
TASK SCHEDULING AND MERGING
IN SPACE AND TIME

by

LENKA MUDROVÁ

A thesis submitted to
University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
University of Birmingham
June 2017

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

ABSTRACT

Every day, robots are being deployed in more challenging environments, whe-

re they are required to perform complex tasks. In order to achieve these tasks,

robots rely on intelligent deliberation algorithms. In this thesis, we study two de-

liberation approaches – task scheduling and task planning. We extend these ap-

proaches in order to not only deal with temporal and spatial constraints imposed

by the environment, but also exploit them to be more efficient than the state-of-

the-art approaches.

Our first main contribution is a scheduler that exploits a heuristic based on Al-

len’s interval algebra to prune the search space to be traversed by a mixed integer

program. We empirically show that the proposed scheduler outperforms the state

of the art by at least one order of magnitude. Furthermore, the scheduler has been

deployed on several mobile robots in long-term autonomy scenarios.

Our second main contribution is the POPMERX algorithm, which is based

on merging of partially ordered temporal plans. POPMERX first reasons with

the spatial and temporal structure of separately generated plans. Then, it merges

these plans into a single final plan, while optimising the makespan of the merged

plan. We empirically show that POPMERX produces better plans that the-state-

of-the-art planners on temporal domains with time windows. Note that the res-

ults presented in this thesis have been significantly improved. Please refer to our

journal paper.

To girls and women around the world,

who are told that they cannot follow their

dreams.

ACKNOWLEDGEMENT

My deepest gratitude goes to my supervisor Dr. Nick Hawes. He was the best

supervisor I could hope for. I do not have enough space here to list all the things

he did to support my research and personal growth. I would thus like to highlight

the most important ones. First, I am grateful for the amount of freedom I got to

direct the scope of this thesis. Second, he was always there for me to listen and to

help when I was getting lost. He showed me that there is a life beyond research.

I am very grateful for all my colleagues and friends. A special thanks goes out

to Dr. Bruno Lacerda, who was my second supervisor. He was always ready to

give me advice. Also, he was my regular partner in crime during long nights be-

fore paper submission deadlines. He was also great to hangout and have fun with.

My gratitude goes to Prof. Manuela Veloso from Carnegie Mellon University for

hosting me during my research visit. The visit of her group was life-changing. I

would like to also thank Dr. Lars Kunze and Dr. Chris Burbridge for advice es-

pecially at the beginning of my studies. Furthermore, I would like to thank Prof.

Jeremy Wyatt and Dr. Mark Lee for valuable feedback on my progress, all mem-

bers of the STRANDS project, who made this project a big success and my exper-

ience wholly enjoyable and all the participants of the Örebro Winter School and

the IEEE-RAS Summer School for their ideas and the fun we had together. Last

but not least, I would like to thank all members of the CORAL group at CMU

who made my stay pleasant.

I would have never started this PhD if I had not met Jaroslav Halgašík. His

support was critical for my decision to go study abroad. My life could have been

also completely different if Mrs. Molitorisová had not been my math teacher in

middle school. She supported me in my rebellion against social norms when I

chose to study at a high school focused on electrical engineering. I am also very

grateful to Dr. Jan Faigl, who was my supervisor for my bachelor and master

thesis, for all his feedback regarding my academic work and for his support.

I would also like to thank those outside of academia. I would like to say thank

you to my partner Christoph for what he is and for his continued support; to my

parents for all their support throughout my life and for managing to stay sane

when I moved out; to Rusty, our dog, for removing my stress; to my brother Olda,

who has been my best friend since I was born; to his wife Radana for making him

happy; and especially to my nephews Oldík and Filípek for their warm hugs and

never ending supply of positive energy.

My life would not be same without my friends. A special thank you goes out

to Lenka Caletková and Nerea Luis for not only being my soul mates, but also for

all the great laughs and cries we shared. I am very grateful to all my friends from

the University of Birmingham: to Mohab Elkaref, Bram Geron and Rusen Umit

for being ready to listen to me any time; to Tomáš Jakl, Christian Reuther, Cory

Knapp, Michael Denzel, Fani Tsapeli, Yuning Feng, Ferdian Jovan and Khulood

AlYahya for all hang outs. Thank you to my friends outside of the Computer Sci-

ence building: Giedrius Kudelis, Elisa Lauricell and Denise Hebersberger; and to

my previous classmates: Martina Jirkalová, Honza Černý, Ondra Marcinka, On-

dra Hrstka, Tomáš Juchelka, Honza Zábojník, Petr Vaněk, Aleš Ondráček, Filip

Jareš, Tereza Hyková, Karol Bujaček, Honza Neužil and Ondra Kreibich.

My gratitude goes to all my robotics friends, who have encouraged me and co-

operated with me: to Jaroslav Halgašík, Dávid Demčák, Karel Lenc, Karel Lebeda

and others from team FELaaCZech; to Tomáš Novák, Monika Lacinová, Matouš

Pokorný, Michal Vokáč, Marek Peca, Sean Bastable and particularly to Manolis

Chiou; and finally, to robots Bob and Henry for participating in my experiments.

Finally, none of my studies and travels would have been possible without my

funding. The research leading to the results presented in this thesis has received

funding from the European Union Seventh Framework Programme (FP7/2007-

2013) under grant agreement No 600623, STRANDS. Additionally, I would like to

thank the organisers of The First Örebro Winter School on Artificial Intelligence

and Robotics for allowing me to attend their winter school.

CONTENTS

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Example Scenario . 3

1.2 Scope of the Thesis . 5

1.3 Contributions and Related Publications 7

I Scheduling 9

2 Introduction 11

2.1 Additional Assumptions . 13

2.2 Example of Scheduling with Spatial Constraints 14

2.3 Organisation . 14

3 Related Work 16

3.1 Scheduling . 16

3.1.1 Vehicle Routing Problem . 16

3.1.2 General Task Scheduling . 18

3.2 Planning . 19

3.2.1 Action Description Languages 19

3.2.2 Hierarchical Task Planning 21

3.3 Summary . 21

4 Problem Definition 23

4.1 Task . 23

4.1.1 Standard Task . 23

4.1.2 Extensions . 24

4.2 Scheduling as an Optimisation problem 25

4.2.1 Problem Statement . 25

5 Solution 27

5.1 Scheduler . 28

5.1.1 Big M method . 28

5.1.2 Proposed Extensions . 30

5.2 Control Framework . 36

5.2.1 Task Executor . 38

6 Evaluation 40

6.1 Standalone Scheduler . 40

6.1.1 Simulated Data . 40

6.1.2 Data from a Robot . 42

6.1.3 Summary . 48

6.2 Scheduler with Travel Times Estimates 48

6.2.1 Influence of Environment Dynamics 50

6.2.2 Adaptive Scheduling using Travel Time Estimations 52

6.2.3 Summary . 53

7 Conclusion and Discussion 54

7.1 Limitations and Future Work . 55

II Temporal Planning 57

8 Introduction 59

8.1 Motivation Example . 61

8.2 Research Scope . 62

8.3 Organisation . 63

9 Related Work 65

9.1 Temporal Planning . 65

9.1.1 State-Based Approach: PDDL-based planners 67

9.1.2 Time-Based Approach: Timelines planners 72

9.1.3 Summary . 77

9.2 Plan Merging . 78

9.2.1 Action Merging . 79

9.2.2 Plan Merging as Refinement planning 79

9.2.3 Plan Merging as Plan Repair 81

9.2.4 Plan Merging as Plan Coordination 82

9.2.5 Plan Merging with Timelines 82

9.3 Chosen Representation for Plan Merging 83

10 Terminology 84

10.1 State . 84

10.2 Action . 85

10.2.1 Instantaneous Action . 85

10.2.2 Durative Action . 85

10.2.3 Instantaneous Action as an Action Point 86

10.3 Distinctive Actions . 87

10.3.1 Example . 89

10.4 Plan . 90

10.4.1 Partial Order Plan . 91

10.4.2 Backward-Chaining Plan-Space Planning 92

10.4.3 Required Concurrency . 93

10.5 Task . 94

10.5.1 Task Instances . 94

10.5.2 Task Dependency . 95

11 Problem Definition and Solution Approaches 97

11.1 Problem Statement . 97

11.2 Solution Approaches . 98

11.2.1 Sequencing planning algorithm 98

11.2.2 Conjoining planning algorithm 98

11.2.3 Merging planning algorithm 99

12 Solution 100

12.1 POPMERX . 101

12.1.1 Search State . 103

12.2 Example . 104

12.3 Terminology Related to Plan Merging 108

12.3.1 Extending POP definition . 108

12.3.2 Joining Plans . 109

12.3.3 Plan Segment . 111

12.3.4 Satisfied Goals . 112

12.4 Preprocessing via Problem Relaxation 113

12.4.1 Example . 113

12.4.2 Elimination of Demands . 114

12.4.3 Automatic Relaxation . 114

12.5 Planner . 116

12.6 Plan Merging with Instantaneous Tasks 116

12.6.1 Reasoning and Managing . 116

12.6.2 Backtracking . 117

12.6.3 Heuristic Candidate Selection 118

12.6.4 Merge Algorithm . 120

12.6.5 Flaw Check . 121

12.7 Plan Merging with Durative actions 121

12.7.1 Reasoning and Managing . 122

12.7.2 Heuristic Candidate Selection 123

12.7.3 Merge Algorithm . 127

12.7.4 Example . 128

12.8 Plan Merging with Durative Actions and Time Constraints 129

12.8.1 Reasoning and Managing . 130

12.8.2 Heuristic Candidate Selection 131

12.9 POPMERX Summary . 131

13 Evaluation 134

13.1 Methodology . 135

13.2 Planning with Durative Actions . 137

13.2.1 Domains and Problems . 138

13.2.2 POPMERVHPOP in Comparison to VHPOP 140

13.2.3 POPMERIPC3-VHPOP on the Driverlog Domain 144

13.2.4 POPMERO-VHPOP on the TMS domain 150

13.2.5 Summary . 151

13.3 Planning with Durative Actions and Time Constraints 151

13.3.1 Domains and Problems . 152

13.3.2 Time Windows with Large Overlaps 154

13.3.3 Time Windows with Small Overlaps 159

13.3.4 Summary . 162

13.4 Conclusion . 162

14 Discussion and Conclusion 165

LIST OF TABLES

6.1 Runtime of the schedulers dependent on the size of a task group. . 41

6.2 Runtime of the schedulers dependent on the amount of equal tasks. 42

6.3 Comparison of cases where no valid schedule is found 45

6.4 The results of travel time estimates on the dataset. 51

13.1 The comparison of AIPCscore, coverage and three quartiles 145

13.2 The comparison of AIPCscore and the three quartiles of RIPCscore

achieved by OPTIC on problems with large (LTW) and smaller (STW)

time windows. 158

13.3 The comparison of AIPCscore and the quartiles of relative scores

for problems solved by OPTIC on randomly generated (RR) and

sequentially generated (SR) release dates. 159

LIST OF FIGURES

1.1 An example of a building layout and the corresponding topological

map, where edge weights are ignored for clarity of the picture. Ad-

ditionally, highlighted nodes refer to the locations needed by the

introduced tasks. 4

2.1 Two schedule possibilities: either (a) ω1 precedes ω2 or (b) ω2 pre-

cedes ω1. The estimates E12, E21 of travel times between the eating

area and the first emergency exit may significantly differ based on

the order of tasks. 13

5.1 For these Allen’s relations of time windows, we add neither the

constraint Eg. 5.4 nor Eq. 5.5. 32

5.2 For these Allen’s relations of time windows, we add only constraint

Eg. 5.4, i.e., that ωi precedes ωj . 32

5.3 For these Allen’s relations of time windows, we add only constraint

Eg. 5.5, i.e., that ωj precedes ωi. 32

5.4 For these Allen’s relations of time windows, we first compute the

total completion time for both situations, i.e. either ωi precedes ωj or

vice versa. Then, we choose the situation, which locally minimises

the total completion time. 32

5.5 The architecture of the proposed control framework, see Sec. 5.2 for

an explanation. 37

6.1 The mobile robots Bob and Henry during their deployment. 43

6.2 The tasks performed by the robot. Key: yellow, object checks; red,

door checks; purple, 3D mapping; pink, object search; orange, wait-

ing. 44

6.3 The comparison of the schedulers in the G4S and HdB scenarios

based on their speed and quality of the found schedules. 46

6.4 A detail of the topological map traversed by the robot in the secur-

ity scenario. Blue edges are within an open space, but the red edges

highlight doors. 49

6.5 Selected estimated relative travel times ∆EX . For example, the travel

time for the path from node 4 to 0 is underestimated in the data

W0, as the nodes are relatively close to each other. However, the ro-

bot had difficulty to navigate between them due to very restricted

space. However, this estimate is adjusted in theW1 andW2 estimates. 51

6.6 Schedules using different methods for travel time estimates. White

space between tasks represent the expected time to travel between

tasks’ locations. Yellow represents object checks; purple 3D map-

ping; pink object search. Finally, different shades of tasks represents

that tasks were in different locations. 52

8.1 The comparison of sequencing, conjoining and merging approaches

how to obtain a plan for tasks ω1 and ω2. The arrows in (c) represent

what actions from the input plans have been reused in the merged

plan. 63

9.1 The state-based approach to temporal planning operates only with

a sampled view of a state variable x. In contrast, the time-based

approach views the state variable as a temporal function. 66

10.1 The action a has three literals as the preconditions and one effect.

In (a), all the preconditions are true (T) at the state s1 and any de-

leter of the literals, making them false (F), is ordered after they are

needed, such as deleter a− of pre(a)↔ appearing at time τ− > τa.

The interval ϑ1 highlights where the invariant precondition is pro-

tected. In (b), the precondition pre(aa) is false in s1 but the achiever

a+ makes this literal true at the time τ+ < τa. Moreover, this literal

may be threatened within the interval ϑ2, hence any deleter must

occur outside of this interval. 90

12.1 The proposed algorithm consists of three layers: optional prepro-

cessing, an integrated state-of-the-art planner and the core of the

algorithm at the bottom where merging of partially ordered plans

is done. See Sec. 12.1 for detailed description. 102

12.2 Details of partially ordered plans for task ω1 (a) and ω2 (b). The ar-

rows visualise the causal links between actions. The dots represent

that there are more actions in the plan. 105

12.3 The effect literal (not l1) of action a21 belonging to the plan of task

ω2 imposes a threat on the causal link START
l1−→ a11 belonging

to the task ω1. Therefore, the POP planner would need to add an

ordering (marked by dashed line) to solve this threat. This ordering

represents the dependency between both tasks. In order to prevent

this dependency, literal l1 would be relaxed. 115

12.4 Details of partially ordered plans for task ω1 (a) and ω2 (b). The ar-

rows visualise the causal links between actions. The dots represent

that there are more actions in the plan. 128

13.1 The comparison between original VHPOP (left column) and the

version from the third IPC (right column). 142

13.2 The comparison of RIPCscores for planners, which (a) support the

required concurrency and (b) do not, on the Driverlog domain. . . 144

13.3 The dependencies between consumed memory/runtime and RIPCscores

of all solutions provided by DAEYAHSP, YAHSP and TFD. 147

13.4 Memory and time scalability of different planners 149

13.5 Memory and time scalability of different planners 150

13.6 A comparison of POPMERIPC3-VHPOP and OPTIC on the problems

with with large and smaller time windows. 156

13.7 The comparison of POPMERIPC3-VHPOP and OPTIC on the problems

with with impossible time windows. 157

13.8 The comparison of POPMERIPC3-VHPOP and OPTIC on the problems

with with sequential or random release dates. 161

13.9 The comparison of runtimes of POPMERIPC3-VHPOP on problems with

different time windows. 163

A single A set Meaning
symbol

A
a set of actions that can be used to establish a
plan,
they are defined by an operator

a A an action from a plan
a` A` an action start point defined as (a, t`)
aa Aa an action end point defined as (a, ta)
a`` A`` any action point
a⊥ A⊥ an instantaneous action defined as (a, 0)
a+
f A+ an achiever of atom f / a set of all achievers
a−f A− a deleter of atom f / a set of all deleters
acan`` Acan`` a candidate action point that can be merged

Acans
a set of candidates that could be merged in the
state S

aapp`` Aapp``
an action point that is applicable in the current
state

ainapp`` Ainapp``
an action point that is inapplicable in the
current state

B a set of bindings
d a deadline
D a domain
E(lei , l

s
j) an estimate of travel time

eff(a) an effect of an action a
f F an atom

F+ atoms holding in the current state S
F− atoms not holding in the current state S

G G a goal state of a planning problem
i an index of a task in a set
I an initial state of a planning problem
j an index of a task in a set
` L a causal link
l L a literal

LS a set of literals currently holding in state S
lsi , lei a start or an end location of a task
n an amount of tasks
ω Ω a task
ωΩ a single task consisting of all tasks from set Ω
ω× Ω× a task with a relaxed initial state
O O an ordering

A single A set Meaning
symbol
p duration of an action or a task
P a planning problem
P join a planning problem solved by a joining plan
pre(a) a precondition of an action a
π Π a plan
πi Πω a plan how to achieve a task ωi
πf a final plan
πjoin Πjoin a joining plan, see Def. 12.3.8
πs a plan how to achieve state S
π×i Π× a plan solving task ω×i
r a release date
S a search state during merging
ts a time stamp of state S
X a temporal planner
γG a goal related flaw
γA an action related flaw

CHAPTER 1

INTRODUCTION

The first robot which was able to not only act within its environment, but also

deliberate about its actions, was the general-purpose mobile robot Shakey (N. J.

Nilsson, 1984). Despite Shakey being introduced more than 50 years ago, the

world has seen very little deployment of deliberation techniques onto physical

systems that would autonomously act in the real world. One reason behind this is

the following phenomena. Deliberation algorithms (e.g., planners) utilise a model

of the real world in order to determine a plan for how to act in the environment.

For the plan to be successfully performed in the environment, the modelling lan-

guage must be able to express all the necessary properties of the environment.

Shakey’s success was that it operated only in a simplified world that could be

modelled by the proposed STRIPS modelling language. STRIPS allows to model

causal relationships between actions, but it does not support modelling of tem-

poral relations between them. Moreover, STRIPS does not support other features

that may be critical for a real world deployment. For example, a plan may fail due

to a shortage of energy. To summarise, the expressibility of a modelling language

is a factor that limits the deployment of real systems, such as robots, in the real

world.

Modern modelling languages have overcome some of these limitations. We

see a variety of languages that support temporal planning, planning under uncer-

1

tainty, planning with continuous resources, etc. Because the modelling languages

have more expressive power, the search space of planners utilising them becomes

larger and possibly harder to structure. Therefore, planners utilising these lan-

guages may have limited scalability and slow computational speed. This is the

second aspect that limits the deployment of real systems with deliberation in the

real world. Therefore, the motivation of this thesis is how scalability and perform-

ance of deliberation techniques can be improved.

One of the two techniques we study is temporal planning. We focus on tem-

poral planning because it is critical for mobile service robot applications, in which

we are interested. For example, imagine a user giving the task “Come to my office

at 10:00 and collect a letter” to a robot. The task might not be valid after this time,

and if the robot fails to respect this time constraint the user would have to do the

task themselves.

Modern temporal planners, such as the CHIMP (Stock, Mansouri, Pecora and

Hertzberg, 2015) and the FAPE (Bit-Monnot, 2016), exploit hierarchical planning in

order to increase their scalability. In hierarchical planning, a human predefines

how a task can be decomposed into actions to satisfy its goal. This saves planning

effort because the planner does not have to find the sequence of actions by itself;

it only expands the task into the actions. The idea of hierarchical planning can be

generalised in the following way. The predefined tasks will become atomic, i.e.,

they will not be decomposed, and a deliberation system will decide only on their

order. Such an approach is taken by scheduling techniques, which are the second

deliberation techniques that we study in this thesis.

Scheduling addresses the temporal constraints imposed on tasks. The con-

straints limit the occurrence of a task in time by specifying a time window. Time

windows are typically specified by a release date (the earliest time when a task

can start) and a deadline (the latest time when a task must end). Besides the tem-

poral constraints, physical systems (such as robots) are also restricted by spatial

2

constraints, such as tasks are required at different locations or a robot can trans-

fer only one object at a single time instance, etc. These constraints can be either

static or dynamic. Considering dynamic spatial constraints is very important for

the deployment of a real system. For example, a robot’s travel between two loca-

tions can consume very different amounts of time depending on the time of day

because the environment changes as a result of human activities.

In summary, this thesis addresses scheduling and temporal planning tech-

niques in order to not only increase their scalability, but also to better accommod-

ate temporal and spatial constraints. Our main motivation is the application of

these deliberation techniques onto a mobile service robot. Nevertheless, the de-

veloped techniques are not limited to this application. The addressed problem

can be illustrated by the following example, which is going to be used throughout

this thesis.

1.1 Example Scenario

Consider a mobile service robot operating in an office building. It autonom-

ously performs tasks to assist the occupants in their everyday activities. Human

activities are largely based on schedules, e.g. they need to be at work, at meetings,

at the airport to take a flight for a holiday, etc., at specific times. Therefore, an as-

sistant robot must respect the given time constraints of tasks in order to satisfy

humans’ expectations. One can imagine a wide array of tasks for such a robot to

perform. For example, some tasks may be given on a daily basis in a routine:

• ω1 : “Notify people in a common eating area to leave between 20:00 - 20:15.”

• ω2 : “Check if the emergency exits are clear every 2 hours.”

Other tasks, so called on-demand tasks, are requested by the occupants any time

during a day:

3

• ω3 : “Come to the reception now, pick up the letters and distribute them

during the rest of the day.”

• ω4 : “Get John a cereal bar from a vending machine and bring it to him before

14:00.”

Additionally, tasks are associated with different locations. In this example,

the robot navigates on a topological map, see Fig. 1.1, which is represented as

a weighted graph. Each location where the robot can perform a task is a node and

a directed weighted edge from one node to another represents that the robot can

travel between these nodes. The weight of an edge corresponds to how many time

units the journey would consume if it were travelled by the robot. The travel in

the opposite direction may consume a different amount of time. Moreover, these

travel times are often affected by people’s activities. As a result, the travel time

between two locations are dependent on the time of day. For example, the travel

Emergency exit (EX1)

Emergency exit (EX2)

Eating Area (EA)

John's office

Vending machines

Reception

Figure 1.1: An example of a building layout and the corresponding topological
map, where edge weights are ignored for clarity of the picture. Additionally, high-
lighted nodes refer to the locations needed by the introduced tasks.

4

through the common eating area may be significantly faster in the morning than at

a lunch time. As a result, deliberation techniques should consider such a property

in order to optimise the robot behaviour.

1.2 Scope of the Thesis

Our motivation is to develop deliberation techniques that will support a sys-

tem operating in the real world, such as a mobile service robot. However, our

developed techniques are general enough so that they can be deployed on any

system obeying the following assumptions.

A1 All tasks are performed by a single agent only.

A2 The state is fully observable and actions have deterministic effects.

A3 Resources required by a task are not considered.

A4 Tasks are separable. A task is separable if there exists no other task that must

precede it or follow it, i.e. there is no ordering constraint between tasks. This

is typically the case of tasks required by different users. Inseparability can

be illustrated on the case when a customer orders a starter and a main. The

preparation of two meals can be viewed as two tasks. However, the task

related to the starter must be finished before the main.

A5 The tasks are restricted in time by their time windows. Each task must be

performed strictly within its window.

A6 Tasks are restricted by spatial constraints.

A7 The spatial and temporal constraints related to two tasks may interact. In the

literature, this is recognised as dependency between tasks. Note that separab-

ility does not mean the same as independence between tasks. Independence

5

is stronger. For example, bringing a bar to John is dependent on picking up

letters from the reception, as the robot cannot be at different locations at the

same time. Hence, these tasks needs to be ordered in a sequence due to their

dependency. However, carrying the bar while carrying the letters is inde-

pendent, i.e., these tasks can be ordered in parallel.

A8 Tasks are given in sets (referred to as batches).

While assumptions 1-3 limit the addressed problem, the assumptions 5-7 ex-

tend it. The fourth assumption could be avoided by modelling inseparable tasks

as one bigger task. Hence, we argue that it does not really limit our problem.

The interactions between constraints related to different tasks can be classi-

fied into “synergies” and “demands”. Synergies refers to interactions, which can

be exploited in a plan. For example, the locations visited while executing task ωi

might also be of use for executing task ωj . In mobile robot domains, travel time

between locations is the biggest contributor to the cost of plans. Therefore, we are

interested in developing a system that will exploit as many synergies as possible.

Such a system would minimise the cost of plans. In contrast, demands refers to

interactions, which must be obeyed. For example, there is a demand caused by

conflicting spatial constraints of task ω1 and ω2. As each task is allocated at differ-

ent location, tasks need to be ordered as the robot cannot be at the two different

places at the same time.

Finally, processing tasks in batches (the eighth assumption) is one possible

technique that allows planning for sets of tasks. Another technique is a continuous

approach where a plan is made for the first task and then changed to accom-

modate the second task, etc. Because batch processing dominates scheduling and

temporal planning, we follow it as well. However, deploying batch scheduling

or planning onto a real robot raises one important issue. As the robot keeps re-

ceiving new tasks, it needs to obtain schedule/plan for a new batch either after

6

the previous batch is executed or shortly before its end. In both cases, the robot’s

performance can be optimised if there is an estimate on how long a scheduler/-

planner needs to produce the new schedule/plan. Therefore, a relevant property

of a scheduler or a planner is how deterministically it behaves on the given prob-

lems. We will elaborate on this property in the evaluation.

1.3 Contributions and Related Publications

This thesis is split into two parts. The first part focuses on scheduling. Thus, it

adds one more assumption that a task is represented as a single action to perform.

As a result, it reasons only about when a task should be executed in order to satisfy

all spatial and temporal constraints. Scheduling is traditionally modelled either as

a Constraint Satisfaction Problem (CSP) or as a Mixed Integer Program (MIP). In

our work, we build on the MIP formalisation as it naturally supports the notion

of optimising the found solution, i.e., finding the best schedule. Particularly, we

improve on a scheduler proposed by (Coltin, Veloso & Ventura, 2011), where our

contributions are as follows.

1. We propose a heuristic based on Allen’s interval algebra to prune the search

to be performed by a MIP. We demonstrate how this heuristic significantly

speeds up the developed scheduler and we contrast these results with per-

formance of Coltin’s et al.’s scheduler. This work has been published in

(Mudrová and Hawes, 2015).

2. Similarly to Coltin’s et al.’s scheduler, which is deployed on mobile robots

called CoBots, our proposed algorithm has been used on several mobile ro-

bots in long-term autonomy scenarios, where it schedules large sets contain-

ing a variety of tasks. Additionally, the scheduler is open-source1.

1https://github.com/strands-project/strands_executive

7

3. The developed scheduler is also integrated into a control framework for the

long-term task-driven control of mobile service robots. We illustrate how the

scheduler adjusts schedules during a day due to the impact of this frame-

work. This framework has been developed in cooperation with Dr. Bruno

Lacerda and Dr. Nick Hawes. It has been published in (Mudrová, Lacerda

and Hawes, 2015).

The second part of this thesis focuses on temporal planning. Therefore, our pro-

posed deliberation system does not only tackle when to perform a task but also

how. Exploiting the assumption that tasks are separable, our developed system

is based on merging of separately generated plans for each task. Our merging al-

gorithm builds on plan coordination which is well known in multi-agent domains.

Our contributions are as follows.

4 We propose a partial order temporal plan merging algorithm POPMERX that

is able to generate a plan for a large number of tasks while taking advantage

of possible synergies and respecting demands between such tasks. We demon-

strate how this algorithm performs very well in a comparison to the state-

of-the-art planners, such as OPTIC (Benton, Coles & Coles, 2012), TFD (Ey-

erich, Mattmüller & Röger, 2009) and YAHSP (Vidal, 2004). This work has

been published in (Mudrová, Lacerda & Hawes, 2016).

5 POPMERX supports task time windows while exploiting state-based plan-

ning. This expands the current state-of-the-art as PDDL 3.0 (A. Gerevini &

Long, 2005) supports modelling of deadlines but not of the release dates.

Modelling of release dates is possible in PDDL 2.2 (Edelkamp & Hoffmann,

2004) but it is very cumbersome.

6 We have released implementation of POPMERX and all testing domains as

open source1.
1https://github.com/mudrole1/POPMER

8

Part I

Scheduling

9

CHAPTER 2

INTRODUCTION

We are interested in a scheduler which receives as an input a set of tasks

and finds the time instants when the execution of those tasks should be started

while respecting given constraints. We build on the terminology from the classical

scheduling of jobs on machines in factories (Pinedo, 2012). However, we refer to a

task instead of a job, in order to unify this terminology with the rest of the thesis.

We build on the classical scheduling in order to unify the nomenclature from lit-

erature focusing on scheduling for robots, as it strongly varies. For example, the

term “scheduling” is often misused to solely describe the ordering of tasks or to

express the fact that a task has time properties (whether or not their execution is or-

ganised with reference to these properties). For example, ordering appeared (as

scheduling) for the robot RHINO (Beetz and Bennewitz, 1998) and expressing

time constraints appeared (again as scheduling) in the robot MINERVA (Thrun

et al., 1999), extending work from (Burgard et al., 1998).

In classical scheduling, a task requires to be a process on a machine with ad-

ditional resources. For example, a tool, a person or a certain level of energy may

be modelled as a resource for the task. In the scheduling community, three differ-

ent general scheduling problems are recognised based on how they address the

resources required by a task (Heinz & Beck, 2011): task scheduling (TS), resource

allocation (RA) and joint scheduling (TSRA). TS decides when a task should be

11

executed, i.e., it finds such a sequence of tasks so that all tasks can access their

required resources whilst the capacities of the resources are not violated. In con-

trast, RA focuses on a situation where tasks are already scheduled and dynamic

resources need to be assigned to the tasks. Finally, TSRA combines both of the

above problems. We focus on the task scheduling problem as the only considered

resource for a task is a single agent (due to assumptions A1 and A3). From now

on, we will refer to this problem only as “scheduling”.

Heinz and Beck (2011) defines the general scheduling as: “Given a set of tasks

that require the use of one resource from a set of alternative resources, a solution will

assign each task to a resource and schedule the tasks such that the capacity of each re-

source is respected at all time points.” However, this definition is incomplete because

a given scheduling problem can have more than one solution. Thus, a scheduler

also needs to solve an optimisation problem using an objective criterion to choose

one solution. Such criterion can be minimum makespan, which represents the re-

quirement that all the tasks are finished as soon as possible with minimal spaces

between them.

Such a scheduling problem is formalised as a set of three parameters (Pinedo,

2012). The first parameter describes a machine environment, the second specifies

the constraints and processing details to be obeyed and the third defines an op-

timisation criterion.

The assumptions A1 - A8 translate into the scheduling problem as follows. The

problem is constrained to a single machine environment due to the assumption A1,

which requires that all tasks can be executed by a single agent. On one hand, the

assumptions A2 - A4 simplify the processing details. Hence, the scheduler neither

allocates resources nor preserve ordering on tasks. On the other hand, processing

details must support that tasks are strictly performed in time windows (A5) and

the schedule considers spatial constraints as well (A6). The dependency between

tasks (A7) is recognised by a scheduling technique while optimising the solution

12

according to a chosen criterion. Finally, the scheduling problem is static, as the

set of tasks is known beforehand (A8) (Bidot, Vidal, Laborie and Beck, 2009). The

solution to this problem is to assign to each task its start of execution in a way

that no tasks overlap (the capacity of the single agent is respected) and all time

windows are respected.

2.1 Additional Assumptions

In addition to the main assumptions, scheduling adds the following assump-

tion.

A9 A task is a predefined inseparable sequence of steps.

This means that a task needs to be executed as a whole. Therefore, the scheduler

treats tasks as black-boxes, which means that it does not reason about tasks’ steps.

Furthermore, we set the following requirements for a scheduler based on the

demands of our case scenario. The speed of the algorithm is generally more im-

portant than the optimality of a final schedule, as we prefer the robot to act within

a reasonable time limit when given a task. This is motivated by the fact that users

need to wait for their tasks to be performed and the slow performance of the robot

may decrease their interest. Therefore, we set a limit for the scheduler that it must

provide a solution within three minutes.

2.2 Example of Scheduling with Spatial Constraints

Consider a robot that receives two tasks ω1: “notify people in a common eating

area to leave between 20:00 - 20:15” and ω2: “check if the emergency exits are

clear every 2 hours” from the case scenario. We will discuss later how the periodic

property of task ω2 can be handled. For now, let us assume that the task is required

13

(a) (b)

Figure 2.1: Two schedule possibilities: either (a) ω1 precedes ω2 or (b) ω2 precedes
ω1. The estimates E12, E21 of travel times between the eating area and the first emer-
gency exit may significantly differ based on the order of tasks.

to happen between 20:00 - 22:00 as a result of its periodicity. Task ω1 is associated

with the location “Eating Area (EA)”. Similarly, task ω2 is associated with two

locations EX1 and EX2, which are related to the two emergency exits. Therefore,

the robot must navigate to these locations first before the corresponding task can

be performed.

These spatial constraints can be reflected by ensuring that there is enough time

between two tasks to navigate between their locations. Moreover, this time is not

constant in the mobile robot domain. Recall that the travel time between two loca-

tions may be dependent not only on the direction but also on time during the day,

as discussed in the example scenario description. Fig. 2.1 illustrates this situation

where the travel time between two tasks ω1 and ω2 differs based on their order.

To conclude, we are going to describe the proposed scheduler that considers such

time-dependent spatial constraints.

2.3 Organisation

This part of the thesis is organised as follows. We first give a review of re-

lated work (Chapter 3). In our review, we focus on the literature related to ro-

bots performing tasks with temporal constraints. Because scheduling is a very

14

broad field, we refer the interested reader to a comprehensive overview given in

(Pinedo, 2012). In Chapter 4, we formalise the introduced scheduling problem and

related terminology. Then, we introduce our proposed scheduler in Chapter 5. The

evaluation in Chapter 6 contrasts this scheduler with a state-of-the-art scheduler

(Coltin et al., 2011). We first compare their properties on simulated data in order

to observe how different dataset properties influence the schedulers behaviour.

Furthermore, as our scheduler was deployed on a number of robots in long-term

scenarios, we compare the schedulers on the data collected during these deploy-

ments. We conclude by discussing the advantages and disadvantages of our ap-

proach.

15

CHAPTER 3

RELATED WORK

The boundary between scheduling and temporal planning is unclear (Smith,

Frank & Jónsson, 2000), as both fields overlap. Therefore, we review and analyse

different techniques from both disciplines which are able to address the problem

considering assumptions A1 - A9. In the review, we focus on how these techniques

support task execution on mobile robots operating in the real world.

3.1 Scheduling

The introduced case scenario can be simplified into different sub-problems that

can be solved by techniques related to Vehicle Routing Problem (VRP). The full scen-

ario can be addressed either by Mixed-Integer Programming (MIP) or as a Constraint

Satisfaction Problem (CSP).

3.1.1 Vehicle Routing Problem

VRP focuses only on optimising the travel cost of robots traversing between

different locations. Therefore, the tasks are neglected. Furthermore, VRP can be

extended into a Pick up and Delivery Problem (PDP) (sometimes also refered to as a

Collection and Delivery Problem), which assumes only one type of a task: an object

16

delivery. In this problem, a robot needs to pick up an object in one location and

deliver it to another. PDP extends the VRP problem by adding two constraints:

C1 the same robot visits the pick up and delivery destination;

C2 the robot has a limited capacity in how many objects it can transfer.

Furthermore, two sub-problems are recognised: with or without preemption. In

the former case, a robot can be interrupted to collect another item as long as its

capacity allows. In the latter case, the robot must first deliver the current object

before picking up another. Finally, VRP and PDP is also extended to handle Time

Windows (VRP-TW, PDP-TW), where robots must visit the locations within spe-

cified time windows, as in our example scenario. The preemptive PDP-TW with

limited capacity is addressed by the ARIADNE robots (Surmann & Morales, 2002).

Coltin and M. Veloso (2014) further extend the PDP to accommodate the pos-

sible transfer of the picked up object onto another robot which will finish the de-

livery (PDP-T). Hence, the constraint C1 is omitted. The motivation behind such

problem is that the delivery times and cost may be improved by dividing the la-

bour among several robots.

The PDP-TW with preemption is further extended into Flexible Manufactur-

ing System (FMS). In FMS, a fleet of mobile robots must ensure that static ma-

chines have enough material to process. Additionally, the robots may perform

some manufacturing themselves. However, these tasks can be preempted when

needed because the transformation of the material has higher priority than the

manufacturing. The goal is to minimise the makespan of the resulting schedule.

Finally, FMS can be solved using either MIP techniques (Nielsen, Dang, Nielsen &

Pawlewski, 2014) or via a heuristic approach based on an genetic algorithm (GA)

(Dang & Nguyen, 2016).

17

3.1.2 General Task Scheduling

Mixed-Integer Programming (MIP) and Constraint Satisfaction Problems (CSPs)

are popular techniques to model scheduling problems. In particular, Simple Tem-

poral Networks (STNs) (Dechter, Meiri & Pearl, 1991) are very popular network-

based methods to solve scheduling CSPs. The main difference between MIP and

CSP is in how they deal with the combinatorial explosion (Booth, Tran, Nejat &

Beck, 2016). Booth et al. (2016) have compared both techniques in a scenario where

robot Tangy interacts with humans in order to schedule games for them. They

have proven that both methods are appropriate approaches to use for scheduling

on mobile service robots. Additionally, they have illustrated that both techniques

are faster than the previous version of Tangy’s controller (Louie, Vaquero, Nejat

& Beck, 2014) that has exploited the OPTIC planner (Benton et al., 2012).

Additionally, STNs are used in a robot which monitors the activities of an eld-

erly person (Cesta et al., 2011). The activities and their time relations are prepared

by a carer beforehand and they are mapped to a temporal constraint language

in O-Oscar architecture (Cesta, Cortellessa, Oddi, Policella & Susi, 2001), which is

built on top of an STN. Furthermore, Coltin et al. (2011) have proposed a scheduler

based on MIP for the CoBots project (M. M. Veloso et al., 2012), where multiple in-

door robots operate in an office building.

MIP is also used for multi-robot missions, where a fleet of robots needs to sat-

isfy tasks by cooperating (Korsah, Kannan, Browning, Stentz & Dias, 2012). As

a result, their schedules need to be synchronised. Additionally, MIP can be also

exploited to handle detailed spatial constraints while allocating tasks to differ-

ent robots. For example, a fleet of robots is scheduled to patrol regions of interest

(Atay, 2007) while scheduling has considered the physical limitations imposed by

the environment. Especially in such scenarios, it may be beneficial to run a sched-

uler longer in order to obtain a more precise solution. Therefore, Li, Sweeney,

18

Ramamritham, Grupen and Shenoy (2003) present a scheduler that returns differ-

ent feasible solutions depending on the given resources, such as time to operate.

3.2 Planning

Planning would represent the scheduling problem by representing tasks as

actions. Chen, Jin and Yang (2012) recognise three categories of how actions can

be modelled. The two most related to us are:

• actions are specified by their preconditions and effects, as in PDDL;

• actions are abstractions, as in Hierarchical Task Networks (HTNs).

While the first category focuses on the support of general automated planning,

the second category provides the abstractions in order to improve search effi-

ciency. We review several robot applications for both categories. Nevertheless, not

all reviewed techniques support temporal planning. However, they are still very

relevant to us as they address very similar scenarios to ours.

3.2.1 Action Description Languages

The STRIPS language (Fikes & Nils J. Nilsson, 1971) was the first action de-

scription language (ADL) used to model problems for the robot Shakey (N. J.

Nilsson, 1984). STRIPS was further extended into PDDL (M. Ghallab et al., 1998),

B and C languages (Gelfond & Lifschitz, 1998). The language C was further exten-

ded into C+ (Giunchiglia, Lee, Lifschitz, McCain & Turner, 2004), which provides

easy-to-follow concepts on how to model some important features for task execu-

tion, such as concurrent or non-deterministic actions. Furthermore, BC language

combines features of B and C+ (Lee, Lifschitz & Yang, 2013). As a result, BC lan-

guage supports indirect and recursive effects of actions. C+ and BC languages are

19

widely used to model mobile service robot scenarios. Additionally, their advant-

age is that they can be translated into an answer set programming problem (ASP)

and solved by existing ASP solvers.

3.2.1.1. PDDL

As mentioned previously, the social robot Tangy schedules multi-user activit-

ies, while considering users’ schedules (Louie et al., 2014). The robot performs

only two tasks – performing the game Bingo for more users and reminding a

single user about an upcoming game. It uses the OPTIC temporal planner (Ben-

ton et al., 2012) that uses PDDL to specify a set of tasks and users’ schedules are

represented as Timed Initial Literals (TILs) (A. E. Gerevini, Haslum, Long, Saetti

& Dimopoulos, 2009).

Furthermore, the ROSPlan (Cashmore et al., 2015) is a general framework that

allows for a task planner to be embedded into the Robot Operating System (ROS),

a middleware widely used in the robotics community. As a proof of concept, ROS-

Plan has integrated the POPF planner (A. J. Coles, Coles, Fox & Long, 2010), an

ancestor of OPTIC.

3.2.1.2. C+

The service robot Ke Jia (Chen et al., 2010) receives commands to pick and de-

liver some household objects. Another household scenario is described in (Aker,

Erdogan, Erdem & Patoglu, 2011), where a robot performs housekeeping tasks.

Furthermore, Havur, Haspalamutgil, Palaz, Erdem and Patoglu (2013) present

how C+ can be used to address the Tower of Hanoi puzzle, which has been pro-

posed as a robotics challenge as a part of EU Robotics coordination action in 2011.

Because a problem described by C+ can be transformed into a SAT problem by the

reasoner CCALC (McCain and Turner, 1997), Havur et al. (2013) have compared

20

C+ approaches with SAT (SATisfiability) approaches. Additionally, C+ language

can also be used to control Lego Mindstorms robots, as shown in (Caldiran et al.,

2009).

3.2.1.3. BC

Khandelwal, Yang, Leonetti, Lifschitz and Stone (2014) illustrate how BC lan-

guage can support planning with incomplete information. It exploits the feature

that a problem in BC can be translated into a problem of Answer Set Program-

ming (ASP). They build on the previous work of Erdem, Aker and Patoglu (2012).

Erdem et al. (2012) have extended the description of actions in ASP in order to

handle not only geometric constraints but also temporal reasoning about dura-

tions of actions. While their work finds the shortest plan to satisfy the goal within

pre-specified time constraints, the planner proposed by Khandelwal et al. (2017)

also considers the cost of each action. As a result, it optimises the robot perform-

ance. This planner has been deployed on BWIBots in mobile service robot scen-

arios.

3.2.2 Hierarchical Task Planning

Dvořák, Bit-Monnot, Ingrand and Malik Ghallab (2014) proposed an envir-

onment FAPE, which is based on hierarchical task planning. It closely integrates

planning and execution on robots, which has been demonstrated on the PR2 ro-

bot in a housekeeping scenario. Very similar concepts are exploited in the planner

CHIMP (Stock et al., 2015). This planner builds on the Meta-CSP planner (Rocco,

Pecora & Saffiotti, 2013a), which has been deployed on robots in a senior residen-

tial facility. The resulting problem contains causal, temporal, resource and inform-

ation constraints, which are encoded as a configuration plan. None of the afore-

mentioned approaches consider space constraints on objects. This is overcome in

21

(Mansouri & Pecora, 2014b).

3.3 Summary

The work of (Booth et al., 2016) on evaluating MIP and CSP in comparison

to the use of the OPTIC planner on robot Tangy is very important. As the authors

illustrated, MIP and CSP solved the problem significantly faster than OPTIC. Nev-

ertheless, this should not be a surprise. Planners, in general, address more com-

plex problems than just scheduling. Hence, their performance may be unnecessar-

ily cumbersome on simple problems. Additionally, planning is not required in this

part of the thesis due to assumption A9, which guarantees that there is already a

valid sequence of steps to perform for each task. As a result, we focus on schedul-

ing techniques, such as MIP techniques, because they are more widespread than

CSPs in mobile robot scenarios.

22

CHAPTER 4

PROBLEM DEFINITION

We are interested in a scheduler which receives as input a set of tasks and finds

the time instants when the execution of those tasks should be started. Addition-

ally, the imposed ordering on the tasks should minimise an optimisation criterion.

Furthermore, as only the case with a single robot is considered, the scheduler must

ensure that no tasks overlap.

4.1 Task

A task represents an instance of a behaviour that the robot should perform. We

refer to a single task by ω with numeric subscript i, for example, ω1. Its properties

– listed below – are then referred by the same subscript.

4.1.1 Standard Task

A standard task ωi is defined by three aspects: an activity, temporal constraints

and spatial constraints. The activity consists of a predefined sequence of steps πi to

perform. Temporal constraints reflect the fact that the task can start at release date

ri or later, and it must end before or at deadline di. Thus, the time window 〈ri, di〉

is defined for each task. The sequence of steps πi can start at any time instant si

23

within this time window, but it must finish at time ei which is before or at the

deadline. Furthermore, the task lasts for a certain amount of time, denoted as

processing time pi. As a result, the following equation must hold:

si, ei ∈ 〈ri, di〉 ∧ si + pi = ei. (4.1)

Finally, the spatial constraints reflect that a robot starts to execute the task at loc-

ation lsi and ends at location lei . Therefore, there may be a time gap between exe-

cution of two consecutive tasks because a robot must travel to different locations.

This gap has varying duration E(lei , l
s
j) dependent on the corresponding locations.

Finally, the task can be summarised as follows.

Definition 4.1.1. Standard task:

A task is defined as a tuple ωi = 〈(πi), (pi, ri, di, si, ei), (lsi , lei)〉.

4.1.2 Extensions

Additionally, our example scenario requires on-demand tasks. Because these

tasks need to be executed immediately, they do not have associated time window.

Moreover, these tasks are not passed into the scheduler; they are executed imme-

diately.

Definition 4.1.2. On-demand task:

An on-demand task is defined as a tuple ωi = 〈(πi), (pi, si, ei), (lsi , lei)〉.

Furthermore, standard tasks can also have different priorities ψi ∈ N. Priorities

are especially useful to deal with an oversubscribed situation, where a robot can-

not execute all the required tasks. Hence, some tasks, usually the ones with the

lowest priorities, are not performed. Additionally, tasks can also be preempted.

Therefore, we introduce an extended task.

24

Definition 4.1.3. Extended task:

An extended task is defined as a tuple ωi = 〈(πi, ψi, ιi), (pi, si, ei), (lsi , lei)〉, where a

boolean flag ιi signals if a task execution can be interrupted or not.

4.2 Scheduling as an Optimisation problem

Scheduling is formalised as an optimisation problem. This means that a sched-

uler tries to find the best schedule according to the given optimisation criterion.

In our case scenario, we especially want to achieve a high utilisation of the robot.

Hence, the best schedule should be as short as possible. This can be expressed as

minimising the schedule’s makespan. The makespan is defined as the latest com-

pletion time, i.e. max(e1, . . . , en), where n is the number of tasks. However, we

argue that the minimisation of the makespan cannot be used as the optimisation

criterion because it would minimise only the end time of the last task. This does

not necessary limit the other tasks, especially in the situation when the task time

windows do not overlap. Therefore, we minimise total completion time criterion∑
i∈{1...n} ei. This criterion ensures that all tasks end as soon as possible.

4.2.1 Problem Statement

Following the standard terminology (Pinedo, 2012), a scheduling problem is

formalised by three parameters α | β | γ, where α describes a machine environ-

ment, β specifies the constraints and processing details to be obeyed and γ defines

an optimisation criterion. The symbol | does not have any special meaning, it only

separates parameters into these three groups. Hence, the problem reflecting the

assumptions A1 - A9 can be formalised as the following scheduling problem. Note

that only standard tasks are supported within this problem.

25

1| r, setting ij, d |
∑

i∈{1...n}

ei , (4.2)

where

• 1 refers to scheduling for a single robot;

• r restricts that a scheduler must obey tasks’ release dates;

• setting ij stands for setting time needed between processing of task ωi and task

ωj .

• d refers to the fact that deadlines must be respected.

• ∑i∈{1...n} ei is the optimisation criterion referred as the total completion time.

Scheduling for a single robot implicitly includes the constraint that scheduled

tasks cannot overlap. Additionally, the time settingij corresponds to the temporal

gap between two tasks ωi and ωj . This gap is needed by a robot to travel from the

end location lei of task ωi to the start location lsj of task ωj , i.e., settingij = E(lei , l
s
j).

Note that a robot may take a different amount of time to travel from lei to lsj than in

the reverse direction, due to environmental constraints. A solution to this schedul-

ing problem assigns a start time instance si to each input task obeying its time

constraints.

26

CHAPTER 5

SOLUTION

In this chapter, we build on the scheduler proposed by Coltin et al. (2011). We

have chosen this scheduler because it has been used extensively in experiments

in real environments and it reliably solves scheduling problems in a scenario sim-

ilar to ours – fulfilling users’ tasks in large office buildings. It also satisfies our

requirements for release dates, deadlines and it considers travel times between

locations.

In contrast to this work, we contribute the three following extensions:

• Our proposed scheduler significantly increases the scalability of Coltin’s et

al.’s scheduler. This is achieved by heuristically pruning the search space.

• We have developed a control framework in order to support execution of

tasks by a real robot. This framework not only manages the incoming tasks,

but also controls and monitors their execution.

• The control framework handles on-demand tasks required by our example

scenario and extended tasks as well. The extended tasks are proposed in or-

der to allow an oversubscribed robot. Therefore, priorities and interruptibility

of tasks are used in order to decide which tasks should be executed by the

robot and which should be withdrawn.

27

5.1 Scheduler

We address the optimisation problem defined in Eq. 4.2 by Mixed-Integer Pro-

gramming (MIP), similarly to Coltin et al. (2011). MIP is intended to be used as

an optimisation technique for problems where variables have continuous and in-

teger domains. Importantly, the variables are limited with linear constraints and

the optimisation criterion is linear as well. In our work, we use the existing solver

SCIP (Achterberg, 2009). Finally, the scheduling problem can be reformulated into

the MIP problem:

min
∑

i∈{1...n}

ei (5.1)

subject to: ei = si + pi ∀i (5.2)

si ∈ 〈ri, di − pi〉 ∀i (5.3)

si + pi + E(lei , l
s
j) ≤ sj + A · pre ij ∀i, j (5.4)

sj + pj + E(lej , l
s
i) ≤ si +B · (1− pre ij) ∀i, j (5.5)

pre ij ∈ {0, 1} ∀i, j (5.6)

A = di + E(lei , l
s
j)− rj ∀i, j (5.7)

B = dj + E(lej , l
s
i)− ri ∀i, j (5.8)

These constraints ensure that all the time properties of the tasks are fulfilled (Eq.

(5.2) and Eq. (5.3)) and that no two tasks overlap (Eq. (5.4) and Eq. (5.5)). These

equations have been produced by the Big M method (Griva, Nash & Sofer, 2008).

5.1.1 Big M method

In general, two orderings are possible for a pair of tasks ωi, ωj , either “ωi pre-

cedes ωj” or “ωj precedes ωi”. This can be modelled as a disjunction of two con-

28

straints:
si + pi + E(lei , l

s
j) ≤ sj

∨

sj + pj + E(lej , l
s
i) ≤ si

(5.9)

In the worst case, there can be
(
n
2

)
combinations of disjunction pairs of constraints,

where n is the number of tasks. However, the disjunction of constraints cause

difficulties while solving them with MIP. Therefore, the motivation behind the

Big M method is translation of Eq. 5.9 into a conjunction of two constraints.

The Big M method modifies Eq. 5.9 in the following steps. First, let us assume

that task ωi precedes task ωj . In this case, the top equation in Eq. 5.9 would be true

and the bottom one false; the overall expression would be true. If the disjunction

is replaced by conjunction, the overall expression would be false. Therefore, the

bottom equation needs to be modified in the way that it will be true as well. How-

ever, it should not limit the solution. Therefore, the bottom equation must become

tautology in the case when ωi precedes task ωj . Hence, the Big M Method extends

the equation to become tautology:

si + pi + E(lei , l
s
j) ≤ sj

∧

sj + pj + E(lej , l
s
i) ≤ si +B

(5.10)

The value of B must be big enough that the equation holds, i.e., B ≥ sj + pj +

E(lej , l
s
i)−si. In order to find the biggest value forB, we can observe that sj+pj = ej .

The latest time when the task can end is at its deadline, thus ej = dj in the worst

case. In contrast, the earliest time when task ωi can start is at its release date,

si = ri. As a result,

B = dj + E(lej , l
s
i)− ri.

Second, let us assume now the opposite situation when ωj precedes ωi. The

29

added constant B has invalidated the bottom equation because task ωi could be

now started very soon. Therefore, the constant B should be added only when

ωi precedes ωj . As a result, the Big M method adds into the problem an integer

variable

preij =

 0 if task ωi precedes task ωj

1 if task ωj precedes task ωi

and the equation is modified to:

si + pi + E(lei , l
s
j) ≤ sj

∧

sj + pj + E(lej , l
s
i) ≤ si +B · (1− preij)

(5.11)

This guarantee that the constant B is added only when ωi precedes ωj .

Finally, the similar changes are made to the top equation, which results in:

si + pi + E(lei , l
s
j) ≤ sj + A · preij

∧

sj + pj + E(lej , l
s
i) ≤ si +B · (1− preij),

(5.12)

where

A = di + E(lei , l
s
j)− rj.

5.1.2 Proposed Extensions

The pair of constraints (Eq. (5.4) and Eq. (5.5)) significantly complicates the

scheduling problem. We observe that these constraints are not needed in situ-

ations when two tasks do not overlap. For the situation when tasks overlap, we

propose a heuristic based on Allen’s interval algebra (Allen, 1983) to pre-select one

30

of the possible orderings for each pair of tasks. This local optimisation greatly re-

duces the effort required by the MIP solver, but it does so at the cost of pruning

possible solutions from the search space (losing both optimality and in some cases

completeness).

Our proposed scheduler works as follows:

1. Every possible pair of tasks from the set is analysed.

2. Allen’s interval algebra is used to prune the possible orderings for each pair.

3. The constraints are specified for the chosen ordering.

Step 3) is based on Coltin et al. (2011). The other steps represent the novel elements

of our algorithm.

5.1.2.1. Analysis of a Pair of Tasks

Having a pair of tasks ωi and ωj , four situations σ might occur:

• only “ωj precedes ωi" is possible (σ0);

• only “ωi precedes ωj" is possible (σ1);

• both situations are possible (σ2);

• neither are possible (σ3).

The situation σ for any pair of tasks depends on the relationship between their

time windows, see Fig. 5.1 -Fig. 5.4. If the time windows do not overlap (relations

“before” and “meets”), then determining the ordering is simple. Otherwise, we

use the following process to determine which situation holds.

First, we compute the parameter

εo = min(dj − ri, di − rj).

31

(a) ωi before ωj (b) ωi meets ωj (c) ωj before ωi (d) ωj meets ωi

Figure 5.1: For these Allen’s relations of time windows, we add neither the con-
straint Eg. 5.4 nor Eq. 5.5.

(a) ωi overlaps ωj (b) ωi starts ωj (c) ωj finishes ωi

Figure 5.2: For these Allen’s relations of time windows, we add only constraint
Eg. 5.4, i.e., that ωi precedes ωj .

(a) ωj overlaps ωi (b) ωj starts ωi (c) ωi finishes ωj

Figure 5.3: For these Allen’s relations of time windows, we add only constraint
Eg. 5.5, i.e., that ωj precedes ωi.

(a) ωi during ωj (b) ωj during ωi (c) ωi equals ωj

Figure 5.4: For these Allen’s relations of time windows, we first compute the total
completion time for both situations, i.e. either ωi precedes ωj or vice versa. Then,
we choose the situation, which locally minimises the total completion time.

ε0 is positive if the time windows for tasks ωj and ωi overlap. Then, we test, which

ordering – ωj precedes ωi or ωi precedes ωj – is possible. For each possible order-

ing, the maximal size of an interval where both tasks can fit is ε1 = di − rj and

ε2 = dj − ri, respectively. Both tasks’ durations and travel time between locations

must fit in these maximal intervals. Therefore, the following equations are tested:

ε1 ≥ pj + E(lej , l
s
i) + pi, (5.13)

ε2 ≥ pi + E(lei , l
s
j) + pj. (5.14)

32

Then,

• σ0 occurs iff only Eq. (5.13) holds;

• σ1 occurs iff only Eq. (5.14) holds;

• σ2 occurs iff both equations hold;

• σ3 occurs iff neither equation holds.

5.1.2.2. Pruning

When σ2 occurs, our algorithm picks one ordering constraint – ωj precedes ωi

or ωi precedes ωj – which it considers (locally) to be the best. This decision is made

based on the thirteen possible relations of two intervals described by Allen’s in-

terval algebra. The situation σ2 can appear on relations “overlaps”, “starts”, “fin-

ishes”, “during” and “equals”. Motivation for pruning can be illustrated on the

following example. Assume that time window of ωi overlaps the window of ωj .

Because ωi can start sooner than ωj and ωj can end later than ωi, the order ωi pre-

cedes ωj locally maximises the chances that the tasks fit into their time windows.

This leads to locally optimising the chances to find a valid schedule. We utilise

the value of ε1 and ε2, which are computed anyway, in order to choose which or-

dering is better. Hence, for relations “overlaps”, “starts”, “finishes”, the ordering

constraint is chosen by testing the formula:

ε1 > ε2.

If the formula is true, then ordering ωj precedes ωi is chosen and vice versa. This

maximises the amount of time available for the tasks.

For the remaining interval relations (ωj during ωi, ωi during ωj and ωj equals

ωi) the possible orderings are indistinguishable using the previous rule. There-

33

fore, we choose the ordering constraint which locally minimises the global op-

timisation criterion
∑
ei. We calculate this for a pair of tasks as follows. First, we

calculate the criterion C0 =
∑

k∈{i,j} ek, assuming task ωj precedes task ωi. As no

other tasks are considered, task ωj can start as soon as possible, followed by task

ωi. However, if that would imply that task ωi could start before its release date,

then the start of the task is set to its release date.

sj = rj

si = max(rj + pj + E(lej , l
s
i), ri).

(5.15)

Then, the criterion for this ordering is:

C0 =
∑
k∈{i,j}

ek = ej + ei = (sj + pj) + (si + pi).

Using Eq. (5.15), this equation expands into:

C0 =

 (rj + pj) + (rj + pj + E(lej , l
s
i) + pi), when sj > rj ;

rj + pj + ri + pi, when sj = rj ;
(5.16)

Next we calculate the criterion C1 =
∑

k∈{i,j} ek, assuming the opposite order-

ing – task ωi precedes task ωj . The criterion is similar

C1 =

 (ri + pi) + (ri + pi + E(lei , l
s
j) + pj), when sj > rj ;

rj + pj + ri + pi, when sj = rj ;
(5.17)

Finally we choose the ordering which produces the lowest criterion value. If they

are equal, then the order does not matter and we choose task ωj to precede task

ωi.

34

5.1.2.3. Scheduler Constraints

Following the results of pruning, there is no need for integer variables any

more. Hence, the MIP is simplified to a linear program (LP) defined as:

min
∑

i∈{1...n}

ei (5.18)

subject to: ei = si + pi ∀i (5.19)

si ∈ 〈ri, di − pi〉 ∀i (5.20)

prune(i, j) ∀i, j (5.21)

Method prune(i, j) adds either no additional constraint (if task ωj does not over-

lap with task ωi) or just one constraint in order to ensure that the tasks will not

overlap. Depending on the properties of the involved tasks, we add a different

constraint, see Alg. 1. Finally, if situation σ3 occurs, there is a flaw in the input set

and a schedule is infeasible.

35

5.2 Control Framework

So far, we have focused only on one component – the scheduler. However, the

robot needs other components as well in order to perform tasks. First, it requires

navigation controllers in order to autonomously navigate in the environment and

to reach tasks locations. Then, the robot needs to have other subsystems in order to

able to perform the tasks (e.g. recognise people in the eating area). But mainly, its

performance needs to be controlled and monitored. Therefore, we have developed

a control framework (Mudrová et al., 2015), which is visualised in Fig. 5.5.

This framework not only controls the execution of the tasks but also it manages

the incoming new tasks. Tasks can be added to the control framework by humans

via a web interface (e.g. requesting the robot to perform a task at a particular time);

by components of the robot’s other subsystems (e.g. requesting that a part of the

map is explored at some time in the future); and by routine scripts which specify

fixed sets of tasks for the robot to perform every day. These routine scripts address

Algorithm 1: prune(i, j)
1: if ε0 > 0 then
2: if σ0 and !σ1 then // ωj precedes ωi
3: return sj + pj + E(lej , l

s
i)− si ≤ 0

4: end if
5: if !σ0 and σ1 then // ωi precedes ωj
6: return si + pi + E(lei , l

s
j)− sj ≤ 0

7: end if
8: if σ2 then // both orderings are possible
9: if C0 ≤ C1 then

10: return sj + pj + E(lej , l
s
i)− si ≤ 0

11: else
12: return si + pi + E(lei , l

s
j)− sj ≤ 0

13: end if
14: end if
15: if σ3 then // illegal situation
16: return infeasible
17: end if
18: end if
19: return ∅

36

robot's
other
subsystems

navigation
controller

task
executor

and
monitor

navigation
planning
framework

scheduler

Control framework

Figure 5.5: The architecture of the proposed control framework, see Sec. 5.2 for an
explanation.

periodicity of tasks as illustrated in task ω2 from the example scenario.

The task executor is the main control component in the framework. It manages

task execution and scheduling, whilst also reacting to various forms of failures.

When a new task is added to the executor, it updates its schedule and continues

with task execution as described by its current schedule Ω̂. The scheduler utilises

travel time estimates E from an optimal topological navigation framework (La-

cerda, Parker & Hawes, 2014). This navigation framework uses statistics gathered

from long-term experience to adapt E to the dynamics of the environment.

When the scheduler does not find a solution, we assume it is because the ro-

bot is oversubscribed by tasks. Hence, the executor drops tasks with the lowest

priorities and tries to call the scheduler again.

Finally, when an on-demand task is added, the task executor cancels the cur-

rently executing task (if it is interruptible) and executes the new task instead,

whilst rescheduling its remaining tasks, taking the new situation into account.

In the following section, we focus on the aspects of the task executor closely

related to handling on-demand and extended tasks. The rest of the components of

the control framework are out of the scope of this thesis and we refer the reader

to the work in (Mudrová et al., 2015).

37

5.2.1 Task Executor

The task executor handles the extended tasks via the method trySchedule(), see

Alg. 2. The method trySchedule() calls the scheduler, which tries to find a schedule

for a set containing old tasks Ωo (previously scheduled) and newly added tasks

Ωn. If it does not succeed, method drop(Ωn, 0.2) (Alg. 3), drops 20% of the new

tasks with the lowest priority (Ωd) and overwrites Ωn with the remaining 80%.

The dropped tasks are saved because the robot might still be able to schedule

some of them in the future.

Algorithm 2: trySchedule(Ωn)

1: while not scheduler({Ωo,Ωn}, Ω̂) and Ωn 6= ∅ do
2: Ωn, Ωd, preemptionNeeded = drop(Ωn, 0.2)
3: if preemptionNeeded then
4: Ωn = Ωo + Ωsn

5: startExecution()
6: end if
7: end while
8: return Ω̂

The method drop() (Alg. 3) operates as follows. First, the method theLowest-

PriorityTasks(Ωn, amount) creates a subset Ωd of tasks with the lowest priority in

set Ωn. If this subset would contain more than amount · size(Ωn) tasks, Ωd is pop-

ulated by randomly chosen tasks with the lowest priority. Note that Ωd can also

contain fewer tasks than amount ·size(Ωn) because the method chooses only tasks

with the same priority, which is returned as the second parameter. Then, if there

is no task currently executing, tasks Ωd are dropped. However, if there is a task

executing, the executor checks whether the tasks to be dropped have a higher pri-

ority than the executing task. If they do, then execution must be interrupted so

that the higher priority tasks can be propagated to execution. If the executing task

cannot be interrupted, the framework is forced to drop the higher priority tasks.

38

Algorithm 3: drop(Ωn,amount)
1: Ωd, priority = theLowestPriorityTasks(Ωn,amount)
2: if not taskCurrentlyExecuting then
3: return Ωn \ Ωd, Ωd, false
4: else
5: if priority ≤ taskExecuting.priority then
6: return Ωn \ Ωd, Ωd, false
7: else
8: if isCurrentTaskInterruptible then
9: return Ωn, ∅, true

10: else
11: return Ωn \ Ωd, Ωd, false
12: end if
13: end if
14: end if

39

CHAPTER 6

EVALUATION

We compare our proposed scheduler with the proposal of Coltin et al. (2011).

In the first part of this evaluation, both schedulers assume that travel times are

not varying in time. We evaluate the schedulers using not only simulated data, but

also data collected from the long-term deployment of robots in real environments.

In the second part, we evaluate how estimates of travel times affect the resulting

schedules.

6.1 Standalone Scheduler

We implemented both schedulers (ours and Coltin et al.’s) in C++, using SCIP

3.0.2 (Achterberg, 2009) as a MIP solver. Our code is available as a ROS package1.

6.1.1 Simulated Data

We have compared the two schedulers on synthetic task sets with the follow-

ing properties. The input sets of tasks are always feasible. The processing time pi

for task ωi is generated using uniform distribution between values 2 min and 30

min. The size of the time frame 〈ri, di〉 is set to be ρ-times bigger than the pro-

1https://github.com/strands-project/strands_executive

40

o 2 10 50 100 200

proposed
t [s] 0.044 0.042 0.054 0.133 0.585

Coltin’s
t [s] 0.101 188.116 - - -

Table 6.1: Runtime of the schedulers dependent on the size of a task group.

cessing time pi, when ρ is generated as a random number with uniform distri-

bution from interval 〈4, 100〉. Each set of tasks can be split into multiple groups,

where all tasks within a single group have one type of Allen’s relation. All tests

were run on a Lenovo ThinkPad E-540 with Intel i7402MQ Processor (6MB Cache,

800 MHz).

6.1.1.1. Overlapping Time Windows

The performance of the two algorithms only differs significantly when σ2 oc-

curs (i.e. when our approach prunes away possible solutions). To explore this case,

ten sets containing 200 tasks each were generated. Each set consists of groups of

tasks, where the tasks within the group overlap in a way such that the occurrence

of situation σ2 is guaranteed, but tasks from different groups do not overlap. The

number of overlapping tasks within the group is denoted by o. The results, presen-

ted in Table 6.1, demonstrate that the proposed scheduler is faster than Coltin et

al.’s on these problems. Moreover, increasing the group size leads to significantly

higher computation times for Coltin et al.’s scheduler. This is mainly due to more

combinations of task ordering, which the solver needs to take into account. We

have restricted ourselves to a limit of three minutes to provide a solution. Thus,

we did not run Coltin et al.’s scheduler for all cases as the time increases exponen-

tially. For the problems that both schedulers solved, the difference in optimality

criteria between approaches is negligible.

41

n 10 20 100 200

proposed
t [s] 0.003 0.006 0.097 0.585

Coltin’s t
[s] 33.238 196.012 - -

Table 6.2: Runtime of the schedulers dependent on the amount of equal tasks.

6.1.1.2. Equal Time Windows

The situation when all tasks have similar time frames (i.e. o = 200) is even

more challenging than the previous situation. This is because there is no differ-

ence between time intervals, thus all possible orderings of tasks have the same

optimum, but the solver is not aware of this. The results from both schedulers

running on sets of equal tasks of increasing size are presented in Table 6.2. A sig-

nificant time difference between the approaches can be observed even for a set

containing only 10 tasks. Again, there is no difference in final optimisation cri-

teria. Because these data were generated to guarantee completeness, both sched-

ulers find solutions on all tested problems.

6.1.2 Data from a Robot

As part of STRANDS project1, we have deployed two robots in care and se-

curity scenarios, where people’s health and property are involved (Fig. 6.1). In the

care scenario, we cooperated with “Haus der Barmherzigkeit” – a facility for eld-

erly people in Austria (abbreviated HdB). Our robot performed 1985 tasks during

14 days of deployment, including navigating to the chapel or game room, and reg-

ularly checking the emergency exits for obstructions. In the security scenario, we

1http://strands-project.eu

42

Figure 6.1: The mobile robots Bob and Henry during their deployment.

cooperated with G4S. In one of their buildings, the robot performed 963 tasks dur-

ing 16 days. For example, our robot created 3D maps of rooms at scheduled times,

checked the position of fire extinguishers, and searched for objects on desks. We

gathered all sets of tasks sent to the scheduler during these deployments. Thus,

we are now able to compare the two schedulers on these real-world task sets.

Many of the tasks in the sets were generated from a daily routine (roughly

three-hour slots from 08:45 onwards) given to the robot and thus have large, equal

time windows (corresponding to morning, afternoon etc.), see Fig. 6.2. The nature

of the routine-based tasks means that situation σ2 often occurs. A smaller pro-

portion of tasks were generated on-demand by users or other parts of the robot’s

architecture.

6.1.2.1. Existence of Infeasible Sets

In contrast to the simulated data, infeasible sets can exist in the data from the

real environments. The proposed scheduler can only detect infeasible sets via oc-

currence of situation σ3, i.e., a pair of tasks cannot be ordered due to their con-

flicting time constraints. However, more tasks can conflict in such a way that a

failure will not be detected while checking pairs, but it will invalidate all the set.

43

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

2014-06-13

2014-06-12

2014-06-11

2014-06-10

2014-06-09

2014-06-06

2014-06-05

2014-06-04

2014-06-03

2014-06-02

2014-05-30

2014-05-29

2014-05-28

2014-05-27

2014-05-23

2014-05-22

Figure 6.2: The tasks performed by the robot. Key: yellow, object checks; red, door
checks; purple, 3D mapping; pink, object search; orange, waiting.

Our scheduler will not be able to detect such a situation beforehand. As a result,

an infeasible set can be found only when the underlying solver SCIP returns no

solution. This also holds for the Coltin et al.’s scheduler. However, SCIP needs

to solve the problem completely, which is limited by the size and nature of prob-

lems. Therefore, we cannot determine if any given set is feasible or not. Instead,

we compare if the schedulers fail to find a solution within the three-minute limit.

Table 6.3 presents counts of three possible outcomes:

• both schedulers fail;

• the proposed scheduler fails but Coltin et al.’s succeeds, (which occurs main-

ly for sets containing a small amount of tasks);

• Coltin et al.’s scheduler fails but the one proposed succeeds (which occurs

mainly for sets containing a large amount of tasks).

44

Dataset Number
of Sets

Both
failed

Proposed
failed

Coltin’s
failed

HdB 606 103 24 33

G4S 358 14 2 3

Table 6.3: Comparison of cases where no valid schedule is found

However, there cannot be made any conclusion about their behaviour as the data

have not shown any significant difference.

6.1.2.2. Speed of the Schedulers

We ran both schedulers on the collected data and we recorded their runtime.

Because the collected data includes problems with the same number of tasks, we

report on the average performance and the corresponding variances. Moreover,

when a scheduler reached the three-minute time limit, we stopped it. However,

the underlying SCIP solver was still able to provide a solution in such cases, but it

cannot determine if this is the optimal one or not. This is the case of Coltin et al.’s

scheduler on many problems, see Fig. 6.3a and 6.3b (for the G4S and HdB data,

respectively).

On the one hand, the problems to the left of the black dashed line are solved

completely by the Coltin et al.’s scheduler. The word “completely” refers to the fact

that the SCIP solver returns the optimum criterion for the specified MIP (which

itself may be non-optimal for the problem). On the other hand, the scheduler solv-

ing the problems to the right of the black dashed line has been stopped due to the

runtime limit.

We can conclude that our proposed algorithm is significantly faster than Coltin

et al.’s as the size input set increases. Moreover, the MIP problem specified by the

proposed scheduler is completely solved within the three-minute time limit for all

45

sets. Furthermore, the variances of runtime on the data are small. This illustrates

how the proposed scheduler has deterministic behaviour. We have discussed in

the introduction that such property is beneficial when batches are scheduled (in

order to estimate how long a scheduler needs to provide a solution for a given

problem).

0 10 20 30 40 50 60
number of tasks in a problem

0.001

0.01

0.1

1

10

100

1000

ti
m

e[
s]

limit
Coltin’s scheduler

Our scheduler

(a) G4S - runtime (b) HdB - runtime

(c) G4S - criterion (d) HdB - criterion

Figure 6.3: The comparison of the schedulers in the G4S and HdB scenarios based
on their speed and quality of the found schedules.

6.1.2.3. Quality of the schedules

Even though we have stated that we are interested in a fast scheduler rather

than optimal one, the scheduler still needs to perform reasonably well. We can

46

determine which scheduler performs better on a task set by comparing the optim-

isation criteria of the resulting schedules for such sets when both algorithms have

found a schedule. We performed a Wilcoxon signed rank paired test to analyse

if there is a significant difference between the criteria found by our and Coltin’s

et al.’s scheduler. For the G4S set, we can conclude that there is a significant dif-

ference because p−value returned by the test is p = 1.85 · 10−16 whilst T = 407.

Our scheduler performs worse; the mean value of the differences between our

scheduler and Coltin et al.’s is µ = 0.32 h (hours) and the standard deviation is

σ = 0.83 h. In contrast, we can conclude the exact opposite about the results on

the HdB test, where our scheduler is significantly better than Coltin’s et al.’s as the

Wilcoxon test returns p-value of 8.66 · 10−14 and T = 13227. The mean value of the

differences is µ = −0.80 h and the standard deviation is σ = 2.23 h. The different

outcome is affected by the nature of the input data. Whilst tasks’ time windows

significantly overlap (or are even equal) in the G4S set, most of the tasks’ time

windows do not overlap in the HdB set.

In order to visualise the differences between criteria, we compute the following

normalised metric because the absolute value of this criteria varies by task set.

∆C =
Cp − Cc
Ch

, (6.1)

where:

• Cp is the optimisation criterion of the result from the proposed scheduler,

• Cc is the optimisation criterion of the result from Coltin et al.’s scheduler,

• Ch is the highest (i.e. worst) possible optimisation criterion for the input set

Ω, which is computed as:

Ch =
∑

i∈{1...n}

(di)

for n tasks in set Ω.

47

The property ∆C ∈ 〈−1.0, 1.0〉 holds. This metric can be computed only for such

sets when both algorithms have found a schedule. Negative values correspond

to the fact that the proposed algorithm has found a better criterion than Coltin et

al.’s and vice versa.

The ∆C values are displayed in lower graphs in Figures 6.3c and 6.3d. In the

graphs, sets to the left of the black dashed line are those with small amounts of

tasks for which the solver has found the optimal solution for both schedulers. Sets

to the right of the line are those for which the solver has found some solution for

Coltin’s approach and the optimal one for the proposed problem.

6.1.3 Summary

We have demonstrated that the proposed scheduler performs significantly fast-

er than Coltin’s et al.’s not only on the simulated data, but also on the data col-

lected during deployment of two robots in the real world scenarios. A conclusion

about the quality of the found schedules cannot be made as more data are needed

in order to study influence of tasks’ properties to the resulting criteria.

6.2 Scheduler with Travel Times Estimates

In this section, we evaluate the impact of the estimates of travel times on

the schedules. Recall that the travel times estimates are time dependent as the

environment dynamics affect the robot navigation. Therefore, we use only data

gathered in the security scenario, as this environment is smaller than HdB and the

robot is affected more by the dynamics. To summarise, the security environment

has approximately 300 m2 and is used by approximately 20 people. The topo-

logical map, on which the robot travelled, is in Fig. 6.4. During the three-week

deployment, the robot covered 20.64km and completed 963 tasks successfully.

48

Figure 6.4: A detail of the topological map traversed by the robot in the security
scenario. Blue edges are within an open space, but the red edges highlight doors.

49

6.2.1 Influence of Environment Dynamics

The navigation planning framework learns travel times from the previous ex-

periences. Therefore, the expectation is that the framework will provide better

estimates as it collects more data throughout the deployment. To evaluate this

hypothesis, we compare real travel times collected during the third week of de-

ployment with three estimates provided by the framework, which uses only

• distance-based estimates, no data have been learned (W0);

• the first week to learn (W1);

• two weeks to learn (W2).

We evaluate the performance on 435 paths that the robot travelled during the

testing week. For each path, we obtain the ground truth value g from the dataset

which states how long the navigation actually took. Then, a set of time estimates

EX on each path is obtained from the navigation planning framework, where X =

{W0,W1,W2}.

6.2.1.1. Methodology

The relative difference between an estimate and the ground truth is calculated

as follows:

∆EX =
EX − g
g

. (6.2)

Positive values of ∆EX mean that the particular method overestimates the time

needed to travel between tasks. In terms of robot behaviour this typically means

the robot will arrive early for tasks and must, therefore, wait around (wasting

time) before executing the associated actions. In contrast, negative values mean

that a schedule is created that underestimates the time needed to travel between

task locations. As a result, the robot will fail to successfully complete the schedule.

50

set 0.1-q 0.25-q 0.75-q 0.9-q error std-dev

∆EW0 -0.457 0.141 1.844 2.714 1.155 0.895

∆EW1 -0.151 0.244 2.088 12.823 8.522 30.526

∆EW2 -0.189 0.227 1.171 1.896 0.982 1.082

Table 6.4: The results of travel time estimates on the dataset.

Therefore underestimates are a more damaging form of estimation error in our

framework.

6.2.1.2. Results

The absolute mean errors and corresponding standard deviations of the relat-

ive results, plus their quantiles, on the 435 paths are reported in Tab. 6.4. Estimates

for selected paths from Fig. 6.4 are visualised in Fig. 6.5. It can be observed that the

planning framework with the most training data, ∆EW2, provides the best estim-

ates (lowest mean error). As would be expected, the non-adaptive model based

on distance ∆EW0 underestimates by a larger degree to adaptive model using W2.

origin

target

W0

W1

W2

23

13

20

16

16

15

15

4

4

6

5

9

9

11

11

4

4

23

43

4

4

0

1

6

1

22

23

15

15

16

23

1

-1.0 -0.7 -0.3 0 3.7 7.3 11.0

Figure 6.5: Selected estimated relative travel times ∆EX . For example, the travel
time for the path from node 4 to 0 is underestimated in the data W0, as the nodes
are relatively close to each other. However, the robot had difficulty to navigate
between them due to very restricted space. However, this estimate is adjusted in
the W1 and W2 estimates.

51

After one week of data the adaptive model (∆EW1) substantially overestimates

most of the paths. When the second week of data is added, more experience of en-

vironment causes the estimates to increase in accuracy. ∆EW2 still overestimates

but significantly less than model ∆EW1. As can be observed in Fig. 6.2, during the

first days of the deployment the routine was not followed very well (due to bugs

in other parts of the system). Due to this, the data available for training ∆EW1

has a different temporal distribution to the testing data. The second week of data

corrects this, demonstrating that long-term experience improves the approach con-

sidered in the planning framework.

6.2.2 Adaptive Scheduling using Travel Time Estimations

Finally, we are able to illustrate how these travel time estimates affect sched-

ules. To illustrate this, we generated a test scheduling problem, comprised of 16

tasks across 13 different locations. Additionally, we schedule those tasks in three

different time slots: morning, after lunch and late afternoon. Our assumption is

that dynamics of the environment is different in these slots, hence the schedules

will be different too as a result of learned time estimates considering these dy-

namics.

W0

W1

W2

09:45-11:01 12:30-13:46 15:30-16:46

Figure 6.6: Schedules using different methods for travel time estimates. White
space between tasks represent the expected time to travel between tasks’ loca-
tions. Yellow represents object checks; purple 3D mapping; pink object search.
Finally, different shades of tasks represents that tasks were in different locations.

52

The schedules computed for different times of day are depicted in Fig. 6.6.

It can be observed that the set of tasks can be scheduled more compactly as the

expected travel times get overestimated by less as a result of the larger amount

of data used for learning. Furthermore, the results with one week of learning

data illustrate the adaptive nature of our framework: the schedules are different

throughout the day. However, this variation after one week of learning is largely

incorrect. Because our environment was not very dynamic after two weeks of data

the schedules look the same throughout the day. Notice though that they are dif-

ferent to the schedules based on distance estimates, as our model adapts to the

robot’s behaviour in the environment.

6.2.3 Summary

In this section, we have illustrated how the proposed scheduler may benefit

from a cooperation with the navigation planning framework, which learns about

the environment dynamics and adapts its estimates of navigation times.

53

CHAPTER 7

CONCLUSION AND DISCUSSION

In this part of the thesis, we presented a novel fast scheduler for use on mo-

bile robots. The main contribution of our work is the use of Allen’s interval al-

gebra to prune possible solutions within the scheduler. However, this heuristic

approach does not guarantee to find an optimal solution and it may loose com-

pleteness, which can be recovered by using the found solution to warm start full

MIP (used in Coltin et al.’s scheduler). Nevertheless, we prefer faster heuristic ap-

proach rather than an optimal approach as finding the optimal solution may be

considerably more time consuming, especially for larger problems.

Note that our pairwise task analysis results in a total-order on tasks. Hence,

starting times to each task could be assigned via an iterative approach rather than

LP. The iterative approach means that the starting time sj of task ωj can be estab-

lished as the maximal value of (i) either the sum of the ending time of its preceding

task ωi and the travel time required between them; (ii) or its release date rj . How-

ever, using LP allows us to use only some features of our proposed heuristic. For

example, the pruning of situation σ2 can be omitted, especially in the domains

where this step leads to many unsolved problems.

Our experimental results have shown that the proposed scheduler is able to

quickly solve task sets with large numbers of tasks, which significantly outper-

forms the state-of-the-art scheduler designed for the same domain. The proposed

54

scheduler is open source and was integrated into several mobile robots deployed

in the real world scenarios. In particular, we reported on the deployment in two

scenarios where two robots successfully performed 2948 tasks within 30 days. Fi-

nally, we have illustrated how the scheduler benefits from learned travel estimates

and how this results in varying schedules, depending on the time of the day.

7.1 Limitations and Future Work

The introduced assumptions A1 - A4, A8 and A9 are the limitations of our

work. Our problem formulated via MIP can be extended in order to handle the

cooperation between several robots (A1) as illustrated in (Korsah et al., 2012).

Davenport and Beck (2000) surveyed scheduling techniques for handling uncer-

tainty (A2), whilst the survey of (Laborie, 2003) focused on allocating resources

(A3). The inseparability of some tasks (A4) can be added into our MIP problem as

an additional constraint. If tasks were not added in batches (A8) and affected by

uncertainty, we will first need to extract the tasks which are certain. We could use

techniques of least commitment and delayed commitment scheduling (Berry, 1993). Fi-

nally, the atomicity of tasks (A9) can be overcome by exploiting temporal planning

techniques. A deliberation system building on temporal planning is developed in

the next part of our thesis.

55

Part II

Temporal Planning

57

CHAPTER 8

INTRODUCTION

In this part of the thesis, tasks are no longer atomic actions, but they are defined

by goals. A goal represents a certain state of the robot or its environment that needs

to be achieved. For example, the goal of task ω4 from the example scenario is that

John has the cereal bar before 14:00. As a result, our system (to be developed

and evaluated in this part of the thesis) takes control over creating plans achiev-

ing tasks’ goals. The main advantage of this system, in contrast to the proposed

scheduler, is that it can reason over the tasks’ plans. As a result, it recognises and

exploits similarities between different tasks. As we will demonstrate, such an abil-

ity can significantly enhance the robot’s performance.

In order to decide how and when tasks are going to be performed, our system

builds on temporal planning. Temporal planning can be addressed either via state-

based or time-based approaches. We have analysed both of them and we report on

the findings in the next chapter, where we also justify why we have decided to

focus on the state-based approach.

In contrast to scheduling, a support of time windows in state-based temporal

planning is limited. This can be illustrated on the cooking domain from the Interna-

tional Planning Competition (IPC 2011)1. This domain describes a problem where

a meal must be ready before 20:00 but no sooner than 19:55, otherwise the meal

1http://www.plg.inf.uc3m.es/ipc2011-deterministic/

59

will be cold. However, the constraints are imposed only on a meal being ready.

This is in contrast to our example scenario, where we require that the whole plan

is restricted by the time window, because release dates represent some external

reason why a task cannot start sooner. Recall that this property is reflected in the

assumption A5 and must be obeyed by our system.

In comparison to scheduling, temporal planning significantly increases the dif-

ficulty of the addressed problem, because it substantially adds to the size of the

search space. Another aspect increasing the difficulty is that actions can overlap

in time in a temporal plan. The literature differentiates between two terms:

• two actions are in parallel if (i) they overlap in time and (ii) there are no causal

or temporal constraints between them;

• two actions are required to be concurrent if (i) they overlap in time and (ii)

a causal or temporal constraint requires a specific interaction between the

actions.

We refer to a sequential plan if there are no parallel or concurrent actions in the

plan. Required concurrency can be illustrated on the example from the turn and open

domain from the IPC 20141, where a robot with a gripper is required to open a

door. In order to do so, it needs to turn the door knob and hold it turned whilst

it pushes the door. Hence, the action push is required to be ordered during action

turn. The synchronisation of actions is critical for the success.

Required concurrency and time windows limiting a whole task are respec-

ted by our proposed merging algorithm, which operates as follows. First, it ob-

tains plans for each task separately by utilising an off-the-shelf temporal planner.

Hence, the planner operates on small search spaces which contributes to good

scalability. Then, our algorithm merges these plans into a final plan while respect-

ing their causal and temporal constraints. This is done by reasoning over the input

1https://helios.hud.ac.uk/scommv/IPC-14/

60

plans and their related time windows, and finding synergies and demands between

different tasks.

8.1 Motivation Example

Consider a robot that receives two tasks ω1: “notify people in a common eating

area to leave between 20:00 - 20:15” and ω2: “check if the emergency exits are

clear every 2 hours” from the example scenario (Sec. 1.1). The periodic property of

task ω2 is handled in the executor, as discussed in Sec. 5.2. This executor adds the

appropriate task into the system every two hours, hence we assume an instance

of ω2, which is required to happen between 20:00 - 22:00. The problem of finding a

single temporal plan satisfying these tasks can be solved by a range of approaches

that are going to be illustrated here.

1. A sequential approach, similar to scheduling in Part I, could be reapplied

here. Assuming domains which do not consider time windows of tasks, the

order of tasks can be resolved by using a simpler algorithm, such as first-in-

first-out (FIFO) approach, rather than scheduling. Then, exploiting assump-

tion A4 (tasks are separable), a task planner would plan for each task separ-

ately, considering the final state reached by the previous plan. Such a situ-

ation is illustrated in Fig. 8.1a where the plan for task ω1 precedes ω2. The

makespan of the sequence is 9.5 min. This approach scales well due to the

combination of small search spaces. However, it obtains a bigger makespan

than necessary. This approach is common for mobile service robots, e.g.,

(M. M. Veloso et al., 2012), due to its simplicity and efficiency.

2. This scenario could be addressed by a temporal planner. First, all task goals

are conjoined into a single planning problem. Then, a temporal planner provi-

des a single plan, which satisfies all task goals. The disadvantage of this

61

approach is the size of the search space which leads to a poorer scalability in

comparison to the sequential approach. In contrast, the main advantage is

that it does not require assumption A4, i.e., it can handle inseparable tasks

as well. Moreover, this approach can find an optimal solution, i.e., the best

makespan of the final plan, when an optimal planner is used.

The makespan of the plan for tasks ω1 and ω2 is 8.5 min (Fig. 8.1b). The sav-

ing of 1 min, in comparison to the sequencing approach, is obtained because

actions related to different tasks can be interleaved. Hence, the robot first

checks the exit in location EX1 and, on its way to location EX2, it stops by

location EA to satisfy task ω1.

3. Our proposed merging approach finds high quality of plans similarly to the

conjoining approach (Fig. 8.1c). The approach has two important features:

(i) it does not have to merge all actions from the input plans and (ii) it can

add some new actions in order to satisfy causality of the merged plan. We

elaborate on these features in Chapter 12. In this example, action (move EX1

EX2) from ω2 and action (move R EA) from ω1 has not been merged. In con-

trast, action (move EX1 EA) has been added in order to link task ω1 into the

plan of ω2.

8.2 Research Scope

The merging approach is not novel; for example, Koehler and Hoffmann (2000)

discuss that considering interactions between goals can decrease the complexity

of finding the solution plan. However, they also prove that finding an ideal or-

dering between goals is as difficult as finding a plan. Therefore, our algorithm is

driven by a proposed heuristic. In this thesis, we build on the insights into plan

merging and we answer the following research questions:

62

(move R EA)

(move EA EX2)

t [min]

Task before

0

1

3

9,5

(notify to_leave EA)

(sense EX2)

(move
EX2 EX1)

(sense EX1)

(recognise exit EX1)

5

8

(recognise
 exit EX2)

(a) Sequencing

(move EA EX2)

(move R EX1)

(sense EX1)

(recognise
exit EX1)

(move EX1
 EA)

(notify to_leave EA)

(sense EX2)

(recognise exit EX2)

t [min]

0

2

3.5

5

7

8.5

Plan

(b) Conjoining

(move R EA)

(notify to_leave EA)

(move R EX1)

(sense EX1)

(recognise
exit EX1)

(move EX1
 EX2)

(sense EX2)

(recognise exit EX2)

t [min]

(move EA EX2)

(move R EX1)

(sense EX1)

(recognise
exit EX1)

(notify to_leave EA)

(sense EX2)

(recognise exit EX2)

(move EX1 EA)

0

2

3.5

5

6.5

8.5

Plan for Merged plan Plan for

(c) Merging

Figure 8.1: The comparison of sequencing, conjoining and merging approaches
how to obtain a plan for tasks ω1 and ω2. The arrows in (c) represent what actions
from the input plans have been reused in the merged plan.

Q1 Given plans for each task, how can these plans be merged into a single final

plan satisfying all task goals and time constraints?

Q2 Is the scalability of the merging approach better or worse than scalability of

sequencing and conjoining approaches?

Q3 What is the quality of the final merged plan when comparing to the plans

found by sequencing and conjoining approaches?

Q4 How do all the approaches handle time windows?

8.3 Organisation

This part of the thesis is organised as follows. Chapter 9 analyses the related

work. First, it provides a comparison of state-based and time-based planning ap-

proaches. This is important as our algorithm wraps a state-of-the-art planner to

provide it with plans for the input tasks. Hence, the choice of the representation

and the planner strongly affects the developed algorithm. Then, existing tech-

niques of plan merging are reviewed. The chapter is concluded by a discussion

63

of why we build on state-based temporal planning. The nomenclature of state-

based planning is formally defined in Chapter 10. It is followed by formal defini-

tion of the addressed problem and formalisation of the three solution approaches

(Chapter 11). The proposed merging algorithm is described in Chapter. 12 and

evaluated on existing and novel planning problems (Chapter 13). We conclude

by the discussion of advantages and disadvantages of the proposed algorithm

(Chapter 14).

64

CHAPTER 9

RELATED WORK

In our endeavour to choose a representation and a planner to be integrated

with our merging algorithm, we compare the state-based and time-based ap-

proaches. We analyse their theoretical properties, modelling languages and cor-

responding planners. We assume that the reader is familiar with classical plan-

ning (non-temporal). If not, we refer the reader to the book by Nau, Ghallab and

Traverso (2004). Classical planning is going to be referred as instantaneous plan-

ning for the rest of this thesis (in order to highlight that it does not address time).

Moreover, we analyse existing merging techniques for both representations. We

conclude this chapter by choosing a representation to be used for the rest of this

thesis.

9.1 Temporal Planning

The two possible views of temporal planning are state-based and time-based.

The difference between these two approaches is visualised in Fig. 9.1. The sta-

te-based approach focuses on states; hence, it projects into the vertical axis. It

samples time in order to make decisions on the static states of the world. In con-

trast, the time-based approach focuses on the time axis. In this approach, a state

65

time-based

st
at

e-
ba

se
d

Figure 9.1: The state-based approach to temporal planning operates only with a
sampled view of a state variable x. In contrast, the time-based approach views the
state variable as a temporal function.

variable is described by a time-varying piecewise function, i.e., gaps may exist in

the state-variable specification where the variable is unspecified.

In our comparison, we are going to refer to a number of properties how plan-

ners can be classified:

• A planner is either offline or online depending on, whether planning is fully

finished before the execution of the plan starts.

• Closely related to offline and online planning is if a planner plans for several

tasks at once, which is denoted as a batch planning, or if it has a continuous

approach, where it plans one task by another. Thus, continuous planning

can be exploited in online planning and batch planning is often done offline.

• A planner provides either a single plan or multiple plans, i.e., it keeps im-

proving the quality of the found plan. The latter case is referred to as anytime

planning. An anytime planner will terminate only if it searches all its search

space. Hence, it can run for very long time. Therefore, these planners are

normally limited in their runtime and memory usage in order to stop them

sooner before all search space is searched.

66

9.1.1 State-Based Approach: PDDL-based planners

State-based temporal planning extends the instantaneous planning by four as-

pects:

1. It removes the assumption that actions are instantaneous; instead they last

for a certain amount of time, which is called duration of an action. This raises

the main complication in temporal planning. A temporal planner needs to

decide not only what action to perform but also when. Moreover, actions may

be ordered in parallel or in required concurrency.

2. Preconditions and effects of a durative action are associated with a time in-

stant. For example, effects of an action are applied at the start of the action.

3. A temporal planner assigns a time stamp to each action representing when

the action can start. Hence, such a plan is scheduled. Moreover, a scheduled

plan needs to obey imposed time constraints, such as release dates and dead-

lines.

4. The state variables are generally time-dependent, hence they are continu-

ous functions. However, the literature strictly differentiates between temporal

planning and hybrid planning. Temporal planning assumes that state variables

are only multi-valued piecewise functions and that their change is caused

only by effects of actions. In contrast, hybrid planning addresses state vari-

ables that are time-dependent continuous functions (Fox & Long, 2006). Hy-

brid planning is out of the scope of this thesis.

While all modelling languages for temporal planning support the first aspect,

they strongly differ in modelling the second. Therefore, W. Cushing, Kambham-

pati, Mausam and Weld (2007) propose classification of temporal modelling lan-

guages to either temporally simple or temporally expressive. A language is tem-

porally expressive if it supports modelling of an action where there is no single

67

time point during the action’s duration when all preconditions and effects hold

together. That means that there is a temporal gap between time instances when pre-

conditions or effects hold. In contrast, a modelling language is temporally simple if

it does not support temporal gaps.

9.1.1.1. Planning Domain Definition Language

Despite the existence of different modelling languages for state-based tem-

poral planning, such as TGP (Smith and Weld, 1999) or SAS+ (Bäckström and

Nebel, 1995), we focus on the Planning Domain Definition Language (PDDL). We

choose PDDL as it is a temporally expressive language. Moreover, many PDDL-

based planners exist and their binaries are available. Hence, we can easily com-

pare them to our proposed algorithm. The popularity of temporal PDDL-based

planners lies in the exploitation of the existing search techniques from instantan-

eous planning and their domain independent heuristics.

Time has been introduced to PDDL in version 2.1. level three (Fox & Long,

2003) in order to model durative actions with temporal gaps. Preconditions and

effects are assigned to a start and an end instances of an action, but not to any ar-

bitrary time stamp during the action. This is seen as a limitation by Smith (2016).

Smith argues that preconditions and effects must take place at any arbitrary mo-

ment rather than just at the start or the end of an action (in order to support mod-

elling of the real world). However, this drawback can be overcome by splitting

one durative action into more. Furthermore, PDDL 2.2. (Edelkamp & Hoffmann,

2004) introduced timed initial literals in order to constrain a literal in time. This

feature can be used to model release dates and deadlines. Finally, PDDL 3.0 (A.

Gerevini & Long, 2005) introduced preferences on literals that can be used to model

deadlines.

68

9.1.1.2. Classification of Temporal Planners

Most of the state-based temporal planners are forward-chaining, as this ap-

proach has proven to be very successful in instantaneous planning. Additionally,

forward-chaining temporal planners can be further classified into three categories

based on how they handle relations between actions (W. A. Cushing, 2012): first

fit planners, decision epoch planners and temporally-lifted planners. However,

other concepts, such as search in plan-space or planning via satisfiability, have

found their way into temporal planning as well.

9.1.1.3. Forward-Chaining: First Fit Planners

When solving a temporal planning problem, first fit planners ignore the dura-

tions of actions and obtain an instantaneous plan. The temporal plan is obtained

by stretching the instantaneous plan to correspond with durations of the actions.

The main benefit of this approach is its speed as it can reuse very successful in-

stantaneous planners. In contrast, the main disadvantage is its inability to cope

with required concurrency, which cannot be handled because instantaneous plans

are sequential by nature. Recall that required concurrency demands that specific

actions must be ordered concurrently. Some first fit planners at least reschedule

the solution plan. Hence, some actions can be ordered in parallel. Nevertheless,

rescheduling is still unable to handle required concurrency.

In spite of this strong simplification, such planners are winning the temporal

track of the International Planning Competition (IPC) since 2006, where SGPlan

(Hsu, Wah, Huang & Chen, 2006) has won. It was followed by an unofficial plan-

ner based on MetricFF in 2008 (Hoffmann, 2002) and YAHSP (Vidal, 2014).

All of these planners use additional insights of how to improve their per-

formances. SGPlan first splits a planning problem by parallel decomposition into

loosely joined subproblems. Then, it solves these subproblems by using a variant

69

of the Metric-FF. The YAHSP (Yet Another Heuristic Search Planner) (Vidal, 2004)

extends the very popular FF algorithm (Hoffmann & Nebel, 2001). FF exploits a

relaxed planning graph (RPG) constructed by ignoring the delete effects of actions.

While FF planner uses only some actions from this graph, YAHSP reuses as many

actions as possible in order to keep the search complete.

9.1.1.4. Forward-chaining: Decision Epoch Planners

Two temporal actions can have thirteen possible relations (Allen, 1983). De-

cision epoch planners (DEP) considers only a subset of these relations. Therefore,

these planners are unable to handle required concurrency. In a forward-chaining

search, they assume that an action can start either at the same time instance as an-

other one starts or immediately after another one ends. In a backward approach,

an action can end either at the same time instance as another one ends or imme-

diately before another one starts.

Decision epoch planning has been introduced in TLPlan (Bacchus and Ady,

2001) and followed by many popular planners such as SAPA (Do and Kambham-

pati, 2011), LPGP (Long and Fox, 2003), which picks decision-epochs forward and

backwards through time, and TFD (Eyerich et al., 2009). Even though TFD (Tem-

poral Fast Downward) (Eyerich et al., 2009) utilises a SAS+ representation , we

include it in our comparison as it is PDDL compatible, i.e., PDDL can be automat-

ically translated into SAS+.

9.1.1.5. Forward-chaining: Temporally-Lifted Planners

Temporally-lifted planners support all relations between actions. Hence, they

support required concurrency. These planners handle actions as their start and

end instances. The temporal relations between the actions instances are preserved

in a Simple Temporal Network (STN) (Dechter et al., 1991). This network models

70

not only dependency between instances of the same action, but also of different

actions. Therefore, the consistent STN provides the necessary ordering of actions

in a solution plan.

Crikey (A. Coles, Fox, Long and Smith, 2008) is the first planner, which has in-

troduced this approach, and has been followed by a family of planners inheriting

from it, such as POPF (A. J. Coles et al., 2010) and OPTIC (Benton et al., 2012).

Furthermore, these planners combine advantages of partial order planning (POP)

with forward chaining techniques. Hence, they find a partial order plan.

The OPTIC planner (Optimizing Preferences and TIme-dependent Costs) (Ben-

ton et al., 2012) extends POPF by supporting preferences defined in PDDL 3.0

and a continuous penalty. Therefore, OPTIC utilises Mixed Integer Programming

(MIP) solvers. Currently, there can be two versions of OPTIC based on the used

solver, either open-source CLP or IBM CPLEX. They significantly affect OPTIC

performance. Even though, OPTIC with CLP should be generally faster (accord-

ing to the authors1), we use OPTIC with CPLEX as it is needed in order to support

PDDL 2.2 and 3.1.

The POPF planner (A. J. Coles et al., 2010) combines the advantages of forward-

chaining planners with least-commitment of partial order planning. Reduction of

the commitment during forward search is achieved by adding only temporal con-

straints that ensure that the preconditions of an action are met. It employs a Tem-

poral Relaxed Planning Graph (TRPG) (A. I. Coles, Fox, Long and Smith, 2008) as

its heuristics.

9.1.1.6. Planning as Satisfiability

The ITSAT planner (Rankooh and Ghassem-Sani, 2015) addresses the temporal

planning problem with required concurrency. It uses the temporally-lifted ap-

proach, i.e., durative actions are split into the corresponding instances and the

1https://nms.kcl.ac.uk/planning/software/optic.html

71

appropriate STN is built. This simplified problem is then encoded into a SAT for-

mula (Rankooh and Ghassem-Sani, 2015). The algorithm keeps iterating until a

temporally valid plan is found.

9.1.1.7. Plan-space Planning

The VHPOP (Versatile Heuristic Partial Order Planner) (Simmons and Younes,

2011) builds on partial order planning (POP). The biggest disadvantage of general

POP is a lack of heuristics on how to choose a plan to expand or a flaw within the

plan to fix. This is overcome by the VHPOP, by exploiting the A* algorithm with

several heuristics in order to make these choices in an informed way. This leads

to a significant reduction of planning effort. The temporal constraints are saved in

an STN as in the case of OPTIC and ITSAT.

9.1.1.8. Planner Expansions

Some successful planning systems wrap an off-the-shelf planner rather than

being a planner per se. Their focus is on pre-processing the planning problem in

order to make the integrated planner more efficient. Such an approach is taken

by DAEX (Divide and Evolve) framework (Bibaï, Savéant, Schoenauer and Vidal,

2010), which encloses plannerX to solve subproblems that are created by an evol-

utionary algorithm. If the integrated planner fails to find a solution to a subprob-

lem, an evolutionary algorithm makes a new generation of subproblems. There

is no guarantee that generated subproblems will be easier than the original one.

DAEX adopts the capability to handle concurrent actions from the enclosed plan-

ner.

72

9.1.2 Time-Based Approach: Timelines planners

Timeline planning has been introduced in the HSTS (Heuristic Scheduling Test-

bed System) (Muscettola, 1993). It is inspired by control theory, where a system is

modelled using multi-valued state variables to describe its dynamic properties.

A timeline plan finds a set of relevant state variables and their temporal devel-

opments. Moreover, the plan needs to obey given synchronisation domain rules ex-

pressing temporal and causal constraints. For example, in order to make a cup of

coffee, a causal constraint is that a robot needs to have a mug before pouring hot

water out of a kettle.

Timeline representation can be summarised as follows (Cialdea Mayer, Or-

landini & Umbrico, 2016). State variables are described as piecewise functions

varying over time. A variable is defined by its value over an interval, denoted as

a token, and its possible values are limited to a finite discrete domain. An ordered

set of tokens for a state variable is called a timeline when the order is established

by causal and temporal constraints between tokens. Maintaining the conflict-free

constraints between tokens, i.e. synchronising them, is how a timeline planner ob-

tains a plan. Importantly, a timeline planner provides a set of valid plans rather

than a single plan as a state-based planner. The set of plans is denoted as a chronicle

(Nau et al., 2004).

A different approach how to control a discrete variable over time is taken

by the IxTeT planner (Malik Ghallab & Laruelle, 1994). IxTeT and HSTS are the

foundation stones for modern timelines planning. IxTeT tackles timeline planning

via temporal assertions on multi-valued state variables. A variable can either hold

the same value during an interval or it can instantaneously change via occurrence

of an event. Both assertions are expressed as predicates followed by terms in order

to specify a variable, its values and time instances as the IxTeT builds on a point-

based time logic, rather than interval logic as tokens. Moreover, IxTeT is closer

73

to a planning community and inherits model of operators (or so called actions in

PDDL). Similarly to PDDL, an operator has preconditions and effects. Operators

have the same functionality as synchronisation rules. They impose different causal

and temporal constraints on the solution plan.

9.1.2.1. Timelines Planners

Dependencies between tokens in a timeline or between assertions can be nat-

urally captured by constraint networks. A constraint network can model not only

the requirement for a token to be within a specific time window but also the

synchronisation rules between tokens. However, tokens are not limited only by

their temporal constraints. Some planners (such as IxTeT) also consider binding

constraints between different variables. Moreover, novel planners add other con-

straints as well, such as spatial and resource. Hence, a mixture of different types

of constraints raises an interesting issue: should a planner treat different types

collectively or separately?

The main benefit of treating constraints separately is that existing algorithms

can be used to handle the constraints. For example, Simple Temporal Networks

(STNs) (Dechter et al., 1991) are very efficient in solving temporal constraints.

However, separate networks need to be synchronised. To overcome this issue, S.

Fratini, Pecora and Cesta (2008) propose to model different variables as a single

abstract component. We classify existing planners based on the fact if they utilise

multiple or a single network.

Timeline planners search in the space of constraint networks. A search state

is a constraint network (or more synchronised networks). It is expanded either

by adding a constraint to fulfil synchronisation rules or by adding a new token.

The fact that a search node is a constraint network has an advantage that the

search space is more compact, in comparison to the state-based planners, as a

74

single search node represents many partial plans. Hence, a leaf search node rep-

resents a set of possible plans, rather than a single one. In contrast to a state-based

planner, a timeline planner searches for feasible plans rather than the best plan.

This may be a disadvantage in some applications, where a quality of the solution

plan matters.

9.1.2.2. Planners with Multiple Constraint Networks

The IxTeT planner uses two separate CSP networks: temporal and binding. Its

representation is extended by HTN planning within the FAPE (Flexible Acting

and Planning Environment) (Dvořák, Bit-Monnot, Ingrand & Ghallab, 2014). It is

the only planner that implements the ANML language (Action Notation Mod-

eling Language) (Smith, Frank & Cushing, 2008)). Additionally, the FAPE also

focuses on temporal uncertainty and execution (Bit-Monnot, 2016).

Whilst IxTeT and the FAPE are both academic planners, timelines planners

are very popular by space agencies to plan for complicated real world missions.

The HSTS system demonstrates its importance on an example of planning of ob-

servations for the Hubble Telescope. The NASA has extended the HSTS into the

EUROPA (Extensible Universal Remote Operations Planning Architecture) (Bar-

reiro et al., 2012), which is a framework publicly available that allows research-

ers to plug-in their planners. Because EUROPA was developed by the NASA

to support specific missions, the planner is intended to be domain-dependent.

The EUROPA utilises a New Domain Definition Language (NDDL) (Barreiro et

al., 2012), an implementation of Constraint-based Attribute and Interval Planning

(CAIP) (Frank & Jónsson, 2003) paradigm. Another of NASA’s framework is the

ASPEN (Automated Scheduling and Planning ENvironment) (Chien et al., 2000).

Importantly, the ASPEN performs iterative search and repair in contrast to depth-

first search spread in the other planners.

75

The European Space Agency’s response to the timelines planning is an Ad-

vance Planning and Scheduling Initiative (APSI) (Simone Fratini & Cesta, 2012)

software platform which implements Timeline-based Representation Framework

(TRF) (Cesta & Simone Fratini, 2008)). The TRF is an equivalent to the EUROPA.

Hence, it is not a planner, but it provides a unified tool in how to manage a search

space for a planner on top of the TRF’s hierarchy. The TRF can be exploited by

any planner. For example, MrSPOCK (Cesta, Cortellessa, Fratini & Oddi, 2009)

(Mars Express Science Plan Opportunities Coordination Kit) was used by the ESA

to produce long-term – about 4 months – skeleton plans for a Mars spacecraft that

were then adjusted by human operators when needed.

9.1.2.3. Planners with a Single Constraint Network

The OMPS (Open Multi-component Planner and Scheduler) (S. Fratini et al.,

2008) obeys domain synchronisation rules by making a decision on a component.

A component is a generalisation of a state variable in order to handle different con-

straints in the same way. The lessons learned from the OMPS have been used in

designing the Meta-CSP framework (Rocco, Pecora & Saffiotti, 2013b). This work

is motivated by the following observation. Ordering decisions in a constraint net-

work can result in multiple choices. For example, a token can be ordered before

or after another one to resolve their resource conflict. The Meta-CSP framework

does not choose between decisions. Instead, it builds a CSP network for decision

variables, on top of this standard network. For each decision variable, its finite do-

main consists of alternative bottom constraint networks that accommodate one of

the possible decisions. Hence, all the choices are preserved. This planner is further

extended into the planner CHIMP (Conflict-driven Hierarchical Meta-CSP Plan-

ner) (Stock et al., 2015) in order to utilise hierarchical planning (HTN) as a tool to

limit the expansive search space.

76

9.1.2.4. Summary

Older planners such as IxTeT, the EUROPA, the ASPEN and the MrSPOCK

utilise multiple separate networks. In contrast, most of the recent planners, such

as the OMPS, the Meta-CSP framework and the CHIMP exploit a heterogeneous

approach where different constraints are modelled as one type. The clear benefit

of this approach is that it can be easily extended to accommodate for other types

of constraints. This is especially beneficial in robot domains where such a timeline

planner can reason at the same time about tasks, the robot’s path, a trajectory of its

manipulators, a spatial distribution of objects, etc., as demonstrated by Mansouri

and Pecora (2014a).

9.1.3 Summary

State-based and time-based planners strongly differ:

• in the underlying representation. On the one hand, time-based representa-

tion via timelines is well suited to model complex real-world scenarios, as il-

lustrated by the NASA and ESA applications. On the other hand, state-based

representation supporting durative actions has evolved from classical plan-

ning. Therefore, it preserves the notion of static states, which are transitioned

by effects of actions relating to time instances.

• in their search space. State-based planners represent a search state as a con-

junction of literals describing a state of the modelled world. In contrast,

timelines planners search in the space of constraint networks, i.e., partial

plans.

• in a found solution. State-based planners optimise their solution, i.e., they

provide a single best plan, whereas timelines planners provide a set of plans

without considering their quality. It is an open question how an optimisation

77

criterion in timeline planning should be formalised. The main difficulty is

how to measure a quality of a set of plans rather than a single plan.

We can summarise this comparison by stating that while timeline representation

captures different aspects of real world scenarios well, solving of such models is

challenging from a computational point of view (Benedictis & Cesta, 2015).

Timeline representation seems to be more relevant to our domain due to the

NASA and ESA applications. However, as we intend to integrate an existing plan-

ner into our algorithm, the performance of the chosen planner is critical to us. The

planner should not only be reasonably fast but also provide a good quality of

solutions. The quality of plans is needed as we assume that a mobile service robot

can be oversubscribed by tasks. Therefore, if the robot can optimise its plan, it can

achieve as many tasks as possible. As a result, we are interested in comparing per-

formances of state-based and time-based planners. To our best knowledge, there

is no survey providing such a comparison. We report at least on a few findings

from different research papers.

Bit-Monnot (2016) has compared the FAPE with three state-based planners:

POPF (A. J. Coles et al., 2010), OPTIC (Benton et al., 2012) and TFD (Eyerich et

al., 2009) on several domains from the International Planning Competition (IPC).

Unfortunately, it has compared only their coverage on these domains. The FAPE

has comparable coverage with POPF and OPTIC, but TFD has significantly bet-

ter coverage (solving 183 problems, whereas the FAPE solved only 114 across 12

domains).

Benedictis and Cesta (2015) compare runtime of their proposed timeline plan-

ner iLOC to runtimes of the VHPOP (Simmons & Younes, 2011), OPTIC and

COLIN (Amanda Jane Coles, Coles, Fox & Long, 2012). They compare runtime

of the planners as they focus on developing such a heuristic that would speed up

a search of timeline planners. The evaluation has been made using a number of

domains from the IPC. They have demonstrated that their proposed heuristic can

78

speed up the search of their timeline planner but the tested state-based planners

are still significantly faster on most of the domains.

To conclude, based on this comparison, state-based planning is more prom-

ising for our application because of its speed, coverage and the notion of plan

quality. Additionally, limitations of PDDL do not restrict modelling of our do-

main. However, before we make a final decision on the representation to use, we

review plan merging techniques for both representations in the following chapter.

9.2 Plan Merging

Given a set of n input plans, where each plan achieves a single goal Gi, plan

merging composes a single plan that achieves all goals G1, . . . Gn by reusing parts

of the input plans. Plan merging is often questioned because of the analysis done

by Nebel and Koehler (1995). The authors analytically proved that plan reuse can-

not lead to provable efficiency gain, compared to planning from scratch. However,

plan reuse and plan merging are very different problems. Plan reuse composes a

plan to achieve a new goal G by reusing plans from a database. Importantly, these

plans achieve different goals than G. Hence, reasoning about related actions from

the database plans has, in theory, the same complexity as the plan generation.

However, this argument cannot be reapplied to the problem of plan merging be-

cause plan reuse is a very different problem. Although this claim does not prove

that plan merging has a smaller complexity than plan generation. The complex-

ity analysis for a merging problem is not presented in the literature, to our best

knowledge, and it is outside of the scope of this thesis.

79

9.2.1 Action Merging

The term “plan merging” first occurred in the system NOAH (Sacerdoti, 1975),

followed by NONLIN (Tate, 1976) and SIPE (Wilkins, 1988). However, in these

systems, “plan merging” referred only to the changes done to a single plan in

order to optimise it. Foulser, Li and Yang (1992) define “plan merging” as “an

important type of helpful goal interaction occurs when certain operators in a plan can be

grouped, or merged, together in such a way as to make the resulting plan more efficient

to execute.” Such techniques should be denoted as action merging. Therefore, we

strictly differentiate between plan merging and action merging in this literature

review.

9.2.2 Plan Merging as Refinement planning

In contrast to forward-chaining planners, refinement planning is initialised with

a set of actions with no constraints between them (Kambhampati, Knoblock &

Yang, 1995). A solution plan is reached by adding refinements based on interac-

tions between the actions. These refinements limit the possible action orderings.

Krogt (2005) extended refinement planning in order to consider also unrefinements,

i.e., that not all actions need to be used. This is particularly useful for action mer-

ging, where an action can be removed from a plan when its effects are satisfied by

another action.

Plan merging via refinements can be modelled either as a satisfiability problem

(Mali, 1999) or as a Constraint Satisfaction Problem (CSP) (Yang, 1997). To our best

knowledge, (Yang, 1997) is the first work to introduce plan merging. Therefore, we

provide more detail about this work. Yang’s algorithm first creates a piecewise

union of the input plans and then finds all conflicts between them. A conflict is

when an effect of an action may change a precondition required by another action,

i.e., when an action from one plan violates causality of another plan. Therefore, a

80

refinement needs to be added to order these actions appropriately. The action with

the conflicting effect can be ordered:

• after the action requiring the precondition (promotion);

• before the action requiring the precondition (demotion);

Conflicts are resolved by a Constraint Satisfaction Problem (CSP). Hence, all

conflicts are found first in order to build a CSP. Then, a conflict represents a node

and the domain of each node is its possible resolution: promotion or demotion.

This CSP can be solved by any standard algorithm.

Tsamardinos, Pollack and Horty (2000) extends Yang’s work in order to merge

temporal plans. Because it has been introduced before PDDL 2.1 was proposed,

the authors introduce their own representation of time. Important to us is that

their representation follows the temporally-lifted approach. Hence, an action is rep-

resented as two instances – the start and end– which are constrained by the action

duration. Because actions are durative, they may be ordered in parallel. Therefore,

another resolution of a conflict is possible:

• the action with the conflicting effect can be ordered not in parallel to the

action requiring the precondition, hence both orderings (before or after) are

possible (separation).

In order to model separation ordering, the authors use a Conditional Simple

Temporal Network (CSTN), which extends Simple Temporal Networks (STNs)

(Dechter et al., 1991) by supporting disjunction between two possible orderings.

A CSTN is used to detect conflicts and to check the temporal consistency of a

solution proposed by an underlying CSP (as in Yang’s work).

Formulating plan merging as planning with refinements has two main disad-

vantages:

• the input plans must be compatible, i.e, there exists such an order on actions

that guarantees a conflict free plan.

81

• the final plan is not optimised. The CSPs provide a valid solution, but they

do not evaluate how good the solution is.

The first drawback is a significant bottleneck of this approach. There can be many

situations where two plans cannot be merged due to their conflicting structure.

9.2.3 Plan Merging as Plan Repair

The requirement of refinement planning that plans need to be compatible is

overcome by the usage of plan repair techniques. Originally, plan repair tech-

niques were proposed in order to save a planning effort when execution of a plan

fails. Instead of discarding the failed plan and planning from scratch, plan repair

techniques repair the plan, i.e., the part of the plan that has caused the failure is

replaced by another plan (Bidot, Schattenberg & Biundo, 2008).

Harris and Dearden (2012) address plan merging via plan repair in a domain

of an oversubscribed underwater robot. In their work, a robot executes a plan that

is guaranteed not to violate the limit of a robot’s battery. During plan execution,

the battery level is monitored. When there is enough energy left, a robot can op-

portunistically merge a plan for another goal into the existing plan. This means

that the original plan needs to be repaired in order to accommodate the new plan.

9.2.4 Plan Merging as Plan Coordination

Plan merging can also be seen as a problem of plan coordination between mul-

tiple robots (Ephrati & Rosenschein, 1993), (de Weerdt, 2003). Plan coordination

combines planning with refinements and plan repair. Plan coordination is import-

ant in domains where multiple robots with different capabilities need to cooperate

in order to achieve given tasks (Tonino, Bos, de Weerdt & Witteveen, 2002). In a

plan coordination problem, each robot has its separate plan, but the plans need to

82

be synchronised by imposed orderings and to be repaired in order to allow coordin-

ation between the robots. Finally, coordination of temporal plans is addressed by

Hashmi and El Fallah Seghrouchni (2010) and Allouche and Boukhtouta (2010).

9.2.5 Plan Merging with Timelines

Merging of timeline plans can be viewed as plan coordination as well. Be-

cause a timeline plan is represented by a constraint network, plan merging nar-

rows down to finding conflicts in a bigger network created by conjoining the input

networks (i.e., plans). A conflict can be resolved by either:

• imposing ordering constraints between conflicting tokens (similarly as in

plan merging via refinements); or

• repairing the network by adding new tokens.

Recall that these two techniques are the same as in the case of normal timeline

planning, as discussed in Sec. 9.1.2.1.. Therefore, plan merging is technically not

different to planning in timeline representation. However, Stock et al. (2015) de-

monstrate that their proposed CHIMP planner can still benefit from merging of

separately generated plans, compared to conjoined planning for a single large

problem.

9.3 Chosen Representation for Plan Merging

Finally, we can decide what representation of temporal planning is going to

be used for the rest of this thesis. Recall that we have argued that state-based

planning seems more promising to us due to its speed, coverage and quality of

plans. In addition to this, we have discussed that algorithms for plan merging in

timeline planning are not any different from algorithms for planning. Hence, plan

83

merging problem is very uninteresting in timeline planning. In contrast, merging

in temporal state-based planning raises a number of interesting issues:

• how a separation resolution of conflicts can be represented and utilised;

• how to preserve the temporal relation between the start and end action in-

stances;

• how to preserved required concurrency in the input plans.

Moreover, our assumptions A5-A7 add more aspects which must be considered

while merging in state-based planning. Based on all these arguments, we have

decided to focus on state-based planning. To conclude, when we refer to temporal

planning from now on, we mean strictly state-based temporal planning assum-

ing limitations imposed by PDDL 2.1 level 3. Our framework currently supports

neither ADL nor numeric variables.

84

CHAPTER 10

TERMINOLOGY

This chapter formally defines the nomenclature used throughout this thesis.

10.1 State

A state is represented by a conjunction of literals Ls where a literal l is either

an atomic formula (atom) f or its negation ¬f ; f and ¬f cannot be presented

at the same state as they are exclusive to each other. Atomic formulas F de-

scribe a certain property of the modelled world. They are expressed as a predic-

ate followed by terms. For example, a formula (at r1 loc1) means that the robot

r1 is at location loc1. A collection of all atoms describing the world properties is

called a domain D = {f1, .., fn}, hence all possible literals to describe a state are

LD = {f1,¬f1, . . . , fn,¬fn} and it holds that Ls ⊂ LD. Additionally, we define

satisfied and unsatisfied literals with regard to a state s.

Definition 10.1.1. Satisfied literal: Literal l is satisfied in the state literals Ls if l ∈ Ls.

Definition 10.1.2. Unsatisfied literal: Literal l is unsatisfied in the state literals Ls if

l /∈ Ls.

85

10.2 Action

10.2.1 Instantaneous Action

The modelled world transitions from one state to another by an instantaneous

action a from a set of all possible actions A. Action a = 〈Lpre , Leff 〉 is described

by its precondition literals Lpre and effect literals Leff . In instantaneous planning,

preconditions Lpre ⊂ LD are a set of literals that must be satisfied in a state s in

order to transit it by the action a to another one. Conversely, effects Leff ⊂ LD

are a set of literals that are applied by the action after a transition is done. Two

mapping functions, which return the set of preconditions or effects, are defined as

follows.

Definition 10.2.1. Precondition function: A function pre : A → LD returns for an

action a ∈ A its preconditions Lpre ⊂ LD.

Definition 10.2.2. Effect function: A function eff : A → LD returns for an action

a ∈ A its effects Leff ⊂ LD.

Finally, equality of two actions is defined as follows.

Definition 10.2.3. Equal actions: Action a1 is equal to action a2 if and only if pre(a1) =

pre(a2) and eff (a1) = eff (a2).

10.2.2 Durative Action

The above definition of an action is extended by processing time (duration)

p ∈ R, which represents how long the action lasts in a continuous time space.

Therefore, action a is represented by a tuple a = 〈Lpre , Leff , p〉. Additionally, the

definition of equality (Def. 10.2.3), is extended by adding the requirement that

durations of the actions a1 and a2 must be equal too, i.e., p1 = p2. Moreover, tem-

poral state-based planning splits the action into two instances: the start and end

86

point of the action. Therefore, the preconditions and effects can hold at the start,

referred to as Lpre
` and Leff

` , respectively; and at the end of the action, denoted as

Lpre
a and Leff

a ; Additionally preconditions can be required to hold over all duration

of the action, Lpre
↔ . These preconditions are referred to as invariants. Effects holding

throughout the action are the same as effects at the start, hence they are omitted.

Therefore, the preconditions and effects can be split into groups containing only

the specific literals, such that a = 〈{Lpre
` , Lpre

↔ , Lpre
a }, {Leff

` , L
eff
a }, p〉.

Finally, given action a = 〈{Lpre
` , Lpre

↔ , Lpre
a }, {Leff

` , L
eff
a }, p〉, the action start and

end points can be defined, as an instantaneous action and a time stamp.

Definition 10.2.4. An action start point a` ∈ A×R is a pair (〈{Lpre
` , Lpre

↔ }, Leff
` , 0〉, t`)

where t` is a time stamp representing when action a starts to alter the current world state.

Accordingly, we define a set of actions’ start points as A`.

Definition 10.2.5. An action end point aa ∈ A×R is a pair (〈{Lpre
↔ , Lpre

a , }, Leff
a , 0〉, ta)

where ta = t` + p is a time stamp representing when action a ends. Similarly, we define

a set of actions’ end points as Aa.

Definition 10.2.6. Preconditions of action point are denoted as pre(a`) = pre(a)` ∪

{pre(a)↔ \ eff (a)`}; and likewise for the effects of the action point.

10.2.3 Instantaneous Action as an Action Point

The definition of an action point can be reused in re-defining an instantaneous

action as an action point. We propose such a definition because we are going to

introduce terms that hold not only for instantaneous actions but also for action

points. Therefore, in order to avoid giving two very similar definitions for each

term, we unify an instantaneous action with definition of an action point.

Definition 10.2.7. Instantaneous action as an action point: An action point a⊥ ∈

A×R, which represents an instantaneous action a, is a pair (〈Lpre , Leff , 0〉, ∅). We denote

the set of instantaneous actions as A⊥.

87

Definition 10.2.8. Arbitrary action point is denoted by the symbol a` .̀ Importantly,

in an instantaneous domain, a` s̀tands for an instantaneous action point. However, in a

temporal domain, it stands either for an action start or an end point.

Definition 10.2.9. Action points: In an instantaneous domain, all instantaneous action

points correspond to the set of all actionsA. But in temporal planning, all possible actions’

points A` c̀onsists of start and end points, that is A``= A` ∪ Aa.

10.3 Distinctive Actions

Some actions have unique roles when perceived in the broader content of a

state transition. In order for atom f to hold in state s, it must be achieved by an

action. Such an action is referred to as the achiever of atom f . Vice versa, for atom

f to not hold in state s, it is deleted by an action that is called the deleter of atom

f . Instead of following the standard approach of defining achievers and deleters

as actions, we define them as action points. This extension is made because atoms

are changed due to applying the effect belonging to a specific action point.

Achievers and deleters utilise the following notion of positive and negative

preconditions and effects.

Definition 10.3.1. Positive and negative preconditions: The positive precondition

literals Lpre+ of action a are returned by a function pre+ : a → F . In contrast, the

negative precondition literals Lpre− of action a are returned by a function pre− : a→ ¬F .

Using this definition, the achievers and deleters are defined as follows.

Definition 10.3.2. Achiever of an atom: When a plan is performed, effects of action

points from the plan affect the current state Ls. For a positive literal f ∈ Ls, the last

performed action point having f as its effect is called an achiever of atom f , denoted as

a+
f . Conversely, for a negative literal ¬f ∈ Ls, the last performed action point having ¬f

as its effect is called a deleter of atom f , denoted as a−f .

88

A state transition is obtained by applying the effects of an applicable action

point.

Definition 10.3.3. Applicable and inapplicable action point in a state: Action point

a` ìs applicable in state s if and only if its preconditions hold in the state, hence pre(a`)̀ ∈

Ls. We denote the set of all applicable action points in state s as Aapp. The set of all

inapplicable action points in state s is Ainapp = A` \̀ Aapp`` .

In the case of temporal planning, an end action point aa is dependent on the

start action point a` of the same action a. Hence, its applicability needs to be ex-

tended in the following way. Action a transits state s1 to state s2 if and only if a` is

applicable in state s1 at time τ` and if there is a guarantee that aa will be applicable

at time τa = τ` + p, where p is duration of action a. This means that either:

(S1) pre(a)a must be satisfied in state s1 and must keep holding until time τa; or

(S2) pre(a)a are not satisfied in s1 and for each literal l ∈ pre(a)a, there is an

achiever a+
l which has literal l as its effect. As a result, the literal l holds

from time τ+ (when the achiever effect was applied) until the time τa when

it is needed.

These two situations are described in the example below.

Additionally to these conditions, a durative action a also requires that its in-

variant preconditions hold throughout its duration. We refer to such literals as

protected.

Definition 10.3.4. A protected literal l occurs if and only if: (i) literal l is in the invari-

ant preconditions of a, i.e., l ∈ pre(a)↔; (ii) the action’s start point a` has already been

applied; (iii) the action end point has not been applied, i.e., action a is not yet finished. We

refer to the pair of the protected literal and the related action point as lprot = (l, a`).

Note that this may remind threatened literals in causal links. A threatened literal is

in a causal link between two actions’ points from two different actions. In contrast,

89

a protected literal is a link between a start point and an end point of the same

action. Furthermore, only invariant timed literals (“over all”) can be protected but

any timed literal can be threatened. A protected literal can be threatened similarly

as a threatened literal by another action point a′` t̀hat has ¬l as its effect. However,

the solution is possible only by promotion due to the fact that the action, causing

the protected literal, has already started. Hence a′` c̀annot be ordered before it, i.e.

demotion cannot be applied.

10.3.1 Example

The introduced nomenclature can be illustrated by the following example. A

temporal action a with duration pa has three preconditions, where the first needs

to hold at the start of the action, the second needs to hold over all duration and the

third in the end. Additionally, it has one effect at the end. Fig. 10.1a illustrates the

situation S1 from the above list. Because both pre(a)` and pre(a)↔ hold in the cur-

rent state s1, the start action point a` is applicable in state s1. Therefore, the action

point is applied to the state at time τ`. As a result, the invariant literal l ∈ pre(a)↔

becomes protected until the end action point is applied. When time τa = τ` + pa

is reached, the end action point needs to be applied. Because the precondition

pre(a)a holds, this action point can be applied, releasing the protected literal. Fur-

thermore, this end action point is also an achiever to the literal l ∈ eff (a)a. As this

literal has become true at the end of action a, the state has changed into s2. Addi-

tionally, any deleter of pre(a)↔ has been promoted to occur after the end of the action

a. In the figure, the at end effect of the deleter a− has changed the literal in pre(a↔)

to false (F). It is important that such a change does not occur not in the interval

ϑ1 = (τ`, τa), where the literal was protected to be true by the action a.

Situation S2 from the above list is illustrated in Fig. 10.1b. The start action

point a` is applicable in state s1. However, the end action point aa is not, because

90

T
F

T
F

T
F

T
F

(a)

T
F

T
F

T
F

T
F

(b)

Figure 10.1: The action a has three literals as the preconditions and one effect. In
(a), all the preconditions are true (T) at the state s1 and any deleter of the liter-
als, making them false (F), is ordered after they are needed, such as deleter a− of
pre(a)↔ appearing at time τ− > τa. The interval ϑ1 highlights where the invari-
ant precondition is protected. In (b), the precondition pre(aa) is false in s1 but the
achiever a+ makes this literal true at the time τ+ < τa. Moreover, this literal may
be threatened within the interval ϑ2, hence any deleter must occur outside of this
interval.

the precondition is false at the state s1. Hence, a planner must guarantee that there

is an achiever that makes the literal true at time τ+ that is before τa, when the at

end literal is needed. In our case, the end point of action a+ achieves the literal.

Moreover, there cannot be an effect deleting this literal in the interval ϑ2 = (τ+, τa).

The literal is threatened on this interval, hence all deleters must be either demoted

to be before τ+ or promoted after τa.

10.4 Plan

An ordered set of action points, which transits the world from an initial state

I ⊂ LD to a required goal state G ⊂ LD, is called a plan, denoted as π. State s

with a set of literals Ls achieves the goal if G ⊆ Ls. The pair P = (I,G) is referred

as a planning problem, and a plan π is its solution. In order to measure the quality

91

of a solution, the notion of makespan of the plan is used. Whilst in instantaneous

planning makespan is expressed as the number of actions in the plan, in temporal

planning, makespan is expressed as the duration of the plan. As actions can occur

concurrently in the plan, plan duration cannot be defined by simple summation

of their duration.

Definition 10.4.1. Plan quality is Q = 1
|π| where |π| is makespan of plan π, which is

measured as |π| = tENDa − tSTART` . The symbol tENDa refers to the time when the last

action END ends and tSTART` is the time when the first action START starts.

The actions START and END are special actions that are utilised in the represent-

ation of a plan.

Definition 10.4.2. The START action is the first action in the plan such that 〈∅, I, 0〉.

This means that it is an instantaneous action point, whose preconditions are empty and

effects are set to the initial state I .

Definition 10.4.3. The END action is the last action in the plan such that 〈G, ∅, 0〉.

This means that it is an instantaneous action point, whose preconditions are set to be the

goals literals G and effects are set to be empty.

10.4.1 Partial Order Plan

In this thesis, we exploit partially ordered plans (POP) that are already grounded1.

For a thorough overview of POP see (Weld, 1994).

1Ground action means that specific values are assigned to all terms in the literals, hence there
are no variables left. Therefore, in this definition, we omit details about lifted actions and bindings
when describing the plan representation.

92

Definition 10.4.4. A partially ordered plan (POP) is a tuple π = 〈A` ,̀ L, O〉, where:

• A` ìs a set of action points such that their actions are a subset of all possible actions,

A ⊆ A;

• L is a set of causal links; a causal link links two action points from A` t̀ogether in a

sense of producing literal l and consuming it, see exact definition below.

• O is a set of ordering constraints between two action points from A``defining a

partial order on the set A.

Definition 10.4.5. A causal link a``
l−→ a′` r̀epresents that literal l ∈ pre(a′`)̀ is produced

by an effect of action point a` ,̀ i.e. l ∈ eff (a`)̀. We refer to a` às a producer of literal l in

order to highlight that the literal is produced for some other action point. Additionally, we

refer to a′` às a consumer of literal l in order to highlight that this action point consumes

the literal.

Definition 10.4.6. Ordering: The relationship between two action points a` ò a′` f̀rom

different actions is specified by an ordering o ∈ O where O = {<,=, >, ∅,≤,≥}. The

ordering ∅ means that no ordering is defined, hence the two action points can appear in

any order. The rest of the symbol has the standard meaning. Noticeably, the ordering 6= is

not supported as it would lead to a disjunction of two possible orderings. An extension,

such as this, would lead to contingent planning, which is outside the scope of this thesis.

Additionally, there is always ordering a` < aa for a durative action a.

10.4.2 Backward-Chaining Plan-Space Planning

Historically, POP algorithms were designed as a backward search through the

space of partial plans. An initial plan in such a case contains only START and END

actions and this plan is expanded by adding actions to resolve unsatisfied precon-

ditions of actions already in the plan - this is known as an open condition flaw.

93

Moreover, these actions need to be ordered to avoid another flaw – a threatened

causal link.

Definition 10.4.7. An open condition l−→ a′` m̀eans that literal l ∈ pre(a′`)̀ has not yet

been linked to an effect of any producing action point.

Definition 10.4.8. A threatened link is a causal link a``
l−→ a′``such that there is an

action point a′′``∈ A` t̀hat could possibly be ordered between a` ànd a′` ànd threatens the

causal link by having ¬l as its effect, i.e., ¬l ∈ eff (a′′`)̀.

Open conditions are solved by adding new action points to A` ànd by creat-

ing new causal links saved in L. Threatened links are addressed by adding new

orderings to O to make sure that the threatening action point a′′``does not occur

between the action point linked in the threatened link a``
l−→ a′` .̀

Definition 10.4.9. Promotion and demotion are techniques which solve a threat to a

causal link a``
l−→ a′` f̀rom a′′` .̀ Only one technique is applied to solve the threat. Promotion

adds the constraint a′``≺ a′′` t̀o O. Conversely, demotion adds a′′``≺ a` t̀o O.

10.4.3 Required Concurrency

Required concurrency is an important aspect in temporal planning that de-

scribes that some actions are required to be ordered in a certain relation. It can be

illustrated on the example from the turn and open domain, where a robot with a

gripper is required to open a door. In order to do so, it needs to turn the door knob

and hold it turned whilst it pushes the door. Hence, the action push is required

to be ordered during action turn. The synchronisation of actions is critical for the

success.

This property is defined by the following definition, which is slightly reph-

rased from the one given by W. Cushing et al. (2007).

94

Definition 10.4.10. Required concurrency: Let a and a′ be durative actions from a

plan. The actions are concurrent if either a` ≤ a′` ≤ aa or a′` ≤ a` ≤ a′a. A plan is

concurrent when any action is concurrent, otherwise the plan is sequential. A solvable

planning problem has required concurrency when all solutions are concurrent.

10.5 Task

Throughout this thesis, we have used the examples of tasks given to the robot,

such as:

• ω1: “notify people in a common eating area to leave between 20:00 - 20:15”

This informal description maps into a formal one in the following way. The com-

mand “notify people in a common eating area to leave” is translated into a goalG.

Additionally, the robot is aware of the current state of its environment. This know-

ledge is expressed as an initial state I . The goal and the initial state are specified

by a conjunction of literals from the domain D. Furthermore, the initial state and

goal state represent a planning problem P = (I,G). A solution to this problem

is a plan π that is a set of ordered actions from all robot’s capabilities A, such as

navigating to the eating area and interacting with people.

The initial state I is presented because planning is traditionally formalised as

searching for a sequence of actions transitioning the world from the initial state to

the goal state.

10.5.1 Task Instances

The task described above is defined as follows.

Definition 10.5.1. An instantaneous task is defined as a tuple ωi = 〈Di, Ai, (Ii, Gi),

πi〉 containing the task domain Di, the set of instantaneous actions Ai, the planning prob-

95

lem Pi = (Ii, Gi) and the partially ordered plan πi, which solves the planning problem

using the given domain and actions.

However, such a task is unrealistic in the real world. Therefore, we introduce a

durative task, which operates with durative actions. As a result, the plan lasts for a

certain amount of time. Its duration corresponds to the duration of the whole task.

In the previous part of the thesis, we denoted the task duration as the processing

time p. Thus, we will keep this notion here as well.

Definition 10.5.2. A durative task is defined as a tuple ωi = 〈Di, Ai, (Ii, Gi), πi, pi〉

containing the task domain Di, the set of durative actions Ai, the planning problem Pi =

(Ii, Gi), the partially ordered plan πi and the duration of the plan pi.

Finally, we can re-introduce the release date r and the deadline d from the pre-

vious part. As before, we argue that all tasks must be within the time window

limited by the release date and deadline.

Definition 10.5.3. A durative task with a time window is defined as a tuple ωi =

〈Di, Ai, (Ii, Gi), πi, pi, ri, di〉 containing the task domain Di, the set of actions Ai, the

planning problem Pi = (Ii, Gi), the partially ordered plan πi, the duration of the plan

pi, the release date ri and the deadline di. Additionally, the plan must fit the given time

window limited by the release date and deadline.

10.5.2 Task Dependency

One of the introduced requirements in this thesis was that the given tasks must

be separable. A task is separable if there exists no other task that must precede

it or follow it. However, we argued that spatial and temporal constraints cause

dependency between their sub-parts. We elaborate on this phenomenon here in

detail, where we express task dependency only according to causal constraints

96

between them. We omit temporal constraints as the causality is a stronger require-

ment when compared to temporal constraints. For example, assume two tasks,

whose time windows are overlapping. They are interacting in time but they may

be no causal constraints between them, i.e., they can be ordered in parallel.

Definition 10.5.4. Independent tasks: Two tasks ωi, ωj are independent of each other if

actions from their plans πi and πj can be performed in any order.

Definition 10.5.5. Semi-dependent tasks: Two tasks ωi, ωj are semi-dependent on each

other if some actions in their plans πi, πj must be performed in a certain order.

Definition 10.5.6. Dependent tasks: Two tasks ωi, ωj are dependent on each other if all

actions in their plans πi, πj must be performed in a certain order.

97

CHAPTER 11

PROBLEM DEFINITION AND SOLUTION
APPROACHES

In this part of the thesis, we are interested in finding a single plan that satisfies

all given tasks whilst meeting their spatial and temporal constraints. In order to

be able to compare our proposed solution with the existing planners, we intro-

duce two simplified problems. The first simplified problem assumes that given

tasks are instantaneous and there are no temporal constraints. The second simpli-

fied problem operates with durative tasks but still without temporal constraints.

11.1 Problem Statement

The problem we are interested in is a composition of a single, partially ordered

plan (POP) from a given set of input tasks that can be dependent according to

Def. 10.5.6. This means we want to find a plan π that achieves goals G1, ..., Gn of

the given set of tasks Ω = {ω1, . . . , ωn}. We investigate three task types, in increas-

ing level of complexity:

1. instantaneous tasks, i.e., ωi = 〈Di, Ai, (I,Gi), πi〉,

2. durative tasks, i.e., ωi = 〈Di, Ai, (I,Gi), πi, pi〉, and

98

3. durative tasks with time windows, i.e., ωi = 〈Di, Ai, (I,Gi), πi, pi, ri, di〉.

The initial states of each task are mutually consistent. This means that Ij is con-

sistent with Ik if for all l ∈ LDj
∩ LDk

, l ∈ Ij if and only if l ∈ Ik.

11.2 Solution Approaches

In Sec. 8, we have illustrated three different approaches addressing this prob-

lem: sequencing, conjoining and merging. In this section, we formally define them.

11.2.1 Sequencing planning algorithm

This approach generates an independent plan for each task ωi. Hence, it finds

a set of plans Πω = {π1, . . . , πn}, and then sequences them to create a single final

plan πf . For the resulting plan to be valid, one needs to first decide on an ordering

of the tasks and then modify the initial states of each task to the final state of the

plan for the preceding task. This approach is generally very fast, but it comes at

the price of plan quality because this approach does not allow for the interleaving

of actions from different plans. This means it does not take advantage of possible

synergies between tasks.

11.2.2 Conjoining planning algorithm

This approach relies on conjoining tasks from the input set into a single task

(i.e., a single planning problem). This is possible for instantaneous tasks and dur-

ative tasks with no constraints. The conjoined instantaneous task is defined as:

ω =

〈 ⋃
i∈{1...n}

Di,
⋃

i∈{1...n}

Ai,

 ⋃
i∈{1...n}

Ii,
⋃

i∈{1...n}

Gi

 , πf

〉
(11.1)

99

and similarly for the temporal tasks. After a conjoined task is obtained, one can

use an appropriate planning algorithm to find its solution plan πf . While this ap-

proach can more easily take advantage of the relationships between goals in dif-

ferent tasks in comparison to sequencing (e.g., two tasks that should be executed

in the same location), it can suffer from scalability issues as finding a plan for the

conjoined task can be much harder than finding plans for each individual task by

itself. In this work, we assume that the conjoined tasks are modelled a priori and

passed directly as an input to such systems. However, the release dates and dead-

lines cannot be conjoined in this way. We elaborate on how they are conjoined in

Chapter 13.

11.2.3 Merging planning algorithm

This approach combines both of the aforementioned methods. It also plans for

tasks separately, obtaining Πω = {π1, . . . , πn}, but then it reasons over each plan

and merges them together into a single plan with the same or better quality, com-

pared to the plan obtained by simple sequencing. The final plan πf consists of

parts of the task plans in Πω and newly created plans Πjoin by plan repair tech-

niques. These plans are used in order to connect the parts of Πω such that the final

plan is free of flaws.

While the merging procedure adds an overhead at plan generation time, when

compared to the sequencing approach, it allows us to find synergies and demands

between plans for different tasks, which results in interleaving plans for different

goals. A typical benefit of this approach in the mobile robot domain is the possib-

ility to perform actions from different tasks when these actions share a common

location.

100

CHAPTER 12

SOLUTION

We propose a novel algorithm, POPMERX (Partial Order MERging), which ad-

dresses the problem of merging plans for different tasks (Sec. 11.1). We first in-

troduce a core of POPMERX merging instantaneous tasks. Then, we extend it to

handle features needed by durative tasks and durative tasks with time windows.

In a summary, POPMERX is a forward-chaining algorithm exploiting approaches

for fast heuristic-based search. Additionally, it utilises the same representation as

temporally-lifted planners, which is that a durative action is split into two in-

stances. Therefore, our algorithm handles the notion of required concurrency. Fur-

thermore, we build our algorithm on partial-order planning (POP), because:

1. POP naturally structures a plan into independent plan segments and pre-

serves the knowledge about dependencies by causal links and orderings;

2. POP follows the least-commitment approach that yields more options for

merging plan segments from different plans, when compared to a totally

ordered plan;

3. POP can capture the required concurrency in temporal planning;

101

12.1 POPMERX

POPMERX can be visualised as several interacting components, as shown in

Fig. 12.1. In the first optional layer, focused on preprocessing, a batch of input tasks

is given without associated plans. Although they are separable, there may be cer-

tain synergies and demands, which make them dependent (Def. 10.5.6). This ad-

ded dependency can hinder the performance of our proposed algorithm. Hence,

we introduce this preprocessing step, based on a relaxation of the tasks’ planning

problems in order to limit their dependencies. This means that each input task

ωi = 〈Di, Ai, (I,Gi), ∅〉 is relaxed to ω×i = 〈Di, Ai, (I
×, Gi), ∅〉 by modifying the ini-

tial state. We elaborate on details in Section 12.4. Importantly, this preprocessing

step can be omitted as it is not critical for the algorithm, though its presence im-

proves the quality of the found solution.

The second layer – a wrapped planner X – then finds a plan π×i for each relaxed

task. Note that the index X in the name of our algorithm represents the planner,

for example POPMERVHPOP indicates that the VHPOP planner is wrapped within

POPMER.

These relaxed plans, alongside the original initial state I and the set of the

goals G =
⋃
i∈1...nGi, are then supplied into the third layer. This layer represents

the core algorithm. In contrast to the previous two layers, which were immediate,

the third layer iterates many times until a solution plan is found due to an internal

feedback loop. In more detail, this third layer has the following five modules.

• The first module reasons about the causal structure of the input relaxed plans

and chooses action points from them that are not dependent on any causal

link or ordering. These are saved in an unsorted candidate set Acan`` . Addi-

tionally, this module also manages the feedback from the fourth module –

merge – according to which actions, links, and orderings are already satisfied

in the solution plan candidate πs.

102

Backtracking
Reasoning

&
Managing

Heuristic Merge

Planner

Preprocessing

Flaw check

Figure 12.1: The proposed algorithm consists of three layers: optional prepro-
cessing, an integrated state-of-the-art planner and the core of the algorithm at the
bottom where merging of partially ordered plans is done. See Sec. 12.1 for detailed
description.

103

• The candidate set Acan`` is passed into the backtracking module. Backtrack-

ing is triggered when the candidate set is empty. This means that no action

points could have been chosen from the input plans due to the candidate

plan πs. Therefore, the previous search state is recovered and the previously

made choice is withdrawn from the recoveredAcans . Thus, while not optimal,

POPMERX is guaranteed to find a solution for the merging, if one exists.

• The candidate set Acan`` (original or recovered) then proceeds to the heuristic

component. Furthermore, the set of literals Ls is also part of the input to

this component. The set Ls describes the current state of the world which

would hold if the candidate plan would be applied to the initial state I . The

heuristic module evaluates what is the best action point to be added into

the candidate plan. It utilises a greedy selection mechanism based on the

estimated cost of the actions. We propose different heuristics to estimate the

cost, which are discussed in the corresponding section.

• The best candidate action point acan`` is used to expand the search state S in

the merge module.

• The module flaw check inspects the current plan πs and when there are no

more flaws, the algorithm ends and returns the last candidate plan. If there

are still flaws, the reasoning and managing module choose new candidate ac-

tions and this layer continues to process the input plans as long as the can-

didate plan has a flaw or no solution can be found.

12.1.1 Search State

Our proposed algorithm utilises a search state, which is updated during the al-

gorithm’s iterations. In the case, when instantaneous tasks are handled, the search

104

state is defined as:

S = 〈Ls,A+
` ,̀A−` ,̀Acans , πs〉 (12.1)

where:

• πs = 〈Aπs ,Lπs ,Oπs〉 is the candidate partial order plan that reaches the cur-

rent state.

• Ls = {F+, F−} is the set of positive and negative literals, respectively, that

hold in S as a result of applying the candidate plan πs to the initial state I .

• A+
``is the set of achievers of all atoms that hold in the current state.

• A−``is the set of deleters of all atoms that do not hold in the current state.

• Acans is the set of all candidate action points that could be merged into plan

πs in the current iteration;

In the case, when durative tasks are handled, the search state is extended into:

S = 〈ts, Ls,A+
` ,̀A−` ,̀Acans , Lprot, πs〉 (12.2)

where

• ts = makespan(Oπs) represents the minimal duration (i.e. makespan) of the

candidate plan πs. This time indicator is used to in the heuristic module.

• Lprot is the set of protected literals by the current state.

12.2 Example

In order to illustrate the functionality of POPMERX, we extend the example

given in Sec. 8.1. Alongside this example, we informally introduce a number of

105

START
E:(at R)

(move R EA)
P: (at R)

E:(at EA), (not (at R))

P: (at EA)

E:(notified EA)

(notify to_leave EA)

END
P:(notified EA)

(a) π1

(sense EX1)

START
E:(at R)

(move R EX1)
P: (at R)

E:(at EX1), (not (at R))

P: (at EX1)

E:(data EX1)

(recognise exit EX1)
P:(data EX1)

E:(recognised exit EX1)
(move EX1 EX2)

P: (at EX1)

E: (at EX2)

......
(b) π2

Figure 12.2: Details of partially ordered plans for task ω1 (a) and ω2 (b). The arrows
visualise the causal links between actions. The dots represent that there are more
actions in the plan.

terms that are exploited in the algorithm. Their formal definitions are given in the

next section.

The two instantaneous tasks ω1 and ω2 from the example scenario (Sec. 1.1)

are given to POPMERX. Preprocessing is not considered in this example. There-

fore, a planner X returns two partially ordered plans π1 = 〈A1,L1,O1〉 and π2 =

〈A2,L2,O2〉, which are visualised in Fig. 12.2a and Fig. 12.2b, respectively. We refer

to actions by a subscript x − y, where x ∈ {1, 2} refers to either plan π1 or π2 and

y refers to the order of the action within the plan. Hence, action a`1̀−1 is the first

action in the plan π1. Causal links are denoted similarly by a subscript x − y − z.

Whilst x has the same meaning, y and z refer to the actions between which the

causal link exists. For example, causal link `2−1−2 : a`2̀−1
(at EX1)−−−−→ a`2̀−2 is between

the first and the second action from plan π2. Finally, the ordering subscript follows

the same pattern as causal links.

106

First, the search state S is initialised as:

S = 〈{(at R)}, {a`0̀ : (at R)}, ∅, ∅, 〈{a`0̀}, ∅, ∅〉〉,

where the candidate plan πs is initialised by the START action a`0̀, whose effects

reflect the initial state I = (at R). Hence, if the plan πs was executed, the current

state of the environment would be Ls = {(at R)}. Moreover, the START action

achieves the literal (at R); there is no deleter. Then, the iteration between the five

modules is triggered.

The reasoning and managing module extracts actions from the provided plans

that can be merged. In the first iteration, either a`2̀−1 = (move R EX1) or a`1̀−1 =

(move R EA) can be chosen because they are only dependent on the START action,

which is already merged. The START action is a provider for a`1̀−1 and a`2̀−1. Other

actions cannot be chosen yet as their providers are not merged. As a result, the

candidate set is Acan`` = {a`1̀−1, a`2̀−1}.

This candidate set is not empty, therefore backtracking is not triggered. The

candidate set is passed into the heuristic module. We provide more details about

the proposed heuristic later. Let us now assume that the module chooses a`2̀−1 =

(move R EX1) as the candidate acan`` . Therefore, this action is merged into the plan

πs. Merging not only adds the action into the set of actions Aπ∫ but also orders

it after the START action and establishes causal links between the effects of the

START action and preconditions of the chosen action. We add both causal link

and ordering because they reflect on different reasons why such constraints need

to be added between the actions. However, they have the same effect on the final

order of actions in the candidate plan in this case. Hence, the merged plan is:

πs = 〈{a`0̀, a`2̀−1}, {a`0̀
(at R)−−−→ a`2̀−1}, {a`0̀ < a`2̀−1}〉.

107

The state S is updated as follows:

Ls ={(at EX1), (not (at R))},

A+
``={a`2̀−1 : (at EX1)},

A−``={a`2̀−1 : (at R)},

Acans ={a`1̀−1, a`2̀−1},

πs = as defined above

Notice that achievers and deleters in the state S represent only the atoms holding

in the current Ls; this implies from the closed world assumption. Therefore, the

previous achiever a`0̀ : (at R) is not presented anymore.

In the next iteration, the reasoning and managing module chooses new candidate

actions. It receives the old candidate set {a`1̀−1, a`2̀−1} as its input. First, it removes

the previously merged action a`2̀−1 and the action a`1̀−1 = (move R EA) remains in

the candidate set. Moreover, action a`2̀−1 from the plan π2 has become satisfied in

πs. Also, the causal link `2−0−1 : {a`0̀
(at R)−−−→ a`2̀−1} and the ordering o2−0−1 : a`0̀ <

a`2̀−1 has become satisfied in πs. Therefore, the next action a`2̀−2 = (sense EX1) can

be chosen as a candidate. As a result, Acan`` = {a`1̀−1, a`2̀−2}.

The heuristic module recognises that action a`1̀−1 is inapplicable (Def. 10.3.3) in

the current state Ls because its precondition requires that literal (at R) holds, but

the current state contains its negation. Moreover, the causal link `1−0−1 : a`0̀
(at R)−−−→

a`1̀−1 is violated by the current state Ls. As a result, the heuristic module cannot

compute the heuristic value for action a`1̀−1. Therefore, the heuristic module must

first obtain a joining plan.

Joining plans are obtained only for those actions that are inapplicable in Ls in

order to measure the cost of adding such an action into the candidate plan. Hence,

for each inapplicable action point ainapp`` , a new problem P join = (Ls, pre(ainapp``) is

passed into the planner X to receive the joining plan πjoin. The joining plan for

108

action a`1̀−1 = (move R EA) contains only action (move EX1 R) in this case. Finally,

the heuristic module chooses action a`2̀−2 = (sense EX1) to be merged as its cost

is smaller than the cost of the joining plan. This results in the new merged plan:

πs = 〈{a`0̀, a`2̀−1, a`2̀−2}, {a`0̀
(at R)−−−→ a`2̀−1, a`2̀−1

(at EX1)−−−−→ a`2̀−2},

{a`0̀ < a`2̀−1, a`0̀ < a`2̀−2, a`2̀−1 < a`2̀−2, }〉.

Additionally, the actions a`2̀−1, a`2̀−2 represent a plan segment, i.e. a continuous

subset of actions from a single plan.

The algorithm continues iterating while the candidate plan πs has a flaw – an

unsatisfied goalG. The solution plan cannot contain a goal related flaw. Therefore,

the merged final plan πf achieves all tasks goals but they do not have to hold at

the end of the plan. As a result, we will define when a goal Gi is satisfied.

12.3 Terminology Related to Plan Merging

We formalise here the terminology introduced in the previous example. Whilst

the example considers instantaneous tasks, the used terms also hold for temporal

plans.

12.3.1 Extending POP definition

Causal links and orderings in a POP cause a dependency between action points.

Therefore, they can be united as dependants and providers.

Definition 12.3.1. Dependant: A dependant is an action point a′` s̀uch that there exists

either a causal link a``
l−→ a′``or there is ordering a` ò a′` .̀ Hence, a′` ìs dependent on

action point a` .̀ Importantly, an action’s end point is always dependent on its start point.

109

Definition 12.3.2. Provider: A provider is an action point a``such that one or more

other action points are dependent on it. Note that an action start point has always at least

one dependant, its end point. We define the set Adep of all providers for action point a` às

Adepa`` = {a′` ∈̀ A` |̀ (a′``
l−→ a`)̀ ∨ (a′` ò a`)̀}.

Furthermore, given two partially ordered plans π1 = 〈A1,L1,O1〉 and π2 =

〈A2,L2,O2〉, their actions, causal links and orderings can be compared.

Definition 12.3.3. Satisfied action in a plan: An action ai ∈ A1 is satisfied in plan

π2 if and only if ai ∈ A2.

Definition 12.3.4. Satisfied causal link in a plan: A causal link `ij : ai
l−→ aj, `ij ∈ L1

is satisfied in plan π2 if and only if `ij ∈ L2, which implies that ai, aj are satisfied in π2.

Definition 12.3.5. Satisfied ordering in a plan: An ordering Oij : ai o aj, Oij ∈ O1 is

satisfied in plan π2 if and only if Oij ∈ O2, , which implies that ai, aj are satisfied in π2.

A POP plan π can be also extended by an action point.

Definition 12.3.6. Plan expansion operator⊕: Given π = 〈A,L,O〉 and action point

a` ,̀ the operator π ⊕ a``has the following effects. First, all action points A are ordered

before the new point a` ,̀ hence O = O ∪ {〈a′``< a`〉̀ | a′` ∈̀ A}. Then, the action point a``

is added to the plan action points A = A ∪ a` .̀

12.3.2 Joining Plans

A joining plan is needed if an inapplicable action point a` ìs supposed to expand

the current state described by Ls. Thus, not all of its preconditions are satisfied in

this state, i.e., ∃ l ∈ pre(a`)̀ : l /∈ Ls. Such a situation occurs because a causal link

where a` ìs the consumer (Def. 10.4.5) was violated.

Definition 12.3.7. Violated causal link: Causal link ` = a′``
l−→ a` b̀ecomes violated if

(i) the producing action point a′` h̀as been already merged into the plan but the consuming

110

action point a` h̀as not; and (ii) another merged action from a different plan has caused

that literal l (required by the causal link) does not hold in the current state, i.e. l /∈ Ls.

For such violated link, a joining plan needs to be obtained in order to satisfy

literal l in the current state. This corresponds to the fact that a``is inapplicable

action point in the current state.

Definition 12.3.8. Joining plan: A joining plan for an action point a``first obtains a

temporary plan that satisfies the action point’s preconditions, i.e., πtemp = X(Di, Ai, (Ls,

pre(a`)̀) where Di, Ai stands for the domain and the action set of the task from where the

action point comes from. Then, the joining plan is obtained by adding the action point to

the temporary plan, i.e., πjoin = πjoin ⊕ a`.

12.3.2.1. Unsolvable Temporary Problems

Importantly, the generated temporary problem (Ls, pre(a`)̀) may be unsolv-

able in the given domain Di. This can be illustrated again on the example from

Sec. 12.2. We have left the example after the second iteration when the candidate

plan was containing the actions (START), (move R EX1), (sense EX1). For the rest

of this explanation, we are going to work with durative actions. Assume that the

durative action (move ?from ?to) is modelled as follows:

• preconditions: (at start (at ?from));

• effects: (at start (not (at ?from))) and (at end (at ?to)).

We skip forward in the iterations to the search state, where Ls = { (data EX1),

(recognised exit EX1), (at R) }. In this state there are two candidates: a`1−1 = (move

R EA) or a`2−4 = (move EX1 EX2). Note that both are start action points. The heur-

istic chooses a`1−1. The merging module merges this action point and applies its

effect (not (at R)) to Ls. As a result, the search state is updated to Ls = { (data

111

EX1), (recognised exit EX1)}. Note that this state does not include any literal de-

scribing where the robot is.

In the next iteration, the candidates are: a`2−4, aa1−1. Because a`2−4 is inap-

plicable in the current state, the heuristic module needs to obtain a joining plan.

Therefore, the planning problem is created with an initial state I = Ls = { (data

EX1), (recognised exit EX1)} and the goal G = (at EX1). However, a plan cannot

be found for this problem because the initial state does not contain literal (at ?loc).

To conclude, this is a problem of domain modelling. However, exactly this

situation occurs in the Driverlog domain from the International Planning Com-

petition (IPC). Moreover, we have notice that some off-the-shelf planners can re-

cognise invalid planning problem very fast, but some not. Therefore, POPMERX

needs to handle the situation when its wrapped planner X keeps searching for

a solution to an invalid problem. Currently, we provide a runtime threshold to

stop the planner X and claim that the problem is unsolvable. We provide more

discussion of this phenomena in the evaluation.

12.3.3 Plan Segment

A plan π can be separated into several plan segments. A plan segment is any

continuous subset of action points from π.

Definition 12.3.9. Plan segment: A plan segment is an ordered set of action points,

containing one or more action points from a plan π. If a′` ìs the start of the plan segment

and a` ìs the end, all action points from π ordered between a′` ànd a` m̀ust be part of the

plan segment.

A plan segment can contain a single action point or its last element is a start ac-

tion point as in the case of a joining plan. Because our heuristic module needs to

estimate the cost of this joining plan, which is based on the duration, we need to

define the duration of a plan segment. Our motivation is to measure how much

112

time the temporary plan and the whole inapplicable action are going to consume.

Therefore, the duration of the plan segment is defined as follows.

Definition 12.3.10. Duration of plan segment: The duration of a plan segment is ex-

pressed via its first element a′``= (a′, t′`)̀ and the latest action end point aa = (a, ta). This

end point does not have to be in the plan segment but its corresponding start point a`

must be included. Hence, the duration of plan segment, d = ta − t′` ,̀ expresses how much

time is needed for all actions that have started within the plan segment to finish.

12.3.4 Satisfied Goals

The merged plan satisfies tasks’ goals.

Definition 12.3.11. Satisfied goal: Goal Gi of instantaneous or durative task ωi is sat-

isfied in plan πf if goal literals LG are satisfied in some state S visited by the plan, i.e.

LG ⊂ Ls.

Definition 12.3.12. Satisfied goal with time constraints: Goal Gi of durative task ωi

with time constraints is satisfied in plan πf if goal literals LG are satisfied in some state S

visited by the plan and its minimal duration ts is between the release date and deadline of

the task, hence ri ≤ ts ≤ di.

12.3.4.1. Flaws in Merged Plans

Definition 12.3.13. Goal related flaw: The merged plan πs has as many goal related

flaws γG as there are unsatisfied goals. All goal related flaws need to be solved in the

solution plan.

Definition 12.3.14. Action related flaw: The merged plan πs has as many action related

flaws γA as there are unsatisfied actions.

We allow the solution plan to have action related flaws. This may be atyp-

ical and one might wonder why we accept these flaws. For example, if two plans

113

contain the same action, only one would be in the solution plan. Therefore, the un-

merged action is an action related flaw, but it does not violate the solution plan.

However, we need the notion of action related flaws because goal flaws cannot be

eliminated directly. They are removed by merging actions from the original input

plans, i.e., by reducing action related flaws.

12.4 Preprocessing via Problem Relaxation

Demands create dependencies between plan segments from different tasks.

The problem is that if plans are obtained for each task separately, then demands

are optimised locally. While merging these plans into the single final plan, the

algorithm must obey the locally optimised input plans. Such limitations often lead

to a lower plan quality, in comparison to the conjoining approach. This can be

illustrated again on the example from Sec. 12.2.

12.4.1 Example

We have left the example after the second iteration when the candidate plan

contained the actions (START), (move R EX1), (sense EX1). In the third iteration,

the (recognise exit EX1) is to be merged. In the fourth iteration, there are two

candidates: a`1̀−1 = (move R EA) or a`2̀−4 = (move EX1 EX2). Because the action

a`1̀−1 is inapplicable in the current state, the heuristic module obtains a joining plan.

In this case, the joining plan consists only of action (move EX1 R) and (move R

EA). The cost of this joining plan is smaller than the cost of action a`2̀−4. Therefore,

the heuristic planner updates the candidate list by the action (move EX1 R), which

is chosen to be merged in this iteration. Finally, in the fifth iteration, action (move

R EA) is chosen.

The pair of actions (move EX1 R), (move R EA) prolongs the makespans. A bet-

114

ter solution would be to include action (move EX1 EA), which is shorter that the

pair. However, the locally optimised demands in the input plans do not allow that.

If those demands did not appear in the input plans, the merging algorithm would

have more freedom in how to merge the plans, leading to a shorter makespan. To

conclude, the preprocessing module addresses how the local optimisation of de-

mands in the single plans can be limited in order to provide more independence

on those decisions in the merging algorithm.

12.4.2 Elimination of Demands

The elimination of demands is based on plan relaxation, hence the initial state

I is extended by all literals that satisfy the demands leading to the relaxed initial

state I× and relaxed tasks such as ω×i = 〈Di, Ai, (I
×, Gi), π

×
i 〉. For example, the

spatial constraints from the above example can be avoided by adding literals that

the robot is everywhere in the environment, i.e., the initial state contains (at R),

(at EX1), (at EX2), (at EA). After such relaxation, the resulting plans do not con-

tain any actions restricting the order between plan segments from different tasks,

in this case (move ?from ?to) action. Hence, the input plans are not affected by

the demands and the merging algorithm can optimise them in the overall plan.

Currently, this relaxation is domain specific.

12.4.3 Automatic Relaxation

Literals that need to be relaxed can be extracted from a planning problem by a

POP planner. The planner would plan for a conjunction of all tasks’ goal literals. If

the tasks were independent, their plans would represent parallel branches in the

POP structure. However, if there is a dependency between them, the POP planner

would detect a threat imposed by effect literals of an action from one task to a

causal link from another task. For example, Fig. 12.3 illustrates such a situation

115

START

END

a11

a12

a13

a21

a22

E: (not l1)

l1

ω1 ω2

Figure 12.3: The effect literal (not l1) of action a21 belonging to the plan of task
ω2 imposes a threat on the causal link START

l1−→ a11 belonging to the task ω1.
Therefore, the POP planner would need to add an ordering (marked by dashed
line) to solve this threat. This ordering represents the dependency between both
tasks. In order to prevent this dependency, literal l1 would be relaxed.

where the effect literal (not l1) of action a21 belonging to the plan of task ω2 imposes

a threat on the causal link START
l1−→ a11 belonging to the task ω1. Hence, the

POP planner would need to add an ordering (marked by dashed line) to solve

this threat. This ordering represents the dependency between both tasks. In order

to prevent this dependency, literal l1 would be added to the relaxed initial state

and all the process repeated until there are no ordering needed between actions

from different tasks.

This approach has a drawback - we perform the conjoining planning problem

in order to find the literals to relax. However, we do not need to include all tasks

instances. It is sufficient to plan only for two instances of each task’s type. For

example, in our scenario, there are only two types of tasks which an user can re-

quest: either check emergency exits or notify people at some location. Therefore,

the aforementioned analysis would need to plan for four tasks: two randomise in-

stances for each type of a task. We have not included this automatic relaxation into

our thesis as it would require to have control over the POP planner. As we intend

to use a POP planner as a black box in this thesis, this step would require signi-

ficant effort in modifying an existing POP planner or writing one from a scratch.

116

Therefore, we leave addressing the development of an algorithm that detects de-

mands, and provides for their relaxation automatically for future work.

12.5 Planner

Any planner that is able to parse PDDL 2.1 can be wrapped in our algorithm.

Currently, POPMER supports only such planners that provide standardised out-

put required by the VAL validator1. For other planners, a parser of their plans

would need to be implemented. The planner’s properties will affect our algorithm.

For example, if an incomplete algorithm is used, our algorithm will become in-

complete as well.

12.6 Plan Merging with Instantaneous Tasks

We describe the core of our algorithm in three stages. In this section, we focus

on the simplified problem with instantaneous tasks in order to formally describe

the core of our proposed merging algorithm POPMERX, Hence, the algorithm op-

erates on instantaneous actions that are mapped into instantaneous action points

A⊥, which are equal to general action points A` ,̀ in this case. Then, we add fea-

tures supporting temporal planning for durative tasks in the following section.

Finally, we extend the algorithm in order to handle time windows (Sec. 12.8).

12.6.1 Reasoning and Managing

This module manages the relaxed input plans π×i and reasons with action

points in order to extract those that can be merged into πs, see Algorithm 4. The

input to this module is a set Π× = {π×1 , . . . , π×n } of relaxed plans, the current can-

1https://github.com/KCL-Planning/VAL

117

didate plan πs and the set of the previous candidate action points Acan`` . First, the

algorithm removes the lastly merged action point from the candidate set. Then,

it adds new candidate actions points from the input plans. For each candidate

acan`` ∈ Acan`` , the following two conditions must hold:

• acan`` has not been merged before;

• all providers, i.e. other action points on which the candidate depends on, are

merged. Recall the set Adepa`` that contains all providers for a` .̀

The unmerged and merged action points to reason on Aunm`` ,Am` ,̀ respectively,

are obtained by the method merged-action-points(π×i , πs). This method analyses

which of the action points from the input plan are satisfied in the current plan πs.

Therefore, it splits the action points intoA×`ì = Aunm`` ∪Am` .̀ Then, the candidate set

Acan`` can be updated by such action points that satisfy the aforementioned condi-

tions, see Line 5.

Algorithm 4: extract
Input: Π×, πs, Acan``
Output: Acan``

1: alast`` = get-last-action-point(πs)
2: Acan`` = Acan`` \ {alast`` }
3: for π×i = 〈A×i ,L×i ,O×i 〉 ∈ Π× do
4: Aunm`` ,Am``=merged-action-points(π×i , πs)
5: Acan`` = Acan`` ∪ {a` ∈̀ Aunm`` | a``/∈ Acan`` ∧ (∀a′` ∈̀ Adepa`` : a′` ∈̀ Am`)̀}
6: end for
7: return Acan``

12.6.2 Backtracking

If the candidate set Acan`` is empty, it signals that the current candidate plan πs

does not allow merging of a new action point due to dependency issues. Hence,

the backtracking module recovers the previous search state and propagates the

previous choice as invalid, see Alg. 5.

118

Algorithm 5: backtrack
Input: Acan`` , S
Output: Acan`` , S

1: if Acan`` = ∅ then
2: alast`` = get-last-action-point(πs)
3: S = parent-state(S)
4: Acans = Acans \ alast``
5: Acan`` = Acans
6: end if
7: return Acan`` , S

First, the method get-last-action-point returns the action point that was added

in the last iteration. Then, the previous state S is recovered and the last action is

removed from the set of possible candidates. Note that this action will be added

again to the candidates in some future iteration.

12.6.3 Heuristic Candidate Selection

This module analyses the candidates Acan`` according to the set of literals Ls,

updates the candidate list (if necessary) and, finally, chooses the best candidate

action, see Algorithm 6. It begins by separating the candidate set to those action

points that are applicable in the current state Ls, see Def. 10.3.3, and to those who

are not, i.e., Acan`` = Aapp`` ∪ Ainapp`` . Any action point from the applicable set Aapp``
can be passed into the merge module but for any action in the inapplicable set

Ainapp`` , a joining plan, see Def. 12.3.8, needs to be found first. To give an informal

reminder of the definition, the joining plan reaches a state where all preconditions

of inapplicable action point are satisfied. Moreover, such a plan is extended by the

inapplicable action point by the operator⊕. As a result, this module acquires a set

of joining plans Πjoin for all the inapplicable actions.

If there are no applicable actions and no joining plans can be found, then an

empty set is returned in order to trigger backtracking again, as the current state

cannot be expanded. Otherwise, a heuristic function not only decides what is the

119

Algorithm 6: heuristically-choose
Input: Acan`` , Ls, πs
Output: acan`` , Acan``

1: Aapp`` = {a` ∈̀ Acan`` | pre(a`)̀ ⊆ Ls}
2: Ainapp`` = Acan`` \ Aapp``
3: Πjoin = {X (Di, Ai, (Ls, pre(a`)̀))⊕ a` |̀ a` ∈̀ Ainapp`` }
4: if Aapp`` = ∅ and Πjoin = ∅ then
5: return ∅, Acan``
6: else
7: acan`` , Acan`` = heuristic(Aapp`` ,Πjoin, πs)
8: return acan`` , Acan``
9: end if

best candidate action point to be merged but also updates the candidate set by

action points from the chosen plan segment (see next section for further details).

12.6.3.1. Heuristic and Greedy Selection Mechanism

The heuristic function first heuristically chooses the best plan segment πcan from

Aapp`` or Πjoin. Then, it utilises the reasoning and managing module in order to

extract only one action point that can be merged into πs. Notice that there is always

at least one action point that will be chosen; either, it is an action point from Aapp``
or it is the first action point in the best joining plan from Πjoin. If there are more

action points extracted in the above step, such as action points in the joining plan

that can be in parallel, the following rules choose the action point:

• whose action has the shorter duration (this rule makes no difference in in-

stantaneous planning but it is important in temporal planning);

• with fewer negative literals in its effects;

• without over all preconditions (again only for temporal planning);

• with fewer preconditions;

The rules are applied in the order, for example, if the first rule cannot decide, the

second is applied, etc. Finally, more details are in Algorithm 7.

120

Algorithm 7: heuristic
Input: Aapp`` ,Πjoin, πs
Output: acan`` , Acan``

1: πcan = hlink(Aapp`` ,Πjoin)
2: Acan`` = extract({πcan}, πs,Acan``)
3: acan`` = rules(Acan``)
4: return acan`` , Acan``

As we focus on instantaneous planning in this chapter, the makespan of the

plan is defined by the number of actions in the plan. Hence, the proposed heuristic

hlink minimises the makespan by limiting the occurrence of joining plans. This is

achieved by considering the causal links of the input plans:

hlink : choose the plan segment that does not violate a causal link ami
l−→ aunmi in any

input plan π×i such that the producing action is already merged but the the

consumer is not.

This gives the heuristic a global look ahead, this means that the heuristic is guided

which literals in the current stateLs need to be preserved to the future. We provide

more discussion about heuristic in the next chapter as temporal planning adds to

its difficulty.

12.6.4 Merge Algorithm

The merge algorithm (Algorithm 8) expands the current state S by merging the

best candidate action point acan`` . The search state is updated as follows. First, the

set of active literals, achievers and deleters are updated by the effects of the can-

didate action point. Then, the set of candidate action points applicable in this state

is saved for possible backtracking. The candidate action point is finally added to

the set of action point Aπs .

For each precondition of the action, a new causal link and corresponding or-

dering are added between the achiever or deleter (for negative literals) and the

121

merged action point. As our heuristic is greedy and reasons about what is the best

action to be added at the end of the plan πs, we need to add ordering to ensure that

this action point is ordered after the last action point alast`` , see Line 8. Without this,

our heuristic estimate would not be valid.

Algorithm 8: merge
Input: acan`` ,Acan`` , S
Output: S

1: Ls = Ls ∪ eff (acan``)
2: ∀f ∈ eff +(acan``) : a+

f = acan``
3: ∀f ∈ eff −(acan``) : a−f = acan``
4: Acans = Acan`` \ {acan`` }
5: Aπs = Aπs ∪ {acan`` }
6: ∀l ∈ pre+(acan``) : Lπs ∪ 〈a+

l

l−→ acan`` 〉,
O = O ∪ 〈a+

l ≺ acan`` 〉
7: ∀l ∈ pre−(acan``) : Lπs ∪ 〈a−l

l−→ acan`` 〉,
O = O ∪ 〈a−l ≺ acan`` 〉

8: O = O ∪ 〈alast`` < acan`` 〉
9: return S

12.6.5 Flaw Check

This module inspects the current plan πs in order to analyse if all goals G =

∪i∈{1,...,n}Gi are satisfied (Def. 12.3.11) in the plan. If yes, it returns plan πs as the

output of POPMERX . If not, a new iteration step is triggered by passing plan πs

to the reasoning and managing module.

12.7 Plan Merging with Durative actions

Durative actions add a few features that plan merging must cover:

• Durative action a is represented by two action points: its start action point

a` = (a, t`) and its end action point aa = (a, ta), which are dependent

on each other. The dependency is expressed via the temporal constraint

122

ta = t` + p, where p is the duration of action a. Hence, this constraint must

be respected when merging action points, and affects the reasoning and man-

aging and heuristic modules.

• Preconditions and effects of durative actions are related to the start or end

action point. Moreover, preconditions can be also required to hold over all

duration of the action. Such literals, L↔, are denoted as invariants. Espe-

cially these literals complicate the merging algorithm as they must be protec-

ted from violation during the interval when the start action point has been

already merged but the end action point has not. We have introduced the

notion of protected literal (Def. 10.3.4) in order to ensure consistency of over

all literals during action. Therefore, the plan merging needs to keep track

of the currently protected literals. In a similar manner as before, this limits

the possible candidates that can be chosen. Candidates violating protected

literals are removed in the heuristic module.

• The heuristic must now consider the duration of actions in order to minimise

the overall duration of the final plan.

In this chapter, we highlight the required changes to the modules. Note that

the backtracking and flaw checking modules remain unchanged. Furthermore,

a``∈ A``now refers to either start action point a` or end action point aa where

A``= A` ∪ Aa.

12.7.1 Reasoning and Managing

We have introduced two conditions that must hold for an action point to be

extracted as a candidate: it has not yet been merged and its providers are merged.

In temporal planning, an end action point can only be chosen if its start action

point and all its providers have already been merged. Note that the providers for

123

the end action point are those action points which satisfy the at end preconditions

pre(a)a. However, as we have defined that an end action point is always depend-

ent on its start action point, see Def. 12.3.1, the start action is also a provider and

the above condition does not have to be extended. Hence, the algorithm extract

stays the same as before.

12.7.2 Heuristic Candidate Selection

This module requires two major changes. First, candidates that would violate

a protected literal in Lprot cannot be chosen. Hence, we remove all action points

from the candidate set that have a negation of any protected literal as its effect.

However, we do not remove the end action point of the protecting action, see

Line 1 in Algorithm 9. Note that these action points removed from Acan`` will, in

some future state, be again extracted from the input plans and will be potentially

merged into the final plan.

Second, we need to differentiate between the start and end action points when

choosing the best candidate to be merged in the current iteration due to the de-

pendency issue. For example, if there exists aa = (a, ta) in the set of candidates

such that ts = ta, then aa needs to be merged into the current state, in order to

guarantee that its time constraints are respected. If it is in the applicable set, it

is chosen as the candidate, see Line 9. However, if it is in the inapplicable set,

backtracking must be triggered because the action point needs to merged at that

moment but it requires some additional actions in order to satisfy its precondi-

tions. Therefore, this method returns an empty set in order to trigger backtracking

(Line 13).

124

Algorithm 9: heuristically-choose
Input: Acan`` , Ls, πs, Lprot, ts
Output: acan`` , Acan``

1: [New] ∀a` ∈̀ Acan`` | ∃l ∈ eff (a`)̀ : (¬l, a′`) ∈ Lprot ∧ a` 6̀= a′a,
Acan`` = Acan`` \ {a`}̀

2: Aapp`` = {a` ∈̀ Acan`` | pre(a`)̀ ⊆ Ls}
3: Ainapp`` = Acan`` \ Aapp``
4: Πjoin = {X (Di, Ai, (Ls, pre(a`)̀))⊕ a` |̀ a` ∈̀ Ainapp`` }
5: if Aapp`` = ∅ and Πjoin = ∅ then
6: return ∅, Acan``
7: else
8: if [New] ∃ aa ∈ Aappa | ts = ta then
9: acan`` = aa

10: return acan`` , Acan``
11: end if
12: if [New] ∃ aa ∈ Ainappa | ts = ta then
13: return ∅, Acan``
14: end if
15: acan`` , Acan`` = heuristic(Aapp`` ,Πjoin

`` , πs)
16: return acan`` , Acan``
17: end if

12.7.2.1. Heuristic and Greedy Selection Mechanism

The extension to the heuristic algorithm is described in Algorithm 10. We want

to first choose as many start action points as possible, in order to merge actions in

parallel to minimise the overall duration. Therefore, an action end is chosen only

if there are no action starts to choose from (Line 2). We introduce new heuristic

h3 that extends the previous heuristic hlink by considering time. Note that πcan

is a plan segment (Def. 12.3.9). Therefore, it is either action end point from the

applicable setAappa or a joining plan, where the last action point of the joining plan

is the end action point from the inapplicable set. Therefore, we can obtain the last

action point from the plan segment alasta , which is an action end point. Because

the corresponding action start point has been already merged in some previous

iteration step, this action point is constrained in time. It needs to be merged at

time tlasta . Therefore, we test if the chosen plan segment is not too long. If yes, the

125

algorithm returns empty sets in order to trigger backtracking (Line 5). The rest

of the algorithm is the same as before, with just one action point extracted from

the candidate plan segment. We extract just one action point in order to increase

chances of interleaving different plans.

Algorithm 10: heuristic

Input: Aapp`` ,Πjoin
`` , πs, ts

Output: acan`` , Acan``
1: if [New] Aapp` = ∅ and Πjoin

` = ∅ then
2: πcan = h3(Aappa ,Πjoin

a)
3: alasta =get-last-action-point(πcan)
4: if |πcan|+ ts > tlasta then
5: return ∅, ∅
6: end if
7: else
8: πcan = h3(Aapp` ,Πjoin

`)
9: end if

10: Acan`` = extract({πcan}, πs,Acan``)
11: acan`` = rules(Acan``)
12: return acan`` , Acan``

12.7.2.2. Heuristic Function

As the proposed heuristic hlink from the previous chapter does not consider

time, we need to propose new heuristic that would lead to minimising the dur-

ation of the solution plan. A naïve choice to obtain the shortest makespan is the

following heuristic:

h1 : choose the shortest plan segment

This greedy heuristic can often lead to a situation where πs violates many causal

links in the input plans. Therefore, more actions will be inapplicable in the future

iteration and more actions from joining plans will need to be merged, leading to

prolonging the makespan. Hence, a heuristic that considers causal links can have

a better performance than h1. This is similar to heuristic hlink but considers time

as well:

126

h2 : choose the shortest plan segment that does not violate a causal link ami
l−→ aunmi

in any input plan π×i such that the producing action ami is already merged but

the the consuming aunmi is not.

This gives a look ahead to the heuristic based on the literals in the current state

Ls that need to be preserved for a future state. However, the cost of preserving

the literal from a causal link can be bigger than the cost of violating it and adding

a joining plan later. This is due to the fact that this heuristic drives the merge

algorithm to sequence the input plans than interleave them. The sequencing of

plans occurs because links from one plan get violated as a result of an action from

another plan has been merged. Moreover, this heuristic adds some computational

overhead.

In order to avoid the disadvantages of the above heuristic, we propose the

following heuristic:

h3 : choose the shortest candidate plan corresponding to the applicable action

point if it exists, or choose the shortest candidate plan corresponding to the

joining plan.

This heuristic does not add any computational cost when compared to h2, and it

guides the merge to limit the occurrence of joining plans. This guidance is done

in a way that the heuristic prefers longer plan segments corresponding to the ap-

plicable action point, rather than shorter joining plans. However, as the chosen

applicable action can be from different plans each time, the joining plans may be

still required if the causal links get violated. As a result, the interleaving of the

plans is supported by this heuristic as well (similarly to h1). We add several rules

to the heuristic h3 in order to make it deterministic while deciding a draw between

two plan segments. The heuristic chooses the plan segment that:

1. violates fewer input causal links;

127

2. its plan has fewer action related flaws, i.e, that is closer to be merged com-

pletely;

3. its plan has shorter duration;

These decision rules are ordered in the way that they are applied, i.e., if a draw

still occurs after the first rule is applied, the second is applied, etc.

12.7.3 Merge Algorithm

The merge algorithm needs to be extended in three different ways. First, if an

action start is merged then all its invariant precondition literals must be saved as

protected. Second, if an action end is merged, its invariant preconditions need to be

removed from Lprot. Third, the added action point may be ordered in parallel to

Algorithm 11: merge
Input: acan`` ,Acan`` , S
Output: S

1: Ls = Ls ∪ eff (acan``)
2: ∀f ∈ eff +(acan``) : a+

f = acan``
3: ∀f ∈ eff −(acan``) : a−f = acan``
4: Acans = Acan`` \ {acan`` }
5: if [New] acan`` ∈ Acan` then
6: Lprot = Lprot ∪ {l} | l ∈ pre(acan`)↔
7: end if
8: if [New] acan`` ∈ Acana then
9: Lprot = Lprot \ {l} | l ∈ pre(acana)↔

10: end if
11: Aπs = Aπs ∪ {acan`` }
12: ∀l ∈ pre+(acan``) : Lπs ∪ 〈a+

l

l−→ acan`` 〉,
O = O ∪ 〈a+

l ≺ acan`` 〉
13: ∀l ∈ pre−(acan``) : Lπs ∪ 〈a−l

l−→ acan`` 〉,
O = O ∪ 〈a−l ≺ acan`` 〉

14: O = O ∪ 〈alast`` < acan`` 〉
15: [New] Athreat = threats(acan`` ,Lπs)
16: [New] ∀athreat ∈ Athreat : Oπs = Oπs ∪ 〈athreat ≺ acan`` 〉
17: ts = makespan(Oπs)
18: return S

128

START
E:(at R)

(move R EA)
P: (at R)

E:(at EA), (not (at R))

P: (at EA)

E:(notified EA)

(notify to_leave EA)

END
P:(notified EA)

(a) π1

(sense EX1)

START
E:(at R)

(move R EX1)
P: (at R)

E:(at EX1), (not (at R))

P: (at EX1)

E:(data EX1)

(recognise exit EX1)
P:(data EX1)

E:(recognised exit EX1)
(move EX1 EX2)

P: (at EX1)

E: (at EX2)

......
(b) π2

Figure 12.4: Details of partially ordered plans for task ω1 (a) and ω2 (b). The arrows
visualise the causal links between actions. The dots represent that there are more
actions in the plan.

another action and could threaten an existing causal link (line 15). In such a case,

the action point is promoted.

12.7.4 Example

We are going to continue with the example given in Sec. 12.2. After two itera-

tions described before, the merged plan contains action (move R EX1) and (sense

EX1). In these iterations, there is no difference how POPMER would behave using

instantaneous or durative actions. The makespan of this plan is ts = 2 units.

The third iteration starts to be interesting while merging durative actions. The

candidates are a` 1−1 = (move R EA) and a` 2−3 = (recognise exit EX1). Note that

both are start action points. The heuristic module chooses a` 2−3 because it is

applicable in the current state Ls = {(at EX1),(data EX1)}. This action point is

merged, where Ls is unchanged because the start action point does not have any

effects. Additionally, this action has an invariant precondition (data EX1). There-

129

fore, this literal becomes protected, i.e., Lprot = (data EX1). The duration of the plan

ts is unchanged as the start action point has been merged. We omit the remain-

ing details about the search state, as they are irrelevant to what we are going to

illustrate.

In the fourth iteration, the candidates are Acan`` = {a` 1−1, aa 2−3}. Importantly,

a` 1−1 is not violating the protected literal (data EX1). Furthermore, aa 2−3 does not

have to be chosen due to its temporal constraints because of the current time ts 6=

ta 2−3. As a result, the heuristic can choose between both of these action points.

The heuristic prefers to choose a start action point rather than an end action

point in order to perform as many actions in parallel as possible. Therefore, the

start action point a`1−1 is chosen. Because it is inapplicable in the current state (it

requires (at R)), a joining plan is obtained. In this case, the joining plan includes

action atemp−1 = (move EX1 R) and a` 1−1. However, the heuristic calls method ex-

tract in order to obtain only one action point from the joining plan, which is going

to be merged. This is done in order to support as many merging opportunities as

possible. If we would merge all the joining plan, we might miss an opportunity.

Nevertheless, the exploitation of opportunities comes in the expense of a need to

find more joining plans. Finally, the start action point a` temp−1 is merged. As a res-

ult, actions atemp−1 = (move EX1 R) and a2−3 = (recognise exit EX1) are ordered in

parallel in the final merged plan.

12.8 Plan Merging with Durative Actions and Time
Constraints

Durative tasks with time constraints add supplementary difficulty: an action

point from a plan related to a task cannot be merged outside of its task time win-

dow. Therefore, the reasoning and managing module must reason about this extra

constraint. Violating the corresponding deadline causes backtracking. Moreover,

130

POPMER handle all temporal constraints explicitly. Hence, the planner X can sup-

port only PDDL 2.1. level 3. This decision is made as there are not that many plan-

ners supporting timed initial literals in PDDL 2.2 level 3, which are needed to

model temporal constraints.

12.8.1 Reasoning and Managing

If the planner X does not find a plan with makespan less than the time window,

then such problem is unsolvable (Line 5 of Algorithm 12). Therefore, this module

returns an empty set of candidates that triggers the backtracking module. How-

ever, as there are no decisions to backtrack, POPMER terminates with no solution

found. Alternatively, if the plan does fit the given time window, the algorithm can

choose only such candidates from tasks whose time window is open, which means

that the current time ts is within release date and deadline.

Algorithm 12: extract
Input: Ω×, πs, Acan`` , ts
Output: Acan``

1: alast`` = get-last-action-point(πs)
2: Acan`` = Acan`` \ {alast`` }
3: for ω×i = 〈Di, Ai, (Ii, Gi), π

×
i , pi, ri, di〉 ∈ Ω× do

4: if [New] |π×i | > di − ri then
5: ∅
6: end if
7: if [New]ri ≤ ts ≤ di then
8: Aunm`` ,Am``=merged-action-points(π×i , πs)
9: Acan`` = Acan`` ∪ {a` ∈̀ Aunm`` | a``/∈ Acan`` ∧ (∀a′` ∈̀ Adepa`` : a′` ∈̀ Am`)̀}

10: end if
11: end for
12: return Acan``

131

12.8.2 Heuristic Candidate Selection

The novelty in the heuristics algorithm, see Algorithm 13, is that the chosen

plan segment πcan must fit the time window of the corresponding task. If it is too

long, an empty set is returned, in order to trigger backtracking.

Algorithm 13: heuristics

Input: Aapp`` ,Πjoin
`` , πs, ts

Output: acan`` , Acan``
1: if Aapp` = ∅ and Πjoin

` = ∅ then
2: πcan = h3(Aappa ,Πjoin

a)
3: alasta =get-last-action-point(πcan)
4: if |πcan|+ ts > tlasta then
5: return ∅, ∅
6: end if
7: else
8: πcan = h3(Aapp` ,Πjoin

`)
9: end if

10: d = get-deadline-of-corresponding-task(πcan)
11: if |πcan|+ ts > d then
12: return ∅, ∅
13: end if
14: Acan`` = extract({πcan}, πs,Acan``)
15: acan`` = rules(Acan``)
16: return acan`` , Acan``

12.9 POPMERX Summary

Finally, as all components have been introduced, we can summarise the over-

all proposed algorithm POPMERX , see Algorithm 14. As previously stated, the

preprocessing is not required for the algorithm functionality. Hence, the first in-

put parameter to this algorithm is the set of tasks Ω and the second is a boolean

parameter on whether preprocessing should be used or not. Then, plans achiev-

ing each task are obtained separately by the wrapped planner X on Line 6. Before

triggering the third layer functionality, the search state is initialised as follows.

132

The candidate plan πs consists only of the START action, see Def. 10.4.2, and or-

derings and causal links are initialised as empty sets. Additionally, the literals Ls

are initialised by those from the initial state I . Moreover, all achievers and deleters

saved inA+
0 ,A−0 , respectively, are just the START action. Finally, the candidate set

is empty.

The main loop of the plan merging procedure proceeds as follows. The flaw

check on Line 8 stops the iterations when there are no goal related flaws, i.e., all

goals are satisfied. Otherwise, the algorithm extracts potential candidates from the

input plans Π×. If none can be extracted, the backtracking recovers the previous

state and removes the invalid choice from the recovered candidates. If the initial

state is reached by backtracking, the plans cannot be merged while maintaining

their individual constraints. Therefore, POPMERX returns an empty plan as no

solution can be found. In the case where some candidates have been extracted, the

algorithm heuristically chooses the best candidate from the applicable or inapplicable

action points. In the case when an inapplicable action point is chosen, the joining

plan is added in order to change the state Ls in order to satisfy all preconditions

of the inapplicable action point. If no candidate has been extracted, it backtracks

until a candidate can be chosen. Once a candidate action point is obtained, it is

merged, updating the search state according to its effects, and duration (in the case

of end action points).

133

Algorithm 14: POPMERX(Ω, preprocess)

1: if preprocess then
2: Ω× = preprocess(Ω)
3: else
4: Ω× = Ω
5: end if
6: Π× = X(Ω×)
7: S = 〈I,A+

0 ,A−0 , ∅, 〈{START}, ∅, ∅〉〉
8: while ∃ γG do
9: Acan`` = extract(Π×, πs, ∅)

10: while Acan`` = ∅ do
11: Acan`` , S = backtrack(S)
12: if S = 〈I,A+

0 ,A−0 , ∅, 〈{ START}, ∅, ∅〉〉 then
13: return 〈∅, ∅, ∅〉
14: end if
15: end while
16: repeat
17: acan`` ,Acan`` = heuristically-choose(Acan`` , Ls, πs)
18: if acan`` = ∅ then
19: Acan`` , S = backtrack(S)
20: if S = 〈I,A+

0 ,A−0 , ∅, 〈{ START}, ∅, ∅〉〉 then
21: return 〈∅, ∅, ∅〉
22: end if
23: end if
24: until acan`` = ∅
25: S = merge(acan`` ,Acan`` , S)
26: end while
27: return πs

134

CHAPTER 13

EVALUATION

Proclamation: Results presented in this chapter have been significantly im-

proved. Please refer to our journal paper.

We have developed a version of our algorithm POPMERVHPOP, which embeds

the VHPOP planner (Simmons & Younes, 2011) for plan generation for individual

tasks. Nevertheless, any temporal planner implementing PDDL 2.1 can be used

within POPMER. We have chosen VHPOP as it is a partially-ordered temporal plan-

ner and it handles required concurrency. Moreover, it is not an anytime planner, thus

it terminates after a solution is found. In the case of an anytime planner, POPMER

would need to monitor the run of the embedded planner and to stop the planner

after a solution was found.

Importantly, the performance of VHPOP strongly depends on the configur-

ation of its input parameters. Therefore, we differentiate between two versions:

the original VHPOP, denoted as O-VHPOP, and IPC3-VHPOP, which entered the

third International Planning Competition (IPC). By the original version, we mean

that VHPOP runs without any parameter. In contrast, IPC3-VHPOP uses a com-

bination of several flaw and plan selection heuristics and the exact configuration

and discussion can be found on the VHPOP GitHub page1. Importantly, IPC3-

VHPOP is significantly faster than the original version, but it is unable to handle

1https://github.com/hlsyounes/vhpop

135

the required concurrency. If not stated otherwise, while discussing POPMER im-

plementation we allude to the one that integrates IPC3-VHPOP.

We evaluate POPMER handling durative actions and also the version handling

time constraints. We do not evaluate the instantaneous version, as our interest is

in temporal domains. We evaluate both versions of POPMER separately because

many existing temporal planners do not support timed initial literals used to rep-

resent time windows. However, the methodology of our evaluation is the same

for both.

13.1 Methodology

Planners are often evaluated on tens of planning problems from different do-

mains in order to measure their properties, such as average plan quality, coverage

and scalability. The International Planning Competition (IPC) has introduced a re-

lative score, RIPCscore, in order to compare planners. For each solved problem,

either the optimal solution with makespan M∗ is known or the best makespan,

found by one of the compared planners, is considered. RIPCscore is defined as

follows:

RIPCscorepj =
M∗

Mp

, (13.1)

where j refers to the solved planning problem andMp is the makespan of the plan

found by the compared planner p. Hence, the best planner obtains a score of one

and poorer planners have a score smaller than one. A zero score corresponds to

the case when a planner did not find a solution.

We have decided to slightly modify this criterion due to two reasons. First, we

do not have the optimal solution to the problems. Second, we are interested in

comparing POPMERX with other planners. Therefore, we use the quality found

136

by POPMERX as M∗. Hence, if the RIPCscorepj is smaller than one, the compared

planner p found a poorer solution. If it is more than one, it has found a better solu-

tion in comparison to POPMERX . For anytime planners, which can provide more

solutions, we consider the latest one, i.e., the one with the shortest makespan. For

stochastic planners, we run ten instances with different seeds and we consider the

best makespans from these instances.

Furthermore, we report on the distribution of RIPCscores on a domain by

presenting three quartiles Q1, Q2, Q3. Additionally, the IPC proposed an absolute

score of a planner in order to express overall performance of the planner. It is

obtained as a sum of the relative IPC scores over all of tested problems:

AIPCscorep =
∑

j ∈{1...m}

RIPCscorepj , (13.2)

where m is the number of planning problems presented to the planner. Hence,

scores bigger than value m are better than POPMERX , while scores smaller than

m are not as good.

Another important aspect of the planner performance is coverage. It represents

whether a solution has been found and if it is valid. We evaluate the found plans

by utilising VAL, the validator of PDDL plans1, in order to ensure that the plan is

valid for the domain and problem. A planner’s coverage on a domain is expressed

by the number of solved problems from that domain within the given time and

memory limits.

Cp = 0

∀j ∈ {1 . . .m} : Cp +=

1 if RIPCscorepj > 0

0, otherwise

(13.3)

Coverage is tightly related to scalability, which expresses how successful a

1http://www.inf.kcl.ac.uk/research/groups/PLANNING/

137

planner is on covering a broad range of representative problems. Recall that one

of the motivations of this thesis is to address scalability of temporal planning

techniques. Therefore, we evaluate how scalability of a planner is dependent on

runtime or consumed memory. Hence, we measure runtime and a peak of memory

needed to find a solution by a planner. The time measurement is rounded to tenths

of seconds and the memory is rounded to units of kB.

There may be different ways to make a problem harder for each planner. The

IPC defines a harder problem as the one with more goal literals. However, a plan-

ning problem with more goal literals does not necessarily have to be harder for

a planner, compared to another with fewer goals. Therefore, the scalability of a

planner does not have to be an increasing function with respect to number of

goals.

13.2 Planning with Durative Actions

Because IPC3-VHPOP is unable to handle required concurrency, we use two

versions of POPMER in this comparison: POPMERO-VHPOP or POPMERIPC3-VHPOP.

We compared those to various state-of-the-art planners, for which we were able

to obtain their source-code or binaries. Because the IPC 2014 provided precom-

piled binaries for planners, most of the compared planners are from IPC 20141.

We have added VHPOP and OPTIC in order to cover all different approaches for

temporal planning, that were discussed previously in the related work (Sec. 9.1).

All planners, which are going to be used in this comparison, were introduced in

the related work chapter as well. Here, we briefly remind their most important

properties. They can be split into two groups according to their support of re-

quired concurrency:

• Not supporting required concurrency:
1https://helios.hud.ac.uk/scommv/IPC-14/

138

– DAEX utilises a genetic algorithm in order to split a planning problem

to smaller instances that are solved by a wrapped planner X . We report

on DAEYAHSP2.

– YAHSP3 is a first fit planner. It simplifies durative actions to instantan-

eous ones.

– TFD is a decision epoch planner.

• Supporting required concurrency:

– OPTIC is a temporally-lifted planner, which handles durative actions

in STNs. We use OPTIC with CPLEX solver.

– ITSAT solves planning as a satisfiability problem.

– VHPOP is a backward-chaining POP planner, it utilises STNs as well.

All these planners solve the conjoined problem.

13.2.1 Domains and Problems

The planners are compared on different domains taken from IPC 2014. How-

ever, we generate our own planning problems in these domains, as our algorithm

is based on the assumptions that tasks (i.e., goals in problems) are separable.

Moreover, we assume that only a single agent is able to perform the actions. Fur-

thermore, we need to generate equivalent sets of problems to feed into our al-

gorithm and into other planners performing the conjoining or sequencing strate-

gies.

Problem files are generated for the conjoining approach first, as their prob-

lems are standard within the community and there exist problem generators. Each

problem can have multiple goals, say n goals. Then, one conjoining problem file is

split into n merging problem files, where each contains only one particular goal.

139

Furthermore, the initial state of merging and conjoining problems is the same. Fi-

nally, problem files for the sequencing approach are generated from the merging

files while performing the sequencing approach.

The sequencing approach first chooses one problem from the set of merging

problems (by a FIFO strategy) and a planner obtains a plan for it. Then, the final

goal state reached by a planner is written as the initial state of the new problem.

This process continues until n plans are obtained. Finally, the plans are concaten-

ated into a sequence.

Because each of the approaches provide a single plan fulfilling all goals spe-

cified in the conjoining problem, we are able to compare their performance. All

the problems we use in our evaluation are available online 1.

13.2.1.1. Overview of Domains

In this evaluation, we use the following domains:

• The Driverlog domain requires that packages are moved by trucks between

different locations. In the original domain, a truck needs a driver in order

to operate. However, in our case, we assume that a single truck has already

been boarded by a driver.

• In the Temporal Machine Shop (TMS) domain, different pieces of ceramic

are made using a kiln, which represents the single agent.

One may wonder why do we evaluate only on these two domains. Because

POPMERX is not intended to be a general planner, we focus on evaluating on

the domain which is the closest to our main focus on mobile service robots – the

Driverlog. We could have written our own domain and problems, but in order

to avoid modelling mistakes and to guarantee soundness of the evaluation, we

have chosen this well-known domain because it has spatial constraints. Hence,
1https://github.com/mudrole1/POPMER/tree/master/testing_files

140

we provide a detailed study of POPMER and other planners’ behaviours on this

domain with and without time windows. Finally, as this domain does not require

concurrency, we have added the TMS domain, which demands required concur-

rency between actions, in order to illustrate that POPMER is capable of handling

it.

13.2.2 POPMERVHPOP in Comparison to VHPOP

First, we analyse how performance of our proposed algorithm differs from

performance of its wrapped planner, in this case VHPOP. As we employ two dif-

ferent versions of VHPOP, we split the comparison into two. First, we compare the

original VHPOP (O-VHPOP), which solves either the conjoining (C-O-VHPOP)

or the sequencing approach (S-O-VHPOP), with POPMERO-VHPOP. Then, we com-

pare the version of VHPOP which has participated in the third IPC (IPC3-VHPOP)

in both approaches against POPMERIPC3-VHPOP. All algorithms were run on prob-

lems for the Driverlog domain for 30 minutes. This limit is taken from the IPC

setting. We limit the use of memory to 6 GB due to limitations of our hardware.

We argue that this limit is realistic for an application where a planner is deployed

on a robot.

13.2.2.1. Original VHPOP

In the case of the original VHPOP, the C-O-VHPOP is able to find a solution

for only two problems before it reaches the memory limit. On the successfully

solved problems, it finds a plan with the same makespan as POPMERO-VHPOP

(see Fig. 13.1a). For the unsolved problems, the RIPCscore is zero. In contrast,

POPMERO-VHPOP finds solutions for nine problems in total before it reaches the

time limit. This illustrates that POPMER can improve coverage of its wrapped

planner. Finally, S-O-VHPOP has significantly worse RIPCscores than POPMER,

141

on average by 28 %, as expected.

Additionally, we report on the consumed memory (Fig. 13.1c). C-O-VHPOP

runs out of the memory very quickly, whereas POPMERO-VHPOP and S-O-VHPOP

are more memory efficient. Furthermore, POPMERO-VHPOP uses 20 times less me-

mory than S-O-VHPOP. In regards to runtime of the planners (Fig. 13.1e), POP-

MER is significantly slower than S-O-VHPOP. This is mainly due to computing

joining plans. Recall that POPMER can produce a temporary planning problem,

which is unsolvable in the given domain, as illustrated in Sec. 12.3.2.1.. How-

ever, such a problem is not recognised by the original VHPOP, which continues

searching for a solution. Therefore, we need to set a time threshold to stop the

wrapped planner and to claim that the joining plan is unsolvable. Given that join-

ing problems have typically only a few goal literals and C-O-VHPOP needs units

of seconds to solve such problems, we have set this limit for 10 s. However, the

runtime of POPMERO-VHPOP is still limited because joining plans are frequently

computed.

The runtime could be improved by two implementation changes to POPMER.

First, recall that only one action point is extracted from a joining plan, the rest

is thrown away. This leads to significant overheads. We could preserve joining

plans as long as they are valid and useful. Second, we could add a detection if the

generated temporary problem has an infeasible initial state, i.e., if none of domain

actions can be applied. This would address the problem illustrated in Sec. 12.3.2.1.

with inapplicable move action. In such a case, POPMER would not have to call the

planner. Furthermore, this issue can be overcome by utilising a planner, which is

able to quickly find that the temporary problem does not have a solution. This is

the case for version IPC3-VHPOP.

142

0 2 4 6 8 10

number of goal literals

0.0

0.2

0.4

0.6

0.8

1.0

R
IP

C
sc

or
e

POPMERO−V HPOP

S-O-VHPOP
C-O-VHPOP

(a) O-VHPOP: RIPCscore

0 5 10 15 20

number of goal literals

0.0

0.2

0.4

0.6

0.8

1.0

R
IP

C
sc

or
e

POPMERIPC3−V HPOP

S-IPC3-VHPOP
C-IPC3-VHPOP

(b) IPC3-VHPOP: RIPCscore

0 2 4 6 8 10

number of goal literals

101

102

103

m
em

or
y

[M
B

]

S-O-VHPOP
C-O-VHPOP

POPMERO−V HPOP

(c) O-VHPOP: memory

0 5 10 15 20

number of goal literals

101

102

m
em

or
y

[M
B

]
S-IPC3-VHPOP
C-IPC3-VHPOP

POPMERIPC3−V HPOP

(d) IPC3-VHPOP: memory

0 2 4 6 8 10

number of goal literals

10−1

100

101

102

103

ru
nt

im
e

[s
]

S-O-VHPOP
C-O-VHPOP

POPMERO−V HPOP

(e) O-VHPOP: runtime

0 5 10 15 20

number of goal literals

10−1

100

101

102

ru
nt

im
e

[s
]

S-IPC3-VHPOP
C-IPC3-VHPOP

POPMERIPC3−V HPOP

(f) IPC3-VHPOP: runtime

Figure 13.1: The comparison between original VHPOP (left column) and the ver-
sion from the third IPC (right column).

143

13.2.2.2. IPC3-VHPOP

The IPC3-VHPOP employs a variety of heuristics, which significantly impro-

ves the overall performance of VHPOP. When used in the conjoining approach,

not only it is able to find high quality solutions (Fig. 13.1b), but also it is very fast

(Fig. 13.1f). However, it can still struggle to find a solution on some problems, as

in the case of two problems with 10 and 11 goal literals. In both cases, the IPC3-

VHPOP reaches the given memory limit. As a result, POPMERIPC3-VHPOP improves

the coverage of the planner while preserving good memory scalability (Fig. 13.1d).

Additionally, POPMERIPC3-VHPOP has found the best quality of the solution plans

because:

• IPC3-VHPOP is not optimal planner. It uses several heuristics to guide the

search. Especially on problems with more goal literals, the search may be

guided to local optimum;

• POPMER uses IPC3-VHPOP on problems with a few literals, where IPC3-

VHPOP performs well;

• POPMER utilises the preprocessing step, which extracts away demands (spa-

tial constraints at this domain). Therefore, it can merge loading and unload-

ing of packages at the same location for different tasks.

Furthermore, POPMERIPC3-VHPOP is significantly faster than POPMERO-VHPOP

due to the fact that IPC3-VHPOP detects invalid problems in tenths of seconds.

However, it could still make use of the two proposed implementation changes to

get faster.

13.2.2.3. Summary

We have illustrated that POPMERX improves the coverage, plan quality and

the consumed memory of the VHPOP in two versions: original and the version

144

from the third IPC. The runtime of POPMER could be improved by the two pro-

posed implementation changes.

13.2.3 POPMERIPC3-VHPOP on the Driverlog Domain

13.2.3.1. Scores Depending on a Problem Size

For each problem from the Driverlog domain, the listed planners were run

for 30 minutes and were limited to consume at maximum 6 GB of memory. The

RIPCscores for the planners are visualised in Fig. 13.2a and Fig. 13.2b, where we

follow the separation of the planners into two groups, depending on whether they

support required concurrency or not. Even though RIPCscores for POPMER is not

a continuous function, we visualise it as a line in order to highlight this bound-

ary. Any score above the line is better than POPMER, whereas any under the line

is worse. Moreover, we add scores for IPC3-VHPOP using the sequencing ap-

proach in order to highlight the worst estimate in both comparisons. However,

some planners find poorer solutions than this approach for a number of problems.

0 5 10 15 20

number of goal literals

0.4

0.6

0.8

1.0

1.2

1.4

R
IP

C
sc

or
e

POPMERIPC3−V HPOP

S-IPC3-VHPOP
C-IPC3-VHPOP

ITSAT
OPTIC

(a)

0 5 10 15 20
number of goal literals

0.4

0.6

0.8

1.0

1.2

1.4

R
IP

C
sc

or
e

POPMERIPC3−V HPOP

S-IPC3-VHPOP
TFD

YAHSP
DAEY AHSP

(b)

Figure 13.2: The comparison of RIPCscores for planners, which (a) support the
required concurrency and (b) do not, on the Driverlog domain.

145

DAE POPMER TFD YAHSP VHPOP seq.

AIPCscore 24.17 23.00 21.42 20.12 13.34
C 23 23 23 23 23
Q1 [%] 2 - -16 -19 -51
Q2 [%] 7 - -8 -13 - 47
Q3 [%] 9 - 0 -4 -42

POPMER OPTIC VHPOP uni. ITSAT

AIPCscore 23.00 18.00 17.92 16.16
C 23 23 21 23
Q1 [%] - -30 -26 -38
Q2 [%] - -24 -12 -29
Q3 [%] - -19 -9 -24

Table 13.1: The comparison of AIPCscore, coverage and three quartiles of
RIPCscores .

Table 13.1 gives an overview of AIPCscore , coverage C, the three quartiles

of RIPCscore. On the one hand, according to AIPCscore, POPMERIPC3-VHPOP is the

best in comparison to planners supporting the required concurrency. It signific-

antly outperforms OPTIC and ITSAT, on average by 22 % and 30 %, respectively.

On the other hand, it is not the best planner in the other group, where DAEYAHSP

surpasses it, on average by 5 %.

Furthermore, the score of DAEYAHSP is created by the best scores found by ten

different instances of DAE, which were run using different seeds. Our algorithm

is better than DAEYAHSP in four problems by an average difference per plan of

10.63 units in which makespan is recorded. As all packages must be loaded and

unloaded in both plans, POPMERIPC3-VHPOP has only two options to find a better

plan: to place loading and unloading actions concurrently or to find better path

between locations. In 18 cases, POPMERIPC3-VHPOP found a poorer solution, when

compared to the best DAEYAHSP by an average difference of 22.36 units. Most of

these cases were problems with more goals, which is expected as the greedy heur-

istics are driven to local optima more often in bigger problems.

146

13.2.3.2. Scores Depending On Runtime and Memory

DAEYAHSP, YAHSP and TFD find a better solution than POPMERIPC3-VHPOP on

several problems. Therefore, we are interested in how much time and memory

they use in order to provide these solutions. Additionally, as these planners are

anytime (they provide more than one solution), we want to observe how these

planners improve with increased runtime or memory. For example, a planner

might provide several plans with a bad score very quickly, but it can consume a

significant amount of time and memory before it reaches a better solution. There-

fore, we consider all solutions found by these planners in order to observe the

overall behaviour of the planners.

We have chosen three problems to analyse: with 4, 14 and 22 goal literals. These

problems were chosen because all three planners score very well on them. Further-

more, we do not visualise all data related to all instances of DAEYAHSP because the

graphs will become unclear. Therefore, we chose one particular instance of DAE

with seed 2014. This configuration participated in the latest IPC. Finally, the de-

pendencies between runtime/memory and RIPCscore are visualised in Fig. 13.3.

Each graph is split into four regions according to the position of the RIPCscore of

POPMERIPC3-VHPOP. If a planner scores within region:

• I , then the planner has not only been faster, but has also found a better solu-

tion than POPMERIPC3-VHPOP;

• II , then the planner has been slower, but has found a better solution than

POPMERIPC3-VHPOP;

• III , then even though the planner has been faster, it has found a poorer

solution than POPMERIPC3-VHPOP;

• IV , then the planner has been not only slower, but also found a poorer solu-

tion than POPMERIPC3-VHPOP.

147

101 102

memory [MB]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
IP

C
sc

or
e

DAEY AHSP (2014)
TFD

YAHSP
POPMERIPC3−V HPOP

(a) a problem with 4 goal literals

10−2 10−1 100 101 102

runtime [s]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
IP

C
sc

or
e

DAEY AHSP (2014)
TFD

YAHSP
POPMERIPC3−V HPOP

(b) a problem with 4 goal literals

101 102 103

memory [MB]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
IP

C
sc

or
e

DAEY AHSP (2014)
TFD

YAHSP
POPMERIPC3−V HPOP

(c) a problem with 14 goal literals

10−2 10−1 100 101 102

runtime [s]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
IP

C
sc

or
e

DAEY AHSP (2014)
TFD

YAHSP
POPMERIPC3−V HPOP

(d) a problem with 14 goal literals

101 102 103

memory [MB]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
IP

C
sc

or
e

DAEY AHSP (2014)
TFD

YAHSP
POPMERIPC3−V HPOP

(e) a problem with 22 goal literals

10−2 10−1 100 101 102 103

runtime [s]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
IP

C
sc

or
e

DAEY AHSP (2014)
TFD

YAHSP
POPMERIPC3−V HPOP

(f) a problem with 22 goal literals

Figure 13.3: The dependencies between consumed memory/runtime and
RIPCscores of all solutions provided by DAEYAHSP, YAHSP and TFD.

148

The most important region is I as it represents where the performance of POP-

MERIPC3-VHPOP is poor. In contrast, planner entries in the region IV represent where

POPMERIPC3-VHPOP performs best.

As we have discussed in the previous comparison, POPMERIPC3-VHPOP is not

as fast as it could be. Hence, there is no surprise that TFD and DAEYAHSP score

in the region I for the problem of 4 and 22 goal literals, (Fig. 13.3b and Fig. 13.3f,

respectively). However, POPMERIPC3-VHPOP is competitive with the other planners

according to the used memory. In all of the examined examples, none of the plan-

ners score in the region I . Moreover, other planners tend to score in the region IV

for bigger problems.

13.2.3.3. Scalability Depending on Memory and Runtime

Finally, we report on the consumed memory and runtime of POPMERIPC3-VHPOP

and the other planners (Fig. 13.4). Similarly, as in the analysis of RIPCscore, we

use a continuous function for the values reached by POPMER in order to highlight

this boundary (even though it is not a continuous function). When performing this

evaluation, we encountered a difficulty with the OPTIC planner. Even though it

is an anytime planner, it provides all its solutions into a single file. Therefore, we

were unable to monitor runtime and memory used for producing a single solu-

tion. As a result, we report only on the runtime and memory needed to find the

best (last) solution, which is more or less stable over all problems.

We draw similar conclusions as in the comparison of POPMERIPC3-VHPOP to

VHPOP. That is: POPMERIPC3-VHPOP takes tens of seconds to provide a solution,

while TFD takes units. Therefore, the runtime of POP-MERIPC3-VHPOP could be

improved. However, a benefit of POPMERIPC3-VHPOP is its deterministic behaviour,

which allows us to predict runtime on a problem. Such a feature is beneficial in

order to reserve time to compute a new plan in our intended domain, where tasks

149

0 5 10 15 20

number of goal literals

100

101

102

103

104

m
em

or
y

[M
B

]

maximal allowed time
C-IPC3-VHPOP
ITSAT

OPTIC
POPMERIPC3−V HPOP

(a)

0 5 10 15 20

number of goal literals

100

101

102

103

104

m
em

or
y

[M
B

]

maximal allowed memory
DAEY AHSP (2014)
TFD

YAHSP
POPMERIPC3−V HPOP

(b)

0 5 10 15 20

number of goal literals

10−1

100

101

102

103

104

ru
nt

im
e

[s
]

maximal allowed time
C-IPC3-VHPOP
ITSAT

OPTIC
POPMERIPC3−V HPOP

(c)

0 5 10 15 20

number of goal literals

10−1

100

101

102

103

104

ru
nt

im
e

[s
]

maximal allowed time
DAEY AHSP (2014)
TFD

YAHSP
POPMERIPC3−V HPOP

(d)

Figure 13.4: Memory and time scalability of different planners

are processed in batches.

Nevertheless, POPMERIPC3-VHPOP demonstrates very good memory scalability,

where only TFD provides some solutions with less memory used. Interestingly,

YAHSP finds the first solutions using very little of memory (about 11 MB), but

then it expands a lot, reaching up to 1400 MB. It is prevented from finding any

other solutions because it reaches the memory limit of 6 GB. In contrast, DAEYAHSP

reaches new solutions while expanding the memory slower than YAHSP.

150

13.2.4 POPMERO-VHPOP on the TMS domain

TMS domain requires concurrency between actions. Therefore, we compare

POPMERO-VHPOP only with OPTIC, ITSAT and the original VHPOP. An interest-

ing phenomena occurs for our problems: all planners find the same makespans on

the solved problems. This is because the kiln, which is used for baking ceramic,

has no resource limits. Thus all the ceramic pieces can be baked in parallel. Fur-

thermore, OPTIC and ITSAT manage to find the optimal solution immediately,

without iterations. As a result, we do not report on the scores as we did above.

In regards to the coverage, O-VHPOP was able to solve only 4 problems before it

reached the memory limit 6 GB. In contrast, all other planners have found solu-

tions to all 13 problems.

This experiment supports the previously made claims. First, POPMERO-VHPOP

improves not only coverage but also scalability of the wrapped planner O-VHPOP.

Second, POPMERO-VHPOP is significantly slower as we employ O-VHPOP, which

fails to recognise invalid planning problems quickly. Third, POPMERO-VHPOP used

the least amount of memory on the tested problem (Fig. 13.5a). However, its used

memory increases with a bigger gradient than ITSAT or OPTIC on these prob-

0 10 20 30 40 50

number of goal literals

101

102

103

m
em

or
y

[M
B

]

POPMERO−V HPOP

C-O-VHPOP
ITSAT
OPTIC

(a)

0 10 20 30 40 50
number of goal literals

10−1

100

101

102

103

104

ru
nt

im
e

[s
]

POPMERO−V HPOP

C-O-VHPOP
ITSAT
OPTIC

(b)

Figure 13.5: Memory and time scalability of different planners

151

lems. This could be improved by limiting the use of joining plans. Moreover,

these problems are trivial for OPTIC and ITSAT. Nevertheless, we can observe

how POPMERO-VHPOP significantly improves on the used memory in comparison

to O-VHPOP.

13.2.5 Summary

We have illustrated how POPMER improves on the coverage, scores and con-

sumed memory of both O-VHPOP and IPC3-VHPOP. Its runtime could be im-

proved by two proposed implementations changes limiting not only the compu-

tation of joining plans, but also avoiding problems with unsolvable initial states.

In comparison to the other planners from IPC 2014 and OPTIC on the Driverlog

domain, POPMERIPC3-VHPOP scores second in regards to AIPCscore after DAEYAHSP

with average difference 5 %. This is caused mainly by a poorer performance of

POPMER on problems with more goals, as the greedy heuristics are driven to

local optima more often in bigger problems. However, DAEYAHSP is not able to

handle problems with required concurrency whereas POPMERO-VHPOP is.

13.3 Planning with Durative Actions and Time Con-
straints

In this evaluation, we focus only on the Driverlog domain due to two reasons.

First, it is the most closely related domain to our mobile robot scenario. Second,

makespans strongly vary based on the travelled distance, in contrast to the TMS

domain. Therefore, small time windows of tasks may result in some problems be-

ing unsolvable. This adds difficulty to the planners and it is interesting to compare

how planners handle unsolvable problems.

We are able to compare POPMERX only with OPTIC as it is the only planner

152

(from those previously considered) that supports not only PDDL 2.2 level 3 but

also PDDL 3.1.

13.3.1 Domains and Problems

We extend the problems generated in the previous comparison in order to

handle deadlines and release dates. PDDL 3.1 supports modelling of deadlines by

the goal constraint parameter (within d), which means that a goal must be reached

before the deadline d. However, this parameter does not support release dates

other than r = 0. Therefore, we use timed initial literals in PDDL 2.2 level 3 in order

to model other release dates bigger than zero. Moreover, POPMERX utilises PDDL

2.1 and handles the time windows explicitly within the algorithm. The difference

between these three representations raises the issue that each of them require a

slightly different modelling of a domain and problems.

13.3.1.1. Modelling of Problems

There are a few difficulties in how to model the release dates and deadlines of

tasks in three versions of PDDL. We illustrate how we model them using task: ω1 :

“Package1 needs to be delivered at location4 between two time stamps: 80 and

180 time units”.

In order to model this problem in PDDL 2.1, we build on the official domain

from the IPC 2014. The task goal is expressed as literal (at package1 loc4). This

literal is achieved by action (unload package1 loc4). The temporal constraints are

specified separately within the task specification given to POPMERX .

In order to model problems in PDDL 2.2, we build on the domains from the

IPC 2006. These domains use timed initial literals to model deadlines. For example,

the following literals are added to the initial state:

(deliverable package1 loc4)

153

(at 180 (not (deliverable package1 loc4))).

Note that this does not consider release dates, which are assumed to be equal to

zero time units.

The new predicate deliverable is added because literal (at 180 (not (at pack-

age1 loc4))) implies that package1 disappears from the loc4 at that time. In addi-

tion to these new literals, the goal is changed to (delivered package1 loc4). Fur-

thermore, the domain is extended by a new action (deliver ?package ?loc), which

has (deliverable ?package ?loc) as its precondition and (delivered ?package ?loc)

as its effect.

Finally, modelling of the task’s problem in PDDL 3.1 follows the same logic.

However, the timed initial literals in the initial state are replaced by the within

constraint of the goal.

Release dates bigger than zero cannot be modelled in PDDL 3.1. Hence, we

need to use PDDL 2.2 for modelling. The following timed initial literals are added

to the initial state.

(not (deliverable package1 loc4))

(at 80 (deliverable package1 loc4))

(at 180 (not (deliverable package1 loc4)))

However, these literals only restrict the occurrence of the last action (deliver pack-

age1 loc4), not of all the actions within the plan. Therefore, it can happen that

package1 is unloaded at loc4 at time 14, followed by a gap until time 80, when ac-

tion deliver can take place. However, this is not correct outcome. The release dates

represent an external reason as to why the task cannot happen sooner. Hence, in

this situation, the package cannot be at loc4 before time 80. As a result, this plan

will be invalid.

To overcome this issue, we extend all actions by a new term ?task in order

154

to obey the timed initial literals. Moreover, we utilise literal (valid task1) rather

than literal (deliverable package1 loc4) to make the problem more readable. The

modelled domains and problems are online1.

13.3.1.2. Influence of Modelling

The modelling differences lead to a possibly poorer scalability of planners on

problems modelled in PDDL 2.2, in comparison to problems in PDDL 2.1. This is

due to a number of ground actions in a planning problem. For an action in the

domain using PDDL 2.1, there exists k ground actions. In contrast, for the same

action in the domain using PDDL 2.2, there exists k · n ground actions, where n is

the number of tasks (the goal literals in a problem). This is because all actions has

an additional term ?task.

Furthermore, the RIPCscore is affected as well. Plans found by planners util-

ising PDDL 2.2 or 3.1 contain one more action deliver for each goal literal, in com-

parison to plans modelled by PDDL 2.1. As the deliver action has duration 1 time

unit, the makespan found by POPMERX will be always better by n units. There-

fore, we modify the computation of the RIPCscore as follows:

RIPCscorepj =
M∗

Mp − n
. (13.4)

13.3.2 Time Windows with Large Overlaps

In this section, we compare POPMERIPC3-VHPOP with OPTIC processing prob-

lems modelled in PDDL 3.1. Hence, all the release dates of tasks are equal to zero.

Again, we restrict the runtime to 30 minutes and 6 GB of used memory. We gen-

erate a set with:

• large time windows, in order to guarantee that all tasks will succeed (LTW);
1https://github.com/mudrole1/POPMER/tree/master/testing_files

155

• smaller random size time windows, where some solutions might be im-

possible (STW);

• impossible time windows, where no solution can be found (ITW).

All tasks time windows strongly overlap. Therefore, POPMERX needs to consider

many interactions between overlapping plans and compute many joining plans.

This can affect its runtime as we have seen in the previous evaluation.

13.3.2.1. Scores and Coverage

Note that problems from ITW are unsolvable. Therefore, the scores cannot be

computed for these problems. Therefore, we compare in how many instances the

planners terminated either:

• because they returned that no solution can be found. In such a case, we count

this as a valid solution; or

• because they were terminated due to consuming too much memory or run-

ning for too long. In this situation, we count this as an invalid solution be-

cause no solution has been found.

Therefore, the coverage of POPMERIPC3-VHPOP on the ITW instances is 23 (out of

23) because it has terminated itself stating that there is no solution. In contrast,

OPTIC was able to conclude that there is no solution only in 12 instances.

On the LTW set, both planners have the same coverage (23 out of 23). On

the STW set, POPMERIPC3-VHPOP has solved four more problems than OPTIC, i.e.,

POPMER’s coverage is 16, whereas OPTIC’s only 12. However, we are unable to

state whether the remaining 7 unsolved problems are solvable or not because the

time windows were generated randomly.

Finally, Fig. 13.6a and Fig. 13.6b compares RIPCscores of POPMERIPC3-VHPOP

and OPTIC on instances from the LTW and STW sets, respectively. The instances

156

0 5 10 15 20 25

number of goals literals

0.0

0.2

0.4

0.6

0.8

1.0

R
IP

C
sc

or
e

POPMERIPC3−VHPOP OPTIC

(a) Large time windows - RIPCscore

0 5 10 15 20 25

number of goals literals

0.0

0.2

0.4

0.6

0.8

1.0

R
IP

C
sc

or
e

POPMERIPC3−VHPOP OPTIC

(b) Smaller time windows - RIPCscore

0 5 10 15 20 25

number of goals literals

101

102

103

104

m
em

or
y

[M
B

]

POPMERIPC3−VHPOP

OPTIC
maximal allowed memory

(c) Large time windows - memory

0 5 10 15 20 25

number of goals literals

101

102

103

104

m
em

or
y

[M
B

]
POPMERIPC3−VHPOP

OPTIC
maximal allowed memory

(d) Smaller time windows - memory

0 5 10 15 20 25

number of goals literals

10−1

100

101

102

103

104

ru
nt

im
e

[s
]

POPMERIPC3−VHPOP

OPTIC
maximal allowed time

(e) Large time windows - runtime

0 5 10 15 20 25

number of goals literals

10−1

100

101

102

103

104

ru
nt

im
e

[s
]

POPMERIPC3−VHPOP

OPTIC
maximal allowed time

(f) Smaller time windows - runtime

Figure 13.6: A comparison of POPMERIPC3-VHPOP and OPTIC on the problems with
with large and smaller time windows.

157

0 5 10 15 20 25

number of goals literals

101

102

103

104

m
em

or
y

[M
B

]

POPMERIPC3−VHPOP

OPTIC
maximal allowed memory

(a) Impossible time windows - memory

0 5 10 15 20 25

number of goals literals

10−1

100

101

102

103

104

ru
nt

im
e

[s
]

POPMERIPC3−VHPOP

OPTIC
maximal allowed time

(b) Impossible time windows - runtime

Figure 13.7: The comparison of POPMERIPC3-VHPOP and OPTIC on the problems
with with impossible time windows.

from LTW are the easiest, because planners do not backtrack too often. POPMER

demonstrates very similar behaviour as on the problems with no time windows,

whereas OPTIC encounters problems when it needs to backtrack. These cases

are especially visible on the graphs for memory usage (Fig. 13.6c) and runtime

(Fig. 13.6e), where OPTIC had difficulties in solving 8 problems. Moreover, OPTIC

scores are noticeably poorer on problems encoded in PDDL 3.1 than on the prob-

lems modelled in PDDL 2.1 (Fig. 13.2a). The average difference of the RIPCscore

is 34 % with PDDL 3.1, while it was only 22 % with PDDL 2.1. Furthermore, on

problems from STW, the differences are even bigger (38 % on average), which is

caused by the lower coverage of OPTIC, compared to POPMER (see Table 13.2 for

an overview).

13.3.2.2. Scalability Depending on Runtime and Memory

Similarly as problems without time constraints, we report on the runtime of

OPTIC when it found the last valid solution. The memory represents the peak

of virtual memory used until OPTIC was terminated. Therefore, we are unable

158

LTW STW

AIPCscore 15.21 out of 23 7.73 out of 16
Q1 [%] -47 -65
Q2 [%] -32 -38
Q3 [%] -28 -30

Table 13.2: The comparison of AIPCscore and the three quartiles of RIPCscore
achieved by OPTIC on problems with large (LTW) and smaller (STW) time win-
dows.

to conclude whether either OPTIC or POPMERIPC3-VHPOP has better scalability on

the given problems from LTW or STW. For such a conclusion, we would need to

collect the runtime and memory used for all solutions found by OPTIC. However,

we can still compare their overall behaviour on LTW vs STW problems.

While memory scalability of POPMERIPC3-VHPOP on STW problems is almost

identical to the one on easier LTW problems (Fig. 13.6d and Fig. 13.6c), we see

a significant increase of memory being used by OPTIC on STWs due to back-

tracking. A similar observation can also be done on the runtime (Fig. 13.6e and

Fig. 13.6f). While POPMERIPC3-VHPOP demonstrates very similar behaviour on the

LTWs and STWs, once again the OPTIC runtime is significantly increased on

STWs, in contrast to LTWs. This illustrates how the proposed heuristic of POP-

MER guides its search to find good solutions quickly. Given the similarities of

POPMER performance between LTW and STW problems, we can conclude that

STW problems did not require much backtracking for POPMER. For example, the

small difference can be observed on the problem with two goal literals, where

POPMER was faster on the STW.

The extreme cases are problems from ITW where no solution is possible. On

the one hand, OPTIC either recognised that no solution exists very quickly with

low memory used or it needed to be terminated after 30 minutes (Fig. 13.7b). On

the other hand, POPMERIPC3-VHPOP followed roughly the same curve as on LTW or

STW. The biggest outliers are caused by the fact that a time window for a problem

159

RR SS

AIPCscore 12 out of 23 11.61 out of 23
Q1 [%] -100.0 -100.0
Q2 [%] -34.0 -50.0
Q3 [%] -2.0 0

Table 13.3: The comparison of AIPCscore and the quartiles of relative scores for
problems solved by OPTIC on randomly generated (RR) and sequentially gener-
ated (SR) release dates.

is too short to fit the task plan (for example problem 9).

13.3.3 Time Windows with Small Overlaps

In this section, we study the influence of release dates on the planners. There-

fore, we minimise the influence of deadlines in a way that we generate large time

windows in order to guarantee that a solution exists. The release dates of time

windows are generated either:

• sequentially. This means that the release date of task ωi is set to be larger

than the deadline of task ωi−1. Hence, the time windows between tasks do

not overlap (SR); or

• randomly with some small overlaps between tasks time windows (RR).

As we model release dates that are not zero, we need to compare our algorithm

with OPTIC processing problems modelled in PDDL 2.2.

13.3.3.1. Scores and Coverage

OPTIC and POPMER find the same solutions for problems on the SR set be-

cause the tasks time windows do not overlap. Therefore, plans can start at the

corresponding release dates. While POPMERIPC3-VHPOP found solutions for all 23

problems from both sets (SR and RR), OPTIC found only 12 and 14 solutions, re-

160

spectively. On the RR set, no conclusion can be made about OPTIC scores as they

are very spread out (Table 13.3).

13.3.3.2. Scalability Depending on Runtime and Memory

We have argued that modelling of the problems in PDDL 2.2 may affect OP-

TIC’s scalability. We can observe that OPTIC’s runtime is strongly affected by this

phenomena, see Fig. 13.8e and Fig. 13.8f. In both cases, the runtime of OPTIC is

above POPMER’s, in contrast to their runtime on the problem with large time win-

dows modelled in PDDL 3.1 (Fig. 13.6e). Additionally, OPTIC was terminated in

many cases due to its long runtime. In contrast, POPMERIPC3-VHPOP is ten times

faster on these domains than on the LTW, STW sets or even on problems without

deadlines. This is because tasks do not overlap. Hence, POPMERIPC3-VHPOP is able

to sequence the plans. It does not have to compute any joining plan. On the RR set,

we can see that POPMERIPC3-VHPOP is slower than on the SR set, which is caused

by some task overlaps. Therefore, it needs to compute a few joining plans.

The memory scalability is also affected. Note that problems with 2 - 12 goal

literals in Fig. 13.8c where the memory used is higher than in the previous com-

parisons. However, it may seem that the usage of memory improves for problems

with more goals from the RR set (Fig. 13.8d). Nevertheless, recall that we are re-

porting only on the memory at the end of the run. In these cases, OPTIC has kept

improving its solution for problems with 1-8 goal literals, leading to not only a

better score than POPMER, but also to a higher amount of used memory. How-

ever, for problems with more goal literals, it has not improved as much. Therefore,

the memory is relatively smaller for these problems.

161

0 5 10 15 20 25

number of goals literals

0.0

0.2

0.4

0.6

0.8

1.0

R
IP

C
sc

or
e

POPMERIPC3−VHPOP OPTIC

(a) Sequential release dates - RIPCscore

0 5 10 15 20 25

number of goals literals

0.0

0.2

0.4

0.6

0.8

1.0

R
IP

C
sc

or
e

POPMERIPC3−VHPOP OPTIC

(b) Random release dates - RIPCscore

0 5 10 15 20 25

number of goals literals

101

102

103

104

m
em

or
y

[M
B

]

POPMERIPC3−VHPOP

OPTIC
maximal allowed memory

(c) Sequential release dates - memory

0 5 10 15 20 25

number of goals literals

101

102

103

104

m
em

or
y

[M
B

]

POPMERIPC3−VHPOP

OPTIC
maximal allowed memory

(d) Random release dates - memory

0 5 10 15 20 25

number of goals literals

10−1

100

101

102

103

104

ru
nt

im
e

[s
]

POPMERIPC3−VHPOP

OPTIC
maximal allowed time

(e) Sequential release dates - runtime

0 5 10 15 20 25

number of goals literals

10−1

100

101

102

103

104

ru
nt

im
e

[s
]

POPMERIPC3−VHPOP

OPTIC
maximal allowed time

(f) Random release dates - runtime

Figure 13.8: The comparison of POPMERIPC3-VHPOP and OPTIC on the problems
with with sequential or random release dates.

162

13.3.4 Summary

The evaluation on the Driverlog domain with task time windows demon-

strated how POPMERX is able to handle the time windows and outperform OP-

TIC on problems modelled not only with PDDL 2.2 but also with PDDL 3.1. Not

only does POPMERIPC3-VHPOP have the best coverage on all the tested problems,

but also achieves significantly better RIPCscores than OPTIC with an average dif-

ference of 36 % on all the problems. The results also demonstrated that POPMER

has deterministic behaviour, which may be beneficial in a real world application

to accommodate time for planning. Furthermore, the proposed heuristic drives

POPMER to quickly find high quality solutions.

13.4 Conclusion

We have evaluated POPMERIPC3-VHPOP on the Driverlog domain with durative

actions and different settings of time windows. We first conclude on the runtime

of POPMER. On the one hand, POPMERIPC3-VHPOP is significantly slower than

the other planners on the problems without time windows; it performs 20 times

slower than the wrapped planner IPC3-VHPOP or TFD. On the other hand, POP-

MER is 10 times faster on problems which have time windows that do not overlap,

compare to the previous case. The reason behind this difference is in the need to

compute joining plans. In the case without time windows, all input plans can in-

teract because they are not restricted by time windows. Therefore, POPMER com-

putes many joining plans. Moreover, it even generates impossible problems to

solve. Even though IPC3-VHPOP recognises such problems quickly, it is a bottle-

neck for POPMERO-VHPOP, which needs to include a threshold to stop O-VHPOP

from running. In the case of non-overlapping time windows, plans do not interact

at all. Thus, POPMER does not compute any joining plan.

163

0 5 10 15 20 25

number of goals literals

10−1

100

101

102

103

ru
nt

im
e

[s
]

ITW
LTW
STW

SR
RR

Figure 13.9: The comparison of runtimes of POPMERIPC3-VHPOP on problems with
different time windows.

Fig. 13.9 visualises all runtimes on different problems in a single graph. The

runtime on LTW problems is the same as on problems without time windows. The

runtime on randomly generated release dates is higher than on those sequentially

generated, because this set contains small overlaps between some tasks. Hence,

some joining plans are needed. In contrast, the performance on STW and LTW

is almost identical because the time windows for all tasks overlap. The only dif-

ference is that some problems of STW are unsolvable. Finally, the performance on

ITW set depends on the small size of the time windows. For example, for the prob-

lem with 9 goal literals, one of the time windows was so small that the plan for the

task could not fit in. Hence, POPMER stopped quickly. However, on many prob-

lems, POPMER needed to search and backtrack to find that there is no solution.

From this comparison, we can conclude that computation of joining plans strongly

affects POPMER runtime. We have proposed two implementation changes to limit

the computation of the joining plans and to bring the runtime of POPMER closer

to the performance on the SR set.

The other studied property was the usage of memory. On all the addressed

Driverlog problems, POPMERIPC3-VHPOP demonstrated the best memory scalabil-

164

ity. The worst performance is noticeable on the TMS domain, which is caused by

using O-VHPOP as the wrapped planner. However, POPMER performance shows

that it significantly improves on the memory usage of its wrapped planner, either

O-VHPOP or IPC3-VHPOP.

Finally, POPMERIPC3-VHPOP significantly outperforms the other planners used

in this comparison. On the domain without time windows, only DAEYAHSP scored

5 % better than POPMER. This planner is unable to handle not only required con-

currency, but also time windows. Nevertheless, POPMER and OPTIC handle both

of these features, but POPMERIPC3-VHPOP is better at RIPCscore by 30 % on average,

compared to OPTIC on the tested problems.

165

CHAPTER 14

DISCUSSION AND CONCLUSION

The problem addressed in this thesis is motivated by a mobile service robot,

which receives tasks to perform from different users. Hence, the robot can plan

how to achieve each task separately and then reason about synergies and de-

mands in these plans in order to optimise its overall performance. The synergies

and demands arise not only from the different timing characteristics of tasks, but

also from the spatial constraints of the environment. Therefore, if the robot can

merge activities happening at the same locations, it can optimise its performance.

Thus, we have proposed POPMERX, an algorithm that merges partially ordered

plans with durative actions, which are constrained not only in space but also in

time.

POPMERX is a complete and sound, forward-chaining algorithm that utilises

the same representation as temporally-lifted planners. Additionally, it uses a do-

main specific preprocessing step, which produces relaxed input plans in order

to avoid local optimisation of demands. Furthermore, it utilises a state-of-the-art

planner in order to obtain separate plans for each of the relaxed plans. Then, it

iteratively reasons with these plans and extracts candidates that are merged into a

partially ordered plan. Importantly, the merging process preserves the constraints

between actions imposed in the input plans. This is important in order to support

required concurrency between actions.

166

In comparison to existing plan merging techniques, POPMER combines plan-

ning with refinements and plan repair. In contrast to plan refinements, it is a

forward-search. Hence, it does not need to find all conflicts before hand. It solves

them on-the-fly by promoting the conflicting action. Moreover, POPMER con-

siders preconditions and effects of actions in order to optimise its solution. In

contrast, plan merging via refinements finds only a valid solution and does not

consider its quality. In comparison to plan repair, POPMER interleaves all actions

from the input plans, not only their part. To summarise, POPMER’s uniqueness is

in optimising the merged plan.

We have provided an evaluation of POPMERX using the VHPOP planner on

two benchmark domains – the Driverlog and TMS domain. The Driverlog domain

was chosen as it models a similar scenario to the motivation domain (a mobile ser-

vice robot) and it is constrained by spatial and temporal constraints. The TMS do-

main requires concurrency between actions in all valid solutions. The evaluation

on those domains has shown that POPMERVHPOP is competitive with state-of-the-

art temporal planners for the class of problems we are interested in. Furthermore,

it has illustrated the flexibility of POPMER, as it can perform well in the two do-

mains we analysed, while the other approaches have issues in at least one of the

domains.

However, POPMERX is built on four restricting assumptions (A1-A4). Hence,

it cannot handle some features compared to some other planners. Nevertheless,

POPMERX can be extended in the following ways in order to not require the as-

sumptions:

• Support for multi-agent behaviour (A1) can be added, for example, by in-

tegrating POPMERX with an auctioning mechanism or a multi-agent to a

single agent translation step as used by MAPL (Brenner, 2003).

• The full observability (A2) is unrealistic in many real world scenarios. We

167

propose to deal with partial observability through flexible execution which

can be supported by partially ordered plans (POP) for two reasons:

1. the robot can order different branches of POP based on new observa-

tions of its environment;

2. POP supports generation of temporally flexible plans. This means that

actions do not have to be performed at the scheduled time but they

can be performed within a time slack, as long as they do not violate

deadlines or any of the causal links.

• In order to provide support for resources (A3), we could include many ex-

isting techniques of resource handling in temporal planners. Importantly,

resources will add more demands and synergies that POPMER would need

to consider.

• We argue that the fourth assumption (A4), that tasks are separable, does not

have to be overcome for a real world application. Such property naturally

results from the fact that tasks are given by different users. Moreover, tasks,

which are not separable, can be handled as one bigger task if needed.

Another aspect to improve is the POPMER heuristic. It would be interesting

to explicitly study the influence of the heuristic on POPMER behaviour and com-

pare it with already existing heuristics. Moreover, domain independent relaxation

of the individual planning problems should be developed in order to make POP-

MER automatic on any domain. From the implementation point of view, POPMER

could be optimised to achieve better runtime, especially by eliminating the need to

compute joining plans often. Furthermore, it could be extended to be an anytime

planner in order to overcome that the heuristic drives it into a local optimum. This

would be done by not terminating after the first solution is found. Thus, POPMER

would be able to explore other choices.

168

Finally, we conclude this thesis as a whole. Our goal was to study different

deliberation techniques, in particular scheduling and temporal planning, and to

address how these techniques could be improved in order to handle not only tem-

poral, but also spatial constraints. Our motivation was a scenario from a mobile

service robot domain where the robot needs to perform tens of tasks per hour.

Therefore, we were also interested in how good scalability of the deliberation tech-

niques can be achieved.

In the first part of the thesis, focused on scheduling, we proposed the prun-

ing scheduler, which heuristically choose an order for tasks with overlapping

time windows. We have demonstrated how such pruning has significantly im-

proved the scalability, compared to the scheduler deployed on the CoBots (Coltin

et al., 2011). Moreover, our scheduler has been deployed on real robots for several

months (Hawes et al., To Appear).

In the second part, we moved beyond the atomic tasks required by scheduling.

As a result, we have built on temporal planning in order to plan how to achieve

the tasks as well. Our proposed algorithm POPMERX outperforms state-of-the-art

planners on the class of problems we tackle in this thesis. Furthermore, POPMERX

is able to address problems that require release dates and deadlines on tasks. This

area of research has not been thoroughly addressed before in state-based temporal

planners.

169

BIBLIOGRAPHY

Achterberg, T. (2009). SCIP: Solving constraint integer programs. Mathematical

Programming Computation, 1(1), 1–41. http://mpc.zib.de/index.php/MPC/

article/view/4.

Aker, E., Erdogan, A., Erdem, E. & Patoglu, V. (2011, March). Housekeeping with

Multiple Autonomous Robots: Representation, Reasoning and Execution.

In Logical Formalizations of Commonsense Reasoning, AAAI Spring Symposium.

Stanford, California,USA.

Allen, J. F. (1983). Maintaining Knowledge about Temporal Intervals. Communica-

tions of the ACM, 26(11), 832–843.

Allouche, M. K. & Boukhtouta, A. (2010). Multi-agent coordination by temporal

plan fusion: Application to combat search and rescue. Information Fusion,

11(3), 220–232. Agent-Based Information Fusion. doi:http ://doi .org/10 .

1016/j.inffus.2009.09.005

Atay, N. (2007). Emergent task allocation for mobile robots. In Proceedings of Ro-

botics: Science and Systems.

Bacchus, F. & Ady, M. (2001). Planning with Resources and Concurrency: A For-

ward Chaining Approach. In B. Nebel (Ed.), Proceedings of International Joint

Conference on Artificial Intelligence - IJCAI 2001 (pp. 417–424). Morgan Kaufmann.

Bäckström, C. & Nebel, B. (1995). Complexity Results for SAS+ Planning. Com-

putarional Intelligence, 11, 625–655.

170

http://mpc.zib.de/index.php/MPC/article/view/4
http://mpc.zib.de/index.php/MPC/article/view/4
http://dx.doi.org/http://doi.org/10.1016/j.inffus.2009.09.005
http://dx.doi.org/http://doi.org/10.1016/j.inffus.2009.09.005

Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., . . . Smith, D.

(2012). EUROPA: A Platform for AI Planning, Scheduling, Constraint Pro-

gramming, and Optimization. In 4th International Competition on Knowledge

Engineering for Planning and Scheduling - ICKEPS 2012).

Beetz, M. & Bennewitz, M. (1998). Planning, scheduling, and plan execution for

autonomous robot office couriers. In Integrating Planning, Scheduling and Exe-

cution in Dynamic and Uncertain Environments, volume Workshop Notes (pp. 98–

02).

Benedictis, R. D. & Cesta, A. (2015, September). New Heuristics for Timeline-

Based Planning. In Proceedings of the 6th Italian Workshop on Planning and

Scheduling A workshop of the XIV International Conference of the Italian Asso-

ciation for Artificial Intelligence - AI*IA 2015 (pp. 33–48). Ferrara, Italy.

Benton, J., Coles, A. J. & Coles, A. (2012, June). Temporal Planning with Pref-

erences and Time-Dependent Continuous Costs. In Proceedings of the 22nd

International Conference on Automated Planning and Scheduling - ICAPS 2012.

Atibaia, São Paulo, Brazil.

Berry, P. M. (1993). Uncertainty In Scheduling: Probability, Problem Reduction,

Abstractions And The User. In IEEE Colloquium on Advanced Software Techno-

logies for Scheduling, Digest No.

Bibaï, J., Savéant, P., Schoenauer, M. & Vidal, V. (2010, May). An Evolutionary

Metaheuristic Based on State Decomposition for Domain-Independent Sat-

isficing Planning. In Proceedings of the 20th International Conference on Auto-

mated Planning and Scheduling - ICAPS 2010 (pp. 18–25). Toronto, Ontario,

Canada.

Bidot, J., Schattenberg, B. & Biundo, S. (2008, September 23). Plan Repair in Hy-

brid Planning. In A. R. Dengel, K. Berns, T. M. Breuel, F. Bomarius & T. R.

Roth-Berghofer (Eds.), Advances in Artificial Intelligence: 31st Annual German

171

Conference on AI - KI 2008 (pp. 169–176). Kaiserslautern, Germany, doi:10 .

1007/978-3-540-85845-4_21

Bidot, J., Vidal, T., Laborie, P. & Beck, J. (2009). A theoretic and practical framework

for scheduling in a stochastic environment. Journal of Scheduling, 12(3), 315–

344.

Bit-Monnot, A. (2016). Temporal and Hierarchical Models for Planning and Acting in

Robotics (Doctoral dissertation, l’Institut National Polytechnique de Toulouse

(INP Toulouse)).

Booth, K. E. C., Tran, T. T., Nejat, G. & Beck, J. C. (2016, January). Mixed-Integer

and Constraint Programming Techniques for Mobile Robot Task Planning.

IEEE Robotics and Automation Letters, 1(1), 500–507. doi:10.1109/LRA.2016.

2522096

Brenner, M. (2003). Multiagent Planning with Partially Ordered Temporal Plans.

In Proceedings of the 18th International Joint Conference on Artificial Intelligence

- IJCAI 2003 (pp. 1513–1514). Acapulco, Mexico.

Burgard, W., Cremers, A. B., Fox, D., Haenel, D., Lakemeyer, G., Schulz, D., . . .

Thrun, S. (1998). The Interactive Museum Tour-Guide Robot. In Proceeding of

the Fifteenth National Conference on Artificial Intelligence - AAAI 1998.

Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E. & Patoglu, V. (2009,

September). Bridging the Gap between High-Level Reasoning and Low-

Level Control. In E. Erdem, F. Lin & T. Schaub (Eds.), Proceedings of 10th

International Conference on Logic Programming and Nonmonotonic Reasoning -

LPNMR 2009 (pp. 342–354). Potsdam, Germany. doi:10 . 1007 / 978- 3 - 642 -

04238-6_29

Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., . . . Car-

reras, M. (2015, June 7). ROSPlan: Planning in the Robot Operating System.

In Proceedings of the Twenty-Fifth International Conference on Automated Plan-

ning and Scheduling, ICAPS 2015 (pp. 333–341). Jerusalem, Israel.

172

http://dx.doi.org/10.1007/978-3-540-85845-4_21
http://dx.doi.org/10.1007/978-3-540-85845-4_21
http://dx.doi.org/10.1109/LRA.2016.2522096
http://dx.doi.org/10.1109/LRA.2016.2522096
http://dx.doi.org/10.1007/978-3-642-04238-6_29
http://dx.doi.org/10.1007/978-3-642-04238-6_29

Cesta, A., Cortellessa, G., Fratini, S. & Oddi, A. (2009). MrSPOCK: A long-term

planning tool for MARS EXPRESS. In 6th International Workshop on Planning

and Scheduling for Space - IWPSS 2009). Pasadena, CA.

Cesta, A., Cortellessa, G., Oddi, A., Policella, N. & Susi, A. (2001). A constraint-

based architecture for flexible support to activity scheduling. In AI* IA 2001:

Advances in Artificial Intelligence (pp. 369–381). Springer.

Cesta, A., Cortellessa, G., Rasconi, R., Pecora, F., Scopelliti, M. & Tiberio, L. (2011).

Monitoring elderly people with the Robocare Domestic Environment: Inter-

action synthesis and user evaluation. Computational Intelligence, 27(1), 60–82.

Cesta, A. & Fratini, S. [Simone]. (2008). The Timeline Representation Framework

as a Planning and Scheduling Software Development Environment. In The

27th PLANSIG Workshop of the UK.

Chen, X., Ji, J., Jiang, J., Jin, G., Wang, F. & Xie, J. (2010). Developing High-level

Cognitive Functions for Service Robots. In Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems - AAMAS 2010 (pp. 989–

996). Toronto, Canada: International Foundation for Autonomous Agents

and Multiagent Systems.

Chen, X., Jin, G. & Yang, F. (2012). Extending C+ with Composite Actions for

Robotic Task Planning. In Technical Communications of the 28th International

Conference on Logic Programming - ICLP 2012 (Vol. 17, pp. 404–414). Leib-

niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany.

doi:10.4230/LIPIcs.ICLP.2012.404

Chien, S., Rabideau, G., Knight, R., Sherwood, R., Engelhardt, B., Mutz, D., . . .

Tran, D. (2000). ASPEN - Automated Planning and Scheduling for Space

Mission Operations. In in Space Ops.

Cialdea Mayer, M., Orlandini, A. & Umbrico, A. (2016). Planning and execution

with flexible timelines: a formal account. Acta Informatica, 53(6), 649–680.

doi:10.1007/s00236-015-0252-z

173

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.404
http://dx.doi.org/10.1007/s00236-015-0252-z

Coles, A. I., Fox, M., Long, D. & Smith, A. J. (2008, July). Planning with Problems

Requiring Temporal Coordination. In Proceedings of the 23rd AAAI Conference

on Artificial Intelligence - AAAI 2008.

Coles, A. J. [A. J.], Coles, A. I., Fox, M. & Long, D. (2010, May). Forward-Chaining

Partial-Order Planning. In The International Conference on Automated Planning

and Scheduling - ICAPS 2010).

Coles, A. J. [Amanda Jane], Coles, A., Fox, M. & Long, D. (2012). COLIN: Planning

with Continuous Linear Numeric Change. Journal of Artificial Intelligence Re-

search, 44.

Coles, A., Fox, M., Long, D. & Smith, A. (2008). Planning with Problems Requiring

Temporal Coordination. In Proceedings of the 23rd AAAI Conference on Artifi-

cial Intelligence (pp. 892–897). AAAI’08. Chicago, Illinois: AAAI Press.

Coltin, B. & Veloso, M. (2014). Optimizing for Transfers in a Multi-vehicle Collec-

tion and Delivery Problem. In M. Ani Hsieh & G. Chirikjian (Eds.), Distrib-

uted Autonomous Robotic Systems: The 11th International Symposium (pp. 91–

103). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-

55146-8_7

Coltin, B., Veloso, M. M. & Ventura, R. (2011). Dynamic User Task Scheduling for

Mobile Robots. In Automated Action Planning for Autonomous Mobile Robots

(Vol. WS-11-09). AAAI Workshops. AAAI.

Cushing, W. A. (2012). When is Temporal Planning Really Temporal? (Doctoral dis-

sertation, Arizona State University).

Cushing, W., Kambhampati, S., Mausam & Weld, D. S. (2007, January). When is

Temporal Planning Really Temporal? In Proceedings of the 20th International

Joint Conference on Artificial Intelligence - IJCAI 2007 (pp. 1852–1859). Hydera-

bad, India.

174

http://dx.doi.org/10.1007/978-3-642-55146-8_7
http://dx.doi.org/10.1007/978-3-642-55146-8_7

Dang, Q.-V. & Nguyen, L. (2016). A Heuristic Approach to Schedule Mobile Ro-

bots in Flexible Manufacturing Environments. Procedia CIRP, 40, 390–395.

doi:10.1016/j.procir.2016.01.073

Davenport, J. A. & Beck, J. C. (2000). A Survey of Techniques for Scheduling with

Uncertainty.

de Weerdt, M. (2003). Plan Merging in Multi-Agent Systems (PhD thesis, Delft Uni-

versity of Technology).

Dechter, R., Meiri, I. & Pearl, J. (1991). Temporal constraint networks. Artificial

intelligence, 49(1), 61–95.

Do, M. B. & Kambhampati, S. (2011). SAPA: A Multi-objective Metric Temporal

Planner. Journal of Artificial Intelligence Research, 1-40.

Dvořák, F., Bit-Monnot, A., Ingrand, F. & Ghallab, M. [Malik]. (2014, June). A

Flexible ANML Actor and Planner in Robotics. In ICAPS PlanRob WorkShop.

Portsmouth, USA.

Dvořák, F., Bit-Monnot, A., Ingrand, F. & Ghallab, M. (2014, June). A Flexible

ANML Actor and Planner in Robotics. In ICAPS PlanRob WorkShop. Ports-

mouth, USA.

Edelkamp, S. & Hoffmann, J. (2004). PDDL2.2: The Language for the Classical Part of

the 4th International Planning Competition (PDF). Albert-Ludwigs-Universität

Freiburg, Institut für Informatik.

Ephrati, E. & Rosenschein, J. S. (1993). Multi-Agent Planning as the Process of

Merging Distributed Sub-plans. In In Proceedings of the Twelfth International

Workshop on Distributed Artificial Intelligence -DAI 1993 (pp. 115–129).

Erdem, E., Aker, E. & Patoglu, V. (2012). Answer set programming for collaborat-

ive housekeeping robotics: representation, reasoning, and execution. Intelli-

gent Service Robotics, 5(4), 275–291. doi:10.1007/s11370-012-0119-x

Eyerich, P., Mattmüller, R. & Röger, G. (2009). Using the Context-enhanced Addit-

ive Heuristic for Temporal and Numeric Planning. In Proceedings of the 19th

175

http://dx.doi.org/10.1016/j.procir.2016.01.073
http://dx.doi.org/10.1007/s11370-012-0119-x

International Conference on Automated Planning and Scheduling -ICAPS 2009.

Thessaloniki, Greece.

Fikes, R. E. & Nilsson, N. J. [Nils J.]. (1971). STRIPS: A New Approach to the Ap-

plication of Theorem Proving to Problem Solving. In Proceedings of the 2Nd

International Joint Conference on Artificial Intelligence - IJCAI 1971 (pp. 608–

620). London, England: Morgan Kaufmann Publishers Inc.

Foulser, D. E., Li, M. & Yang, Q. (1992). Theory and algorithms for plan merging.

Artificial Intelligence, 57(2–3), 143–181.

Fox, M. & Long, D. (2003, December). PDDL2.1: An Extension to PDDL for Ex-

pressing Temporal Planning Domains. Journal of Artificial Intelligence Research,

20(1), 61–124.

Fox, M. & Long, D. (2006, October). Modelling Mixed Discrete-continuous Do-

mains for Planning. Journal of Artificial Intelligence Research. 27(1), 235–297.

Frank, J. & Jónsson, A. (2003). Constraint-Based Attribute and Interval Planning.

Constraints, 8(4), 339–364. doi:10.1023/A:1025842019552

Fratini, S. [S.], Pecora, F. & Cesta, A. (2008). Unifying Planning and Scheduling

as Timelines in a Component-Based Perspective. Archives of Control Sciences,

18(2), 231–271.

Fratini, S. [Simone] & Cesta, A. (2012). The APSI framework: a platform for timeli-

ne synthesis. In Workshop on Planning and Scheduling with Timelines (pp. 8–

15).

Gelfond, M. & Lifschitz, V. (1998). Action Languages. Electronic Transactions on AI,

3.

Gerevini, A. E., Haslum, P., Long, D., Saetti, A. & Dimopoulos, Y. (2009, April). De-

terministic Planning in the Fifth International Planning Competition: PDDL3

and Experimental Evaluation of the Planners. Artificial Intelligence, 173(5-6),

619–668.

176

http://dx.doi.org/10.1023/A:1025842019552

Gerevini, A. & Long, D. (2005). Plan constraints and preferences in PDDL3 - the lan-

guage of the fifth international planning competition.

Ghallab, M. [M.], Howe, A., Knoblock, C., Mcdermott, D., Ram, A., Veloso, M.,

. . . Wilkins, D. (1998). PDDL—The Planning Domain Definition Language. Yale

Center for Computational Vision and Control.

Ghallab, M. [Malik] & Laruelle, H. (1994). Representation and Control in IxTeT, a

Temporal Planner. In Proceedings of the Second International Conference on Ar-

tificial Intelligence Planning Systems - AIPS 1994 (pp. 61–67). Chicago, Illinois:

AAAI Press.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N. & Turner, H. (2004). Nonmono-

tonic causal theories. Artificial Intelligence, 153(1), 49–104. doi:http://dx.doi.

org/10.1016/j.artint.2002.12.001

Griva, I., Nash, S. G. & Sofer, A. (2008). Linear and Nonlinear Optimization (2nd).

Society for Industrial Mathematics.

Harris, C. & Dearden, R. (2012). Contingency planning for long-duration

AUV missions. In Autonomous Underwater Vehicles (AUV), 2012 IEEE/OES

(pp. 1–6). IEEE.

Hashmi, M. A. & El Fallah Seghrouchni, A. (2010). Merging of Temporal Plans

Supported by Plan Repairing. In Proceedings of the 2010 22Nd IEEE Interna-

tional Conference on Tools with Artificial Intelligence - ICTAI 2010 (pp. 87–94).

doi:10.1109/ICTAI.2010.88

Havur, G., Haspalamutgil, K., Palaz, C., Erdem, E. & Patoglu, V. (2013, May). A

case study on the Tower of Hanoi challenge: Representation, reasoning and

execution. In IEEE International Conference on Robotics and Automation - ICRA

2013 (pp. 4552–4559). doi:10.1109/ICRA.2013.6631224

Hawes, N., Burbridge, C., Jovan, F., Kunze, L., Lacerda, B., Mudrová, L., . . . Han-

heide, M. (To Appear). The STRANDS Project: Long-Term Autonomy in

Everyday Environments. IEEE Robotics and Automation Magazine.

177

http://dx.doi.org/http://dx.doi.org/10.1016/j.artint.2002.12.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.artint.2002.12.001
http://dx.doi.org/10.1109/ICTAI.2010.88
http://dx.doi.org/10.1109/ICRA.2013.6631224

Heinz, S. & Beck, J. C. (2011). Solving Resource Allocation/Scheduling Problems

with Constraint Integer Programming. In M. A. Salido, R. Barták & N. Po-

licella (Eds.), Proceedings of the Workshop on Constraint Satisfaction Techniques

for Planning and Scheduling Problems - COPLAS 2011 (pp. 23–30).

Hoffmann, J. (2002, July). Extending FF to Numerical State Variables. In Proceed-

ings of the 15th European Conference on Artificial Intelligence -ECAI 2002 (pp. 571–

575). Lyon, France.

Hoffmann, J. & Nebel, B. (2001). The FF Planning System: Fast Plan Generation

Through Heuristic Search. Journal of Artificial Intelligence Research, 14, 253–

302.

Hsu, C. W., Wah, B. W., Huang, R. & Chen, Y. X. (2006, June). Handling Soft Con-

straints and Preferences in SGPlan. In Proceedings of ICAPS Workshop on Pref-

erences and Soft Constraints in Planning.

Kambhampati, S., Knoblock, C. A. & Yang, Q. (1995). Planning as Refinement

Search: A Unified Framework for Evaluating Design Tradeoffs in Partial-

Order Planning. Artificial Intelligence, 76, 167–238.

Khandelwal, P., Yang, F., Leonetti, M., Lifschitz, V. & Stone, P. (2014). Planning

in Action Language BC While Learning Action Costs for Mobile Robots. In

Proceedings of the Twenty-Fourth International Conferenc on International Confer-

ence on Automated Planning and Scheduling - ICAPS 2014 (pp. 472–480). Ports-

mouth, New Hampshire, USA: AAAI Press.

Khandelwal, P., Zhang, S., Sinapov, J., Leonetti, M., Thomason, J., Yang, F., . . .

Stone, P. (2017). BWIBots: A platform for bridging the gap between AI and

human–robot interaction research. The International Journal of Robotics Re-

search. doi:10.1177/0278364916688949

Koehler, J. & Hoffmann, J. (2000, June). On Reasonable and Forced Goal Orderings

and Their Use in an Agenda-driven Planning Algorithm. Journal of Artificial

Intelligence Research, 12(1), 339–386.

178

http://dx.doi.org/10.1177/0278364916688949

Korsah, G. A., Kannan, B., Browning, B., Stentz, A. & Dias, M. B. (2012, May).

xBots: An approach to generating and executing optimal multi-robot plans

with cross-schedule dependencies. In 2012 IEEE International Conference on

Robotics and Automation (pp. 115–122). doi:10.1109/ICRA.2012.6225234

Krogt, R. v. d. (2005). Plan Repair in Single-Agent and Multi-Agent Systems (Doctoral

dissertation, TU Delf).

Laborie, P. (2003). Algorithms for propagating resource constraints in AI planning

and scheduling: Existing approaches and new results. Artificial Intelligence,

143(2), 151–188.

Lacerda, B., Parker, D. & Hawes, N. (2014). Optimal and Dynamic Planning for

Markov Decision Processes with Co-Safe LTL Specifications. In Proceeding of

International Conference on Intlligent Robots and Systems - IROS 2014. IEEE.

Lee, J., Lifschitz, V. & Yang, F. (2013). Action Language BC: Preliminary Report. In

Proceedings of the Twenty-Third International Joint Conference on Artificial Intel-

ligence - IJCAI 2013 (pp. 983–989). Beijing, China.

Li, H., Sweeney, J., Ramamritham, K., Grupen, R. & Shenoy, P. (2003, May). Real-

time support for mobile robotics. In The 9th IEEE Real-Time and Embedded

Technology and Applications Symposium (pp. 10–18). doi:10.1109/RTTAS.2003.

1203032

Long, D. & Fox, M. (2003). Exploiting a Graphplan Framework in Temporal Plan-

ning. In Proceedings of the 13th International Conference on Automated Planning

and Scheduling - ICAPS 2003 (pp. 52–61). Trento, Italy: AAAI Press.

Louie, W.-Y. G., Vaquero, T., Nejat, G. & Beck, J. C. (2014). An Autonomous Assist-

ive Robot for Planning, Scheduling and Facilitating Multi-User Activities. In

Proceedings of the IEEE International Conference on Robotics and Automation -

ICRA 2014.

Mali, A. D. (1999, September 8). Plan Merging & Plan Reuse as Satisfiability. In S.

Biundo & M. Fox (Eds.), Recent Advances in AI Planning: 5th European Confer-

179

http://dx.doi.org/10.1109/ICRA.2012.6225234
http://dx.doi.org/10.1109/RTTAS.2003.1203032
http://dx.doi.org/10.1109/RTTAS.2003.1203032

ence on Planning, ECP 1999, (pp. 84–96). Durham, UK, doi:10.1007/10720246_

7

Mansouri, M. & Pecora, F. (2014a). More Knowledge on the Table: Planning with

Space, Time and Resources for Robots. In IEEE International Conference on

Robotics and Automation - ICRA 2014.

Mansouri, M. & Pecora, F. (2014b). More knowledge on the table: planning with

space, time and resources for robots. In In Proceedings of IEEE International

Conference on Robotics and Automation - ICRA 2014 (pp. 647–654).

McCain, N. & Turner, H. (1997). Causal Theories of Action and Change. In Pro-

ceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth

Conference on Innovative Applications of Artificial Intelligence - AAAI 1997/IAAI

1997 (pp. 460–465). Providence, Rhode Island: AAAI Press.

Mudrová, L. & Hawes, N. (2015, May). Task Scheduling for Mobile Robots Using

Interval Algebra. In 2015 IEEE International Conference on Robotics and Auto-

mation - ICRA 2015. Seattle, Washington, USA.

Mudrová, L., Lacerda, B. & Hawes, N. (2015, September). An Integrated Control

Framework for Long-term Autonomy in Mobile Service Robots. In Proceed-

ings of the European Conference on Mobile Robots - ECMR 2015. Lincoln, UK.

doi:10.1109/ECMR.2015.7324192

Mudrová, L., Lacerda, B. & Hawes, N. (2016, August). Partial Order Temporal

Plan Merging for Mobile Robot Tasks. In 22nd European Conference on Arti-

ficial Intelligence - ECAI 2016 (pp. 1537–1545). The Hague, The Netherlands.

doi:10.3233/978-1-61499-672-9-1537

Muscettola, N. (1993). HSTS: Integrating planning and scheduling. In M. Zweben

& M. Fox (Eds.), Intelligent Scheduling (pp. 169–212). Morgan Kaufmann.

Nau, D., Ghallab, M. & Traverso, P. (2004). Automated Planning: Theory & Practice.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

180

http://dx.doi.org/10.1007/10720246_7
http://dx.doi.org/10.1007/10720246_7
http://dx.doi.org/10.1109/ECMR.2015.7324192
http://dx.doi.org/10.3233/978-1-61499-672-9-1537

Nebel, B. & Koehler, J. (1995). Plan Reuse versus Plan Generation: A Theoretical

and Empirical Analysis. Artificial Intelligence, 76, 427–454.

Nielsen, I., Dang, Q.-V., Nielsen, P. & Pawlewski, P. (2014). Scheduling of Mobile

Robots with Preemptive Tasks. In S. Omatu, H. Bersini, J. M. Corchado, S.

Rodríguez, P. Pawlewski & E. Bucciarelli (Eds.), 11th International Conference

of Distributed Computing and Artificial Intelligence (pp. 19–27). Cham: Springer

International Publishing. doi:10.1007/978-3-319-07593-8_3

Nilsson, N. J. [N. J.]. (1984, April). Shakey the robot. Artificial Intellgence Center

Computer Science and Technology Division, SRI.

Pinedo, M. L. (2012). Scheduling: Theory, Algorithms, and Systems (4th). Springer

Science+Business Media.

Rankooh, M. F. & Ghassem-Sani, G. (2015). ITSAT: An Efficient SAT-Based Tem-

poral Planner. Journal of Artificial Intelligence Research, 53, 541–632. doi:10 .

1613/jair.4697

Rocco, M. D., Pecora, F. & Saffiotti, A. (2013a). When robots are late: Configuration

planning for multiple robots with dynamic goals. In International Conference

on Intelligent Robots and Systems - IROS 2013 (pp. 5915–5922). IEEE.

Rocco, M. D., Pecora, F. & Saffiotti, A. (2013b). When robots are late: Configuration

planning for multiple robots with dynamic goals. In International Conference

on Intelligent Robots and Systems - IROS 2013. IEEE.

Sacerdoti, E. D. (1975). A Structure for Plans and Behavior (PhD, Stanford University,

Stanford, CA, USA).

Simmons, R. G. & Younes, H. L. S. (2011). VHPOP: Versatile Heuristic Partial Or-

der Planner. Journal of Artificial Intelligence Research, 20.

Smith, D. E. (2016). The Case for Durative Actions: A Commentary on PDDL2.1.

Retrieved January 12, 2017, from http://www.cs.cmu.edu/afs/cs/project/

jair/pub/volume20/smith03a-html/PDDL-commentary.html

181

http://dx.doi.org/10.1007/978-3-319-07593-8_3
http://dx.doi.org/10.1613/jair.4697
http://dx.doi.org/10.1613/jair.4697
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/smith03a-html/PDDL-commentary.html
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/smith03a-html/PDDL-commentary.html

Smith, D. E., Frank, J. & Cushing, W. (2008, September). The ANML Language. In

ICAPS Workshop on Knowledge Engineering for Planning and Scheduling (KEPS).

Smith, D. E., Frank, J. & Jónsson, A. K. (2000). Bridging the Gap Between Planning

and Scheduling. KNOWLEDGE ENGINEERING REVIEW, 15, 2000.

Smith, D. E. & Weld, D. S. (1999). Temporal Planning with Mutual Exclusion Reas-

oning. In Proceedings of the 16th International Joint Conference on Artifical Intel-

ligence -IJCAI 1999 (Vol. 1, pp. 326–333). Stockholm, Sweden.

Stock, S., Mansouri, M., Pecora, F. & Hertzberg, J. (2015). Online Task Merging

with a Hierarchical Hybrid Task Planner for Mobile Service Robots. In Inter-

national Conference on Intelligent Robots and Systems - IROS 2015.

Surmann, H. & Morales, A. (2002, August). Scheduling Tasks to a Team of Auto-

nomous Mobile Service Robots in Indoor Enviroments. Journal of Universal

Computer Science, 8, 809–833.

Tate, A. (1976, August). Project Planning Using a Hierarchic Non-linear Planner. De-

partment of Artificial Intelligence, University of Edinburgh.

Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Fox, D., . . .

Schulz, D. (1999). MINERVA: A second-generation museum tour-guide ro-

bot. In Proceedings of IEEE International Conference on Robotics and Automation

-ICRA 1999.

Tonino, H., Bos, A., de Weerdt, M. & Witteveen, C. (2002). Plan coordination by

revision in collective agent based systems. Artificial Intelligence, 142(2), 121–

145. doi:10.1016/S0004-3702(02)00273-4

Tsamardinos, I., Pollack, M. E. & Horty, J. F. (2000). Merging Plans with Quantit-

ative Temporal Constraints, Temporally Extended Actions, and Conditional

Branches. In Proceedings of the Fifth International Conference on Artificial Intel-

ligence Planning Systems - AIPS 2000 (pp. 264–272). Breckenridge, CO, USA.

Veloso, M. M., Biswas, J., Coltin, B., Rosenthal, S., Kollar, T., Mericli, C., . . . Ven-

tura, R. (2012). CoBots: Collaborative robots servicing multi-floor buildings.

182

http://dx.doi.org/10.1016/S0004-3702(02)00273-4

In International Conference on Intelligent Robots and Systems - IROS 2012 (pp. 5446–

5447). IEEE.

Vidal, V. (2004, June). A Lookahead Strategy for Heuristic Search Planning. In Pro-

ceedings of the 14th International Conference on Automated Planning and Schedul-

ing - ICAPS 2004 (pp. 150–159). Whistler, BC, Canada: AAAI Press.

Vidal, V. (2014, June). YAHSP3 and YAHSP3-MT in the 8th International Planning

Competition. In Proceedings of the 8th International Planning Competition - IPC

2014. Portsmouth, USA.

Weld, D. S. (1994). An introduction to least commitment planning. AI magazine,

15(4), 27.

Wilkins, D. E. (1988). Practical Planning: Extending the Classical AI Planning Paradigm.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Yang, Q. (1997). Intelligent Planning: A Decomposition and Abstraction Based Ap-

proach. London, UK, UK: Springer-Verlag.

183

	List of Tables
	List of Figures
	Introduction
	Example Scenario
	Scope of the Thesis
	Contributions and Related Publications

	I Scheduling
	Introduction
	Additional Assumptions
	Example of Scheduling with Spatial Constraints
	Organisation

	Related Work
	Scheduling
	Vehicle Routing Problem
	General Task Scheduling

	Planning
	Action Description Languages
	Hierarchical Task Planning

	Summary

	Problem Definition
	Task
	Standard Task
	Extensions

	Scheduling as an Optimisation problem
	Problem Statement

	Solution
	Scheduler
	Big M method
	Proposed Extensions

	Control Framework
	Task Executor

	Evaluation
	Standalone Scheduler
	Simulated Data
	Data from a Robot
	Summary

	Scheduler with Travel Times Estimates
	Influence of Environment Dynamics
	Adaptive Scheduling using Travel Time Estimations
	Summary

	Conclusion and Discussion
	Limitations and Future Work

	II Temporal Planning
	Introduction
	Motivation Example
	Research Scope
	Organisation

	Related Work
	Temporal Planning
	State-Based Approach: PDDL-based planners
	Time-Based Approach: Timelines planners
	Summary

	Plan Merging
	Action Merging
	Plan Merging as Refinement planning
	Plan Merging as Plan Repair
	Plan Merging as Plan Coordination
	Plan Merging with Timelines

	Chosen Representation for Plan Merging

	Terminology
	State
	Action
	Instantaneous Action
	Durative Action
	Instantaneous Action as an Action Point

	Distinctive Actions
	Example

	Plan
	Partial Order Plan
	Backward-Chaining Plan-Space Planning
	Required Concurrency

	Task
	Task Instances
	Task Dependency

	Problem Definition and Solution Approaches
	Problem Statement
	Solution Approaches
	Sequencing planning algorithm
	Conjoining planning algorithm
	Merging planning algorithm

	Solution
	POPMERX
	Search State

	Example
	Terminology Related to Plan Merging
	Extending POP definition
	Joining Plans
	Plan Segment
	Satisfied Goals

	Preprocessing via Problem Relaxation
	Example
	Elimination of Demands
	Automatic Relaxation

	Planner
	Plan Merging with Instantaneous Tasks
	Reasoning and Managing
	Backtracking
	Heuristic Candidate Selection
	Merge Algorithm
	Flaw Check

	Plan Merging with Durative actions
	Reasoning and Managing
	Heuristic Candidate Selection
	Merge Algorithm
	Example

	Plan Merging with Durative Actions and Time Constraints
	Reasoning and Managing
	Heuristic Candidate Selection

	POPMERX Summary

	Evaluation
	Methodology
	Planning with Durative Actions
	Domains and Problems
	POPMERVHPOP in Comparison to VHPOP
	POPMERIPC3-VHPOP on the Driverlog Domain
	POPMERO-VHPOP on the TMS domain
	Summary

	Planning with Durative Actions and Time Constraints
	Domains and Problems
	Time Windows with Large Overlaps
	Time Windows with Small Overlaps
	Summary

	Conclusion

	Discussion and Conclusion

