development Core Team (2015) R: A Language and Environment for Statistical 502 
Computing, ver 3.3.2. In. R Foundation for Statistical Computing (Vienna, Austria). 503 

 504 
  505 



 15 

Figure Legends 506 

 507 

Fig. 1. Gut microbiome composition of CMY and Starch lines at generation 508 

30. A: Principal Coordinate Analysis (PCoA) of the gut bacterial community of the wild 509 

type strains maintained on the CMY or Starch diets. Each symbol represents a single 510 

biological replicate comprised of a pool of five individuals, there were two independent 511 

biological replicates for each treatment. Wild type strains are indicated by the different 512 

colors, circles and triangles the CMY and Starch diets, respectively. B: Stacked barplot of 513 

community composition and distribution of dominant bacterial taxa (>5% abundance, 514 

collapsed to Family level) for the gut microbiomes in A. 515 

 516 

Fig. 2. Number of matings between wild type lines maintained on CMY or 517 

Starch diets. Barplots represent the number of mating pairs formed in quartet mating 518 

tests between CMY and Starch diet lines derived from each wild type population. Matings 519 

were scored at generation 5, 30 and 35 of selection of the lines on the two diets. Prior to 520 

mating tests, all flies were reared for one generation on the CMY diet (as in (16)). 521 

 522 

Fig. 3. Number of matings between wild type lines maintained on CMY or 523 

Starch diets following L. plantarum ‘add-back’. Barplots represent the number of 524 

mating pairs formed in quartet mating tests between CMY and Starch diet lines 525 

(generation 38) derived from each wild type population subjected to an antibiotic cocktail 526 

to eliminate gut bacteria (as in Fig. S2) then to L. plantarum ‘add-back’ (LB+), versus ‘non 527 

add-back’ axenic control (LB-).  528 
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Table 1. Results of permutational multivariate analysis of variance (PERMANOVA) analysis of gut microbiome composition between ea532 
ch of the wild type lines maintained on CMY or Starch diets for 30 generations.  533 
 534 
 535 

Variable DF 

Sum of 

Squares 

Mean 

Squares F R2 P 

Line 2 0.36 0.18 1.1 0.102 0.38 

Diet 1 1.52 1.52 9.34 0.43 <0.001 

Line * Diet 2 0.64  0.32 1.98 0.18 0.12 

Residuals 6 0.97 0.16  0.28  

Total 11 3.5   1  

 536 

There was a highly significant difference in gut microbiome composition in CMY versus Starch diets. Number of permutations was 999, 537 

with terms added sequentially (first to last). R2 = coefficient of determination. 538 

 539 


