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RNA-seq is a high-throughput Next-sequencing technique for estimating the concentra-

tion of all transcripts in a transcriptome. The method involves complex preparatory
and post-processing steps which can introduce bias, and the technique produces a large

amount of data [? ? ]. Two important challenges in processing RNA-seq data are there-

fore the ability to process a vast amount of data, and methods to quantify the bias in
public RNA-seq datasets. We describe a novel analysis method, based on analysing se-

quence motif correlations, that employs MapReduce on Apache Spark to quantify bias

in Next-generation sequencing (NGS) data at the deep exon level. Our implementation
is designed specifically for processing large datasets and allows for scalability and de-

ployment on cloud service providers offering MapReduce. In investigating the wild and

mutant organism types in the species D. melanogaster we have found that motifs with
runs of Gs (or their complement) exhibit low motif-pair correlations in comparison with
other motif-pairs. This is independent of the mean exon GC content in the wild type

data, but there is a mild dependence in the mutant data. Hence, whilst both datasets
show the same trends, there is however significant variation between the two samples.

Keywords: rna-seq; mapreduce; transcriptomics; 4-mers; motif analysis; drosophila.

1. Background

High-throughput sequencing methods have developed over the last three decades

from semi-automated methods to massively-parallel next-generation sequencing

[29]. In particular, RNA-seq on which this article is focused, is an NGS technique

for estimating the concentration of all transcripts in a transcriptome. The tran-

scriptome of an organism is defined as the sum total of all the messenger RNA

(mRNA) molecules expressed and is therefore highly dynamic, complex and in a

constant state of flux. It accommodates the cells constantly changing requirements

- a result of intra- and extra-cellular stimuli as well as disease pathology. RNA-Seq

has revolutionised the field of transcriptomics and has transformed our view of the
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extent and complexity of the transcriptome through deep-sequencing and also as a

result of the increased precision the technique offers over other methods [37].

RNA-seq provides wide coverage of the transcriptome as it involves the direct

sequencing of transcripts of RNA found in the sample [37, 11]. RNA-seq can there-

fore be used to study various types of RNA present: total RNA, pre-mRNA, and

noncoding RNA (ncRNA), such as microRNA and long ncRNA enabling it to be

used to study alternative splicing events [24, 16]. Furthermore RNA-seq achieves

this at a higher resolution [11] than other technologies.

Recent developments in the RNA-seq workflow, from sample preparation to

sequencing have furthered our understanding of the transcriptome but have also

required substantial effort for data analysis and computation. Given the complexity

of RNA-seq workflow this necessitates study of the bias that can be introduced

in the preparatory steps [2, 11, 25]. Characterisation and quantification of bias in

RNA-seq is especially incumbent given that the method sequences and measures

the transcriptome indirectly using reverse transcribed complementary DNA (cDNA)

[22].

Much of the raw sequence read data from RNA-seq are being deposited in public

repositories such as the Sequence Read Archive (SRA) [13] and Gene Expression

Omnibus (GEO) [7]. In just a year (from 2010 to July 2011) the amount of data

deposited in the SRA, just one of the big sequence data repositories, increased

by an order of magnitude from 10 tera bases to surpass 100 tera bases. As of

January 2017 the SRA contains over 9 peta bases (9.377x1015) of sequencing data

[4] and ArrayExpress contains 44.5 TB of archived data [5] - this without a doubt

constitutes bigdata, which is characterised as data possessing volume, velocity and

variety. This ever increasing yield of sequencing data is set to surpass other fields

such as astronomy and particle physics [32]. Two important challenges in processing

RNA-seq are therefore the ability to handle a vast amount of data, and to quantify

and eliminate biases introduced due to the complexity of the sample preparatory

steps in such data. We describe a method which employs MapReduce, a distributed

programming paradigm on the Apache Spark platform to quantify deviation in read

distribution of mapped reads in transcriptomics data. The input data files used for

such analysis are industry standard file formats, namely the genome annotation file

(GTF) and the aligned reads file (SAM) [28, 14].

MapReduce is a programming model and implementation used by both Apache

Spark and Hadoop platforms to enable parallel execution of algorithms which are

distributed across a cluster [12]. MapReduce is designed for processing and generat-

ing large data sets, and is based on the map and reduce functions commonly used in

functional programming [10] and which are conceptually similar to the scatter and

reduce functions in the Messaging Passing Interface (MPI) standard [30]. Hadoop

and Spark ensures that programs that implement MapReduce are automatically

parallelised and executed on the cluster in a distributed fashion. MapReduce has

been designed to facilitate programmers in utilising the distributed computing re-

sources without prior specialised expertise in concurrent programming such as with
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MPI [34].

Key components of the MapReduce implementation are the map µ and reduce

ρ functions. The main data structure associated with these is the key-value pair, a

tuple of the form 〈k, v〉 where k is the key and v is the value. An input to a Map

Reduce function is a list of key-value pairs 〈k, v〉Ni=1 to a total size of
∑N

i=1 |ki|+ |vi|.
The reader is directed to a paper by Fish et al. [8] that details the map and reduce

functions of the MapReduce model.

2. Methods

Sequence-specific motifs are an issue in microarray data [18, 35] and have also been

shown to affect RNA-seq data [38] as well as RNA primers [9], resulting in sequence-

specific deviations in the distribution of mapped reads to a reference genome [27, 15].

Furthermore GC content effects have been demonstrated in both Microarray and

RNA-seq data [26]. Therefore a method that can quantify these effects by way of

deep, transcript analysis is necessary. We describe a novel analysis method, based on

analysing sequence motif correlations, that employs MapReduce to quantify bias in

NGS data at the exon level. We will look at the input data formats used and explain

the implementation of the method, which comprises of two phases, described below:

(1) a distributed phase (using MapReduce) capable of handling high-

throughput transcriptomics datasets that yields motif count data for reads

of all exons in the dataset.

(2) a non-distributed motif counts analysis phase that quantifies sequence-

specific deviations in the distribution of mapped reads by computing cor-

relations of the motif counts computed by the distributed first phase.

The two phases and their steps are outlined in figure 1.

2.1. Read Distribution in a Transcriptomic Dataset

RNA-seq often generates short reads, the length of which is dependent on the se-

quencing platform, and as a result mapped reads are typically not distributed uni-

formly across exons (figure 2, part B) [27]. Furthermore the number of mapped

reads is a function of the number of fragments sequenced and the feature length

(i.e. length of the exon), for this reason a number of normalisation methods are used

to quantify the number of mapped reads to a feature such as Reads per Kilobase

Million (RPKM) [20], and Transcripts per million (TPM) [36]. Our method allows

us to investigate the distribution of mapped reads in large datasets.

2.2. Quantifying Deviations in Read Distribution

Our method for quantifying sequence-specific deviations in the distribution of

mapped reads across an exon was achieved by picking a short sequence motif (typi-

cally 4-mers) which can occur at various positions within the sequence of the exon.
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Fig. 1: Overview of method for quantifying sequence-specific deviations in read

distribution. Phase I, the distributed phase, comprises 3 map steps and a reduce

step on Apache Spark, with intermediate data being stored on HDFS. Phase II, the

non-distributed phase, counts analysis phase utilises raw motif count and position

data generated by phase I, which has been stored on the local file system.

Next, pairs of these motif occurrences were picked based on their distance apart

from each other within the exon and the number of overlapping reads covering each

motif position in the pair was counted (figure 3). We term the distance between

the motif pairs motif-spacing and we have chosen to examine motif pairs that are

spaced at 10, 50, 100 and 200bp apart. Uniformity of read distribution was quanti-

fied by computing the correlation of the counts for the given motif pair in all exons

within the dataset by aggregating the motif pair counts at a given distance apart

(motif-spacing) regardless of position within the exon (we used the Pearson cor-

relation coefficient which we discuss later in section 3.3.2). In order to thoroughly

examine the affect of sequence-specific motifs on uniformity of read distribution we

analysed the correlation for all 4-mer motifs ranging from AAAA to GGGG (i.e. 44

combinations). This method is implemented in MapReduce which we shall discuss
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Fig. 2

Typical distribution of RNA-seq reads mapped to an exon.

later in this article.

Fig. 3: Quantification of read coverage using short pairs of sequence motifs (typically

4-mers) within the reads shown in yellow. Motif-pairs show variable correlation that

are used to quantify sequence-specific deviations in the distribution of mapped reads

across exons.

2.3. Transcriptomics Input Data

Two input data files are required for our transcriptomics analysis method (their

fields are described in Table 1): i) a reference genome annotation file (GTF) defining

exon boundaries for the species under investigation which we store in tuple G and

ii) an aligned (mapped) reads data file (SAM) produced by sequence alignment

software which we store in tuple S.

Reference genome annotation data have a widely adopted standard for storage

of gene structure information - the GTF (Gene Transfer Format) file format which

comprises of tab-delimited fields [28]. From the input GTF data file the fields we

are interested in are the chromosome name ci,j , the feature type ti,j , feature start



September 25, 2017 18:50 WSPC/INSTRUCTION FILE
IJFCS-TranscriptomicsMapReduce˙v2

6 J. J. Alnasir, H. P. Shanahan

Table 1: GTF and SAM input data file fields.

GTF (Genome Annotation) file - tuple G

Field Variable Description

chromosome ci,j Name of the chromosome sequence in which the feature re-

sides, i.e. “chr1”. There are multiple features per chromosome.
feature type ti,j Name of the feature type, i.e. “CDS”, “start codon”,

“stop codon”, and “exon”

feature start ai,j Start position of the feature relative to the chromosome se-
quence named in ci,j , the sequence numbering for the first

base starts at 1

feature end bi,j End position of the feature relative to the chromosome se-
quence named in ci,j , the sequence numbering for the first

base starts at 1

SAM (Sequence Aligned Mapped reads) file - tuple S

Field Variable Description

chromosome dk Name of the chromosome in which the read occurs (referred

to as RNAME in SAM specification)
read position rk Leftmost mapping position of the read relative to the chromo-

some sequence named in dk, the sequence numbering for the

first base starts at 1
read CIGAR hk CIGAR string containing read mapping information

read sequence sk Sequence string of bases in the read

Note: GTF and SAM input data fields used in our analyses and their assigned variables in the input data
tuples (G and S) we have defined. Both file formats are tab-delimited, with each GTF feature or SAM

read occurring on it’s own line. The GTF tuple G is indexed by i and j which refer to the chromosome and
feature indices respectively and the SAM tuple S is indexed by k [28, 14].

position ai,j and feature end position bi,j , where i, j are the indices of the chromo-

some and exon respectively.a We represent genome annotation data contained in a

GTF annotation file of length IJ lines by the tuple defined below, where I is the

number of chromosomes and J is the number chromosome features:

Gi,j = 〈ci,j , ai,j , bi,j〉IJi,j=1 (1)

SAM (Sequence Alignment/Map) is a widely adopted tab-delimited file format

for storing biological sequences aligned to a reference sequence, and is a common

output file of read alignment software [14]. The SAM file has a line for each read

which we will index by k, and various fields for each read, of which we are interested

in the read chromosome name dk, read position rk, sequence alignment information

which is encoded in a string termed a CIGAR string (Concise Idiosyncratic Gapped

Alignment Report) hk (also discussed in further detail by Li et al.), and the sequence

itself sk, for each read Sk. To represent all the reads in the input SAM file of length

N lines we define the following tuple:

aWe only examine GTF features of type ”CDS” (coding sequence). The CDS region of the exon
excludes the 5’ cap, 5’UTR and 3’UTR and Poly-Adenylated tail - regions that contain regulatory

sequences that would bias our motif analysis.
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Sk = 〈dk, rk, gk, sk〉Nk=1 (2)

3. Phase I - Counting sequence motifs with MapReduce

MapReduce programs are implemented by way of distributed functions such as map

µ and reduce ρ. The key-value pair 〈e, v〉 is the main structure in MapReduce, where

e is the key and v is the value. MapReduce functions act on key-value pairs and a

typical input to a function is a list of key-value pairs 〈e, v〉Ni=1 within a splitb to a

total size of N .

In applying MapReduce to our method to quantify sequence-specific deviations

in the distribution of mapped reads, we composed key e from the GTF tuple G that

allows us to assign RNA-seq reads to a given unique exon. This MapReduce key e

is composed of feature start ai,j and feature end bi,j for each exon boundary. It is

constructed by concatenating the 10 digit left-padded string representation of ai,j
with the 10 digit left-padded string representation of bi,j , producing a final, unique

20 digit key for each exon e.

3.1. Partitioning reads by exon - GTF-SAM map µS

In order to partition transcriptomic reads in the SAM reads vector S by exon e a

MapReduce map operation µS is performed. The output of this map step ensures

that a set of reads are assigned to the exon which they are aligned to (using read

alignment information from upstream read alignment software) and for each exon

e comprises of a list of key-value pairs. The associated values 〈v1...vM 〉 for the exon

key e are the short reads Sk obtained from the SAM reads vector S. The output of

the µS step is therefore in the form of 〈e, S(e)〉. Each sequence read has a read start

position rk (generated by the alignment software) which is relative to the start

position of the chromosome named in dk and which matches the corresponding

chromosome named in ci,j . In order to partition reads by the exon they are aligned

to, the µS step employs a lookup function el. Given a read Sk the el function uses

a binary-search (for optimisation) on the GTF annotation tuple G to return the

exon key e for the exon that the read is aligned to. This is achieved using the exon’s

feature start position ai,j and feature end position bi,j , where i, j are the indices of

the chromosome and exon respectively. The positions of the reads relative to the

range of the exon are were also evaluated as depicted below:

bWe do not depict the splitting of input and output data and their distribution to MapReduce
functions running on nodes of the cluster, which is covered in the Apache Spark documentation.
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Fig. 4: Selection of typically distributed RNA-seq reads mapped to an exon. The

reads shown in yellow straddle the left of the exon are selected, as are those in green

contained within the exon and those straddling the right. Reads shown in grey are

not selected for motif count analysis.
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3.2. Counting motifs within reads - MOTIF map µM

The preceeding µS map function was used to partition reads by exon returning

〈e, S(e)〉 which is then passed into the next operation - the µM map step. µM uses

the nucleic acid sequence sk in the partitioned read and a 4-mer search motif which

is a string we designate f . It returns a tuple 〈e, P 〉 consisting of an exon-key e and

a vector P of the start positions at which the search motif occurs for each key and

read of the input 〈e, S(e)〉. To achieve this µM map step employs a motif search

function sf , which returns a vector of positions in which the motif occurs in sk.

Because the search function utilises positional information in the GTF tuple G and

SAM reads tuple S initial values contained in P are chromosome sequence relative

positions (relative to start position of chromosome sequence named in ci,j) and are

then converted into exon-relative positions (relative to ai,j). This is achieved by

computing offset oP for the motif start position using the read start position xk
and the exon’s GTF feature start position ai,j and applying it to the result P of

the motif search function sf as follows:

oP = xk − ai,j
∀p ∈ P : p = p+ oP (3)

Furthermore, in applying the motif search function we ignore overlapping se-

quences in the string but allow for immediately consecutive occurrences of the mo-

tif f . For example when searching for the 4-mer motif GGGG in a sequence read

sk containing run of six Gs (GGGGGG) the search function sf would return a single

position (P = 〈1〉), whereas for a sequence containing a run of eight Gs (GGGGGGGG)

sf would return two positions (P = 〈1, 5〉).
The µM map step returns the exon-key e and above re-computed motif positions

P in the tuple form 〈e, P 〉, and is defined below:

µM (〈e, S(e)〉) = 〈e, P 〉 where P is computed from sf

function
(4)

3.2.1. Data transformation - VECTOR map µV and MOTIF reduce ρM

The final MapReduce steps of the distributed phase are the µV and ρM steps which

together transform intermediate data from the µM step in the tuple form 〈e, P 〉
into motif count and position data in the tuple form 〈en,m, qn,m, zn,m〉NM

n,m=1 which

is the final output of the distributed phase I of our analysis method, this process is

depicted in figure 5 below:

The penultimate operation in phase I of our analysis method is a µV step which

operates on tuple 〈e, P 〉 and maps a 1 for each position q in set of motif positions

P for each key e. The output yields multiple records in the tuple form 〈e, qn, 1〉Nn=1

to a total size of N positions for each exon e, as follows:
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Fig. 5: Transformation of intermediate data by MapReduce steps. In this example,

we illustrate that these steps have computed that three short reads have overlap of

a specific motif which starts at position 87 of a specific exon

µV (〈e, P 〉) = 〈e, qn, 1〉 ∀p ∈ P (5)

The ρM is the final operation in phase I and takes for input the set of tuples

〈e, qn, 1〉Nn=1 produced by the preceeding µV step described above. ρM aggregates

multiple records for a given exon and position into single record of motif counts for

a given exon and position in the form 〈en,m, qn,m, zn,m〉NM
n,m=1 as follows:

ρM (〈e, qn, 1〉Nn=1) = e, qn, |q| ∀q ∈ e (6)

3.2.2. Mean Exon GC content - EXON-GC map µG and EXON-GC reduce

ρG

The subsequent motif analysis phase II requires that the mean GC content for the

reads in each exon be pre-computed. It is convenient to use MapReduce for this

computation and we use two daisy-chained steps map µG and reduce ρG. They are

computed once per exon, that is they are not repeated for each motif. µG takes

output from the µS step, computes the GC content of each read for each exon in

the key-value pair 〈e, S(e)〉 and ρG aggregates average GC content per read gr (as

a percentage) by exon key e. The output from ρG is the tuple GE, which is defined

below:

GE = 〈e, ḡe〉 (7)

As outlined in figure 1, phase I is distributed on the Apache Spark platform,

and the results are therefore stored on HDFS (Hadoop distributed file system),

where each motif m in Cn,m is stored in a separate file. The next part of our

analysis method phase II is non-distributed, therefore results from the first phase
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are downloaded from HDFS on the cluster to the local file system using Hadoop’s

-getmerge command [3].

3.3. Phase II - Motif Correlations Analysis

Phase II of our analysis method quantifies sequence-specific deviations in distribu-

tion of aligned reads to an exon using data produced by phase I. Specifically we

use motif position and count data Cn,m, in the tuple form 〈en,m, qn,m, zn,m〉NM
n,m=1

where n,m are the tuple index and motif index respectively, and the mean exon

GC content of reads in each given exon, in the tuple form 〈e, ḡe〉. We will continue

to use e as the exon key, the motif position and count tuples C, and the exon mean

GC tuples GE which is summarised in Table 2. Furthermore we use fm to denote

the four character string representation of the 4-mer motif indexed by m.

Table 2: Motif counts tuple Cn,m

Motif counts tuple Cn,m

Variable Description

en,m Exon key e, a unique identifier for the exon computed by µS
qn,m Position in which motif m occurs
zn,m Count of overlapping motif m at position qn,m

Mean exon GC tuple GE

e Exon key e

ḡe Mean GC content of all reads in exon e

Note: Data produced by MapReduce steps employed in the distributed Phase I of our
analyses method.

For our analyses we are interested in a number of properties of the data, at the

transcript level, and in particular how these may cause deviation in the distribution

of mapped reads. As discussed in section 2.2, in order to investigate how sequence-

specific motifs affect read distribution we examined all the possible 4-mer motifs

ranging from AAAA to GGGG, indexed by m. Furthermore, as depicted in figure 3, we

also examined the counts of overlapping motifs at particular base-pair (bp) spacings

for all exons. We use d to refer to the spacing distance of motif-pairs in all exons in

which motif m occurs, where d is defined below:

d ∈ {10, 50, 100, 200} bp. (8)

The effect of extremes of GC content in sequencing data (as well as microarray data)

has been discussed in numerous studies [6, 18], and we therefore also investigate the

effect of the mean GC content of reads within the exon ḡe and the GC content of

the 4-mer motif itself gm. In order to partition reads by mean GC content (which

we will discuss later) we also define binned GC content ranges (30-40%, 40-50%,

50-60% and 60-70%) for ḡe as follows:
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ḡe ∈ {30− 40%, 40− 50%, 50− 60%, 60− 70%} (9)

The GC content of a given 4-mer motif gm is defined as being a value from the

set defined below:

gm ∈ {0%, 25%, 50%, 75%, 100%} (10)

3.3.1. Noise removal

Biological data is rather noisy, this is especially so for transcriptomics data [33, 17]

where short sequence reads may map to multiple different exons in the reference

genome. For this reason we apply a noise removal process which discards low counts

of overlapping motifs - we deemed low counts as those that are within the first

quartile Q1 (25th percentile) of the read counts for all exons in the motif data file

for motif m.

3.3.2. Pearson correlation

To investigate the effect of the sequence-specificity of the 4-mer motif m and their

spacing distance d on the distribution of mapped reads, we compute the Pearson

correlation co-efficients of counts of each motif in the motif-pair (the two sets of

measurements) at varying distances for all exons. The test produces a result where

a score of +1 indicates positive correlation, -1 indicates inverse correlation and 0

indicates no correlation between the two sets of measurements [19]. We designate

tuple D (defined below in equation 11) to store the Pearson correlation for each

motif spacing ρ(d) where fm is the string sequence of the 4-mer motif:

D = 〈fm, r(10)m, r(50)m, r(100)m, r(200)m〉Mm (11)

The Pearson correlation between the two sets of counts vn,m, wn,m in the motif-

pair for motif m on each exon e at a fixed separation of d bp was computed. Each set

of counts is of the overlapping motif m at positions separated at a spacing of d bp

on the exon and we allow tolerances t of ±2 bp for 10 and 50 spaced motifs, and ±4

bp for 100 and 200 bp spaced motifs. In order to compute the Pearson correlation

coefficients to store for each spacing d in the correlations tuple D, we utilise a

function mp which uses the position and counts tuple 〈en,m, qn,m, zn,m〉NM
n,m=1, motif-

pair spacing distance d, spacing tolerance t, and returns motif-pair counts tuple

Wn,m which takes the form below:

Wn,m = 〈e, qn,m, vn,m, qo,m, wn,m〉NmatchM
n,m where qo,m = qn,m + d± t (12)

The motif-pair counts tuple Wn,m includes positional and counts information

for the two motifs in the motif-pair, this is depicted in figure 6 below:
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Fig. 6: Motif-pair information held in tuple Wn,m for an exon containing mapped

reads. Mapped reads are shown in green and the motif-pair in yellow. The positions

of each motif qn,m, qo,m relative to the exon feature start ai,j are shown in blue

and by dashed lines, as are the distance between them d± t. Their respective motif

counts vn,m, wn,m are also shown by double-headed vertical arrows to represent

quantification of overlapping reads containing the motif at that position.

The Pearson correlation between the two counts in the motif-pair tuple Wn,m

(vn,m and wn,m) was computed for each specific motif m and distance d.

4. Results

4.1. p-values and the Multiple-Comparisons Problem

As we are performing a considerable number of tests on the input transcriptome

there is a possibility that we may mistakingly reject a null hypothesis when it is true

(i.e., a “Type I” error). For instance in testing the null hypothesis that there is no

difference in motif-pair correlation between motif-pairs with a GC content of 50%

and those with 0%, we may mistakenly reject this null hypothesis. This problem

arises because the more tests we perform the greater the chance that a rare result

occurs and is known as the multiple-comparisons problem. We therefore used FDR

(False Discovery Rate) corrected p-values and an α value of 0.05 (5%).

4.2. Testing and Verification with a Synthetic Dataset

In order to verify our method for quantifying deviations in the read distribution of

mapped reads we created a synthetic transcriptome consisting of an artificial GTF

genome annotation and a SAM reads file of artificial reads. The SAM reads file

of “synthetic” reads was created by generating random start and random end po-
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sitions from which contiguous reads were constructed. These randomly generated

reads were then assessed to have a mean GC content of 49.6%. As we expected

the synthetic dataset had correlations of +1.0 for all motif pairs that were found

contained within the reads. This is because although the number of reads per exon

varies (which represents the expression of the exon) the reads generated are contigu-

ous reads which are of the same length as the exon and are therefore not affected

by the length of the exon.

4.3. Read Distribution in wild type D. melanogaster

Using MapReduce on Apache Sparkc and employing our methods explained above

we analysed two datasets for the well annotated Drosophila fruit fly species D.

melanogaster dataset [1] – these were wild-type and mutant-r2 type (eye/antennal

disc gene, [21]). Figure 7 is a scatter-matrix plot for wild-type D. melanogaster. We

can see from the distribution of correlations (bottom right-most graph of the plot),

that the majority of correlations are between 0.5 and 0.6, which demonstrates poor

correlation between motif-pairs. There is a considerable variability in correlations.

On closer inspection we can see that almost all of the higher correlations (>0.8)

come from motif-pairs spaced at 10bp, and motifs on the same fragment likely

contribute to this, however these are still very widely spread. Interestingly when

examining the median exon GC content of the reads (bottom two left-most graphs

of the plot) we can see that the median correlations are spread around 0.5 until the

mean exon GC content increases beyond 52% whereafter they start to fall, and this

is also seen with the motif GC concentration which causes correlations to fall after

75% and a significant drop of correlations for motifs with 100% GC content.

In order to investigate the potential of sequence-specific motifs to effect motif-

pair counts and their correlations we examined all 4-mer sequences in the D.

melanogaster datasets. Table 3 lists the lowest and highest ten correlations for

specific 4-mer sequences for each spacing. The results show that the spread of cor-

relations for given spacings remain very similar with exception of the 10bp which

although show the same spread have slightly higher correlations. It is noteworthy

that although the 4-mer sequence appears not to affect correlation the exception is

runs of four GGGGs (and their complementary four CCCCs) which showed poorer

correlations than other 4-mer sequence motifs which also corresponds to the in-

creased exon and motif GC content- this could potentially be due to the affect

of extreme GC content which has long been recognised in both Microarray and

RNA-seq data [26].

Although we observed similar overall trends in correlations for both wild and

mutant-r2 type D. melanogaster datasets the mutant type dataset shows more vari-

ability.

cThe cluster is a virtual machine comprised of one master and five slave nodes which each have

32GB of RAM and an Intel Xeon E3-1220v3 4-core CPU @ 3.1GHz
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Fig. 7: Scatter-matrix plot for wild type D. melanogaster which depicts and com-

pares the distributions of the Pearson correlations for the different parameters

we computed correlations for (diagonally arranged blue bar histograms represent

record distribution). As we computed correlations of motif-pair counts at spaces

d ∈ (10, 50, 100, 200) to investigate the effect of exon length there are correlations

for these spacings, but none for 100bp which we deemed un-necessary to compute.

4.4. Effect of Exon and Read GC content

The effect described in section 4.3 on the low correlations associated with runs

of Gs or Cs in the motif may be an artefact of the overall GC content of the exon,

which has already been noted as affecting read data [26]. In order to understand

this, we have compared the distribution of the correlations as a function of the GC

content of the motif and exon. An example of this can be found in figure 8, where we

compare the distribution of correlations for a motif GC content of 50% and 100%

as a function of read GC content for the wild type and mutant-r2 D. melanogaster

data sets. The wild type data indicates that the correlations are largely independent

of the exon GC content and that the medians of the correlations for the motifs with

100% GC content are lower than those with 50% GC content. The mutant data also

indicates a similar pattern for the medians but with a more noticeable dependence

on the read GC content (specifically for the 50% GC content data). This trend is
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Table 3: Wild-type D. melanogaster Pearson outliers

Wild type D. melanogaster

Lowest 10 Pearson-correlation outliers and their motifs

R(10 bp) R(50 bp) R(100 bp) R(200 bp)

CCTA=-0.0064 CCCC=-0.0222 GGGG=0.0065 TAGG=-0.0203

CCCC=-0.0040 CTAG=-0.0001 ACCC=0.0129 GGGG=-0.0187
TCCC=0.0127 CCTA=0.0007 CCTA=0.0520 CCCC=0.0161

CCGG=0.0346 TCCC=0.0045 CGGG=0.0615 GGGT=0.0236

TAGG=0.0463 GGTT=0.0347 TCCC=0.0637 ACCC=0.0362
GGGG=0.1234 GCTA=0.0366 GGTT=0.0675 AGGG=0.0397

CGGG=0.1242 CCCT=0.0507 CGCG=0.0725 CCCG=0.0417

CCCG=0.1325 CGCG=0.0771 CCCC=0.0745 AACC=0.0424
GGGA=0.1351 CCGG=0.0817 TGGG=0.0752 GGGA=0.0715

GCCC=0.1478 CCCG=0.0825 CCGG=0.0762 CCGG=0.0867

Highest 10 Pearson-correlation outliers and their motifs

R(10 bp) R(50 bp) R(100 bp) R(200 bp)

GTTA=0.8928 TAGA=0.8947 ATAC=0.7652 TACG=0.8697

AGCT=0.8857 AGAT=0.8812 AGTC=0.7623 ACTG=0.8268

TTAA=0.8790 ATAG=0.7815 CTAA=0.7610 CTAC=0.7584
GAGT=0.8644 TCGA=0.7625 GACT=0.7553 GCAT=0.7476

CTGA=0.8580 CGTA=0.7601 CTGT=0.7414 AGTA=0.7260

ATTC=0.8574 ACTA=0.7573 ATTG=0.7393 TGAG=0.7183
TAAG=0.8529 ACTG=0.7499 GTGT=0.7279 ACTA=0.7115

GTAC=0.8494 GTAC=0.7345 TAGT=0.7249 GTAC=0.7057
AGTT=0.8477 GTAG=0.7337 CTTG=0.7246 GATC=0.6998

TAAA=0.8443 TTCA=0.7194 GATG=0.6937 CGTG=0.6993

Note: D. melanogaster wild-type Pearson correlation co-efficient outliers

(top ten and lowest ten) for different 4-mer motif sequence pairs at 10,
50, 100 and 200 bp spacings.

observed for the other possible spacings.

5. Conclusions

In this paper we have presented a novel analysis of RNA-seq data that is based on

individual reads rather than normalised estimates of exon expression. This has been

implemented using Spark and more specifically the MapReduce formalism to make

use of the massive parallelism to process these data sets.

We have found that motif-pair correlation is dependent on mean exon GC con-

tent and motif GC content, with high GC content showing poorer correlations.

Correlations taken from motifs with runs of Gs (or their complement) were of the

lowest rank. No other motif bias (particularly for high correlations) was found. Fur-

ther analysis indicates that for the wild type D. melanogaster data set this effect is

apparently independent of mean exon GC content. A mild dependence was found

for the mutant D. melanogaster data set. A valid question is whether the system-

atic differences seen between these data sets is a product of the difference in the

expression patterns between the wild type and mutant. In order to address this we

note these are two RNA-Seq data sets that have been generated in the same lab,

same species and tissue. It is reasonable to assume that the protocols to prepare the

sample and performing the sequencing are the same. There are differences in the

transcriptomes because of the genetic perturbation; however we expect that only

to be a fraction of the overall change in exon’s expression and splicing. Hence the
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Fig. 8: Box plots for wild and mutant-r2 type D. melanogaster datasets comparing

motif GC content of 50% vs 100% at 100bp spacing. In the wild type there is a

clear dependence of correlation on motif GC content. This effect is less pronounced

in the mutant-r2 type but there is still a decrease in correlation which also show a

wider spread than that of wild-type.

changes in correlations should remain overall relatively small. What is observed are

changes in correlations that represent a much more significant change in the distri-

bution of the short reads between these two data sets. Hence there is a source of

variance that is unaccounted for between these data sets. Future work in applying

our method to different RNA-seq datasets for other species, especially those with

GC extremes, would further characterise the GC bias as a source of variance in the

distribution of mapped reads to exon transcripts. Interestingly, it has been found

that G/C ending codons usage generally increases with increasing GC bias and de-

creases with increasing AT bias [23]. Our method could therefore also be applied to
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investigate and model GC3 codon usage bias (that is the GC content of the third

base), which is highly correlated with overall GC bias, across multiple potentially

large datasets.

Our analysis method constitutes a novel and very different approach to investi-

gating bias in RNA-seq data. Our methodology has been conceived for and designed

at the molecular and transcript level, i.e. from the bottom up as the exon is the

atomic i.e. “non-reducible” unit of the transcription process [31]. In light of the

ever increasing amount of publicly deposited data, we have implemented the anal-

ysis using the MapReduce programming paradigm. In addition to facilitating the

processing of large datasets this also allows for scalability and integration into other

analysis pipelines and public datasets.
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