
Geomorphology 295 (2017) 722–737

Contents lists available at ScienceDirect

Geomorphology

j ourna l homepage: www.e lsev ie r .com/ locate /geomorph
Classification of beach response to extreme storms
Olivier Burvingt ⁎, Gerd Masselink, Paul Russell, Tim Scott
Coastal Processes Research Group, School of Biological and Marine Sciences, Plymouth University, Plymouth, UK
⁎ Corresponding author at: Reynolds Building, Drake Ci
UK.

E-mail address: olivier.burvingt@plymouth.ac.uk (O. B

http://dx.doi.org/10.1016/j.geomorph.2017.07.022
0169-555X/Crown Copyright © 2017 Published by Elsevie
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 7 March 2017
Received in revised form 25 July 2017
Accepted 25 July 2017
Available online 04 August 2017
Extreme storms are responsible for rapid changes to coastlines worldwide. During the 2013/14 winter, the west
coast of Europe experienced a sequence of large, storm-induced wave events, representing the most energetic
period of waves in the last 60 years. The southwest coast of England underwent significant geomorphological
change during that period, but exhibited a range of spatially variable and complex morphological responses, de-
spite being subjected to the same storm sequence. Here, we use the 2013/14 storm response along the southwest
coast of England as a natural field laboratory and explain this variability in storm response through the introduc-
tion and evaluation of a new classification of how sandy and gravel beaches respond to extreme storms. Cluster
analysis was conducted using an unique data set of pre- and post-storm airborne Light Detection and Ranging
(LiDAR) data from 157 beach sites based on the net volumetric change (dQnet) and a novel parameter, the
longshore variation index (LVI) which quantifies the alongshore morphological variability in beach response.
Four main beach response types were identified: (1) fully exposed beaches that experienced large and along-
shore uniform sediment losses (dQnet ≈ 100 m3·m−1); (2) semi-exposed beaches that experienced medium
alongshore uniform sediment losses (dQnet≈ 50m3·m−1); (3) sheltered short beaches that experienced limited
net sediment change and alongshore variability in beach response; and (4) sheltered long beaches that experi-
enced considerable alongshore variability in beach response and large gross sediment change, but limited net
sediment change. The key factors in determining the type of beach response are: exposure to the storm waves,
angle of storm wave approach and the degree to which the beach is embayed. These factors are universally ap-
plicable on many exposed coastlines worldwide, so the response classification presented here is expected to be
widely applicable.
Crown Copyright © 2017 Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Within the next decades, coastal areas will have to face human and
environmental challenges such as climate change, sea level rise and
growing population (Jackson et al., 2013). While climate change and
sea-level rise are gradual and global processes, coastlines are also affect-
ed by extreme and regional-scale events, such as extreme storms or se-
quence of storms.

The majority of storms that affect European Atlantic coasts originate
in the mid-latitude westerly wind belt and are referred to as
extratropical storms (Lozano et al., 2004). Storminess in the Atlantic
due to extra-tropical storms is strongly linked to the North Atlantic Os-
cillation (NAO; Bromirski and Cayan, 2015) and the West Europe Pres-
sure Anomaly (WEPA; Castelle et al., 2017), which are characterized
by considerable inter-annual and inter-decadal variability. This tempo-
ral variability in atmospheric forcing is transferred to storminess and, in
turn, to variations in the coastal response with short episodes of storm
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erosion alternated by longer periods of beach recovery (e.g., Scott et
al., 2016). Coastal response to extreme storms is also characterized by
significant spatial variability. Large-scale variability in storm response
can generally be attributed to spatial variations in the hydrodynamic
forcing (wave, tides and storm surge), but variability on a regional
scale is more likely the result of site-specific conditions, such as beach
type and/or local geology (Loureiro et al., 2012).

The extreme stormwave conditions in the Atlantic during the 2013/
14 winter are considered the most energetic since at least 1948
(Masselink et al., 2016) and represent a recent example of the impact
that large waves can have along the Atlantic coast of Europe. The
wave conditions during this winter, specific to SW England, have been
analysed by Masselink et al. (2015). They found that from October
2013 to April 2014, 22 storm-induced wave events, defined as events
duringwhich the peak significantwave height exceeded the 1% exceed-
ance significant wave height, were recorded at the Seven Stones wave
buoy 30 km off the tip of SW England. Wave conditions in these storms
were outstanding, characterized by an average peak and mean signifi-
cantwave heightHs of 8.1m and 6.1m, respectively, and peakwave pe-
riods of up to 22 s, and with an average storm duration of 29 h. On
average, 17 storm events (peak Hs N 4 m) and 5 severe storm events
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(peak Hs N 6 m) occur annually (Scott, 2009). Two clusters of storms
were associated with relatively large spring tides augmenting the
storm surge (0.5–1 m), thus increasing storm wave impact at the
coast. Most of the Atlantic coast of Europe, from Ireland to Portugal,
was affected by these storms and their morphological impact on
beaches has been well documented (Blaise et al., 2015; Castelle et al.,
2015; Dissanayake et al., 2015; Masselink et al., 2015; Autret et al.,
2016; Pye and Blott, 2016).

Beach response to extreme storms has been studied globally during
the last decades and is naturally highly variable. Many factors account
for this variability, including both the nature of the storm forcing and
the characteristics of the coast (Cooper et al., 2004). Beach response to
extreme storms is primarily dependent on the number of storms and
their intensity. Recent studies showed that beach erosion resulting
from a cluster of storms can be more extensive than an individual
storm (Lee et al., 1998; Karunarathna et al., 2014; Senechal et al.,
2015; Splinter et al., 2014a). However, erosion tends to reduce in mag-
nitude and reach an equilibrium during an extended storm phase de-
spite high energy levels being maintained (Aagaard et al., 2012). The
chronological order of storms within a cluster in terms of intensity can
also play a key role (Coco et al., 2014; Senechal et al., 2015). Storm
wave height and peak wave period can be combined to calculate the
stormwave power as a key parameter for relatingwave forcing to mor-
phological response (Splinter et al., 2014), and for defining a threshold
for storm impact (Almeida et al., 2012). The tidal stage during the
peak of the storm can also affect the coastal impact of the storm
(Anthony, 2013; Masselink et al., 2015). Shoreline orientation relative
to storm tracks will affect the wave incident angle and therefore influ-
ences beach and/or dune response through its control on longshore sed-
iment transport (Costas et al., 2005; Anthony, 2013; Castelle et al.,
2015). In addition to the sensitivity of coastal response to the forcing
Fig. 1. Pictorial overview of storm impacts during the 2013/14winter along the coast of SW Eng
#19 experienced overwash (photo: RichardMurgatroyd). (b1 before; b2 after) Large quantities
platform (photo: Mike Searle). (c) The seawall below Fistral Blu bar in Newquay #41 collapsed
Perranporth #46 required human interventions to protect the restaurant (photo fromMail Onl
Randall). (f) The coastal dunes at Thurlestone #119 experienced N5 m of erosion (photo: Nat
Beesands #123 had completely disappeared. (h1 before; h2 after) The road that runs along
(photo from BBC News, Press Association). (i) The most costly damage occurred to the Londo
figure is available in colour online at https://www.journals.elsevier.com/geomorphology.
factors, variability in beach response is also affected by controlling
factors such as beach morphology (Haerens et al., 2012), beach type
(Qi et al., 2010) sediment size (Prodger et al., 2016) and geology
(Loureiro et al., 2012).

Large-scale coastal change studies are relatively scarce (Barnard et
al., 2015; Blaise et al., 2015; Masselink et al., 2016) and although better
knowledge about beach response to extreme storms has been devel-
oped, many questions remain, such as the complex interplay between
offshore wave characteristics, their transformation across the surf
zone and pre-existing bathymetry (Coco et al., 2014).Moreover, studies
about storm impact on beach response are often limited by the quantity
of data and focus on a relatively small stretch of coastline or a small
number of beaches (e.g., Lee et al., 1998; Costas et al., 2005; Qi et al.,
2010; Aagaard et al., 2012; Almeida et al., 2012; Anthony, 2013; Coco
et al., 2014; Karunarathna et al., 2014; Senechal et al., 2015; Splinter
et al., 2014; Dissanayake et al., 2015; Castelle et al., 2015; Pye and
Blott, 2016). The regional variability in the coastal response in SW
England was of particular interest in recent studies (Masselink et al.,
2015; Scott et al., 2016) where vastly different responses occurred to
the same sequence of storms within SW England (Fig. 1).

The SW coast of England has a wide variety of beach types, geologi-
cal boundaries and hydrodynamic conditions (Scott et al., 2011), and
provides an ideal natural laboratory to investigate the factors that con-
trol the spatial variability in coastal response of a relatively large region
to the same sequence of extreme storms. In their analysis of extreme
storm response along the SW coast of England, Masselink et al. (2015)
and Scott et al. (2016) mainly used morphological data derived from
RTK-GPS cross-shore profiles surveyed at 38 beaches, and broadly dis-
tinguished between dominantly cross-shore and longshore beach re-
sponses. This paper extends this analysis by utilising vastly superior
spatial coverage provided by airborne LiDAR surveys collected before
land (numbers related to sites indicated in Fig. 2). (a) The gravel barrier atWestward Ho!
of sandwere removed fromWhipsiderry beach #39, exposing the underlying rocky shore
and causing damage to property (photo: Richard Murgatroyd). (d) TheWatering Hole in
ine, SWNS). (e) The coastal town of Looe #100 was flooded a number of times (photo: Nic
ional Trust Southwest). (g) At the end of the winter, the beach in front of the seawall at
the gravel barrier of Slapton Sands #124 became covered with gravel due to overwash
n-Penzance railway line at Dawlish #139 (photo from BBC News, Press Association). This
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and after the 2013/14 winter on 157 beaches spread along the same
coastline. The LiDAR data covers the entire intertidal beach area, en-
abling the response for each beach to be quantified in terms of a number
of morphological change parameters, including net and gross volume
change, and alongshore and vertical variability in themorphological re-
sponse. A hierarchical clustering highlighted four key types of beach re-
sponse, differentiated by the net intertidal beach volumetric change and
longshore variability in beach response. Wave forcing proxies and geo-
logical variableswere used to evaluate their role in causing the observed
the regional variability in the coastal response.
2. Study area and datasets

2.1. Study area

Along the southwest coast of England, Devonian and Carboniferous
slates, shales, sandstones and limestone were intensely deformed,
and then intruded by highly resistant granite bodies (Clayton and
Shamoon, 1998), producing a diverse coastal scenery. The area itself
was not glaciated, but periglacial processes resulted in the production
of large quantities of superficial sediments, occupying a full spectrum
of sediment sizes from mud to boulders. This peninsula, which can be
divided in north and south coast (Fig. 2), offers a large number of
beaches, including long and wide sandy beaches, gravel barriers, small
pocket beaches and beaches backed by extensive dunes systems or
high rocky cliffs. The high diversity in beach morphology is due to vari-
able dynamic (waves, tides) and static (shoreline orientation, geology,
sediment size and abundance, bar morphology) boundary conditions,
and has led to the identification of nine distinct beach types ranging
from fully reflective to ultra-dissipative beaches (Scott et al., 2011).
Fig. 2. Map of SW England and location of the 157 beaches for which LiDAR data are available
Slapton Sands #124, illustrating the diversity of beach systems along the SW coastline of En
available in colour online at https://www.journals.elsevier.com/geomorphology.
Beach type was found to be mainly controlled by the average wave/
tide conditions and sediment size characteristics, but geological setting
was also found to play a significant role.

For this study, 157 beaches are considered, numbered sequentially
in an anti-clockwise direction, and the study sites are distributed fairly
evenly along the SW coast of England. They are located in the following
five regions (Fig. 2).

2.1.1. Somerset (#1–16)
The first 16 sites are located along the southernmargin of the Bristol

Channel in Somerset. Waves are predominantly incident from the west
with 10% exceedance significant wave height, Hs10%, ranging from 1 to
2 m and the tidal range is the largest in the region (mean spring tide
range 8 to 12m) (BERR, 2008). The coastal geomorphology is character-
ized by rapidly eroding cliffs (Minehead #7) and the eastward
longshore drift has result in a full suite of accretionary landforms:
sandy beaches (Weston-super-Mare #2), storm ridges (Porlock #10),
salt marsh (Steart #4), and sand dunes (Berrow sand #3) (Kidson et
al., 2008).

2.1.2. North Devon (#17–21)
Proceeding along the coastline in an anticlockwise direction, 5 study

sites are located in North Devon. The sites facing west are very large
sandy beaches backed by imposing dune systems (at Croyde #17 and
Saunton #18) while the sites facing north are relatively small beaches
constrained between rocky platforms (Bucks Mills #20 and Shipload
Bay #21). This stretch of coastline experiences a smaller tidal range
(mean spring tide range from 7 to 8 m) and larger wave exposure
from thewest (Hs10% between 2 and 3m) than the study sites in Somer-
set (BERR, 2008).
. Pictures of (anti-clockwise): Porlock #10, Bossiney #26, Hayle #51, Pentewan #90 and
gland. Black numbers indicates the different tidal ranges along the coast. This figure is
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2.1.3. North Cornwall (#22–56)
The next 35 sites are located along the north coast of Cornwall which

is characterized by sandy beaches with high cliffs (Bude #22), rocky
headlands (Porthtowan #48) and several large coastal sand dune sys-
tems (Gwithian #51, Perran Sands #46). Themean spring tide range de-
creases from north (7 m) to south (5 m) with Hs10% ranging from 2 to
4 m (BERR, 2008).

2.1.4. South Cornwall (#57–113)
Cornering the tip of the peninsula, the 57 sites spread along this

stretch of coastline are highly variable, but mainly consist of coarser
sand beaches interspersed by rocky sections (Penzance #58 and
Marazion #59 for example). Beaches are more sheltered fromwave en-
ergy coming from thewest compared to the north coast of Cornwall, but
some are fully exposed to SWwave energy (and also potentially fromSE
wind waves). Wave exposure is highly dependent on the shoreline
orientation -which varies greatly along this stretch of coast. The
mean spring tide range and 10% exceedance significant wave
height generally decreases from west to east (5 to 4 m and 4 to 2 m,
respectively) (BERR, 2008).

2.1.5. South Devon (#114–157)
The last 44 study sites are located in SouthDevon andDorset. Similar

to the south coast of Cornwall, the study sites along the western part of
this stretch of coast consist of coarse-sand beaches interspersed by
rocky sections (Challaborough #117, Milton Sands #120). Further east,
a large number of thin and long beaches composed of a mixture of
sand and gravel can be found (Slapton Sands #124, Sidmouth #146,
West Bay #157). Shoreline orientation is also very variable and largely
determines wave exposure. The mean spring tide range and Hs10% gen-
erally decreases from west to east (4 to 3 m, 2 to 1 m, respectively)
(BERR, 2008).

2.2. LiDAR dataset

Commissioned by the Environment Agency (EA), the coastline of SW
England is surveyed every few years by airborne LiDAR (http://www.
channelcoast.org/southwest/). Different sections of the coast are sur-
veyed in different years, almost always during the spring months, and
the whole coast was surveyed in spring 2014 following the extreme
events of thewinter 2013/2014. Airborne LiDAR surveys are usually car-
ried out during spring tides tomaximise beach coverage. Every beach in
SW England with at least 70% LiDAR coverage is used for analysis,
resulting in 157 study sites spread out along the SW peninsula with
56 beaches located on the north coast and 101 on the south coast
(Fig. 2).

Airborne LiDARdata has the advantage of offering a large spatial cov-
erage and can be used to produce digital elevation models (DEMs) with
at least 1-m horizontal spatial resolution, but in comparison to in-situ
survey methods, the vertical accuracy of LiDAR is lower. Whereas
RTK-GPS measurements have c. ± 3 cm vertical accuracy (Harley et
al., 2011), the vertical accuracy of LiDAR data is c. ± 15 cm (Sallenger
et al., 2001). However, many studies showed that the accuracy of
LiDAR surveys does not impede the quantification of large morphologi-
cal changes due to extreme events and its extensive spatial coverage
makes it a valuable tool to study beach morphological change (White
and Wang, 2003; Saye et al., 2005; Sallenger et al., 2001; Sherman et
al., 2013; Pye and Blott, 2016).

Since LiDAR campaigns have not been carried out every year at each
site, the timing of the ‘pre-storm’ datasets is an issue. The most recent
pre-storm surveys were carried out in April 2012, while the oldest
pre-storm surveys dated from October 2010. Since this study focuses
on the changes that occurred during the winter of 2013/14, for many
beaches the pre- and post-storm datasets are N2 years apart. This
makes attributing the difference in morphology to the 2013/14 storms
potentially problematic. However, analysis of monthly survey data
from Perranporth (North Cornwall) demonstrates that by far the most
significant change in beach volume occurred during the 2013/2014
winter period along the north coast, and that the spring beach volumes
during 2010, 2012 and 2013 were very similar (Masselink et al., 2016;
Scott et al., 2016). Along the south coast, morphological changes ob-
served at Slapton Sands (South Devon) observed during the 2012/13
winter were significant in comparison to the previous winters, but rela-
tively small compare to the 2013/14 winter (Scott et al., 2016). In addi-
tion, annual surveys collated/conducted by the Plymouth Coastal
Observatory also demonstrate the unprecedented nature of beach pro-
file changes at many beaches in Cornwall and Devon in 2013/14
(http://www.coastalmonitoring.org/reports). The changes in beach vol-
ume derived from the LiDAR data are therefore considered to represent
mainly the changes that occurred during the 2013/14 winter.

Preparing the LiDAR data for analysis comprises a number of pro-
cessing steps, ultimately leading to the extraction of overlapping pre-
and post-storm DEMs corresponding to the active area of the beach.
Fig. 3 shows this process for two adjoining beaches located on the
north coast of Cornwall (Fistral #42 and Crantock #43). LiDAR surveys
generally extend from Spring Low Water Level to several 100 m
landward and the beach area cannot be directly and easily identified
(Fig. 3a). Therefore, using high resolution aerial pictures (Fig. 3b),
every beach area was digitized by drawing polygonal shapefiles on
ArcMap 10.2.2 software (Fig. 3c). The beach areas were digitized accu-
rately and included the active beach/dune area based on tide and
surgewater levels, but excluded relatively static elements such as coast-
al cliffs, large rock outcrops and infrastructure. The beach area captured
by these shape files did not extend beyond the spatial limitations of the
LiDAR data. Then, using the same coordinate system (British National
Grid Projected Coordinates System), both beach area shapefiles and
LiDAR rasters were overlapped (Fig. 3d) and the overlapped data were
extracted. The extraction is done twice (pre- and post-storm rasters,
using same beach area shape file) for each of the 157 beaches, and the
post- and pre-storm rasters are subtracted to obtain a difference DEM,
also referred as DoD (Wheaton et al., 2010) (Fig. 3e). These DoDs are
then converted into ASCII files, to be next processed with Matlab
R2013®. A GoogleEarth dataset for the 157 DoDs is also available from
the online article.

3. Methods

3.1. Beach response variables

TheDoDswere used to extract a range of parameters that best quan-
tify the morphological storm response. The most obvious of these are
the net volumetric change, the gross volumetric change and the vertical
change.

The total volumetric change dQtot (in m3) corresponds to the differ-
ence in beach volume between the post- and pre-stormDEM and quan-
tifies the total volume of sediment lost or gained over the survey period,
attributed to the 2013/14 storm season:

dQtot ¼ ∑N
1 dQi ð1Þ

To compare the total volumetric change between different study
sites, dQtot is normalized by beach alongshore length LS (in m), yielding
the net volumetric change per unit m beach width, dQnet (in m3·m−1

or m2):

dQnet ¼ 1�
LS
∑N

1 dQi ð2Þ

The gross volumetric change per unit meter beach width, dQgross

(in m3·m−1 or m2) corresponds to the sum of the absolute value of

http://www.channelcoast.org/southwest
http://www.channelcoast.org/southwest
http://www.coastalmonitoring.org/reports


Fig. 3. Illustration of the process of extracting useful data from the LiDAR titles: (a) raw LiDAR data; (b) aerial picture of the same area; (c) digitized shapefiles drawn around the
two beaches (Fistral #42 and Crantock #43); (d) digitized shapefiles overlapped with LiDAR data; and (e) the image of subtracted new rasters of LiDAR data surveyed in April 2012
(pre-storm) and April 2014 (post-storm) at both sites. This figure is available in colour online at https://www.journals.elsevier.com/geomorphology.

726 O. Burvingt et al. / Geomorphology 295 (2017) 722–737
topographic change between post- and pre-storm DEM normalized by
the length of the beach LS (in m):

dQgross ¼ 1�
LS
∑N

1 j dQi j ð3Þ

This variable represents the total volume of sediment that has been
mobile along the beach during the 2013/14 winter period. The mean
vertical elevation change dz (in m) corresponds to the total volumetric
change divided by the surface area of the active beach area S (in m2):

dz ¼ 1�
S∑

N
1 dQi ð4Þ

The net volumetric change per unit meter beach width for different
areas of the beach was also calculated. The beach area was divided into
three zones based on the tidal levels: (1) a lower beach areawas defined
as extending between the lowest level surveyed during LiDARmeasure-
ments (usually just above mean low water spring level MLWS), and
mean sea level (MSL); (2) an upper area was defined between MSL
and mean high water springs (MHWS); and (3) a supra-tidal area was
defined between MHWS and the top of the active area of the beach/
dune system. The volumetric changes corresponding to these three dif-
ferent areas (dQlower, dQupper and dQdune, respectively) were calculated
using Eq. (2) using the appropriate tidal level.

All morphological change parameters defined above disregard the
alongshore variability in the beach response and a parameter was for-
mulated to quantify the alongshore morphological variability, which
can be considerable (Fig. 4a). The DoD rasters are first rotated onto a
local coordinate system, such that the cross-shore and alongshore
direction of the beach represent the x- and y-coordinate, respectively

https://www.journals.elsevier.com/geomorphology


Fig. 4. Illustration of the process of calculating longshore variation index (LVI): (a) example of DoD obtained when post- and pre-storm LiDAR rasters are subtracted at Carlyon beach #94
(surveyed inMay 2014 andMarch 2012, respectively); (b) rotated DoD overlappedwith a grid in which every row of data represents a 1 m cross-shore transect and every column a 1 m
longshore one (not to scale for graphic purpose); (c) alongshore variation in the net cross-shore volumetric change dQcross with the alongshore-averaged change Qmean plotted as a
horizontal red line and values of the variables used in Eq. (5). This figure is available in colour online at https://www.journals.elsevier.com/geomorphology. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Fig. 4b). The grid size of this rotated raster remains 1m and the net vol-
umetric change dQcross is determined for each cross-shore transect, pro-
viding information on the alongshore variation in the cross-shore
volumetric change (Fig. 4c). Then, the standard deviation Qstd is used
to quantify the amount of variation of all the dQcross values.
The longshore variation in the morphological response LVI is then
defined as:

LVI ¼ Qstd

j Qmean j þQstd
ð5Þ

where |Qmean | is the absolute value of the mean of dQcross values and
is used to normalize Qstd values between the different beaches. This
index is dimensionless and varies between 0 and 1 with higher
values representing greater longshore variability in beach response.
The parameter is not simply representing the ratio between
longshore and cross-shore sediment transport, LVI = 1 implied
longshore sediment transport dominance, and LVI = 0 indicates
cross-shore sediment transport is dominant, but a non-zero value
for LVI can also be caused by an along-coast variation in cross-
shore sediment transport.

3.2. Geological control

Geological boundaries can play an important role in beach dynamics
(Jackson et al., 2005; Scott et al., 2011). To consider the impact of em-
bayment dimensions and geometry on beach response, the dimension-
less embayment scaling parameter is generally used (Short, 1999;
Castelle and Coco, 2012; Loureiro et al., 2012). This parameter relates
the embayment configuration to the incident breakingwave conditions.
Here, due to the absence of inshore wave conditions data for every
beach, the normalized beach length, NBL, was computed as the ratio

https://www.journals.elsevier.com/geomorphology
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between the beach alongshore length Ls and the cross-shore length Lc
(from MLWS to MHWS):

NBL ¼ Ls
�
Lc

ð6Þ

‘Short’ embayed beaches are characterized by small NBL values
whereas for ‘long’ beaches, NBL approaches 1. This parameter remains
valid for open beaches that do not exceed 6.5 km in the present study,
the mean alongshore beach length for all study sites is equal to 1.3 km.

3.3. Offshore wave data and forcing

Modelled wave data were obtained from the Met Office's 8-km grid
WAVEWATCH III model, one of the most frequently used model for
wave simulation that has been validated for extreme events (Moon et
al., 2003). 46 grid points located around the SW coast of England were
selected for this study (Fig. 5). The water depths vary between 15 and
50 m dependent on the cell location, and grid points are considered to
be in deepwater. For eachmodel grid point, hourly values of significant
wave height Hs, wave energy period Te, and wave direction were ex-
tracted for the 3-month period from 1 December 2013 to 28 February
2014, corresponding to 2160 h of data for each grid point. For
Fig. 5. (a) Along-coast variability inmodelled averagewinter 2013/14wave power |P| and (b) p
along the SW coast of England. This figure is available in colour online at https://www.journal
comparative purposes, wave datawere also obtained from the relatively
clam 2012/13 winter.

Offshore wave power P was used to quantify wave forcing and was
calculated for every hour using the deep water wave equation
(Herbich, 2000):

P ¼ 1
64π

ρg2Hs
2Te ð7Þ

where ρ iswater density and g is gravity. The offshorewavepower P cal-
culated at each grid pointwas averaged over the 3-monthwinter period
and Fig. 5a shows the distribution of the 2013/14 winter average wave
power value |P| along the SW of England. Generally, the north coast re-
ceived more wave power than the south coast because it is more ex-
posed to the prevailing waves approaching from the west. Along the
north coast, |P| increases from 20 kW m−1 to 100 kW·m−1 at the tip
of the peninsula. Along the south coast, |P| decreases in an eastward di-
rection from 90 to 10 kW·m−1.

Recent beach responsemodels (e.g. Davidson et al., 2013; Castelle et
al., 2014; Splinter et al., 2014b; Scott et al., 2016) have highlighted that
wave conditions relative to the long-term antecedent wave conditions,
referred to as disequilibrium wave conditions, are more important in
driving beach change than the instantaneous wave conditions. Based
ercentage of wave power increase relative to 2012/13winter at 46 ‘deep-water’ grid points
s.elsevier.com/geomorphology.
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on the same wave variables and the same grid points, the percentage
change in the average wave power over the 2013/14 winter period
compared to that over the previous winter was calculated. The results
show that wave power was around 100% higher along the north coast
during the 2013/14 winter while it was much more variable on the
south coast with values ranging from no change to a 400% increase
(Fig. 5b). Thus, whereas the actual wave power during the 2013/14
winter was higher along the north coast, the wave conditions along
the south coast were generally more exceptional, i.e., in greater
disequilibrium.

The SWcoast of England offers a large range ofwave exposure due to
its specific geomorphology. Although offshore wave conditions are a
good indicator ofwave forcing at a regional scale, the impact on beaches
is strongly dependent on storm wave direction and shoreline orienta-
tion (cf. Masselink et al., 2015). The relationship between the deep-
water wave angle and shoreline orientation in determining the relative
degree of wave exposure/shelter was considered in a semi-quantitative
way. Each study site was associated with one of the 46wavemodel grid
points and the incident wave angle (0° angle correspond to shore-nor-
mal waves) between the variable offshore wave direction and the con-
stant shoreline orientation was integrated over the 3-month winter
period. Based on this angle, hourly wave power was decomposed into
a cross-shore (normal to shoreline) and a longshore (parallel to shore-
line) component. The cross-shore and longshore energy fluxes were
subsequently integrated over the whole winter period. The objective
of the decomposition into cross-shore and longshore wave energy
fluxes is to provide an indication of the inshore wave conditions that
are affecting the beaches without having to resort to developing a re-
gional-scale wave propagation model (e.g., SWAN). There are issues
with the decomposition of the offshore wave flux into cross-shore and
longshore components when the wave approach is away from the
coast (e.g., westerly waves approaching an east-facing coastline). In
that case, the cross-shore energy flux was set to zero. For computing
the longshore wave fluxes, absolute values were used for opposing
directions.

Time series of themodelled wave conditions around the SW coast of
England is also available within the GoogleEarth database from the on-
line article.

4. Results

An initial analysis of the correlations between the different morpho-
logical response parameters for all the 157 beaches reveals that the net
volumetric change is strongly and significantly correlated with all other
volumetric variables (Table 1). Beaches that have experienced signifi-
cant erosion (dQnet ≪ 0) also show a large movement of sediment
(dQgross ≫ 0) and a considerable lowering over their entire area (dz ≪
0), and vice versa. These relatively high correlation coefficients also
show cross-shore uniformity in terms of response type: when the
whole beach erodes (dQnet b 0), both upper and lower beach areas are
Table 1
Pearson's correlation coefficients, R, between beach response variables (dQnet: net volu-
metric change per unit m beach width; dQgross: gross volumetric change per unit m beach
width; dZ: mean vertical elevation change; dQupper: net volumetric change per unit m
beach width over the upper part of the beach; dQlower: net volumetric change per unit m
beach width over the lower part of the beach; dQdune: net volumetric change per unit m
beach width over the dunes; LVI: longshore variation index). Correlations exceeding the
99% confidence level are specified using bold text.

dQnet dQgross dZ dQupper dQlower dQdune LVI

dQnet −0.78 +0.79 +0.75 +0.88 +0.38 +0.46
dQgross −0.47 −0.56 −0.70 −0.25 −0.31
dZ +0.49 +0.74 +0.43 +0.31
dQupper +0.34 +0.47 +0.34
dQlower +0.14 +0.41
dQdune +0.07
LVI
likely to erode as well (dQupper and dQlower b 0; R = 0.75 and R = 0.88,
respectively). However, the quantities of sediment lost or gained in
the upper and lower beach area are weakly correlated (R = 0.34).
There is no clear relation between the volumetric changes in the coastal
dune area (dQdune) and the other volumetric changes. The alongshore
variability in morphological response parameterised by LVI shows rela-
tively modest correlation coefficients with the other variables and this
index therefore fulfils its intended purpose by complementing, rather
than duplicating, the volumetric change parameters.

The along-coast variation in dQnet and LVI, and their geographical
distribution along the SW coast are presented in Fig. 6. The results
show that 104 (66%) beaches lost sediment, while the other 53 (34%)
beaches gained sediment during the 2013/14 winter. Large volumes
of sediment, of up to 100–200 m3·m−1, were lost at several
study sites, but other sites experienced an increase in the sediment vol-
ume of up to 30–60 m3·m−1 (Fig. 6a). On 59 (38%) beaches, the
longshore variation index exceeded 0.7 while for the other 98 (62%)
beaches, LVI b 0.7 (Fig. 6b). Visual observation of the LiDAR data reveals
that for LVI N 0.7, the morphological response is characterized by a very
significant longshore variability (cf. Fig. 4).

The storm response parameters dQnet and LVI also show a distinct
geographical demarcation (Fig. 6c and d). Beaches located on the
north coast generally experienced more erosion and a relatively
along-shore uniform coastal response. South coast beaches, on the
other end, generally eroded less, or even accreted, and displayed consid-
erably greater alongshore variability in the coastal response. Masselink
et al. (2015) and Scott et al. (2016) also noted this regional variability
in storm response and attributed this to the shoreline orientation in re-
lation to the offshore wave direction. The dominantwave direction dur-
ing the 2013/14 winter storms was from the west; therefore, the west-
facing beaches (including WNW- and WSW-facing), dominantly locat-
ed on the north coast, were fully exposed to the storm waves, causing
extensive and largely alongshore-uniform erosion. On beaches not di-
rectly facing the Atlantic storm waves, mainly located on the south
coast, the storm waves generally approached from large angles provid-
ing opportunity for alongshore redistribution of sediment, resulting in
both relatively modest sediment losses and large alongshore variability
in the coastal response. However, the relation between wave angle and
shoreline orientation only accounts for part of the regional variability in
storm response along the SW coast of England. This is further explored
in the next section.

5. Grouping of the beach responses

5.1. Hierarchical clustering of the beach responses

Cluster analysis is a multivariate statistical technique for identifying
structure within a dataset, and has been successfully employed for
classifying beach types (Hegge et al., 1996; Travers, 2007; Scott et al.,
2011). Here, the technique will be used to classify storm response
characteristics.

A critical first step in the analysis is to define the variables used for
identifying the clusters. Section 4 showed the suitability of the net vol-
umetric change dQnet and the longshore variation index LVI to quantify
storm response. The other volumetric variables were all significantly
correlated at a 99% confidence level to the net volumetric change
(cf., Table 1) and were not included in the cluster analysis to avoid
multi-collinearity issues. The second step is the standardisation of the
two variables to assign them an equal weight. Dimensionless normal
scores (Gower and Ross, 1969) were obtained by subtracting the popu-
lationmean from the raw scores and then dividing the difference by the
population standard deviation. The third step consists of finding ameth-
od to assess the similarity between the different study sites across the
two variables used in the analysis. Euclidean distance was chosen to
measure this similarity, with higher (lower) values representing greater
(lesser) dissimilarity. Finally, the hierarchical clustering is made using



Fig. 6. Along-coast variation in (a) net volumetric change per unit m beach dQnet and (b) longshore variation index LVI. Every bar represents a study site and the sites are geographically
ordered in an anti-clockwise direction from north to south. The black vertical dashed line marks the separation between the north and the south coast. Geographical distribution of
(c) dQnet and (d) LVI along the SW coast of England. The colours of the bars and the symbols represent: blue = dQnet N 0; red = dQnet b 0; clear blue LVI b 0.7; purple = LVI N 0.7). This
figure is available in colour online at https://www.journals.elsevier.com/geomorphology. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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the weighted pair group average method (UPGMA) which defines sim-
ilarity between clusters as the shortest distance from any object in one
cluster to any object in the other (Gower and Ross, 1969). This hierar-
chical procedure based on an agglomerative algorithm can be repre-
sented by a dendrogram (Fig. 7).

Despite the statistical rigour of cluster analysis, there is an
element of operator's experience, knowledge and understanding, espe-
cially when it comes to finalising the identified clusters and interpreting
the results. A cut-off through the dendrogram and its different
agglomeration levels were used to decide the final grouping of beaches.
This cut-off level was selected based on the knowledge of the different
study sites, leading to four different clusters and two outliers (Fig. 7).
5.2. Characterisation of the clusters

Box plots of the dQnet and LVI values for the four clusters (Fig. 8) are
used in combination with examples of the DoDs (Fig. 9) to help inter-
pret the different storm response types:

• Cluster 1 is characterized by the largest sediment losses (cluster-mean
dQnet=−108m3·m−1) and the smallest average longshore variation
index (LVI=0.37).Watergate Bay located on the north coast is a good
example of a Cluster 1 response, showing a large alongshore-uniform
sediment loss across the entire supra- and inter-tidal beach
disregarding rip channels (Fig. 9b).

https://www.journals.elsevier.com/geomorphology


Fig. 7.Dendrogram clustered usingweighted pair group average (UPGMA)method showing the hierarchical clustering of the 157 beaches (Cluster 1=Yellow; Cluster 2=Green; Cluster
3 = Red; Cluster 4 = Blue). This figure is available in colour online at https://www.journals.elsevier.com/geomorphology. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Box plots showing the distribution of (a) net volumetric change per unit m width
dQnet and (b) longshore variation index LVI among the four clusters defined by the
cluster analysis. Each box plot displays the values of the 25% quantile (bottom line); the
median (middle line); the 75% quantile (top line). The maximum whisker length is
specified as 1.0 times the interquartile range, and data points beyond the whiskers are
displayed using red crosses. This figure is available in colour online at https://www.
journals.elsevier.com/geomorphology. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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• Cluster 2 is characterized by considerable sediment losses (cluster-
mean dQnet = −53 m3·m−1) and limited alongshore-variability in
the morphological response (LVI = 0.44). This cluster is similar to
the previous cluster, but with less extreme sediment losses. A good
example of a Cluster 2 response is Croyde located on the north
coast, where the deposition across the lower part of the beach profile
partly balances the upper beach erosion (Fig. 9a).

• Cluster 3 is characterized by small net changes in the sediment vol-
ume (cluster-mean dQnet =−3 m3·m−1) and some alongshore vari-
ability in the morphological response (LVI = 0.51). Broadsands
located on the south coast is a good example of a Cluster 3 response,
showing limited net morphological changes because deposition
(upper and lower beach) and erosion (mid-beach) are more or less
balanced (Fig. 9c).

• Cluster 4 is very different from the previous three clusters in that the
net volumetric change is very small (cluster-mean dQnet=−1m3/m)
across all beaches in this cluster, but the alongshore variability in the
morphological response is very large (LVI = 0.83). A good example
of a Cluster 4 response is Praa Sands located on the south coast,
where the erosion in the western part of the beach is almost
completely balanced by the accretion at the eastern end of the beach
(Fig. 9d).

Sediment volumetric change was also considered at different levels
on the beach (dQupper and dQlower). These response parameters were
not included in the cluster analysis, because they did not contribute to
a better definition of the clusters, but their consideration can shed addi-
tional light on the cross-shore sediment exchange for the different clus-
ters. The values for dQupper and dQlower for all 157 beaches are plotted in a
scatter diagram that comprises four distinct ‘quadrants’ (Fig. 10). The
top-left and bottom-right quadrants represent a vertically non-uniform
morphological responsewith a pivot point: the beach is eitherflattening

https://www.journals.elsevier.com/geomorphology
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Fig. 9. Examples of DODs obtained from LiDAR data at (a) Croyde beach #17 (Cluster 2 example) surveyed in May 2012 and June 2014; (b) Watergate Bay #39 (Cluster 1 example)
surveyed in April 2012 and April 2014; (c) Broadsands #130 (Cluster 3 example) surveyed in April 2012 and April 2014; Praa Sands #62 (Cluster 4 example) surveyed in October
2010 and May 2014. Erosion is coloured in red whereas accretion is coloured in blue. This figure is available in colour online at https://www.journals.elsevier.com/geomorphology.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(upper beach erosion – lower beach accretion) or steepening (upper
beach accretion – lower beach erosion). The top-right and bottom-left
quadrants represent a vertically uniform response: the beach either ad-
vances or retreats. The vast majority of the beaches in Clusters 1 and 2
eroded and are located in the bottom-left quadrant, indicating that
both upper and lower beach areas lost sediment. It is suggested that
these beaches mainly lost sediment offshore due to cross-shore sedi-
ment transport processes. Beaches in Cluster 3 are located tightly
around the origin, but are spread across all four quadrants, suggesting
that the full range of cross-shore responses are represented, including
vertical rotation due to cross-shore sediment exchange. Beaches in
Cluster 4 are concentrated even closer around the origin of the diagram
because the dominant sediment exchange occurred in an alongshore di-
rection without large net changes in the sediment volume.

5.3. Role of wave forcing, sand dunes and geology

The cluster analysis is based on the morphological response and
does not consider the role of wave forcing or geology. Box plots of
three different variables representing wave forcing and geological

https://www.journals.elsevier.com/geomorphology


Fig. 10. Scatter plot of dQupper and dQlowerwith the symbol colour representing the cluster type (Cluster 1=Yellow; Cluster 2=Green; Cluster 3=Red; Cluster 4=Blue; Outliers=Black
with PRR= Perran Sands #46 and BLK= Blackpool Sands #125). The diagrams in the corners of the plot are schematic profile responses typical for each of the quadrants, with solid and
dashed line representing the profile before and after the 2013/14 winter storms, respectively. This figure is available in colour online at https://www.journals.elsevier.com/
geomorphology. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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setting for the four clusters are used to relate these boundary conditions
to the different storm response types (Fig.11, top panel).

The parameters used are: incident wave angle (0° angle correspond
to shore-normal waves) (Fig. 11a); cross-shore wave power (Fig. 11b);
and the normalized beach length NBL (Fig. 11c). Cluster 1 is character-
ized by the smallest incident wave angles (c. 10°) and highest values
of cross-shore wave power (c. 170 kW·m−1), and these beaches are
considered ‘fully exposed’ to the prevailing storm swell. Cluster 2
shows larger incident wave angles (c. 20°) and relatively more moder-
ate cross-shore power (c. 120 kW·m−1), also characterized by a higher
standard variation for both parameters. Cluster 2 beaches are consid-
ered ‘semi-sheltered’ in comparison to Cluster 1 beaches. Clusters 3
and 4 are characterized by the largest incident wave angles (60 and
55°, respectively) and the smallest cross-shore wave power (30 and
25 kW·m−1, respectively). Beaches classified in these two clusters are
thus considered ‘sheltered’ in comparison to Cluster 1 and 2 beaches.

Cluster 1, 2 and 3 show relatively equivalentmeanNBL values (4, 3.5
and 3.5, respectively), while Cluster 4 clearly shows highermean values
(8.5) and a larger standard deviation. Cluster 3 and Cluster 4 beaches
were therefore separated in two categories: sheltered short and shel-
tered long beaches, even if some Cluster 4 beaches are also relatively
short.

The increase in the wave power during the 2013/14 winter
compared to the 2012/13 winter, the longshore wave power and
the sediment volume changes over the dunes (dQdunes) were also
parameterised but no clear distinction between the 4 clusters seemed
to emerge and were therefore excluded from the analysis.

6. Discussion

The wave conditions experienced during the 2013/14 winter along
the Atlantic coast of Europe represent the most energetic since at least
1948 and have had a very significant impact on the coastline ofWestern
Europe (Masselink et al., 2016). A limited data set of the 2013/14winter
storm response on 30 beaches in SWEngland, based on cross-shore pro-
files, was discussed by Masselink et al. (2015) and highlighted the
predominantly cross-shore profile response on the north coast and
longshore response on the south coast. Here, we considerably extend
this analysis by using LiDAR data to investigate the full-beach storm re-
sponse of N150 beaches.

The LiDAR data were used to derive variousmorphological response
variables for each of the beach sites and two of these, the net volumetric
change dQnet and the alongshore variability in the beach response LVI,
were used as the basis for a cluster analysis. Four clusters, each
representing distinctive morphological responses during the 2013/4
winter period were identified: (1) fully exposed beaches that experi-
enced large and alongshore uniform sediment losses; (2) semi-exposed
beaches that experiencedmediumalongshore uniform sediment losses;
(3) sheltered short beaches that experienced limited alongshore vari-
ability in beach response, but insignificant net sediment change; and
(4) sheltered long beaches that experienced considerable alongshore
variability in beach response, but insignificant net sediment change.
However, this classification applies to the beach response to a sequence
of Atlantic storms from the southwest quadrant and is unlikely to be
representative for the beach response to less frequent storms coming
from any of the other directions. The geographical distribution along
the coast of SW England of these beach response types and their main
characteristics are presented in Fig. 12 and Table 2, respectively.

On a regional scale, this study showed that one of the key factors that
discriminates between the different storm responses is the orientation
of the beach in relation to the prevailing wave direction, in other
words, the degree of exposure to storm waves. This agrees with the
findings of Blaise et al. (2015), who investigated beach response along
the coastline of Brittany in France during the 2013/14 winter and
found that the north and south Brittany coast responded differently to
storm waves with varying direction. Furthermore, Castelle et al.
(2015) reported dune retreat in excess of 10 m and net volumetric
changes N100 m3·m−1 along the exposed SW coastline of France (Gi-
ronde, Landes) and this was similar to the storm response observed
along the fully exposed beaches on the north coast of Cornwall. The rel-
atively less-exposed Sefton coast (northwest England) suffered from
similar net volumetric changes (c. 40 m3·m−1; Pye and Blott, 2016),
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Fig. 11. Top panel: box plots showing the distribution of (a) incident wave angle, (b) cross-shore wave power, (c) normalized beach length among the four clusters defined by the cluster
analysis. Each box plot displays the values of the 25% quantile (bottom line); the median (middle line); the 75% quantile (top line). Themaximumwhisker length is specified as 1.0 times
the interquartile range, and data points beyond thewhiskers are displayed using red crosses. Bottom panel: scatter plots of net volumetric change dQnet and longshore variation index LVI
with the symbol colour representing the cluster type (Cluster 1= Yellow; Cluster 2=Green; Cluster 3= Red; Cluster 4= Blue). The symbols are scaled according the different variables
(a) incident wave angle; (b) cross-shore wave power; (c) normalized beach length. This figure is available in colour online at https://www.journals.elsevier.com/geomorphology.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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compare to the semi-exposed beaches presented in our study. Along the
south coast of the study area, the prevailing oblique wave approach due
to the predominant W-SW storm tracks is very likely to have induced
clockwise beach rotation on many of the beaches, similar to that ob-
served at Slapton Sands #124 by Ruiz de Alegria-Arzaburu and
Masselink (2010). Such rotational behaviour has also been demonstrat-
ed in other studies of large embayed beaches (e.g., Ojeda and Guillen,
2008; Turki et al., 2013; Thomas et al., 2015). A second type of beach ro-
tation, not induced by obliquely-incident waves but by an alongshore
gradient in the wave energy level (Harley et al., 2015), was also ob-
served at a few sites on the north coast of Cornwall.

However, the degree of wave exposure was not the only factor in
controlling the beach response type to extreme storm activity. Several
studies (Jackson et al., 2005; Short, 2010; Loureiro et al., 2012) have ar-
gued that the presence of physical boundaries can significantly affect
sediment transport and morphodynamics. In the present study, this is
particularly highlighted by the difference in storm response between
short and long beaches subjected to similar wave exposure along the
south coast. Whereas the short beaches experienced limited beach ero-
sion, or even net accretion, and a largely alongshore-uniform response,
the long beaches displayed contrasting responses at opposing ends of
the embayment.

The geographical distribution of the different types of beach re-
sponse along the SW coast of England shows regional coherent behav-
iour: cross-shore sediment transport is dominant on the north coast,
whereas beach rotation largely occurs along the south coast. Studies
along the East coast of Australia also showed the existence of regionally
coherent behaviour among similar beaches exposed to the same region-
al-scale wave and climate forcing (Short et al., 2014; Bracs et al., 2016).
However, this coherence can be disrupted by significant changes in the
shoreline orientation and/or local factors (e.g., islands, headlands, rock
platforms, river outflows). St. Ives Bay, located on the north coast, exem-
plifies such a spatial change in beach response (Fig. 13). Here, the bay
includes four sandy beaches, separated from each other by headlands
and the Hayle River (Fig. 13a), and from north-east to south-west
these beaches change in orientation from facing NW to NE. The
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Fig. 12. Geographical distribution of the 157 beaches in the LiDAR dataset and their cluster type (Cluster 1 = Yellow; Cluster 2 = Green; Cluster 3 = Red; Cluster 4 = Blue; Outliers =
Black). The four beach examples presented earlier (Fig. 9.) and the two bays presented later (Fig. 13) are also located. This figure is available in colour online at https://www.journals.
elsevier.com/geomorphology. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

735O. Burvingt et al. / Geomorphology 295 (2017) 722–737
difference inwave exposure during the 2013/14winter therefore result-
ed in neighbouring beaches exhibiting contrasting response types with
one Cluster 2 beach (Gwythian #51), two cluster 3 beaches (St Ives
#53, Porthgwidden #54) and one cluster 4 beaches (Carbis #52).

The accretion ofmanyof theCluster 3 beaches during extreme storm
conditions also raises the question of the sediment connectivity be-
tween adjacent beaches in the same embayment. This is further illus-
trated by the response of the gravel beaches in Start Bay, located on
the south coast (Fig. 13b). Each of these gravel beaches are a separate
entity over the most of the tidal cycle and they appear to have behaved
independently during the 2013/14 winter with three of the four
beaches (Hallsands #122, Beesands #123 and Slapton Sands #124)
clearly rotating in response to northward littoral drift. However, the
northern-most beach (Blackpool Sands #125) demonstrated very con-
siderable accretion (dQnet = 66 m3·m−1) across its entire length and
was in fact one of the two outliers in the cluster analysis. The reason
for the large increase in sediment volume on Blackpool Sands is that
sediment transported northward on Slapton Sands, bypassed the
Table 2
Average values of net volumetric change dQnet, longshore variation index LVI, incident wave ang
tified: (1) fully exposed beaches; (2) semi-exposed beaches; (3) sheltered short beaches; and

dQnet (m3·m−1) LVI In

Fully exposed beaches ~−100 ~0.4 ~1
Semi-exposed beaches ~−50 ~0.45 ~2
Sheltered short beaches ~0 ~0.5 ~6
Sheltered long beaches ~0 ~0.8 ~5
rocky stretch between the two beaches. This process of headland by-
passing (Goodwin et al., 2013; Keshtpoor et al., 2013; Mortlock and
Goodwin, 2016; Vieira da Silva et al., 2016) is considered important
along the embayed SW coast of England and is currently the subject of
further investigation.

Several modelling and empirical studies have found an increase in
Atlantic storminess over the last few decades (Wang and Swail, 2002;
Dodet et al., 2010; Young et al., 2011; Bertin et al., 2013) and this classi-
fication of beach response may provide an appropriate framework for
considering extreme storm hazards. The classification may also be use-
ful to provide insights into storm recovery. For example, the south em-
bayment of Perran Sands #46, characterized by extensive cross-shore
erosion during the 2013/14 winter, has recovered by 50% within
1 year, whereas Slapton Sands #124, which rotated, has not demon-
strated any recovery due to the lack of opposing wave direction events
(Scott et al., 2016). In 2017, three years after the 2013/14 winter, many
exposed and semi-exposed beaches along the southwest coast of En-
gland only show partial recovery in comparison to their pre-storm
le, cross-shore wave power and beach normalized NBL for the four beach responses iden-
(4) sheltered long beaches.

c. wave angle (°) Cross-shore wave power (kW·m−1) NBL

0 ~170 ~4
0 ~120 ~3.5
0 ~30 ~3.5
5 ~25 ~8.5
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Fig. 13. DoDs obtained from LiDAR data along (a) St. Ives Bay beach surveyed in April 2012 and April 2014, and (b) Start Bay surveyed in April 2012 and April 2014, illustrating spatial
change in beach response and sediment connectivity between adjacent beaches at a local scale. Their location along the south west coast of England is presented in Fig. 12. Erosion is
coloured in red whereas accretion is coloured in blue. This figure is available in colour online at https://www.journals.elsevier.com/geomorphology. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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state in 2013, whereas most sheltered long beaches have not recovered
at all (Burvingt et al., 2017).

7. Conclusions

During the 2013/14 winter, the south west coast of England was
subjected to a sequence of large, storm-induced wave events,
representing the most energetic period of waves in the last 60 years. A
unique dataset of pre- and post-storm airborne LiDAR dataset for 157
beaches along this coastline was analysed.

The beach response to these extreme storms was mainly quantified
by two parameters: (1) the net volumetric changes over the entire in-
tertidal beach area dQnet which varied between −170 m3·m−1 and
+66 m3·m−1; and (2) a new parameter, the longshore variation
index LVI, which quantifies the alongshore variability in beach response,
and which varied between 0.2 and 1.

Based on the values of dQnet and LVI, a cluster analysiswas conducted
which resulted in the identification of four different beach response
types, largely controlled by wave exposure and normalized beach
length: (1) fully exposed beaches; (2) semi-exposed beaches; (3) shel-
tered short beaches; and (4) sheltered long beaches.

The geographical distribution among the four different beach re-
sponses to extreme storms showed some regional coherence in behav-
iour. However, several examples demonstrate that this coherence can
be disrupted at a local scale, highlighting the connectivity between
beach systems via physical processes like sediment redistribution or/
and headland by-passing.
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