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Cloud computing is a relatively recent model where scalable and elastic re-
sources are provided as optimized, cost-effective and on-demand utility-like
services to customers. As one of the major trends in the IT industry in
recent years, cloud computing has gained momentum and started to rev-
olutionise the way enterprises create and deliver IT solutions. Motivated
primarily due to cost reduction, these cloud environments are also being
used by Information and Communication Technologies (ICT) operating Crit-
ical Infrastructures (CI). However, due to the complex nature of underlying
infrastructures, these environments are subject to a large number of chal-
lenges, including mis-configurations, cyber attacks and malware instances,
which manifest themselves as anomalies. These challenges clearly reduce
the overall reliability and availability of the cloud, i.e., it is less resilient to
challenges. Resilience is intended to be a fundamental property of cloud ser-
vice provisioning platforms. However, a number of significant challenges in
the past demonstrated that cloud environments are not as resilient as one
would hope. There is also limited understanding about how to provide re-
silience in the cloud that can address such challenges. This implies that it
is of utmost importance to clearly understand and define what constitutes
the correct, normal behaviour so that deviation from it can be detected
as anomalies and consequently higher resilience can be achieved. Also, for
characterising and identifying challenges, anomaly detection techniques can
be used and this is due to the fact that the statistical models embodied in
these techniques allow the robust characterisation of normal behaviour, tak-
ing into account various monitoring metrics to detect known and unknown
patterns. These anomaly detection techniques can also be applied within a
resilience framework in order to promptly provide indications and warnings
about adverse events or conditions that may occur. However, due to the
scale and complexity of cloud, detection based on continuous real time in-
frastructure monitoring becomes challenging. Because monitoring leads to
an overwhelming volume of data, this adversely affects the ability of the un-
derlying detection mechanisms to analyse the data. The increasing volume of
metrics, compounded with complexity of infrastructure, may also cause low
detection accuracy. In this thesis, a comprehensive evaluation of anomaly
detection techniques in cloud infrastructures is presented under typical elas-
tic behaviour. More specifically, an investigation of the impact of live virtual
machine migration on state of the art anomaly detection techniques is carried
out, by evaluating live migration under various attack types and intensities.
An initial comparison concludes that, whilst many detection techniques have
been proposed, none of them is suited to work within a cloud operational con-
text. The results suggest that in some configurations anomalies are missed
and some configuration anomalies are wrongly classified. Moreover, some
of these approaches have been shown to be sensitive to parameters of the
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datasets such as the level of traffic aggregation, and they suffer from other
robustness problems. In general, anomaly detection techniques are founded
on specific assumptions about the data, for example the statistical distribu-
tions of events. If these assumptions do not hold, an outcome can be high
false positive rates. Based on this initial study, the objective of this work
is to establish a light-weight real time anomaly detection technique which
is more suited to a cloud operational context by keeping low false positive
rates without the need for prior knowledge and thus enabling the adminis-
trator to respond to threats effectively. Furthermore, a technique is needed
which is robust to the properties of cloud infrastructures, such as elasticity
and limited knowledge of the services, and such that it can support other
resilience supporting mechanisms. From this formulation, a cloud resilience
management framework is proposed which incorporates the anomaly detec-
tion and other supporting mechanisms that collectively address challenges
that manifest themselves as anomalies. The framework is a holistic end-
to-end framework for resilience that considers both networking and system
issues, and spans the various stages of an existing resilience strategy, called
(D2R2+DR). In regards to the operational applicability of detection mech-
anisms, a novel Anomaly Detection-as-a-Service (ADaaS ) architecture has
been modelled as the means to implement the detection technique. A se-
ries of experiments was conducted to assess the effectiveness of the proposed
technique for ADaaS. These aimed to improve the viability of implement-
ing the system in an operational context. Finally, the proposed model is
deployed in a European Critical Infrastructure provider’s network running
various critical services, and validated the results in real time scenarios with
the use of various test cases, and finally demonstrating the advantages of
such a model in an operational context. The obtained results show that
anomalies are detectable with high accuracy with no prior-knowledge, and it
can be concluded that ADaaS is applicable to cloud scenarios for a flexible
multi-tenant detection systems, clearly establishing its effectiveness for cloud
infrastructure resilience.
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Chapter 1

Introduction

Cloud computing has transformed and revolutionized the way enterprises
create and deliver IT solutions. It is fast becoming the preferred standard
for running company IT infrastructure, from the smallest of organisations
to the largest of enterprises. Clearly, it has matured as a technology, to
the extent that companies like Amazon, Google, Ebay etc., heavily invest
in building up cloud infrastructures to support their service provisioning.
Many organizations now face question as to when and how to “cloudify” their
existing IT infrastructures to cloud computing environments. According to
a recent survey conducted by Cloud Industry Forum (CIF)1, 63% of UK
businesses are planning to move their entire IT infrastructures to the cloud
in near future. CIF recorded the opinion of 250 senior IT and business
decision makers at the end of 2015 and found that 78% of UK organisations
are already using the cloud. This is an increase of 53% from when the research
was first conducted in 2011 and it is predicted that by 2018, this will increase
to 85%2.

This emerging popularity of cloud computing for service provision is
mainly due to cost savings, scalability and on-demand resource provision en-
abled by virtualization technology. Moreover, because most cloud providers
are specialised in hardware and software technologies, cloud users can be re-
lived from keeping a large team of in-house experts for infrastructure mainte-
nances. Motivated primarily by economies of scale, these cloud environments
are also being used by sectors operating critical infrastructures [112, 107, 22,
110, 133].

In spite of these advantages, a shift to the cloud brings its own challenges.
The migration of both data and applications outside the administrative do-
main of customers into a shared environment imposes transversal, functional
problems across distinc platforms and technologies. A recent work [99] pro-
vides a contemporary discussion of the most relevant functional problems
associated with cloud computing, mainly from the network perspective. In
cloud environments users will have less control over the hardware, the soft-
ware and also the data. The loss of control over data and lack of transparency

1https://www.cloudindustryforum.org/
2http://www.telegraph.co.uk/business/ready-and-enabled/cloud-computing/

https://www.cloudindustryforum.org/
http://www.telegraph.co.uk/business/ready-and-enabled/cloud-computing/
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give rise to many security concerns, which cause uncertainty for organizations
that want to “cloudify” their IT assets. This is highlighted in recent report
published by Vision which shows increasing customer reluctance to move to
clouds due to security concerns [130]. Similarly, another recent study by
Alert Logic says that application attacks aimed at cloud deployments grew
45% over one year [82]. The complexity of the underlying infrastructures
also introduce a number of challenges, including misconfiguration, and mal-
wares. Further, when cloud environments fail, they incur significant costs.
For instance, on 29th June 2010, amazon.com experienced hours of anoma-
lous behaviour whereby customers were unable to place orders. Based on
their 2010 quarterly revenues, such downtime cost Amazon up to $1.75 mil-
lion per hour. Most recently in another serious incident, on October 21st,
2016, dyn.com suffered a high speed Distributed Denial-of-Service (DDoS)
attack which affected numerous websites, but the biggest victims are the
enterprises that rely on Software as a Service (SaaS) for critical business op-
erations. Moreover, in regards to cloud based critical services, if disrupted,
would have serious impact on the health, safety, security or economic well-
being of citizen or the effective functioning of governments [85, 20].

1.1 Resilience in Cloud

The potentially huge costs of failure of cloud services, in terms of money,
safety, and security, drive the need for resilience in the cloud. Resilience is
defined as:

“The ability of a system to provide an acceptable level of service in the light
of various challenges [132] ”.

The acceptable level of service in the above definition depends on user
expectation. Today, users want instantaneous access to information that is
available around the clock – the always-on, always-available service. How-
ever, due to the presence of various challenges, resilience is often evaluated
through two key metrics: 1) Recovery time objective (RTO) is the duration
of time within which a system must be restored after a disruption to avoid a
break in business continuity, and 2) Recovery point objective (RPO) is the
nearest point to where a system may be recovered after a disruption [86].
Further, resilience is concerned not only with the Availability of services but
also with maintaining the Confidentiality and Integrity of the information in
the face of challenges.

Resilience in terms of the three criteria of Confidentiality, Integrity, and
Availability (CIA triad), is intended to be a fundamental property of cloud
service provisioning platforms. However, the innate and often desirable prop-
erties of cloud environments such as elasticity, dynamicity, and scalability
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make problematic implementing the standard resilience solutions used in con-
ventional enterprise systems, specifically:

• Elasticity, in cloud computing refers to the dynamic adaptation of ca-
pacity to meet demand. It is defined as “the degree to which a system is
able to adapt to workload changes by provisioning and de-provisioning
resources in an autonomic manner, such that at each point in time
the available resources match the current demand as closely as possi-
ble” [61, 60]. Providing resilience and service guarantees in the presence
of various challenges requires resources in terms of redundant storage
for backup-recovery and additional network capacity etc. However,
due to varying customer workloads and the requirement of elasticity
in the cloud, resource allocation and availability is constantly changing
making it difficult to provide resilience and service guarantees. Service
providers are faced with the challenge of determining how an appli-
cation on the cloud should be configured, and how much resources in
terms of CPUs, memory, storage, bandwidth, etc. should first be al-
located and then added or removed pro actively for that application
to satisfy its Service Level Agreements (SLA) and requirements for
dependability and responsiveness, without under provisioning or over
provisioning resources.

• Virtualization in cloud computing also introduces new sources of threats
and failure. Complex interactions between the applications, and work-
loads sharing the same physical infrastructure make it difficult to pre-
dict demands on that infrastructure. Also, the provisioning of virtual
resources reduces control over the underlying physical hardware. The
difficulty of predicting interactions and adapting the system accord-
ingly, makes it hard to provide dependability guarantees in terms of
availability and responsiveness as well as resilience to external pertur-
bations such as security attacks [75].

• Cloud environments achieve higher utilization of physical resources
through the consolidation of workloads. However, this makes them
more vulnerable to threats resulting from unpredictable resource de-
mands as well as operational failures, such as, hardware and software
failures, unforeseen load fluctuations, and network attacks.

• The geographical distribution in a cloud based service framework, intro-
duces various dependencies that impede the satisfaction of SLA. This
distribution may be between clients and services, as well as the physi-
cal infrastructure behind services. Cloud providers are faced with the
question of how to assure the availability and reliability (i.e resilience)
of services that are distributed over the Internet? The authors in [145]
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have shown, through a series of stress tests, that response times of
infrastructure-on-demand services offered by Amazon, Google and Mi-
crosoft varied by a factor of twenty depending on the time of day the
services were accessed. Geographical distribution may also cause legal
and privacy implications when data is hosted on outsourced and shared
infrastructure that is in a different legal jurisdiction than the owner
of the data. Privacy clauses in legislation such as the Health Insur-
ance Portability and Accountability Act (HIPAA)3 and the Telecom-
munications Act of 19964, as well as financial regulations such as the
Sarbanes-Oxley Act5 obstruct the applicability of cloud solutions in
their respective industries, and may adversely affect resilience.

Cloud environments are multifaceted, where services may be provided
by an assortment of heterogeneous platforms, and resources are shared be-
tween entities that engage in a wide range of behaviours. The applications
running in the cloud may employ best practices to varying degrees, thus,
increasing the risk of unforeseen threats. These risks are exacerbated due
to multiple administrative domains between the application and infrastruc-
ture operators, which reduce end-to-end system visibility. Problem detection
and diagnosis is made more difficult when error propagation information is
not readily visible. The detection of problems is an integral part of all re-
silience strategies, such as D2R2+DR [132]. However, due to the diversity
of platforms and applications in a cloud environment domain, application,
or platform specific detection strategies will not work. What is needed is a
generalised method of detecting problems.

1.2 Anomaly Detection in Cloud

Anomaly detection systems are generalised systems that identify events that
appear to be anomalous with respect to normal system behaviour. They get
a model of normal system behaviour and issue alerts whenever the behaviour
changes from the norm. The underlying assumption in anomaly detection
is that such changes are normally caused by malicious or disrupting events.
Anomaly detection has been studied within diverse research areas and appli-
cation domains.

Despite the usefulness of anomaly detection, applying it operationally in
the cloud computing context involves many other challenges with regards to
performance and scalability. The on-demand provisioning nature of cloud,
necessitates that anomaly detection in the cloud be based on real-time mon-
itoring. Further, real-time monitoring demands can also change significantly

3http://www.dhcs.ca.gov/formsandpubs/laws/hipaa/Pages/1.
10HIPAATitleInformation.aspx

4https://www.fcc.gov/general/telecommunications-act-1996
5http://www.soxlaw.com/

http://www.dhcs.ca.gov/formsandpubs/laws/hipaa/Pages/1.10HIPAATitleInformation.aspx
http://www.dhcs.ca.gov/formsandpubs/laws/hipaa/Pages/1.10HIPAATitleInformation.aspx
https://www.fcc.gov/general/telecommunications-act-1996
http://www.soxlaw.com/
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over time. Hence, the detection should not only achieve high scalability, but
also embrace changes in monitoring demands. The detection must also pro-
vide good multi-tenancy support to ensure that multiple tenants/providers
can use anomaly detection at the same time. During an attempt to to ad-
dress these challenges, the analysis discovered that the applicability and
performance of state-of-the-art anomaly detection techniques in cloud en-
vironments were not well understood at the time, and there were no surveys
discussing their merits and demerits in the cloud context.

To address this problem an experimental evaluation of state-of-the-art
anomaly detection techniques is carried out to assess their monitoring and
detection capabilities in multi-tenant cloud infrastructures. More specifically,
the impact of elasticity is investigated, on contemporary anomaly detection
techniques, namely Principle Component Analysis (PCA), K-means (KM),
Naïve Bayesian (NB) and Expectation-Maximization algorithm for Gaussian
Mixture Models (EMGM). These techniques are evaluated by quantifying
the impact of live migration, under various attack types and intensities, on
their results. Live intra-cloud virtual machine (VM) migration was stud-
ied because it is a widely used technique for efficient resource management
employed within modern cloud infrastructures. Additionally, to understand
how migration is represented or visible at hypervisor level, and then to what
extent VM migration, which is generally representative for normal traffic, can
be incorrectly classified as an anomaly – false positive. Conversely, certain
anomalies may be missed because of VM migration – false negative. Further,
new and intrinsic capabilities of cloud computing introduce a number of novel
security concerns, such as, Hypervisor attacks and application deployment
misconfiguration. Further to analyse the implication of these novel security
concerns on the performance of anomaly detection mechanisms.

The experimental evaluation shows that elasticity of the cloud makes
the traffic distribution observed by anomaly detection techniques unstable
and makes it difficult to predict normal behaviour. The degradation in the
performance for these detectors is evident in their Receiver Operating Char-
acteristics (ROC) curves, when intra-cloud live migration is initiated while
VMs are under attack, such as, netscan (NS), portscan (PS) or denial-of-
service (DoS). Most anomaly detection techniques require problem-specific
parameters to be predefined in advance, impairing their use in real-time de-
tection [72, 141, 97]. Further, due to the scale and complexity of cloud com-
puting, conventional anomaly detection methods require monitoring metrics
with high dimensionality. In this context, real-time infrastructure monitor-
ing becomes challenging, because it leads to overwhelming volumes of data
impairing the detector’s efficacy [125]. State-of-the-art anomaly detection
techniques are not robust to the properties of cloud infrastructures, such as
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elasticity and limited knowledge of the services that are running. If assump-
tions built into the technique about the cloud data do not hold, it could result
in the anomaly detection technique producing high false positive and nega-
tive rates. In such cases, the reliability of the technique is reduced, which
may prevent it from meeting the requirements of a larger resilience strategy.

1.3 Objectives

The section above have outlined some important open issues related to the
security and dependability of cloud environments, and the need for develop-
ing novel anomaly detection techniques to facilitate resilience in the cloud.
This leads to consider the following key research question:

Can the problem of anomaly detection in cloud be effectively addressed in a
way that contributes to a systematic and coordinated resilience approach?

The above general research question was addressed by means of the fol-
lowing specific research objectives:

• Derive an anomaly detection technique that is both effective against
cloud specific security concerns, and robust to the challenges of elastic-
ity, evolving workload patterns, and limited knowledge about services
in the cloud.

• Derive a generalised method of implementing resilience in cloud com-
puting environments, which incorporates anomaly detection to offers
policy driven resilience strategies at different levels of cloud infrastruc-
ture.

• Operationalise and assess, in the real world, the effectiveness of anomaly
detection as part of a resilience strategy in the cloud context.

In service to these objectives, the following technical contributions is
produced:

Real time Anomaly Detection Technique (ADT)

The knowledge, about challenges and shortcomings of existing anomaly de-
tection techniques in the cloud context, gained through experimental study
has been used to develop and design a novel anomaly detection algorithm
based on data density. The density is computed recursively, so the tech-
nique is memory-less, light weight, and unsupervised, and therefore suitable
for cloud environments where metrics are monitored in large volumes and
in real-time. The proposed algorithm is a self-learning process that builds a
dynamically evolving information model of normality. This allows it to be
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robust to the challenges of limited knowledge about services, and the evolv-
ing workload patterns of multiple applications. The efficacy of the proposed
technique is demonstrated in the face of elastic behaviour, using a dataset
created in the cloud testbed. The dataset consists of feature vectors ob-
tained from a physical cloud testbed network experiencing migration under
controlled traffic conditions. The dataset models scenarios combining nor-
mal network use with network-based attacks of various types and intensities.
The obtained results, which include precision, recall, accuracy, F-score and
G-score, show that network level attacks are detectable with better accuracy
by using the proposed algorithm than by means of conventional anomaly
detection methods.

Cloud Resilience Management Framework (CRMF)

Having defined a novel anomaly detection algorithm for the cloud environ-
ment, the next challenge was to determine how this anomaly detector could
be incorporated in a resilience strategy.

To address this challenge, a cloud resilience management framework is
presented, which models and then applies anomaly detection and other sup-
porting mechanisms through an existing resilience strategy (D2R2+DR) in
the cloud operating context. These mechanisms collectively address the chal-
lenges that manifest themselves as anomalies. The resilience framework uses
an end to end feedback loop that allows remediation to be integrated with the
existing cloud management system. By controlling the various mechanisms
and by allowing anomaly detection to be deployed at different levels of the
cloud, the framework enables policy-driven remediation services and cloud
infrastructure management to ensure that desired security and resilience re-
quirements of customers and tenants are being met.

Anomaly Detection as a Service (ADaaS)

For operationalising the proposed anomaly detection mechanisms, the “Anomaly
Detection as a Service (ADaaS )” model is designed and implemented, which
a cloud provider can offer as part of their infrastructure to their tenants and
customers, to counteract threats. The ADaaS model is further evaluated in
a real world cloud environment hosting critical services of a European Util-
ity provider. Deploying ADaaS in a real setting shows that the proposed
solution can capture real world applications interactions and can yield useful
results.

1.3.1 Testbeds

In the context of the above stated objectives, different cloud testbeds have
been set up to carry out the experimentation, implementation and evaluation.
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For the experimental study to analyse the effect of migration the Xen6 based
testbed is established with two hosts serving as nodes for running the multiple
VMs. The idea behind using Xen is to have a lightweight, special-purpose
hypervisor that is designed for producing small VMs which can populate
cloud with minimal hardware, as needed by the experiments. Migration is
used as a test case of elasticity for experiments and is achieved with libvirt.
The dataset obtained from this testbed is used to quantify the impact of
migration on anomaly detection as well as evaluation of the proposed anomaly
detection techniques (Chapter 5).

For making the anomaly detection mechanisms operational, the anomaly
detection technique is implemented as a service (see Chapter 6) for Open-
Stack. OpenStack is a popular open source cloud computing platform, and
it is chosen because it offers various APIs needed to implement the service.
Therefore for evaluation of the the implemented service OpenStack testbed
is set up; this consists of three physical hosts which serve as a controller and
two compute nodes, running the latest version of OpenStack (Mitaka). The
compute node hosts multiple VMs to simulate real cloud operations and also
to generate background traffic during experiments.

A similar testbed was hosted in one of Europe’s leading telecommunica-
tion providers’ research labs to further evaluate the integration of the service
to the real cloud environment. The two use cases were developed to identify
the needs of tenant and testbed is used to demonstrate how anomaly detec-
tion as a service can deal with the needs of tenants related to security and
resilience.

1.4 Thesis Structure

The novel contributions to literature, and how they relate to one another
and to the structure of the thesis, are presented in Figure 1.1.

The remainder of this thesis is organized as follows: Chapter 2 covers
relevant background information for this research and provides a detailed
literature study on anomaly detection in cloud environments. Chapter 3
describes the experimental evaluation of state-of-the-art anomaly detection
techniques in the context of live virtual machine migration, and under var-
ious attack types and intensities. Informed by the issues identified in the
experimental evaluation (chapter 3), Chapter 4 describes the design and eval-
uation of a novel real-time data density based anomaly detection technique
that addresses many of the shortcomings of state-of-the-art anomaly detec-
tion methods in the cloud context. In Chapter 5 the design and qualitative
evaluation of a cloud resilience management framework is presented that uses
novel anomaly detection technique as its detection component. The design of

6https://www.xenproject.org/users/cloud.html

https://www.xenproject.org/users/cloud.html
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Figure 1.1: The research components

the resilience management framework is also informed by the challenges iden-
tified through the experimental evaluation. Chapter 6 presents the design,
implementation, and experimental results of the ADaaS model that opera-
tionalises anomaly detection techniques and enables a cloud provider to offer
detection services based on security and resilience requirements of its cus-
tomers and tenants. Finally, Chapter 7 summarizes the research conducted
and provides future work directions.
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Chapter 2

Background and Related Work

The objective of this chapter is threefold. First, to describe core concepts
and background information in the field of cloud computing by providing an
overview of cloud classifications, models and features. Second, to discuss se-
curity and resilience as a cloud need and consider the positioning of resilience
mechanisms (such as anomaly detection) in an overall cloud architecture. Fi-
nally, to give background on anomaly detection and summarise the state of
the art of available anomaly detection for cloud environments.

2.1 Cloud Computing

In recent years, cloud computing has emerged as a widely accepted paradigm
in computing systems, where scalable and elastic IT-related capabilities are
provided as a service to external customers using Internet. Although service
delivery is not a new concept, cloud computing differs in many ways from
traditional IT outsourcing practices. It helps enterprises to create and de-
liver IT solutions in a more flexible and cost-effective way and therefore it
is considered as a major evolution of e-buisness. This paradigm has largely
been adopted in different context and applied to a large set of technologies.
According to NIST (National Institute of standards and Technology) [94],
which provided the definition and most accepted description of the general
characteristics of cloud computing, “Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of con-
figureable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction”.

The popularity of the cloud computing is mainly due to cost savings,
scalability and on-demand resource provisioning enabled by virtualization.
Today, it underpins a significant portion of the web and is the actual means
of deploying services and applications at scale. Despite the major evolution
and all the benefits not all organisations are ready to adopt cloud computing
for their IT infrastructures and services. Because the concepts and technolo-
gies of cloud computing are complex and potentially disruptive [77]. Beside
economic considerations, those of security and resilience, risk management,
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trust and control are important issues that prevent organisations from fully
adopting cloud computing [99].

2.1.1 Cloud Characteristics

The essential characteristics which define cloud computing system can be
summarised as:

• On-demand self-service – the ability to allow consumers to use
cloud services as needed without any human interaction with the cloud
provider.

• Broad network access – means computing capabilities are available
over the network and accessed through standard mechanisms on het-
erogeneous platforms (e.g. smart phones, laptops, and computers) as
well as other traditional or cloud based software services.

• Resource pooling – clouds providing theoretically infinite computing
resources (physical and virtual) on demand to the end users using a
multi-tenancy model. This precludes the need to plan for provisioning
and there is a degree of location independence in that the customer
generally has no control or knowledge over the exact location of the
provided resources.

• Rapid elasticity – the ability that resources can be rapidly and elas-
tically provisioned, in most cases automatically, and rapidly released
to scale down and scale up.

• Measured service – cloud provider control and monitor the different
aspects of the cloud services by leveraging a metering capability ac-
cording to the type of service. This is critical for billing, access control,
resource optimization and capacity planning.

2.1.2 Cloud Deployment Classifications

Depending on how a cloud infrastructure is operated and managed, cloud
computing has four deployment models which can be classified based on its
architectural layout.

Public cloud – where a cloud offers one or more of these kinds of services
in a pay-as-you-go manner to the public such as, public cloud providers
are Amazon Web Services, Rightscale, Google, and Microsoft Azure. They
are the most popular type due to their rapid setup time and low capital
expenditure. The providers of this type of a cloud usually partition their
physical servers and lease these portions to the cloud consumers. However,
public clouds suffer from a lack of infrastructure transparency, which make
them less attractive for large organizations [152].
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Private cloud – is used to refer to services hosted in internal data centers
of single organization, and not accessible to general users. They are not open
to the public users in a sense that their infrastructure is controlled by private
organizations. However, It may be managed by the organization or by a third
party, and may exist on-premises or off- premises. Large organizations who
wish to take advantage of scalability, availability and structural transparency
with a strict enforcement of data security can use such a model.

Hybrid cloud – is a composition of two or more distinct cloud models
(e.g. private, public) in order to combine the features of those models. This
mixed environment is suitable for organizations that have software or hard-
ware compatibility issues with the external cloud providers, but still want to
take advantage of the vast storage space and other cloud resources provided
by public clouds. Another reason to choose hybrid clouds is the flexibility in
exposing IT assets for a limited time to the public users.

Community cloud – The cloud is shared by several organizations to
support a specific community that has shared concerns. It may be managed
by the organizations or by a third party and may exist on- premises or off-
premises.

2.1.3 Cloud Service Models

Cloud computing distinguishes three levels of abstractions for providing ser-
vices over the Internet [44]:

Software as a Service (SaaS) – delivers software that is remotely ac-
cessible by consumers through the Internet with a usage-based pricing model.
SaaS has the ability to provide the end user with an interface, such as a web
browser or a mobile app, to run applications on the cloud provider’s premises.
These applications are built and located on the clouds assets. Therefore, SaaS
users can access the application from anywhere without concerns about the
application’s underlying installation and management issues. Google Docs1

and Github2 are key example of such a service model.
Platform as a Service (PaaS) – offers a high-level integrated environ-

ment to build, test, and deploy custom applications. This type of service
can be beneficial to the developers for creating the needed software stacks
or hardware structure to deploy their application to the cloud. Google App
Engine3 and AWS Elastic Beanstalk4 are example of such model.

Infrastructure as a Service (IaaS) – is the provisioning of computer
resources on-demand such as virtual machines (VMs), storage, network-
ing and other resources to deliver software application environments with

1https://www.google.co.uk/docs/about/
2https://github.com/
3https://cloud.google.com/appengine/docs
4http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html

https://www.google.co.uk/docs/about/
https://github.com/
https://cloud.google.com/appengine/docs
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html
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a usage-based pricing model. Infrastructure can scale up and down dynam-
ically based on application resource needs. Typical examples are Amazon
EC25, Azure6, OpenStack7. The major advantages of these types of cloud-
based services are the low initial cost of application deployment, the flexibility
in scaling the service based on users demand.

Figure. 2.1 illustrates these models.

CommunityHybridPublicPrivate

Deployment Models

Software-as-a- 
Service
(SaaS)

Platform-as-a- 
Service
(PaaS)

Infrastructure-as-a- 
Service
(IaaS)

Service Models

Characteristics

Resource Pooling

Elasticity Measured 
service

Broad network
 access

On-demand
self-service

Figure 2.1: The cloud service models

2.1.4 Cloud Features

The cloud computing propose many features to orgaizations for cloudification
of existing IT assets those are intended for agile development, self-managing
workload, and economies of scale. The following are some of the features
that are provided to the consumer based on their applicaiton domain.

Elasticity and scalability – cloud users have the ability to scale up
and scale down the resources based on their application demands. They can
also divide and distribute processing loads into multiple tasks operated by
on-demand cloud resources.

High-availability – the cloud offers accessibility even with failure of
some of its assets. Individual services may fail for one or more particular
tenants, but the system continues to offer services to other tenants.

Utility-based service – cloud providers offer the pay-as-you-go model
as their main billing system. Consumers pay for what they consume and

5https://aws.amazon.com/ec2/
6https://azure.microsoft.com/en-gb/
7https://www.openstack.org/

https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-gb/
https://www.openstack.org/
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cloud providers can alert their consumers if they exceeded certain amount of
resource usage or reach a limit of their assigned quota.

2.1.5 Cloud Computing Enablers

Virtualization is a key enabler of cloud computing which provides a high
degree of flexibility in optimizing resource utilization. Virtual machine moni-
tors (VMM) or hypervisors such as XEN, VMware, KVM can execute several
virtual machine (VM) instances in parallel on a single physical machine, each
VM is given a partition of the underlying resource capacity (CPU power,
RAM size, etc.). Moreover, the live migration capability of hypervisors al-
lows to migrate a VM from one physical host to another.

Virtual Machine Monitor (VMM) – is a software layer that takes
complete control of the machine hardware and creates VMs, each of which
behaves like a complete physical machine with its own operating system (OS).
The VMM regains control anytime the VM tries to perform an operation that
may affect the correct operation of other VMs or of the hardware. An OS
that runs in a VM is a guest OS. Generally, there are two approaches to
organizse VMs.

Type I, or hypervisor runs directly on the hardware without the need of a
hosting OS. Examples include the VMware ESX and OpenStack. Figure. 2.2

Type II VMM

Guest 2Guest 1

VMM

Host OS

Hardware

Type I VMM

Guest 2Guest 1

VMM

Hardware

Figure 2.2: The VM organization appraoches

Type II – runs on top of a hosting operating system and then spawns
higher level virtual machines. These VMMs monitor their VMs and redi-
rect requests for resource to appropriate APIs in the hosting environment.
Examples include the Hosted Xen and Virtualbox.

Virtual Machine Interoperability is a key challenge when it comes
to migration of VMs from one cloud provider to another. There is format
incompatibility for VM image and storage formats which is further com-
pounded by lack of compatibilities in authentication, billing and resource al-
location methods. Howerver, recently significant effort have been made with
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respect to IaaS environments to standardised formats. The Open Virtual-
ization Format (OVF) now provides a standard format for representing VMs
and is the most likely candidate for allowing VM interoperability between
IaaS providers. Furhter, the Open Grid Forum8 and The Cloud Computing
Interoperability Forum (CCIF)9 is also working on this front.

2.1.6 Cloud Technologies

This setion provides brief description of cloud technology that is used in this
thesis.

OpenStack OpenStack is an open source cloud computing platform
which includes several APIs to provide cloud computing components on a
cloud infrastructure provider level. The relevant stacks are Nova for compute
resources, Cinder as block storage, Swift as a data storage, Neutron provides
networking, Keystone offer identity servies, Glance for image services, Heat
for orchestration and Horizon offers dashboard services to empower users to
provision resources through a web interface. A big advantage of OpenStack
is the open source code basis of the APIs therefore, developers could eas-
ily expand OpenStack architecture with functions they need. Similarly the
API is adaptable so that mechanisms (such as ADaaS ) that is developed in
context of this work could be implemented.

2.2 Cloud Architectural Framework

The SECCRIT10 consortium has developed an architectural framework for
deploying infrastructure services in the cloud, which provides a basis for the
development of research presented in this thesis (ADaaS - see Chapter 6).
An architectural framework is needed in order to identify and locate the var-
ious mechanisms and potential new interfaces that are necessary to support
infrastructure IT services.

The architectural framework was derived by SECCRIT consortium and
has four abstraction levels. The key aspects of these levels are discussed using
several viewpoints which include: multi-tenant, network access, monitoring,
policy, legal and resilience. The author’s contribution to the architectural
framework is the resilience part which is highlighted in Section 2.3.1 and il-
lustrated in Figure. 2.6. The resilience viewpoint is realized using tools and
ideas developed as part of this thesis. These include the real time anomaly
detection technique, the resilience management framework and anomaly de-
tection as a service.

8https://www.ogf.org/ogf/doku.php
9https://www.cloudindustryforum.org/

10www.seccrit.eu

https://www.ogf.org/ogf/doku.php
https://www.cloudindustryforum.org/
www.seccrit.eu
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The proposed architectural as shown in Figure. 2.3 aims at a more pre-
cise role distinction that allows for better security analysis, separation of
responsibilities and identification of separate administrative interfaces. It is
an architectural framework, because it mainly serves descriptive and explana-
tory purposes, rather than specification purposes like a reference architecture
definition in a standards organisation.
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Figure 2.3: SECCRIT architectural framework [122]

Therefore, one should be able to map existing specific cloud architectures,
deployments, and usage scenarios partially or fully to the SECCRIT architec-
tural framework. An important aspect within the cloud services context is to
consider that a single cloud infrastructure is typically simultaneously used by
several tenants (i.e., customers, users of the cloud infrastructure provider),
whose virtual resources are usually isolated from each other to some degree
within the Cloud Infrastructure. The distinction between the virtual ten-
ant infrastructure and the physical cloud infrastructure is important, since a
clear separation between responsibilities is necessary. In case a service fails
due to some anomaly, a root cause analysis should reveal the responsible
party. Moreover, additional monitoring or logging mechanisms for anomaly
detection can be located within the cloud infrastructure, as well as within
the virtual infrastructure of the tenant. In this context, it may be helpful
to identify additional interfaces that allow for increasing the trust level be-
tween the tenant and the cloud infrastructure provider by permitting some
level of detection as a service. Furthermore, the architecture must clearly
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distinguish the service provider from the virtual tenant infrastructure. This
allows to separate two important aspects of any service hosted in cloud: func-
tional and behavioural features. On the service layer, the functional features
of the service are dealt with. Which components are required to compose
the service and how these components need to be inter-connected. On the
tenant infrastructure level the behavioural features of the service are dealt
with: this includes elasticity features, component redundancy, and overload
control. Failures on the physical infrastructure level can be made opaque
to the service by self-healing mechanisms on the tenant infrastructure level,
e.g., automatic fail-over to redundant components and auto-recovery by on-
demand provisioning of virtual resources. In addition, geo-diversity can be
realized on the tenant infrastructure level by requesting resources from mul-
tiple independent cloud infrastructure providers for increased dependability
but also for higher security and resileince requirements [122].

SECCRIT architecture divides activities in a cloud environment into four
different levels of abstraction. The different abstraction levels correspond to
different stakeholders and their view on the managed resources.

User level – service user who remotely accesses the infrastructure ser-
vice. For instance, an urban traffic management operator could observe and
control the traffic flow within a city, using web-based interfaces as well as
various distributed sensors that deliver measurement data as input to the
next lower service level components.

Infrastructure service level – this level is controlled by the service
provider who manages the resources at the service level. The service is com-
posed of several components that interact with each other in order to provide
the actual service. The service provider monitors the service operation and
performance at this level. The service components usually either provide the
application or the platform that are required at the user level. The service
components are instantiated on the virtual infrastructure that is provided by
the next lower level.

Tenant infrastructure level – provides a virtual infrastructure that
consists of virtual compute resources, virtual storage, and virtual network
resources. The virtual infrastructure is managed by the tenant infrastructure
provider. This distinction of tenant from service provider is needed since they
may be separate organisations. Several of such tenants are typically hosted
within one cloud infrastructure that is the next lower level. The tenant infras-
tructure provider may provide either the pure virtual infrastructure (IaaS) or
some basic services as a platform (PaaS) to the service provider. In the for-
mer case, the CI Service Provider may install complete VM images containing
an operating system, middleware services, and application-oriented service
components, including necessary configuration data. In the latter case, the
tenant infrastructure provider may provide and operate some pre-installed
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operating system images and middleware or supporting services.
Physical cloud infrastructure level – provides real physical compute,

storage, and network resources, which are hosted in a data centre and ad-
ministered by the cloud infrastructure provider. This level usually provides
virtual resources (IaaS) to its upper level, i.e., the tenant. The virtualiza-
tion solution usually provides (a certain degree of) isolation between the
different tenants that are mapped onto the same physical infrastructure and
thus permits the sharing of resources. For increasing the resource efficiency,
the cloud infrastructure provider can usually transparently move virtual re-
sources across its physical infrastructure.

2.3 Security and Resilience in Cloud

While moving from traditional computing paradigm to cloud computing
paradigm new security and resilience challenges have emerged. The cloud
architecture discussed in earlier section combines various levels of inter-
dependent infrastrucutre, platform and applications; each level may suffer
from certain vulernabilities which are introduced for example through mis-
configurations either by user or service providers.

Further, the delivery models which are used within a particular deploy-
ment models of cloud can also exhibit certain characteristics (such as elastic-
ity, scalability and multi tenancy and dynamic resource managemnt) which
can expose cloud environments to threats related to the integrity, confiden-
tiality, reliability and availability. These threats include but not limited to
virtualization vulnerabilities, web application issues, privacy and control is-
sues arising from third parties having physical control of data, issues related
to identity management and issues related to data breach etc. Compared to
non-cloud-based systems, understanding of the nature of challenges experi-
enced by cloud providers is also opaque, as they are more prevalent than in
the past, as highlighted in literature [99, 54]

In [19], the authors attempt to develop an understanding of the challenges
faced by customers of an infrastructure-as-a-service (IaaS) cloud, along with
their experience in resolving these problems. Their work is based on actual
user problems and experiences as captured from the open support forum of
a large IaaS cloud provider. They found that with the exception of problems
related to application-level issues, the observed problems are closely related
to the introduction of virtualization such as connectivity issues, virtual image
management, performance, poor isolation between users, hardware degrada-
tion, etc. These findings are complemented by other literature which doc-
umented the virtualization-specific attacks where attackers can gain control
over installed VMs. For example, DKSM [15] and “bluepill” [119] are some
well known attacks on virtual layer of the cloud infrastructure. There are
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also virtualization-specific zero-day vulnerabilities listed on NIST11 that re-
sulted an attacker gaining access to the hypervisor of a cloud node. One
such vulnerability was exploited in the HyperVM application which resulted
in destruction of many websites hosted on a HyperVM-based cloud [53]. One
aspect of increasing security and resilience, and decreasing risk, is the detec-
tion of unusual activities (anomalies) in the use of resources by third parties.
In order to combat those challenges, cloud providers usually install a first
line of defence such as a firewall, which can help to prevent outside attacks,
but not insider attacks [98]. In the same paper, the authors stressed that
efficient intrusion-detection systems (IDSes) should be incorporated to miti-
gate challenges because various traditional non-cloud based attacks such as
IP spoofing, routing-protocol attack, denial-of-service (DoS) and distributed
DoS (DDoS), etc., are still valid for cloud environments. For example, a DoS
attack on the underlying Amazon Cloud infrastructure caused bitbucket.org,
a site hosted on Amazon Web Service (AWS) to remain unavailable for few
hours [67]. Therefore, resilience and security are key concerns to be looked
upon as highlighted by an International Data Corporation (IDC) survey [51].

A recent cloud-computing security white paper by Lockheed Martin cyber-
security division [91] shows that a major security concern after data security
is anomaly detection which would allow understanding of normal patterns
of cloud behaviour and, as a result, highlight abrupt deviations. However,
anomaly detection potentially faces a challenge posed by cloud own character-
istics (see Chapter 3) such as elasticity. In particular the dynamic invocation
of new services and the migration of existing services, can lead to unpre-
dictable normal behaviour that could render anomaly detection techniques
unusable because of unacceptably high false-positive and -negative rates.

2.3.1 Resilience as a Cloud Need

Resilience is a wide-ranging concern, and can be defined as “the ability of
a system to provide an acceptable level of service in light of various chal-
lenges” [132], [35]. Resilience is already supposed to be a fundamental prop-
erty of the Cloud service provisioning platforms,e.g.,to be able to spawn new
VMs in response to high load. However, a number of significant outages have
occurred that demonstrate Cloud services are not as resilient as one would
hope, particularly for providing critical infrastructure services [99, 101]. In
a number of cases, these outages are caused by problems in the network
infrastructure.

As a recent ENISA12 report on the security and resilience of Governmen-
tal Clouds suggests: “the availability of a cloud service is often dependent on
the network used to access it. . . ” and measures should be taken to ensure

11http://nvd.nist.gov/
12http://www.enisa.europa.eu/

http://nvd.nist.gov/
http://www.enisa.europa.eu/
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the resilience of access networks [30]. To the best of knowledge at time of
writing this thesis, there is limited or no understanding about how to provide
a resilient Cloud infrastructure that can collectively address challenges in a
coordinated manner – these are treated as separate concerns.

Based on work by [132], the ResumeNet13 project devised a framework
whereby a number of resilience principles are defined, including the resilience
strategy D2R2+DR: Defend, Detect, Remediate, Recover, Diagnose and Re-
fine, which is outlined in Figure. 2.4.
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Figure 2.4: The D2R2+DR resilience strategy [132]

At its core is a control loop comprising a number of conceptual processes
that realise the real time aspect of the D2R2+DR strategy and consequently
implement resilience, and the thesis exploit this in implementing cloud re-
silience. Based on the resilience control loop, other necessary elements of the
framework are derived, namely a deployment function, anomaly detection
and policy engine that aim to build situational awareness, and multilevel in-
formation sharing and control mechanisms. Under the D2R2+DR framework,
there must exist components capable of reconfiguring devices in response to
challenges using policies (Figure. 2.5). Reconfiguration need not apply to
the same components on which the detection was based. A policy engine
is responsible for mapping detection events to reconfigurations, accepting a
resilience strategy expressed as a collection of policies.

The SECCRIT architecture discussed in Section 2.2 provides a basis for
deploying infrastructure services in the cloud. The D2R2 can be applied
to the SECCRIT architectural framework to provide a resilience view (Fig-
ure. 2.6). At the physical layer, the cloud-infrastructure operator has access

13http://www.comp.lancs.ac.uk/resilience/

http://www.comp.lancs.ac.uk/resilience/
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Figure 2.5: D2R2 Components

to physical nodes and the network, which can be monitored to inform the
detection process. The operator can also reconfigure these devices, in re-
sponse to detected challenges using policies. In a cloud infrastructure, D2R2

may exist as monitoring and reconfiguration points on physical hosts and
networks, and on some virtual components. Resilience managers and de-
tectors need not exist on any physical equipment used directly to provide
virtual resources to the above layer. At the tenant-infrastructure layer, the
tenant has access to VMs, and possibly virtual taps on VNs, which can in-
form detection. In response to challenges, the tenant may reconfigure the
hosted machines, and some functionality of the virtual networks might also
be exposed. Thus, tenant-infrastructure D2R2 is spread across components
visible to this layer. Within the inner D2R2 loop, some interaction between
these layers may exist in the form of events and reconfigurability exposed
by the lower layer. For details on policy and resilience viewpoints, the the-
sis refer reader to the SECCRIT architecture white paper [7]. In order to
ensure resilience the orchestration function includes a deployment function
which translates high-level service descriptions and Service Level Agreements
(SLAs) into automatically deployable descriptions such as Heat14 templates
in the OpenStack15 environment. These deployment descriptions include the
instantiation of anomaly detectors and their data collectors to observe net-
work and system activity, and generate events to be handled by a the policy
engine to remediate challenges. The activity can be performed at the phys-
ical (cloud-infrastructure provider) layer, which has physical networks and
machines, and has an external view of system activity in VMs. Moreover,

14http://docs.openstack.org/developer/heat/template_guide/hot_guide.html
15http://www.openstack.org/

http://docs.openstack.org/developer/heat/template_guide/hot_guide.html
http://www.openstack.org/
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Figure 2.6: A resilience-oriented view [126]

network activity can be measured in the tenant-infrastructure layer by ob-
serving traffic on virtual networks, which could be performed by the tenant
by running anomaly detectors on VMs that have access to these networks
(Figure. 2.7). A mapping of components to architecture discussed in Chap-
ter 4 (see Figure. 4.1).

2.3.2 Policy-based Resilience Management

Management and resilience of the cloud environments are closely linked. The
extra layer of resource virtualization makes it difficult to plan effective man-
agement due to varying user demands, co-hosted VMs and the arbitrary
deployment of multiple applications. Generally, management policies are
used to govern the behaviour of a system. These management policies can
be mostly looked upon as: “the constraints and preferences on the state or
the state transition, of a system and is a guide on the way to achieving the
overall objective which itself is also represented by a desire system state [52]”.
When using policy-based management, it is critical that rules being specified
actually stem from the higher level requirements and that they are imple-
mentable.

Challenges to the operation of a Cloud Infrastructure can occur rapidly



Chapter 2. Background and Related Work 23

specifies
SLA Security &

resilience
requirements

(S&RR)R
es

ili
en

ce
 t

ar
ge

t
 M

ap
pi

ng
 (

R
T

M
)

Data usage
Policies
(DUP)

Resilience
Policies

(RP)

Deployment function/
orchestration

Heat API

Ceilometer API

VMs VNs VSs

message bus (rabbit MQ)

Heat REST API

Heat API

Data collection 
Engine (DCE)

Anomaly
detection

(AD)

Aggregation

OpenStack APIs

monitoring

instructions to 
monitor

pcap

feature vector 
time-series

Policy engine
events

Fine grain
analysis(FGA)

ac
tio

ns

ev
en

ts

reconfigurations/actions

CRMF scope

Figure 2.7: CRMF system architecture [126]

and with little warning, requiring a fast response in order to maintain ac-
ceptable service levels. In order to mitigate a challenge, complex multi-phase
strategies are required, which combine various monitoring and detection
mechanisms that influence the behaviour of remediation mechanisms. To
address these issues, SECCRIT advocates the use of policy-based network
management techniques for the configuration of resilience strategies.

These techniques allow descriptions of real-time adaptation strategies,
which are separate from the implementation of the mechanisms that realise
the strategy. This separation allows changes to be made to strategies without
the need to take resilience mechanisms off-line. In short, two forms of pol-
icy are supported: authorisation (or access control) and obligation policies.
Mainly policies are categorised as obligation and authorisation polices which
are also supported by IND2UCE16, which is the policy environment used by
the resilience framework.

Obligation policies specify management operation that must be per-
formed when a particular event occurs given some supplementary condi-
tions being true. These policies follow the Event-Condition-Action (ECA)
paradigm and are of the form:

on <event >
if <conditions >

do <target > <action >;

16http://www.iese.fraunhofer.de/en/competencies/security/usage_control/
philosophy_uc.html

http://www.iese.fraunhofer.de/en/competencies/security/usage_control/ philosophy_uc.html
http://www.iese.fraunhofer.de/en/competencies/security/usage_control/ philosophy_uc.html
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Therefore, the occurrence of the specific event is a necessary condition
for the mandated operation to be performed. The event is a term of the
form e(a1, . . . an), where e is the name of the event and a1, . . . , an are the
names of its attributes. The condition is a boolean expression that may
check local properties of the nodes and the attributes of the event. The
target is the name of a role (i.e., a placeholder) where the action will be
executed and so the service or resource assigned to the target role must
support an implementation of the action. The action is a term of the form
a(a1, . . . , am), where a is the name of the action and a1, . . . , am are the
names of its attributes. To simplify notation an obligation policy can have
a list of target-action pairs, all evaluated when the event is true and the
condition holds. The attributes of an event may be used for evaluating
the condition (to decide whether to invoke the action or not), or they may
be passed as arguments to the action itself. Implicitly the role to which
the obligation policy belongs is the subject of the obligation i.e. the entity
enforcing the policy, and the action is invoked on a target role. Note the
target may be the same as the subject i.e. a role may perform actions on
itself. Obligations can also be used to load other policies (obligations or
authorisations) into the system or existing policies may be enabled/disabled
to change the management strategy at run-time.

Authorisation policies specify what actions a subject is allowed (pos-
itive authorisation) or forbidden (negative authorisation) to invoke on a tar-
get. The subject and the target are role names. The action and the condition
are defined like in obligations. Authorisation decisions could be made by one
or more specific roles in the network, but commonly implementations are
based on the target making decisions and enforcing the policy as it is as-
sumed that target roles wish to protect the resources they provide to the
network.

auth [+/-] <subject > if <condition >
then <target ><action >;

2.3.3 Related Work on Resilience

The need for real-time and more dynamic nature of cloud infrastructure
has made the task of defining a resilience framework very challenging. The
policy based management has proven to be very effective for complex system
management as evident in previous literature. The policy based approach to
network and system management proposed in [95, 59] defines a framework
for management for polices, policy hierarchies and policy transformation.
In [117], the authors propose to enrich managed objects with policy goals
as required by the management policy. It describes policies in two parts:
an active part, containing application specific functionality, and a passive
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part which can be re-used without any change. In [69], the authors used an
approach to enforce policies by means of rules, but the understanding of a
rule is more restrictive.

The works mentioned above are in the context of specification and imple-
mentation of policies and recently SLA, while little focus has been given to
the refinement of the high-level requirements into low level polices. In [140],
the authors presented an approach to policy translation that is based on a set
of tables. The tables identify the relationships between users, applications,
servers, routers and classes of service supported by network. Whilst this
technique offers the advantage of being fully automated, it is an inflexible
approach, only supporting a very specific type of high-level SLA policy and
low level device configuration policy.

The work in [29] outlines a policy authoring environment that provides
a policy tool, called POWER, for refining policy. A domain expert first
develops a set of policy templates, expressed as Prolog Programs. The pol-
icy authoring tools have an integrated inference engine that interprets these
programs to guide the user in selecting the appropriated elements from the
management information model to be included in the final policy. The main
limitation of this approach is the absence of any analysis capabilities to eval-
uate the consistency of the refined policies. Similarly, work presented in [18]
allows for the translation of service-level objectives into configuration pa-
rameters of a managed system. The transformation engine takes the service
requirements of the user as input, and search the database to determine the
optimal parameters values that provide level of service limitation of this tech-
nique include its dependence on a rich enough database which is only possible
by observing the system for some period of time; and the inability to deal
with situations where a given requirement specification results in different
configurations. There are several relevant projects which are highlighted
below.

1. ResumeNet [113] defines a multi-level systematic framework to network
resilience. ResumeNet provides blueprints and design guidelines for the
cloud resilience management framework. The proposed resilience strat-
egy in the ResumeNet is validated by detailing the guidelines which can
be applied to the problem of channel interference in wireless mesh net-
work and to explore the implications of multi-staged and collaborative
detection.

2. TClouds [135] was an EU FP7 project aimed at developing a cloud in-
frastructure that achieves security, privacy and resilience. It objectives
include to identify and address legal and business issues, define a se-
curity architecture for the cloud, and provide resilient middle-ware for
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adaptive security on the cloud-of-clouds. The TClouds project tar-
gets cloud computing security and minimization of the widespread
concerns about the security of personal data by putting its focus on
privacy protection in cross-border infrastructures and on ensuring re-
silience against failures and attacks. They published work about an
advanced cloud infrastructure that can deliver computing and storage
which achieves a new level of security, privacy, and resilience.

3. PRECYSE [109] is an EU FP7 project. The strategic goal of PRE-
CYSE is to define, develop and validate a methodology, an architecture
and a set of technologies and tools to improve – by design – the secu-
rity, reliability, and resilience of the information and communication
technology (ICT) systems that support critical infrastructures (CIs).

4. Cloud Controls Matrix (CCM) [136] is specifically designed to provide
fundamental security principles to guide cloud vendors and to assist
prospective cloud customers in assessing the overall security risk of
a cloud provider. The CSA (Cloud Security Alliance) CCM (Cloud
Control Matrix) provides a controls framework that gives detailed un-
derstanding of security concepts and principles that are aligned to the
Cloud Security Alliance guidance in 13 domains. The foundations of
the Cloud Security Alliance Control Matrix rest on its customized rela-
tionship to other industry accepted security standards, regulations, and
controls framework such as the ISO 27001/27002, ISACA CoBIT,
PCI and NIST and will evolve to provide internal control directions
for SAS 70 attestations provided by cloud providers. This control
framework can possibly serve as as the backbone for evaluation of the
security levels of the CRMF.

5. OrBAC [70] was developed inside the RNRT MP6 project (communi-
cation and information system models and security policies of health-
care and social matters). The purpose of this project is to define a
conceptual and industrial framework to meet the needs of information
security and sensitive healthcare communications. OrBAC provides a
well-defined access control policy model, which can be integrated into
the CRMF framework, and shall enable fine-grained access control of
the resources. The OrBAC API has been created to help software de-
velopers introduce security mechanisms into their software. This API
implements the OrBAC model, which is used to specify security policies
and also implements the AdOrBAC model [40], which is used to manage
the administration of the security policies. The MotOrBAC [39] tool
has been developed using this API to edit and manage OrBAC security
policies. OrBAC has only been realized on homogeneous systems (such
as firewall) or at software level.
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2.4 Anomaly Detection

Anomaly detection systems are one more branch of intrusion detection sys-
tems that deal with identifying events that appear to be anomalous with
respect to normal system behaviour. They get a model of the normal sys-
tem behaviour and issue alerts whenever the behaviour changes, making a
suitable assumption that such changes are frequently caused by malicious
or disrupting events. Anomaly detection has been studied within diverse
research areas and application domains. However, for cloud environments,
anomaly detection techniques are still evolving due to the fact that it presents
several challenging problems.

In IaaS the customer is responsible for the correct operation of their own
software, the cloud provider is only responsible for the underlying infrastruc-
ture resources. This exacerbates the importance of anomaly detection and
remediation mechanisms. However, the detection system is only effective if
the alert it generates are timely, accurate and provide actionable information
to the administrators to respond to potential threats.

2.4.1 Types of Anomalies

In [31], authors describe different type of anomalies:

Point anomalies If an individual data instance can be considered as anoma-
lous with respect to rest of the data (see Figure. 2.8a; O1, O2 and O3

are outside the normal dense regions of N1 and N2).

Contextual anomalies If an information occurrence is anomalous in a pre-
cise context, but not or else, then it is characterizing a related anomaly
(see Figure. 2.8b; a drop in June is not indicative of normal value found
during this time).

Collective anomalies If collection of data instance are anomalous with
respect to the entire data set, it is termed a collective anomaly (see
Figure. 2.8c; horizontal line indicated anomalous subsequence when
considered against the normal pattern of the rest of the data).

2.4.2 Anomaly Detection in Cloud Environments

In the cloud, the network traffic comes from multiple heterogeneous domains.
Moreover, it changes rapidly with respect to its behaviour patterns due to
heterogeneity of the tenants using the cloud and the elasticity of the ex-
posed services. Under such circumstances of cloud computing, there are
many challenges faced by underlying anomaly detection techniques such as
mis-configurations, or simply by high volumes of legitimate traffic. The im-
portance of anomaly detection in cloud is due to the fact that anomalies in
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data translate to important actionable information. For example, in case of
cloud, the anomalous traffic pattern could mean the request for VMs suddenly
going high, because these requests are mostly accessible via Internet, there-
fore, causing some denial-of-service attack which could eventually hamper
service availability to authorized users. Generally, commercial off-the-shelf
systems (COTS) to detect intrusions are based on signatures also known as
rules [123], [36]. In cloud environment signature based IDS can be used to
detect known attacks. It can be used either at front end of cloud to detect
external attacks or at back end of cloud to detect external/internal attacks.
Like in non cloud based system it can not be used to detect unknown attacks
in Cloud. In [16, 93], the authors have presented signature based techniques
for detecting intrusions in cloud environments.

Contrary to signature based techniques there are many anomaly based
detection techniques which have recently been applied at various levels of
cloud computing, due to their native strength in finding unknown attacks.
In [57, 49], the authors have highlighted that applying such techniques to
cloud has been very challenging due to the fact that there exist large number
of events at network and system levels in a cloud node.

Some of these approaches have been shown to be sensitive to parame-
ters of the data sets, such as the level of traffic aggregation, and suffer from
other robustness problems [115]. In general, anomaly detection techniques
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Table 2.1: Summary of the reviewed work

Reference Scalability Online Memory-less Multilevel

Dapper [129] 3 7 7 3

EbAT/Wang et al. [141] 3 7 7 3

Guan et al. [58] 7 7 7 3

Garfinkel et al. [50] 7 7 7 3

Lee et al. [81] 3 7 7 7

Dastjerdi et al. [41] 7 7 7 3

Pannu et al. [105] 7 3 7 3

Cohen et al [38] 7 7 7 3

Pinpoint [34] 7 7 7 3

E2EProf [3] 7 7 7 3

SysProf [2] 7 7 7 3

PREPARE [134] 3 3 7 7

DAPA [73] - 7 7 7

Data Density approach/ADaaS [125] 3 3 3 3

are based on specific assumptions about the data, for example the statisti-
cal distributions of events. If these assumptions do not match reality, the
outcomes can be unacceptable rates of false negatives and false positives [8].

The thesis would like the reader to refer to the detailed survey of anomaly
detection for non-cloud based systems which has been produced by Chandola
et al. [32].

2.4.3 State-of-the-art of Anomaly Detection in Cloud Envi-
ronments

Previous research has created scalable methods for real time data collec-
tion [92, 148], to support online detection based on data mining and ma-
chine learning approaches [4, 14, 74, 143, 56]. However, while monitoring
has been feasible at scale, detection is typically performed after volume of
monitoring data has been stored in disk, which impedes the scalability of
real time detection. Dapper [129] uses a static sampling strategy which is
homogeneous across all nodes in the network which makes it inflexible for
multi tier applications.
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Wang et al. [141] proposed the EbAT system to allow the online analysis
of multiple metrics obtained from system-level components (e.g., CPU util-
isation, memory utilisation, read/write counts of the OS, etc.). The system
showed potential in detection accuracy and monitoring scalability, but it was
not evaluated in the context of adequately pragmatic cloud scenarios. Guan
et al. [58] and Garfinkel et al. [50] proposed multi-level anomaly detection
techniques to detect intrusions at different levels of a cloud system. The
techniques appear to be rather inflexible and the application of those tech-
niques in an operational context requires better clarification. Lee et al. [81]
proposed a multi-level approach, which provided fast detection of anomalies
discovered in the system logs of each guest OS. One of its disadvantages is
the apparent lack of scalability, since it required increasingly more resources
under high system workload. Also, it is only specific to detection in logging
data.

Similarly, Dastjerdi et al. [41] proposed an approach based on mobile
agents for an intrusion detection system for cloud systems. However, scal-
ability appears to be an issue due to the high number of virtual machines
that are required to be attached to the agent. The authors in [105] instru-
mented a real time adaptive anomaly detection framework that was able to
detect anomalies through the analysis of run time metrics using the tradi-
tional two-class Support Vector Machine (SVM) algorithm. However, the
main issue raised by this study was that the formulation of the two-class
SVM algorithm suffered from the data imbalance problem, which affected
the training phase, and consequently led to several misclassifications of newly
tested anomalies.

There also exist threshold based techniques which are mostly being used
in industry monitoring products. They use upper/lower bounds of each met-
ric based on threshold values which come from predefined performance knowl-
edge or from historical data analysis. However, they can not deal with the
scalability needs of the future cloud applications because most of them un-
derpin statistical algorithms with high computing overheads. In addition
they often require historic data and/or knowledge in regards to normal or
anomalous behaviour of a system. Specifically, Cohen et al [38] developed
an approach that statically clusters metrics with respect to service level ob-
jectives to create system signatures. Pinpoint is proposed in [34], which
uses clustering/correlation analysis for problem determination. E2EProf and
SysProf are profiling tools proposed in [3, 2] respectively, that can capture
monitoring information at different levels of granularity.

PREPARE [134] and DAPA [73] are two recently proposed frameworks
for performance evaluation based on anomaly detection for virtualised envi-
ronments. Although, their main focus is to identify SLA violations. These
frameworks only address application-related issues which are manifested into



Chapter 2. Background and Related Work 31

performance anomalies. However, none of these approaches focus on the im-
pact of elasticity of the cloud such as VM live migration and high volume
of data due to heterogeneity of the cloud. The thesis make an attempt to
propose a model that assimilate density based technique which can work un-
der these challenges. Table 2.1 provides a summary of the reviewed work for
anomaly detection in cloud along with comparison of density based approach
offered by ADaaS, discussed in Chapter 6.

2.5 Summary

This chapter introduces the main concepts underlying the thesis namely the
definition of cloud computing systems from the unique perspectives of secu-
rity and resilience. It start by providing overview of cloud computing: its
features, its technologies, concepts. This serves to frame the context of this
thesis and serve as a preamble for anomaly detection in cloud environments.
The following section discusses the resilience as a cloud need. Furthermore,
the resilience management is discussed from the perspective of technical chal-
lenges and open issues when it comes to operationally apply resilience mech-
anisms such as anomaly detector in cloud environments. Finally, the chapter
considers the positioning of anomaly detection in an overall cloud architec-
ture and summarizes currently available anomaly detection techniques.
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Chapter 3

Impact of Live VM Migration
on Anomaly Detection

Cloud environments have evolved as the critical backbone for many ICT in-
frastructures due to their elasticity and resource transparency. As reflected in
a recent report by the European Network and Information Security Agency
(ENISA), cloud environments are becoming increasingly mission-critical [85].
Since they provide always-on services for many everyday applications (e.g.
IPTV), safety critical operations (e.g., Air Traffic Control networks), criti-
cal manufacturing services (e.g., utility networks and industrial control sys-
tems), and critical real-time services (e.g., transportation and surveillance
systems) [20]. Therefore, the ability of such cloud environments to remain
operational in the face of anomalous activities becomes paramount.

Modern virtualised cloud environments support migration of services and
virtual machines (VMs) to different physical nodes, and exploit the conse-
quent elasticity and resource transparency for dynamic resource manage-
ment. In particular, in contrast to cold migration, live migration allows a
service or VM to move while retaining its network identity and connections,
and without having to be powered off, by transferring its active memory and
execution state. This makes live migration essential functionality for effective
on-line resource management, allowing the workload to be balanced across
physical nodes without major disruption to users, and is performed by the
majority of cloud operators (such as VMware VSphere [96]).

While migration is a key feature of cloud environments, it introduces
novel security and resilience challenges. For instance, an anomaly detector
applied to network traffic visible at the cloud-infrastructure level1 could be
misled by the effects of migration on that traffic in two ways. First, legitimate
migration could be misidentified as an anomaly (a false positive indication).
Second, migration could occur simultaneously with a genuine challenge, and
thus mask its detection (a false negative). Overall, despite the plethora
of signature-based and anomaly-based detection solutions for a number of

1The thesis refer the reader to a SECCRIT whitepaper [7] which presents an ar-
chitectural model as a basis for the bringing services into cloud environments: https:
//www.seccrit.eu/whitepaper

https://www.seccrit.eu/whitepaper
https://www.seccrit.eu/whitepaper
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computer networks (e.g., [16, 13]), there has not yet been a thorough analysis
on the impact of VM migration on state-of-the-art AD solutions.

In this chapter, the objective is to understand how migration is repre-
sented or visible at hypervisor level, and then to what extent VM migration,
which generally is representative for normal traffic, can be incorrectly classi-
fied as an anomaly. Additionally, certain anomalies may be missed because
of VM migration. Considering this as a significant problem, the aim is to
test whether state-of-the-art anomaly detection techniques remain reliable
in cloud environments and, therefore, whether they meet security and re-
silience requirements for underlying infrastructures. Using a testbed along
with custom scripts and various characterisation (see Section 3.2.13), the de-
tection performance of PCA [79, 106], clustering-based, i.e., K-means [106,
147], Naïve Bayesian [150] and Expectation-Maximization Gaussian Mixture
Model-EMGM [21] anomaly-detection techniques have been examined. As
these, AD techniques have been shown to give acceptable detection perfor-
mance results in non-cloud based systems [116, 46, 104, 111]. Under different
attack intensity and VM migration scenarios, the ability of these detection
techniques to detect anomalous behaviour in the cloud is measured. The
obtained results suggest that, in some configurations, anomalies are missed
and some configuration anomalies are wrongly classified. These outcomes,
empower the thesis argument that under certain attack-type and migration
conditions, the number of attacks that are missed and false alarms generated
by these techniques could render them unreliable and unusable respectively.

Consequently, the widely used AD techniques are directly affected by the
live-migration aspect and, therefore, future designs of cloud-oriented anomaly
detection components should consider this factor. The rest of the chapter is
organised as follows: Section 3.1 describes various types of migration in cloud
environments. Section 3.2 reports on experiments carried out to determine
the impact of migration on anomaly detection, including methodology and
description of experimental setup. Finally, Section 3.3 highlights key find-
ings of the results, and suggests experimental and analytical improvements.
Section 3.4 offers summary of the chapter.

3.1 Migration in Cloud Environments

Migration is a capability of cloud-computing implementation models that
allows an individual or organisation to easily shift between different cloud
vendors without any implementation, compatibility, interoperability and in-
tegration issues. Different types of migration are possible, such as local-
vs. wide-area migration, and service vs. VM migration, and these involve
varying processes, and have differing security and resilience impacts.
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3.1.1 Significance of VM Migration with respect to Anomaly
Detection

Virtual machine migration refers to a process to move virtual machines be-
tween different physical hosts without causing disruptions to users and ap-
plications. The technique is widely used in today’s data centre for efficient
workload consolidation, elastic scaling, maintenance and fault tolerance [64].
Further, the migration process is designed in such a way that the move of
virtual machines remain transparent to the users i.e., no disconnection or
impact on the availability of the resources or any underlying security mecha-
nisms. However, a recent work suggested [151] that VM live migration adds
difficulties to anomaly detection since it is based on the large numbers of
memory copy operations which can mask anomalies and attacks. In addi-
tion, the problem is compounded due to applications behaving differently
on newly migrated host due to different workload, memory size and other
network settings from original host. Considering this an interesting prob-
lem the thesis aims to quantify the impact of elasticity within an intra-cloud
scenario where migration occurs between physical nodes in the same cloud
environment. The focus of the experimental study is on VM migration as
the main elastic scenario influencing anomaly detection due to the following
reasoning:

• VM migration is chosen as it is a readily available function of the vir-
tualization software installed on the testbed. Services running on top
of a VM are therefore at a distinct layer, meaning that their configura-
tion is no more complex than if they were deployed in a conventional
non-cloud environment. To reproduce service migration, the additional
management software is needed to be installed on the testbed, so that
it can migrate services as required.

• VM migration is more clearly defined than service migration for the
purpose of reproducing experiments.

• The traces obtained from the testbed will reflect genuine background
traffic. TCP streams, for example, will compete with each other for
bandwidth, vary their window sizes, and perform retransmissions.

• The effect of migration will also be reflected accurately in the traces.
As a VM migrates away from a physical node, traffic to it will cease,
and other traffic to the node will be able to consume it.

• The effect of anomalies will also be reflected accurately in the traces.
For example, volume-based attacks will consume bandwidth from le-
gitimate traffic.

The sub sections below highlight different aspects of migration.
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3.1.2 VM Migration and Service Migration

The use of virtual-machine migration has attracted significant attention in
the recent years [138]. VM migration is the transfer of a complete virtual
machine from one physical host to another, and is of benefit in cloud envi-
ronments by providing dynamic options for load balancing, maintenance and
fault management. A virtual machine exists as a memory and execution state
on its physical host, under control of the local hypervisor, and this state must
be copied exactly to the new host’s hypervisor to perform the migration. As
the state is dynamic, it helps to suspend the VM just before copying, but
this “cold” form of migration can lead to several seconds of downtime for
services supported by the VM. Under “live” VM migration, this downtime is
minimised by exploiting the lack of activity in most of the state most of the
time.

Service migration is the transfer of the implementation of a service be-
tween machines (whether physical or virtual), and is possible because services
are not bound to specific machines. However, as services are implemented
by running processes, and these are attached to open sockets, file descrip-
tors, shared memory and other resources, live migration of processes is non-
trivial, and requires hardware abstraction [43] and a priori partitioning of
processes [76].

3.1.3 Local-area and Wide-area VM Migration

The scope of a migration can vary. During a local-area migration, a VM
running on a physical host is migrated to another physical host in the same
subnet. Since the migrated virtual machine retains the same network address
as before, any ongoing network level interactions are not disrupted. Similarly,
bulk storage is often not part of the VM (e.g. it is network-attached storage),
does not need to move with it, and remains reachable from the VM’s new
location.

A wide-area migration involves a VM moving to a location outside the
local-area network, possibly to a different physical datacentre. This is more
complicated than local-area migration, first because of the volume of state to
be transferred (which might include bulk storage), potentially over networks
with smaller capacity than available in the LAN. Second, if the VM is to
be migrated live, it will have to retain the IP address from its old location,
and redirection, masquerading or tunnelling will be required to ensure that
current and future external connections continue to reach the VM in its new
location. Alternatively, for reduced complexity, a VM could be shutdown for
a cold migration (with the corresponding disadvantages of downtime and lost
connections), and could acquire a local IP at the new location with DHCP,
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but this would still require additional indirection mechanisms (e.g., DNS) to
be updated.

3.1.4 Security Issues with Migration

During the procedure, protecting the contents of the VM state is an impor-
tant consideration as the volatile state being transferred may contain highly
sensitive information like passwords and encryption keys. A secure channel
is at times not enough for protection. Mutual validation among the hosts
involved in the migration might even be a more important issue to be con-
sidered [62, 102].

Live VM Migration, like any other network-bound process, is susceptible
to network attacks such as ARP spoofing, DNS poisoning. If an attacker
somehow manages to place himself between the source and the destination
host, he can then launch active (man-in-the-middle) attacks. The fact that
the live migration procedure is usually carried out inside a LAN makes it
even more likely for a network attack to be successful, especially in situations
where different third-parties run their VMs inside the same network subnet,
which is the case in cloud environments.

3.2 Experiments

The main objective of this chapter is to study the effect of a cloud’s elastic
properties on anomaly detection techniques. The focus is on migration as
the main elastic scenario influencing anomaly detection, and on LAN VM
migration in particular, as its study can form the basis of later studies into
WAN VM migration, and because it is more clearly defined than service
migration for the purpose of reproducing experiments. Service and WAN
migration also present greater complexity in their set-up within a simulated
or testbed environment, whereas LAN VM migration is a standard feature
of most cloud virtualization systems.

The experiments are designed to test various AD techniques against vari-
ous scenarios that include both attack-related anomalies and VM migration,
and compare their outputs against the corresponding ground truth for those
scenarios. By discriminating those comparisons according to the presence or
absence of migration, the detection performance of each technique along the
same distinction can be quantified, and compare them to measure the “effect
of migration” on any given technique.

3.2.1 Selection of Anomaly Detection Techniques

In order to investigate effect of migration on anomaly detection techniques,
The choice had to be made on anomaly detection technique to be used. This
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choice was based on what traffic it analyses and where in the cloud envi-
ronment that traffic is collected. The data for anomaly detection can come
from continuous monitoring at various levels in cloud such as (hypervisor
and system level) and recording of measurements data. Running services
in virtualised environments open a new issue to acquire data from running
systems because of it’s dependency on the infrastructure itself such as OS.
Customised scripts and tools such as volatility can be added dynamically on
hypervisor level to access, for example the file systems or dynamic memory
and traffic feature extraction. This approach has two main benefits:

(a) Examiner can use new or updated versions of his tools without fearing
to taint the service environment in an unpredictable way.

(b) Running these tools outside the service environments prevents mali-
cious code from hiding itself by sophisticated obfuscation techniques.

Another challenge in this regard is that services expand and shrink based
on user demand spanning multiple physical systems if required. System vir-
tualization is the technology that enables this partitioning and pooling phys-
ical resources. The same technology is used by the cloud provider to relocate
running services to other physical resources during e.g. maintenance periods.
Thus, network analysis tools need to be extended to cope with this increased
dynamicity of cloud services.

One other reason to combat a challenge on cloud computing requires in-
vestigating different levels such as traffic at network level, user actions to
identify typical attack behaviour. A specific attack might not be visible at
network level or system level because cloud specific attacks don’t necessarily
leave traces in a node’s operating system where the system based monitoring
resides so increased knowledge coverage is required for better detection of
anomalies. Moreover, the choice for AD technique selection was also based
on ease of implementation, proven ability to detect anomalies. In total four
different techniques were implemented. Below section discuss how individual
techniques are realised for investigating their performance in face of migra-
tion.

3.2.2 Principal Component Analysis

The spirit of PCA as described by [79], is to separate the normal data from
anomalous by mapping a set of data points onto new axes. PCA employ-
ees specific technique called Singular Value Decomposition SVD to separate
the normal data from anomalous. These axes are called the principal compo-
nents. Applying PCA to the datasetX yields a set ofm principal components
{pci}mi=1. Assuming that data in X is zero-mean, the first principal compo-
nent pc1 is the vector that point in the direction of maximum variance in X
and computed as follows:
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pc1 = arg max
‖pc‖=1

‖ Xpc ‖ (3.1)

The basic idea of applying PCA for anomaly detection is that: the
k − subspace obtained through PCA corresponds to the normal behaviour
of the traffic, and is spanned by pc1, through pck, whereas the remaining
subspace i.e, pck+1 through pcm corresponds to anomalies. Afterwards, the
magnitude of the projection of data point xi can be computed into the anoma-
lous subspace to quantify its abnormality. This unit of abnormality is used to
produce an anomaly score graph, under the assumption of normality of the
original data which will have an exponential distribution. Finally different
thresholds can be set to classify the traffic measurement as in dataset X as
normal or anomalous.

3.2.3 K-means

Another approach to detect anomalous behaviour is based on clustering [66],
which functions by assigning data points that have similar features to cluster
structures. There are a variety of clustering based approaches for anomaly
detection, which are based on certain assumption. In this work the K-means
clustering has been used with an assumption that normal data instances lie
close to their closet cluster centroid, while anomalies are far away from their
closest cluster centroid [32]. In the first step, the selection has to be made
for the number of clusters k and then choose training data using K-means
which have random samples of migration, anomaly and background traffic.
These random samples give centroid. In next step calculate the distance of
test data instances from centroids of cluster, using Euclidean method as per
equation 3.2 and then for each test data instance its distance to its closest
cluster centroid is calculated as its anomaly score [147].

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (3.2)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are two input vectors with n
quantitative features.

Obviously, a different number of clusters may result in better clusters,
e.g. if the migration already shows distinct periods of very low and very high
traffic volume under normal conditions. However, the determination of an
optimum number of clusters based on a cluster evaluation criterion is beyond
the scope of this work.
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3.2.4 Naïve Bayesian

Naïve Bayesian is a well established Bayesian method primarily formulated
for performing classification tasks. This is a simple yet very powerful tech-
nique for anomaly detection. It works best in distinguishing those anoma-
lous instances in data which are similar to normal data instances due to
strong assumption that the independent variables are statistically indepen-
dent. Therefore, under this assumption it works by analysing the relationship
between independent variables and then dependent variable to derive a con-
ditional probability for each relationship.

In [100] author used this technique for intrusion detection where the Bayes
theorem is described as:

P (H|D) =
P (D|H).P (H)

P (D)
(3.3)

where D be the data and H be some hypothesis representing data instance
D, which belongs to a specified class C. For detection, the first step is to
determine P(H|D),which is the probability that the hypothesis H holds, given
an observe data instance D. P(H|D) is the posterior probability P(H|D), is
based on more information such as background knowledge than the prior
probability P(H), which is independent of D.

Similarly, P(D|H) is posterior probability of D conditioned on H. Bayes
theorem is useful because it provides ways to calculate the posterior prob-
abilities P(H|D) from P(H), P(D), and P(D|H). Two classes(C1 = normal,
C2 = anomalous) are considered, given D, predict C1, C2. The Bayes rule
is shown in equation 3.4:

P (Ci|D) =
P (di|Ci).P (Ci)

P (D)
(3.4)

where Ci represents the category of classes and d1, d2, . . . , dn are instances
of data D. These probabilities are used to compute the anomaly score.

3.2.5 Maximization (EM) for Gaussian Mixture Model (GMM)
- EMGM

A Gaussian Mixture Model (GMM) [114] can be used as the basis for anomaly
detection and is the most ubiquitous parametric model used for the anomaly
detection [87]. This method learns patterns of normal and anomalous be-
haviour to classify that use a set-of Gaussian probabilities distribution func-
tions. The use of maximum likelihood is then used as the deviation between
normal and anomalous behaviour. These mixture models are a type of den-
sity models that comprise of number of a component, usually Gaussian. The
GMM probability density function is a weight sum of N Gaussian distribution
components and can be defined as:
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p(x|λ) =
N∑
i=1

wig(x|µi,Σi), ) (3.5)

Where x is a D -dimensional random vector (i.e, features),wi, i = 1, . . . , N

are the mixture weights, and g(x|µi,Σi), ), i = 1, . . . , N , are the component
Gaussian densities. Each component density is a D-variate Gaussian function
of the form,

g(x|µi,Σi), ) =
1

(2π)D/2|Σi|1/2
exp

{
− 1

2
(x− µi)′Σ−1

i (x− µi)
}
, (3.6)

with mean vector µi and covariance matrix Σi. The complete Gaussian
mixture model is parametrised by the mean vectors, covariance matrices and
mixture weight from all the component densities.

The distribution of feature vector was extracted from time series of each
dataset and parameters of mixture model are used by the Expectation Max-
imization (EM) algorithm. The basic idea of the EM algorithm is beginning
with an initial model lambda, to estimate a new model λ̄ if the probability
of 〈x|λ̄〉 is greater than or equal to 〈x|λ〉. The new model then becomes
the initial model for the next iteration and process is repeated until some
convergence threshold is reached.

Finally, calculate the log-likelihood which is simply the log of the proba-
bility density function for the model to calculate anomaly score.

3.2.6 Selection of Features

All tested anomaly-detection techniques take a time series of feature vectors
as input. For experiments, a series is generated from a packet trace by
computing a feature vector for each 1-second bin of the trace. These vectors
include both volume-based features (“number of. . . ”) and distribution-based
features (“entropy of. . . ”), and are chosen to capture the dynamics of varying
anomaly types. The complete list of features follows:

• Number of packets

• Number of bytes

• Number of active flows in each bin

• Entropy of source IP address

• Entropy of destination IP address

• Entropy of source port

• Entropy of destination port

• Entropy of packet size
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3.2.7 Evaluation Metrics

Each AD technique is evaluated with several metrics. First, all applications
of an AD technique to a dataset yield the same type of structured data,
namely, a time-series anomaly-score table. Each input entry submitted to
the detector describes the features of traffic during a given time period (bin),
and the detector yields a corresponding entry in the anomaly score table,
a value in [0, 1] representing the ‘distance’ of the bin’s feature vector from
normal traffic. Each output entry is augmented with ground truth (GT;
a boolean value indicating the presence of an attack during the bin), and
‘instantaneous migration intensity’ (IMI; a value in 0, 1 indicating whether
migration occurred during the bin). This transformation is depicted in Fig-
ure. 3.1. (Further details are to be found in Section 3.2.10.) The first form

Figure 3.1: Conversion by detector of features to anomaly
scores, with copied labels

of evaluation is the Anomaly Score Graph (ASG), which is a graphical repre-
sentation of the anomaly-score table, allowing visualization of the detector’s
response to migrations and anomalies known to take place during the period
covered by the graph.

When any given threshold is applied to the anomaly-score table, an extra
boolean attribute is generated for each bin (true if the score is above the
threshold; false otherwise). This can be compared with GT, yielding a bin
which is counted as a true positive (TP; if GT is true, and the score is
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above the threshold), a true negative (TN; if GT is false, and the score
is below), a false positive (FP; if GT is negative, but the score is above),
or a false negative (FN; if GT is positive, but the score is below). For a
given table and threshold, this then allows computation of the true-positive
rate (TPR, sensitivity or recall; TP/(TP + FN )), the false-positive rate
(FPR; FP/(FP + FN )), the precision (TP/(TP + FP)), and detection rate
((TP + FN )/(TP + FP + TN + FN ))).

These rates depend on a potentially very arbitrary choice of threshold.
In contrast, Receiver Operating Characteristics (ROC) curve and a Preci-
sion Recall Curve (PRC) represent all choices of threshold graphically. To
generate either from the anomaly-score table labelled with ground truth, the
applied threshold is gradually increased from 0 to 1. For each threshold, a
pair of rates is computed (TPR and FPR in the case of ROC; precision and
recall (TPR) in the case of PRC), and these form the next pair of co-ordinates
in a graph (both of whose axes are in the range [0, 1]).

For a ROC, as the threshold is increased, these co-ordinate pairs cannot
decrease, and the curve gradually approaches (1.0, 1.0), ultimately reaching
it when the threshold is set to 1.0. As true positives are good, and false
positives are bad, a ROC indicating good performance shows a curve leaning
towards (0.0, 1.0), while bad performance is expressed by a curve leaning
towards (1.0, 0.1). For example, if an AD technique such as PCA has a with-
migration curve which is chiefly lower than its without-migration curve, this
would show that migration has worsened the performance of the detector.

In order to compare the detection of the individual detectors by their
sensitivities, the precision recall curve (PRC) is used. The recall or true
positive rate (TPR) is the proportion of correctly predicted anomalies to
the actual size of the anomaly vector. Precision is then the proportion of
anomalies that were correctly detected by detector relative to the predicted
size of the anomaly vector. These measures are defined as:

Recall =
True positive

True positive + False negative
(3.7)

Precision =
True positive

True positive + False positive
(3.8)

The PRC is important for evaluation since there could be possibility that
some of the data instances are few in numbers relative to other. For example
if the portscan attack represented 95% of total traffic in dataset and the
normal data instances were 5%. If all the predicted instances were portscan
then the overall accuracy will be 5% in spite of the lost predicted normal
class of data.
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Figure 3.2: Virtual network architecture in a single node

3.2.8 Testbed

The testbed is established in which live Local Area Network (LAN) VM
migration can take place while experiencing both normal and abnormal traffic
conditions. Two hosts serve as nodes for running multiple VMs. Another host
acts as a controller to initiate migrations, and also to generate background
traffic. A fourth host generates attack traffic. All are connected to a LAN,
Figure. 3.2 shows testbed architecture in a single node. Each physical node
runs Kernel-based Virtual Machine (KVM)2 as virtualization infrastructure,
and the Quick EMUlator (QEMU3) provides hardware emulation. Migration
is achieved with libvirt4. All VMs on a node are connected to a virtual bridge
interface virbr0, so their own interfaces appear to be part of the LAN.

For the experiments presented here, each VM runs Apache HTTPd. The
client host runs custom scripts to initiate random HTTP requests from the
VMs. The ‘challenger’ host runs custom attack scripts to generate attack
traffic directed towards the VMs’ address range for a selected attack type
and intensity (i.e., the volume of traffic it generates). Tcpdump5 is used to
simultaneously collect packet traces from the two virtual bridge interfaces,
one in each physical node, and so these traces represent aggregate traffic
to/from all VMs on a node.

2http://www.linux-kvm.org/
3http://www.qemu.org/
4http://libvirt.org/libvirt2
5http://www.tcpdump.org/

http://www.linux-kvm.org/
http://www.qemu.org/
http://libvirt.org/libvirt2
http://www.tcpdump.org/
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This set-up allows us to run experiments in which the legitimate traffic of
several web servers is continuously emulated, while anomalous traffic is em-
ulated by overlaying the legitimate traffic with attack traffic from the attack
scripts that run during part of the experiment. Independently, one of the
VMs running a webserver can be migrated live between the nodes during a
period of either normal or anomalous traffic. Subsequently, traces obtained
at the virtual bridges can be fed into anomaly detectors to observe their re-
actions to normal/anomalous traffic with and without migration. Because to
have control over when migrations and anomalies occur, the obtained traces
can confidently be labelled with ground truth about both conditions, and
therefore assess the impact of migration on anomaly detection that takes
such traces as input. Further, every trace described by the type of back-
ground traffic it captures, the anomaly/attack type, the attack intensity,
migration overlap (whether migration happens during the normal or anoma-
lous period), and migration direction (whether a VM is leaving or arriving
at the node generating the trace). Section 3.2.13 explains characterization
in more detail.

3.2.9 Framework

The AD evaluation framework compose of various pre and post processing
modules, which comprises of several scripts and libraries written in perl,
python, C and Matlab.

Attack scripts For network and portscan, various python scripts are writ-
ten which exploit rate limiting features of nmap6 to control attack
intensity and build attack scenarios. These scripts take a configuration
file which specifies the timing (such as start and end time of the at-
tack) and networking (such as IP addresses of the VM). These scripts
are further reconfigurable using different scan, delay and timing modes
of the Nmap scanner.

Denial of Service attacks are realised using, LOIC7. LOIC is an open
source network stress testing tool, written in C#. It performs denial
of service attacks on a target HTTP server by flooding the server with
TCP or UDP packets. Intensity of attack was controlled by number of
attacking machines and threads involved in generating attack traffic.

Monitoring scirpts are based on tcpdump format which collected traffic at
each VM network bridge interface.

6http://nmap.org
7http://sourceforge.net/projects/loic/

http://nmap.org
http://sourceforge.net/projects/loic/
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Background traffic that is mainly composed by a variety of random client
requests to the VM’s HTTP servers at random intervals, which were
achieved with a custom console application written in perl.

Summary extraction script (traceStat.c) are written in C based on libp-
cap5 to convert the input into various normalised statistical properties
on a per packet basis, which also has an interface with MATLAB for de-
tectors. The output is a time-series which is converted into STDIN in-
put into various features for specified bin size using aggregations script
written in perl.

Detector scripts are written in Matlab to perform the anomaly detection.
These scripts basically translate the combined scenario trace (back-
ground traffic + migration + anomalous) into detection percentage
and then visualised the results by plotting PRC and ROC cure. These
detectors are reconfigurable as per the parameters (such as compo-
nents/dimensions, thresholds, normalization scheme) for individual de-
tector types. Visualization is provided by a script which is based on
comparing anomaly score to threshold and plotting ROC and PRC
curve.

3.2.10 Method

To evaluate an anomaly detection technique in the face of migration, firstly
several experimental runs were performed, where each yields a pair of packet
traces which are labelled with the ground truth regarding the presence of
attack traffic or migration in the trace. In each 10 minute run, background
traffic occurs continuously at a fixed rate, and hence appears throughout
a trace. At the first 5 minutes in the first run, an attack script starts,
hence its traffic appears in each trace from the midpoint. At either 2.5
minutes or 7.5 minutes, a migration of one of the VMs is initiated. A run
can therefore be characterized by the attack type and intensity, and whether
the migration occurs during the attack or during the normal period (i.e.
‘migration overlap’) (see Section 3.2.13). One run for each of the 8 possible
combinations were performed of these characterizations, yielding 16 traces.
Each packet trace is filtered to eliminate the related management traffic
between the VM host nodes. It is subsequently divided into 1-second bins,
and each bin is converted into a feature vector, also labelled with ground
truth. Tables of labelled feature vectors from related traces, i.e., the four
in which the same attack type and intensity was applied (with NM/AM and
MDin/MDout varying), are combined to form a dataset representing 40min of
experimentation. For illustration purposes the processing from experiments
to combine data sets for NS and DoS is shown in Figure. 3.3.
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Figure 3.3: Processing of data

Each examined detection technique is then applied to each dataset, by
submitting them together to an evaluation process, as depicted by Figure. 3.4.
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Figure 3.4: Evaluation process

The feature vectors from the dataset are submitted through a config-
ured anomaly-detection engine, yielding an anomaly time series, a series of
anomaly scores, one for each vector, indicating how anomalous the detector
finds that vector with respect to the others. The anomaly scores are recom-
bined with the corresponding ground truth, to yield a table of 3-tuples includ-
ing anomaly score (AS), boolean anomaly ground truth (GT) and boolean
migration ground truth (i.e. ‘instantaneous migration intensity’, IMI). The
same dataset is also stripped of rows with IMI set, and submitted through the
AD engine to yield a second anomaly-score table, which is similarly recom-
bined with ground truth columns. Each labelled anomaly-score table then
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generates a Receiver Operating Characteristics (ROC) curve8, and the two
can be compared to derive an evaluation of the detection technique against
the scenario represented by the dataset. In order to aid the visualization pro-
cess of the dataset, Some of the anomaly-score tables visually are presented
as anomaly-score graphs (ASGs)9.

Datasets could be obtained from public traces, simulation, or testbeds.
The options for acquisition datasets are discussed in Section 3.2.11, and
details of the actual datasets used appear in Section 3.2.12.

3.2.11 Potential Dataset Sources

Virtualized environments leverage the functionality of virtualization plat-
forms, i.e., of the underlying Virtual Machine Monitors (VMM), and are
thus able to monitor multiple VMs at the same time, which can provide dif-
ferent data for anomaly detection. From perspective of anomaly detection,
data in cloud environments can be obtained at various layers. Several options
exist for studying the behaviour of anomaly detection in cloud computing,
but the essential core of any study is to run a packet/flow trace through an
AD engine, and compare its output against ground truth.

VMM can be used to extract various system level data and there is flex-
ibility to configure monitoring script at hypervisor level of the individual
node for network data. Traces must contain varying types and intensities of
anomalies, and varying intensity of migration. Each trace must reproduce
several activities:

Background traffic A trace must include background or normal traffic, as
the monitoring point in a real physical infrastructure will observe such
traffic. This includes the traffic between the customers’ VMs/services
and their clients, but can optionally exclude internal management traf-
fic, such as the transfer of a VM or the control protocols that establish
new services, as these are likely to be handled by separate physical or
virtual networks.

Anomalies A trace must include anomalous traffic, which is also observed
at the monitoring point. It must be possible to know the type of
challenge that is creating the anomaly, and its intensity, as well as
when the anomaly is actually occurring, in order to determine ground

8A ROC curve is a plot of true-positive rate (TPR) against false-positive rate (FPR) for
a range of thresholds. Points towards the bottom left correspond to high thresholds (or low
sensitivity), and the top right to low thresholds (or high sensitivity). Better performance
is indicated by curves that tend to occupy the top left, as these imply that sensitivity can
be decreased to eliminate more FPs without degrading the TPR.

9An ASG displays a time series of outputs (anomaly scores) from a detector. The
particular ASGs are annotated with the periods during which attacks (GT = 1 in pink)
and migration (IMI = 1 in pale green) occur. An ideal detector would show high scores
only while GT = 1, independently of IMI.
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truth. How these are known depends on how the anomaly finds its way
into the trace.

Migration A trace must include evidence of migration, including both ar-
rival and departure of VMs or services. The presence of a migration
does not affect ground truth about anomalies, i.e., the ground truth of
an anomalous bin is the same regardless of whether a migration has just
happened or is about to happen, or is even happening at the same time.
However, it is necessary to know the intensity of the migration, e.g.,
the number of VMs or services migrating at the same time, in order to
determine the effect of this particular elastic scenario (migration) on
anomaly detection.

The main options for these aspects of reproduction are real traces, testbeds,
trace injection and simulation.

Real traces Traffic data is significant part of any cloud system and the pat-
tern of traffic will vary depending the assignment of virtual machines
between physical servers. Due to the complexity of the patterns of such
traffic, it is very hard to model it. Ideally, one would use a trace taken
inside a datacentre at a location equivalent to the monitoring point,
but no public datasets containing cloud behaviour are available. (Dat-
acentres could be unwilling to provide useful traces that risk exposing
sensitive technical and personal information.)

Non-cloud network traces are available CAIDA10, which could be fil-
tered, and then injected with migration to give the appearance of being
taken inside a datacentre, but their use as a true representation of cloud
traffic is questionable.

Real traces must be analysed to identify both anomalies and migration,
either to label the traces to enable a detector to be evaluated, or so
they can be removed to provide a clean trace, into which anomalies and
migration must be injected artificially. In the former case, there might
not exist a sufficient spectrum of anomaly types and intensities, nor
a sufficient spectrum of migrations occurring at the right times with
respect to the anomalies, to achieve the goals of the experiment.

Testbed traces Testbed (Section 6.3.1) can be configured to resemble a
datacentre with two physical nodes running various VMs, each sup-
porting various services. Background traffic can be created by running
multiple clients outside the VM host machines. Although a testbed’s
traces can be regarded as unrealistically dry, the testbed provides a very
controlled environment in which the ground truth is absolutely certain,

10http://www.caida.org/data/overview/

http://www.caida.org/data/overview/
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i.e., the type, timing and intensity of both anomalies and migration are
under experimental control.

Trace injection Given a clean trace (e.g. from the testbed), one could
modify it to make it appear to contain anomalies using an anomaly
injection framework such as FLAME11. However, it is unclear how such
tools model attack type, so there is a risk of unrealistic anomalous
traffic.

Further, the thesis also studied the effect of LAN VM migration on
packet traces of all VM traffic obtained by the hypervisors at the source
and destination of the migration. The migrating VM remains on the
same network segment, and so does not need to re-negotiate an IP ad-
dress. Consequently, clients connecting to the VM remain connected,
and the migration is functionally transparent to them. The source
hypervisor observes the sudden absence of all traffic to and from the
migrating VM. Similarly, the destination hypervisor observes the sud-
den appearance of the same traffic. Also, a time delay of about 0.8sec
is observed between the end of traffic at the source and the start of
traffic at the destination. From this, it may seem that the migration
can be injected into an existing trace simply by removing all evidence
of the migrated host before or after a certain point. This should be
functionally accurate, but there may be non-functional affects that it
would not represent. For example, client traffic to VMs that do not
migrate might fill the bandwidth freed up by the departing VM. A fea-
ture such as bytes per second might be unaffected by this, while bytes
per packet might increase as TCP window sizes increase.

Figure 3.5: Simulating migration before anomalies

Figure 3.6: Simulating anomalies before migration

Injection of both migrations and anomalies into a trace is problematic.
When a migration is injected first (Figure. 3.5), care must be taken to

11http://flame.ee.ethz.ch/

http://flame.ee.ethz.ch/
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ensure that a subsequently injected anomaly does not contradict evi-
dence of the migration. For example, after a VM has been migrated
away from a monitoring point, no anomalous packet or flow injected
into the trace from that point may appear to interact with that VM’s
address. This could be significant for some anomaly types that hap-
pen to be targeted at the migrating VM, while irrelevant for others,
increasing the complexity of the simulation. It especially makes ground
truth more difficult to establish, as that now depends on whether the
anomalous traffic.

Injecting migration after the anomaly (Figure. 3.6) is also potentially
problematic. If the anomaly is targeted at the migrating VM, evidence
of the anomaly must move with the VM. Also, non-functional effects
of migration might have an impact on the anomaly traffic, which can
no longer be modified because it has already been injected.

In summary, it is non-trivial to model the non-functional effects of
anomalies and migration by injecting them into an existing trace, es-
pecially when anomalies and migration occur together.

Simulation A simulation of all experimental aspects has the benefits of
complete isolation and control over anomalies and migration. However,
at this time, it is unknown whether existing simulators include models
of VM/service migration, whereas one can immediately reproduce VM
migration accurately on the testbed. Cloud environments have varying
traffic patterns, which depend on the actual services offered by the
supported VMs. By simulating traffic trace, it is hard to model such
internal traffic pattern. Without exact model of internal traffic, local-
area migration can not be observed or simulated because it only involves
internal traffic.

3.2.12 Acquisition of Datasets

For these experiments, packet traces are opted to be obtained from the
testbed. Background traffic is created by running several HTTP servers,
and several clients repeatedly requesting dynamically created documents of
varying size. Entropy in the background traffic’s external IP addresses is
created by restricting each client to an allocated port range, and then later
mapping anything in this range to a new IP address. The monitoring scripts
are configured based on tcpdump format which collected traffic at each VM
network bridge interface. VM migration is applied during the acquisition of
traces using libvrt, and anomalies (portscan and netscan) are orchestrated us-
ing custom scripts by exploiting rate limiting features of Nmap for intensity
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Figure 3.7: Experimental test-bed set-up

Figure 3.8: Measurement procedure timeline

of attacks,whereas, DoS was realised using LOIC, where intensity was con-
trolled by number of attacking machines and threads involved in generating
attack traffic.

Figure. 3.7 shows the set-up of the testbed components for performing
a measurement run. Figure. 3.8 shows the procedure for taking a pair of
measurements. Several VMs are established on each node, and an HTTP
server runs on each one. Multiple HTTP clients run on a separate machine,
and generate background traffic by interacting with the servers. Packet traces
are started on both nodes, so two complementary traces are obtained per run.
About ten minutes later, anomalous traffic is generated by a suitable tool,
and directed towards the VMs’ address range shared by both nodes. The
precise time is recorded with respect to the clock on each node, which is used
to time-stamp the trace. Migration either happens at about 5 minutes into
the tracing, or about 5 minutes into the anomaly.
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Figure 3.9: Composition of characterizations

3.2.13 Characterization of Experimental Runs, Scenarios, De-
tectors, and Results

Each dataset is characterized by the parameters of its creation, and this
characterization serves to identify the dataset. Similarly, each AD engine
(detector) that is to be evaluated has certain characteristics, such as its type
and thresholds. When a detector is evaluated against a dataset, the obtained
results are characterized, and effectively identified, by a combination of the
dataset’s and detector’s characterizations. Correlating a result with its own
characteristics will help us to learn about the relationship between migration
and anomaly detection in cloud computing.

Several terms for characterizations are defined here of not only datasets,
detectors and results, but also anomalies, background traffic, and experi-
ments, as these contribute to the definitions of the other characterizations.
This relationship is expressed in Figure. 3.9, which shows how each charac-
terization is composed of others. In total, seven types of characterization are
defined:

• Background characterization describes background traffic used in an
experiment.

• Anomaly characterization describes how anomalous traffic is generated.

• Experiment characterization describes how an experiment is run.
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Figure 3.10: Influence of characterizations on dataset ac-
quisition

• Scenario characterization describes a dataset obtained from an exper-
iment. (More than one dataset may be obtained from a single experi-
mental run.)

• Detector characterization describes the type and configuration of an
AD engine.

• Result characterization identifies the evaluation of an AD engine against
a dataset.

Dataset acquisition is influenced by most of the characterizations, as
shown in Figure. 3.10. Each experiment generates two datasets, so the ex-
periment’s characterization is incorporated into the datasets’ distinct char-
acterizations.

AD evaluation is influenced directly by detector and scenario charac-
terizations, as shown in Figure. 3.11. Scenario characterization selects the
dataset, and detector characterization selects the AD type and its configura-
tion. Together, they characterize the result.

3.2.14 Background Characterization

A background characterization defines how background traffic is generated
during an experimental run, including the initial deployment of VMs and
services in the testbed. Following are the background characterizations:



Chapter 3. Impact of Live VM Migration on Anomaly Detection 54

Figure 3.11: Influence of characterizations on evaluation

BC0 Five VMs run identical HTTP servers. Three run on one physical host,
and two on the other. A host external to the VM infrastructure runs
HTTP clients repeatedly connecting to each VM, two per VM. These
clients and servers run for at least the duration of the experimental
run.

3.2.15 Anomaly Characterization

An anomaly characterization characterizes the configuration of the software
used to generate anomalous traffic during an experimental run, and consists
of the following characteristics:

Anomaly type Possible types are no anomaly (NA), portscan (PS), net-
work scan (NS) and Denial-of-Service (DoS). There are many other
types of anomalies, but for this work it is limited to these three. These
anomalies were picked as they are highly related with modern chal-
lenges face by critical services which are worms and attacks. Portscan
is often used to probe a target VM and discover which ports are open.
If attacker find a vulnerable service running on an open port, He can
attempt to compromise the VM by exploiting some vulnerability. Net-
work scans are typically used as propagation mechanisms by worms by
using some exploit to gain access to new VM and then infect them.
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For portscan and netscan, the nmap timing features are used to control
the intensity of the attacks. Nmap’s –max-rate and –min-rate options
allow us to specify the rate. For high intensity, nmap dynamic timing
options does a pretty good job to find appropriate rate to scan, e.g.,
when –min–rate option is given Nmap will do its best to send packets
as fast as it can. For low intensity, the limit of –max–rate is set to 0.3
which means sending not more than 3 packets every 10 seconds.

For DoS, the attack intensity is controlled by setting thread limit in
LOIC and number of machines running attack instance. For low in-
tensity, attack was carried out using single machine with 54 threads,
whereas for high attack intensity, 2 machines were used with 84 threads
each.

Anomaly intensity Intensity varies with anomaly type, but for each type,
it is defined as low (AL), and high (AH), as shown in Table 3.1.

Anomaly type Low intensity High intensity
Portscan (PS) nmap with a rate of 0.3 nmap with a rate of de-

fault/maximum
Networkscan (NS) nmap with a rate of 0.3 nmap with a rate of de-

fault/maximum
Denial-of-service (DoS) single client with 54

threads
2 clients with 84
threads each

Table 3.1: Intensities of tested anomalies

3.2.16 Experiment Characterization

An experiment characterization characterizes an experimental run, and con-
sists of the following characteristics:

Background characterization An experimental run involves background
traffic.

Anomaly characterization An experimental run usually involves anoma-
lous traffic being added the background traffic.

Migration intensity M0 is defined as absence of migration, M1 as migra-
tion of one host, and M2 as migration of two hosts.

Migration-anomaly overlap The migration happens either during the nor-
mal period (NM; Figure. 3.13a) or during the anomalous period (AM;
Figure. 3.13b).

Migrant-targettedness MT0 indicates that the anomaly is targeted only
at VMs that do not migrate during the experimental run. Figure. 3.14a
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Figure 3.12: Legend for depictions of anomaly/migration
interaction

and Figure. 3.14b show the interaction of MT0 with NM and AM re-
spectively.

MT1 indicates that the anomaly targets at least one VM that migrates.
Figure. 3.15a and Figure. 3.15b show the interaction of MT1 with NM
and AM respectively.

This option is absent when the anomaly type targets all VMs.

(The legend for the aforementioned figures is given in Figure. 3.12.)

(a) Depiction of migration during nor-
mal period, with anomaly directed at

network (NM)

(b) Depiction of migration during
anomalous period, with anomaly di-

rected at network (AM)

Figure 3.13: Illustration of migration-anomaly overlap.

For example, BC0-PS-AL-M1-AM identifies an experimental run involv-
ing several HTTP servers and clients generating background traffic (BC0), a
low-intensity (AL) portscan (PS), and a migration of one VM (M1) during
the scan (AM).

3.2.17 Scenario Characterization

A scenario characterization characterizes a dataset, including one of the
traces obtained from an experimental run, plus its ground truth. It con-
sists of the following characteristics:
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(a) Depiction of migration during nor-
mal period, with anomaly directed at

static host (NM-MT0)

(b) Depiction of migration during
anomalous period, with anomaly di-

rected at static host (AM-MT0)

Figure 3.14: Illustration of migration-targettedness
(MT0).

(a) Depiction of migration during nor-
mal period, with anomaly directed at mi-

grating host (NM-MT1)

(b) Depiction of migration during
anomalous period, with anomaly di-
rected at migrating host (AM-MT1)

Figure 3.15: Illustration of migration-targettedness
(MT1).

Experiment characterization Each dataset (trace plus ground truth) is
identified by the experiment which generated it.

Migration direction The trace is obtained from either the physical host
from which VMs migrated (outward migration, denoted by MDout), or
the other host which received the VMs (inward migration, MDin).

For example, BC0-PS-AL-M1-AM-MDin identifies the trace taken on the
interface of the physical host receiving the migrating VM (MDin), during
the experimental run involving several HTTP servers and clients generating
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background traffic (BC0), a low-intensity (AL) portscan (PS), and a mi-
gration of one VM (M1) during the scan (AM). When related datasets are
combined, some elements may be missing, e.g., BC0-PS-AL-M1 combines
AM/NM and MDin/MDout datasets.

Migrant-targettedness (part of experiment characterization) may affect
ground truth. If the anomaly is targeted towards a VM that migrates during
the anomaly, the ground truth on the source host (MDout) goes from true to
false after the migration, while it goes from false to true on the destination
host (MDin). In other words, ground truth could be different in MDout and
MDin if MT1 applies.

3.2.18 Detector Characterization

A detector characterization specifies the selection and configuration of an AD
technique. It includes the technique type, and (for example) any pre-selected
thresholds used to configure it. The following detector characterizations have
been defined (based on techniques described in Section 3.2.1):

PCA Principal Component Analysis (PCA) using Singular Value Decom-
position (SVD)

KM K-means with k = 2, in supervised mode

NB Naïve-Bayesian in supervised mode, where random data was used for
training.

EMGM Unsupervised mode

3.2.19 Result Characterization

A result characterization characterizes an output from the evaluator. It con-
sists of the following characteristics:

Detector characterization This is one of the inputs to the evaluator, and
so characterizes the results.

Scenario characterization This identifies the other input to the evaluator,
so it also characterizes the results.

A result characterization is expressed as the concatenation of its com-
ponents. For example, BC0-PS-AL-M1-AM-MDin-PCA identifies the re-
sults obtained by passing dataset BC0-PS-AL-M1-AM-MDin through PCA.
When related datasets are combined, some elements may be missing, e.g.,
BC0-PS-AL-M1-PCA combines AM/NM and MDin/MDout datasets, before
submission to PCA.
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3.3 Results

For groups of related experiments, a combined dataset is prepared, starting
with four traces corresponding to a particular anomaly characterization, e.g.
high-intensity host port scan (PS-AH) over regular traffic (BC0). (For some
anomaly types, there is also distinction between an anomaly targeted only at
migrating VMs (MT1), and an anomaly targeted only at static VMs (MT0).)
In two traces, migration of one VM (M1) occurs during the anomaly (AM),
and during the normal period (NM). Orthogonally, two traces show inward
migration (MDin) and two outward (MDout).

Each trace is converted into an 8-dimensional feature-vector table with
1-second bins, and each bin is labelled with ground truth (GT) and instan-
taneous migration intensity (IMI). The tables are then concatenated in the
order AM-MDin, AM-MDout, NM-MDin, NM-MDout, to yield a single 8D
table with additional GT/IMI labels. For each experiment, such a combined
dataset is chosen, and submitted to a particular AD engine, e.g. PCA.

This section only presents and discusses the performance of two AD tech-
niques PCA and K-means for attack scenarios DoS and NS under migration.
Number of experiments were carried out on various state-of-the-art detection
techniques by varying the type of and intensity of anomalies, and examining
the live VM migration impact. These results are presented in Appendix A.

Submitting each of the four 40 minutes datasets through the evaluation
process produces one ASG and two ROCs, one including the effects of mi-
gration, and one without. By comparing these ROCs, it was possible to
assess the effect of migration on the AD technique that produced the table
in the context of detecting the anomaly used to produce the traces that were
submitted to the detector.

For illustration, two Anomaly score graphs (ASG) are presented here.
Figure. 3.18a and Figure. 3.18b show some typical ASG obtained by using
K-means for netscan and PCA for DoS respectively. High scores occurring
within pink regions in each ASG plot indicate that each type of attack was
successfully detected, i.e., these would be regarded as true positives. How-
ever, there are also high-scoring bins when only migration occurred (the green
zones with no surrounding pink, at around bins 1350 and 1950), which would
be regarded as false positives.

From the experimental runs it was observed that the presence of migration
degrades the detection performance of both detectors for both the volume-
based (DoS) and non-volume-based (NS) attack types.

Given the ROC curve outputs for K-means under netscan and DoS at-
tack scenarios depicted at Figure. 3.16a and Figure. 3.16b respectively, it
was noticed that the K-means method is sensitive to the chosen anomaly
intensity and type. Also, in some instances its performance degrades even
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(a) ROC for netscan using K-means
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Figure 3.16: ROC for attacks using K-means

more while live migration occurs. However, for a volume-based attack such
as DoS, K-means performs better in detecting both low and high intensity
attacks but still its performance is negatively affected during migration. In
particular, it can be observed that for low-intensity netscan, the true positive
rate (TPR) is dropped by 35% in the event of a migration. In contrast under
high attack intensity, the 65% TPR is achieved in face of migration with less
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(a) ROC for netscan using PCA

False positive rate
0 0.2 0.4 0.6 0.8 1

T
ru

e 
po

si
tiv

e 
ra

te

0

0.2

0.4

0.6

0.8

1
Without migration With migration

Attack
intensity
low (AL)

Attack
intensity
high (AH)

(b) ROC for DoS using PCA

Figure 3.17: ROC for DoS using PCA

than 10% false positive rates (FPR). Figure. 3.16b quantifies the effect of
migration for volume-based attack (DoS), and it can be seen that more than
80% of the TPR is achieved with and without migration. There is a 5% rise
of FPR when migration is introduced, which is acceptably small. In parallel,
it can be seen in Figure. 3.17a that almost 80% of TPR is achieved under
high-intensity netscan with and without migration for the PCA approach.
Therefore, it is concluded that migration has considerably less effect under
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Figure 3.18: Anomaly score graphs using K-means & PCA

high-intensity netscan on PCA. However, for the same attack type under low-
intensity, the migration affect is more visible. In particular, the migration
process impacts the performance by 30% when TPR reaches just about 20%
yielding unacceptable number of false positives. For DoS, the PCA performs
better comparatively for both attack types and is less affected under migra-
tion. As evidenced in Figure. 3.17b the FPR rate is less than 10% for both
high and low intensities for more than 80% of the TPR. Finally, the thesis
argue that the detection sensitivity as evidenced by the ROC curves is truly
affected by migration. This can also be illustrated by Figure. 3.19, where the
changing behaviour of features’ data points are illustrated. In more detail,
Figure. 3.19a and Figure. 3.19b show the effect of the first three features
(packet size, byte size and active flows) using scatter plots. Clearly, the clus-
ters have dispersed due to the change on the feature distributions caused
by migration, thus, new test data would adopt different distances from the
pre-defined cluster centroids, making detection accuracy to vary.
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Figure 3.19: Effect on clustering under migration where
blue and red clusters represent normal and anomalous class

respectively.

Obviously, a different number of clusters may result in better clusters,
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e.g., if the migration already shows distinct periods of very low and very
high traffic volume under normal conditions. However, the determination
of an optimum number of clusters based on a cluster evaluation criterion
is beyond the scope of this work. The results show that, under migration,
the probability that a selected instance will be put in the correct cluster
has decreased more. These results are similar to those obtained using PCA,
indicating that VM migration makes the use of this form of AD technique
unreliable for deployment of high assurance services. As expected, similar be-
haviour is observed for other scenarios (see Appendix A) which indicates that
VM live migration affects the performance of several off-the-shelf detection
techniques.

3.3.1 Analysis

Scenario PCA KM NB EMGM
PS-AH worse similar similar worse

TPR > 50%

PS-AL worse
TPR > 45%

worse
TPR > 40%;
better other-
wise

similar similar

NS-AH slightly bet-
ter

slightly worse similar similar

NS-AL slightly bet-
ter

better better better

DoS-AL-MT0 similar inconclusive mostly better inconclusive
DoS-AH-MT0 inconclusive better

TPR < 88%
inconclusive similar

DoS-AL-MT1 slightly worse
TPR > 80%

similar much better much better

DoS-AH-MT1 slightly worse
TPR > 50%

inconclusive much better inconclusive

Table 3.2: Interpretation of ROCs for migration effect

Table 3.2 informally summarizes the change in performance of each detec-
tor against each scenario when faced with migration, based on interpretation
of ROC. NB appears to be unhindered by the presence of migration, while
EMGM is only significantly affected by PS-AH. PCA performs worse under
PS and when the migrating node is under DoS.

Detection of PS rarely improves under migration, while a low-intensity
NS is detected better by all detectors.
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3.4 Summary

The number of experiments were conducted by varying migration and attack
intensity, and examine the affect of migration. Results from the experiments
shows that detection rate changes significantly with respect to higher/lower
anomaly intensity. Hence, it can be concluded that migration affects the
anomaly detection accuracy in a cloud environment. However, under some
low intensities of attack migration can be classified as an anomaly. Such
results show that virtual node migration has a higher impact on anomaly
detection accuracy that results with higher anomaly intensity.

The choice of k and the choice of normalization technique are yet more
variables to consider with these methods. Bin size should be adequate to
provide enough data in each bin to support a given sample rate and a given
rate of traffic. Longer traces are important so that an outlying anomaly has
less effect on the normal subspace.

The experiments suffer from some flaws which could be improved. First,
the testbed does not have separate business and management networks, so
migration traffic naturally interferes with business traffic (affecting the re-
sults), and high-bandwidth attacks interfere with migration traffic (poten-
tially preventing it, and the acquisition of a meaningful trace). It is also
biased to one of the physical hosts, which keeps VM images on its own
disc, while the other must mount it to access them, creating more business-
management traffic interference.

In any dataset, most bins do not involve migration. So, when computing
ROCs with IMI = 1, most bins are eliminated, reducing the statistical
significance of the remainder. This could be solved by taking obtaining many
more traces for the same scenario.
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Chapter 4

Cloud Resilience Management

In cases where cloud computing is being used to support Critical Infrastruc-
ture (CI) services, it is particularly important for clouds and cloud-based ser-
vices to be resilient, i.e., they are able to operate correctly and continuously
even in the presence of challenges. The cloud resilience can be informally
defined as the ability of a cloud to provide an acceptable level of service
in light of challenges. A target level of service can be defined in a Service
Level Agreement (SLA) using resilience metrics, such as availability and ro-
bustness metrics. The resilience is intended to be a fundamental property of
Cloud service provisioning platforms. However, a number of recent outages
of cloud data centre demonstrated that cloud resilience are not as resilient.
The ENISA report on the security and resilience of cloud suggests: "the avail-
ability of a cloud service is often dependent on the network used to access it
and measure should be taken to ensure the resilience of access networks" [30].
Currently there is little understanding about how to provide a resilient cloud
infrastructure that can address challenges in a coordinated manner. To do
this, a number of resilience-supporting mechanisms are needed at various lo-
cations and levels (tenant1 and physical infrastructures), such as provisioning
of redundant components, traffic capturing, anomaly detection and classifi-
cation, and network reconfiguration. However, it is non-trivial to co-ordinate
such mechanisms for several reasons:

• They might work on different time-scales. For example, the deployment
function of cloud orchestration might foresee the need for scalable com-
ponents and react to load changes on a longer timescale by scaling out
a service, whereas reacting to an anomaly requires short-term decision-
making to mitigate a potential attack.

• Distinct mechanisms might also have different objectives, and attempt
to perform conflicting actions. A reaction to an anomaly might be to
migrate VMs away from an affected node, but these migrations might
conflict with standing policies to keep some VMs apart (because they
belong to rival tenants) or together (to reduce latency).

1In the NIST cloud computing reference architecture [24] the term tenant is used for
consumers who use the cloud based services.
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• Reconfiguration of the mechanisms could unexpectedly produce such
conflicts and discrepancies.

The related work on resilience is highlighted in Section 2.3.3. The current
approaches to ensuring resilience of cloud services do not take a holistic end-
to-end approach by considering both networking and system concerns, and
how various mechanisms can be applied collectively to mitigate challenges.
This can lead to challenges that can severely affect the overall availability of
a service.

This chapter introduce a Cloud Resilience Management Framework (CRMF),
which has the goal to facilitate the interactions of components that imple-
ment resilience mechanisms, as well as the (re-)configuration of such a system.
The components of this framework aim to detect challenges and events in the
system. The challenges could be Denial-of-Service, operational overload, mis-
configuration, cyber-attacks, and to react to these events by reconfiguration,
in order to maintain the operation of the system and, therefore, the critical
services running on it. In order to confront these challenges, a strategy is
defined which relies on a number of mechanisms that must co-operatively en-
force the resilience of the network, including a rate limiter, and an anomaly
classifier. The policies are used to configure and coordinate the interactions
between these mechanisms. The use of policies to define configurations of
mechanisms that can ensure the resilience of networked systems has been
previously advocated in [120, 121, 89, 6]. By having a resilience strategy
implemented with the aid of policies, in contrast to having it hard-coded,
one can easily change it by adding or removing policies, thereby permit-
ting the modification of the strategy during run-time. Policies sit idle until
their events occur and their conditions are met. Their actions may cause re-
configuration of the system, including the deployment or activation of new
components, which can in turn generate new events, and trigger further poli-
cies. This continuous process will constitute a policy-driven resilience feed-
back control-loop, which allows (for example) an initial network anomaly
to activate closer inspection of traffic, and eventually reconfiguration of a
firewall, automatically handling a challenge to the system, and without hav-
ing expensive mechanisms (such as the closer traffic inspection) active at all
times (see Chapter 2 for more details).

It is of paramount importance that cloud administrators are able to ef-
fectively manage the underlying technologies which enable configurations,
elasticity, dynamic invocation of services, and monitoring activities such that
security and resilience requirements of the critical service users and providers
are met. The set of policies defining the possible reconfiguration actions is
not fixed, and different policies may be loaded or unloaded over time to re-
flect better resilience practices or a better understanding of the challenges.
The expression of resilience mechanisms and strategies as policies allows new
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policies to be studied and analysed off-line before deployment, to determine
correct interaction with existing policies.

This chapter has the following structure. Section 4.1 presents the re-
silience management framework and Section 4.2 provides more specific de-
tails about its components. Section 4.3 evaluates the framework qualitatively
against the considered use case. Section 4.4 concludes the chapter.

4.1 Cloud Resilience Management Framework

The Cloud Resilience Management Framework (CRMF) defines several au-
tomatic functions of an administrative cloud domain, and at various levels
of the architecture, and how they interact to make the domain resilient to
unplanned challenges. The CRMF consists of two main functions, the De-
ployment Function (DF) and Resilience Manager (RM). The Deployment
Function is concerned with supplying the Virtual or Cloud Infrastructure
Manager with configurations describing the creation and deployment of vir-
tual machines for instantiating a service. It ensures that virtual instances
are created and destroyed according to service requirements (including re-
silience to high load). If high-availability service components needing (for
example) backup VMs are defined, it deploys redundant instances for higher
availability and places them so that the given levels of availability of the
service components are met. DF also ensures that the necessary components
of resilience management (data collectors, anomaly detectors, etc.) are cor-
rectly instantiated with the virtual instances. On the one hand, DF acts as
controller for RMs by placing virtual machines in parts of the infrastructure
supervised by an RM instance. Alternatively, it can also provide input to
the RMs in terms of types of instances started and their respective locations,
which may allow detection mechanisms to work. Details of the deployment
function are presented in Section 4.2.1 below.

Each Resilience Manager (RM) is composed of three software compo-
nents, which are shown in Figure. 4.2. (A in the figure represents a single
hardware node in the cloud, and B represents the RM, with the aforemen-
tioned software engines residing within it.) For simplicity, only three nodes
are shown and the network links that connect them have been omitted. The
anomalies of particular interest are those caused by any activity associated
with anomalous behaviour in cloud such as malware on cloud VMs or Denial-
of-service attack on host. The software components within each RMs are:
The Anomaly Detection Engine (ADE), Policy Engine (PE) and the Coor-
dination and Organization Engine (COE). The RM on each physical node
performs local detection based on features gathered which is done using sub-
component called Data Collection Engine (DCE) from its nodes’ VM and
its local network view; this is handled by the System Analysis Engine (SAE)
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Figure 4.2: An overview of the CRMF architecture

and Network Analysis Engine (NAE) components respectively. The PE com-
ponent is in charge of remediation and recovery actions based on the output
from the analysis engines (i.e. NAE and SAE), which is conveyed to it by
the COE. Finally, the COE component coordinates and disseminates infor-
mation between other instances and the components within its own node.
It is ultimately in charge of the maintenance of the connections between its
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Figure 4.3: The flow of information and hierarchy of en-
gines within a CRMF

RM’s peers and embodying the self-organizing aspect of the overall system.
The COE acts autonomously to control the other components within its RM
while at the same communicating with its RM peers.The dashed arrow in
Figure. 4.3 indicates communication between the local COE and the remote
COEs of each peer RM. In practice, and as depicted in Figure. 4.2, there are
various system/network interfaces that act as information dispatch points
in order to allow efficient event dissemination [90]. In addition to physical
node level resilience, the CRMF is capable of gathering and analysing data
at the network component level through the deployment of network RMs as
shown by C in Figure. 4.2. The DCE can also gather features from all traffic
passing through ingress/egress points of the local network (D in Figure. 4.2).
More detail about individual components will follow in subsequent sections
below.

4.2 CRMF Component Details

Based on the presented CRMF design and the D2R2+DR resilience strategy
described in Chapter 2, Section 2.3.1, illustrates how the cloud infrastructure
could be enhanced to cope with challenges.
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4.2.1 Deployment Function

The deployment function concerns itself with supplying the virtual or cloud
Infrastructure manager with configurations describing the creation and de-
ployment of virtual machines for the critical infrastructure. Its task is to
translate high-level service descriptions and SLAs into automatically deploy-
able descriptions, such as Heat templates in the OpenStack environment. It
is therefore a part of a Tenant Infrastructure Management System (TIMS),
being located between the cloud user and the Cloud Infrastructure Opera-
tor, Figure. 2.6. In particular, a deployment function is needed that places
instances of virtual resources according to the resilience and performance
requirements of the service user. For example, the placement of virtual ma-
chines can be done in cooperation with the anomaly detection component
using Heat templates in the OpenStack environment, towards at least two
ends: a) to place critical instances in AD-supervised parts of the infras-
tructure, and b) to provide input to the AD in terms of types of instances
started and their respective locations, which may allow to conclude standard
traffic and behavioural patterns of and between these instances. The afore-
mentioned functionality can be separated into the following sub-components
(Figure. 4.4), each with a specific task (see also Chapter 6):

Figure 4.4: Internal structure of the orchestration compo-
nent [126]
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SLA Parser

This subcomponent is responsible for parsing a user description of their ser-
vice, i.e., the needed service components and their relation/connectivity, as
well as the required performance and availability.

Placement Function

The requirements extracted by the SLA parser translate into a set of virtual
machines that need to be deployed in the physical infrastructure. The place-
ment function maps these instances to the offered infrastructure of the cloud
infrastructure provider.

Deployment Template Generator

Finally, the mapping must be provided in a form that is processable by the
cloud management system. This means generating a deployment, e.g., a Heat
template, using as input the placement and the additional service description
parts generated by the SLA parser.

4.2.2 Anomaly Detection Engine

The anomaly detection engine is one of the core components of CRMF and
comprises of three sub-components: Data Collection Engine (DCE), Software
Analysis Engine (SAE) and Network Analysis Engine (NAE). The DCE mon-
itors and collects data from each VM and host for various metrics in order to
produce a feature vector for subsequent detection engines (i.e NAE and SAE).
System and network level engines identify potential symptoms of anomalous
behaviour without performing a lot of computation. They denote the pres-
ence of anomalies, but merely suggest the possibility of one. Further analysis
would be needed to confirm if anomaly is present and if so, classify it. The
initial event is generated by looking at each metric for system and network
level in isolation. Hence, an event generated indicates that either host or
VM is experiencing anomaly. A broader correlation between metrics can be
very expensive as the number of such comparisons grows exponentially with
the number of VMs and the monitored metrics.

A Fine Grain Analysis (FGA) is then required that uses classification
algorithms such as AutoClass [103] to identify the cause of anomalies and
localize them. The idea is to generate and update inference rules, in a fully
unsupervised manner, creating different classes of anomalies being detected
in sucha a ways that it allows to update fuzzy inference rules autonomously
for efficient localization of anomalies [83, 103]. This analysis of the monitored
data is required to further understand anomalous behaviour and to narrow
down the scope of remediation. It can also generate an alert in case the
anomaly can not be classified for which manual intervention is required.
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Below section give a brief overview of sub-components of anomaly detection
engine.

Data Collection Engine

An essential goal for resolving the resilience puzzle is what information should
be provided and where the information should come from. Therefore, the
DCE is designed in such a way that it can collect and process various rele-
vant metrics pertaining to system (such as CPU, memory etc.) and network
(such as number of packets, number of bytes and throughput) for every VM
and physical host. All metrics are collected at periodic intervals with a config-
urable monitoring interval parameter. It has sub-components which perform
normalization and smoothing of data and produce feature vectors which are
a sequence of values over a fixed interval of time and form the basic input
into subsequent detection engines (i.e, NAE and SAE).

The first stage of online detection is data collection which is composed of
a set of scripts providing feature extraction and normalisation, which within
the SAE is achieved through the use of Volatility2 in conjunction with lib-
VMI3. At 3 second intervals the Volatility tool is invoked with the custom
plug-in that crawls VM memory for every resident process structure. From
each process a number of raw features are extracted which include:

• the current size of virtual memory belonging to each process

• the peak virtual size (i.e. the requested memory allocation) of each
process

• the number of threads belonging to each process

• the total number of handles belonging to each process (which includes
process threads, file handles, registry entries, etc.)

The raw features are per process, which is not useful for each sample, or
snapshot, as a single feature vector. Therefore, the raw features are used to
build meta-features which include: the mean, variance and standard devia-
tion of each feature across all processes. The result of feature extraction is
a feature vector of the form x = (x1, x2, . . . , xn), where n = 12 due to the
three groups of four meta-features.

At the network level the NAE collects traffic data through tcpdump4 from
each host’s network at bridge interface (br0). This traffic is then passed onto
a Summary Extraction Script which is based on libpcap5 and converts the
traffic into normalised statistical properties as per packet basis. In order

2Volatility framework:https://code.google.com/p/volatility/
3libVMI: https://code.google.com/p/vmitools/
4tcpdump/libpcap: http://www.tcpdump.org/
5libpcap API:http://www.tcpdump.org/
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to capture the dynamics of varying attack types, both the volume-based
features (e.g., count of bytes and packets) and distribution-based features
(computed as the Shannon entropy of all values observed in the bin, as used
in many seminal pieces of work [78]) are extracted. The resulting feature
vector therefore has dimension n = 8 and contains:

• Number of packets

• Number of bytes

• Number of active flows in each bin

• Entropy of source IP address distribution

• Entropy of destination IP address distribution

• Entropy of source port distribution

• Entropy of destination port distribution

• Entropy of packet size distribution

Figure. 4.5 below shows the overview of data collection engine.

Deployment
function

provision
resourcesResilience metrics

Summary extraction

Feature selection

Pre/post processing
(normalization)

DCE

Feature vector/Time series

instructions to 
monitor

monitoring

resource cluster

VMs VMs VMs

Figure 4.5: Overview of the Data Collection Engine

Network Analysis Engine

The purpose of the NAE is to detect anomalous traffic at the physical node
level of the cloud. This is achieved by modelling normal traffic patterns
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and identifying anomalies through online/offline monitoring of traffic on the
network interfaces of the cloud node with aid of DCE. The NAE provides a
reference implementation of different anomaly detection techniques for offline
and online analysis. The one-class Support Vector Machine (SVM) algorithm
is chosen for the implementation of SAE and the Recursive Density Estima-
tion (RDE) [12] technique is used for the implementation of NAE.

System Analysis Engine

The System Analysis Engine (SAE) is designed to detect anomalies through
the observation of VM properties. The SAE builds a model of normal VM
operation and detects deviation from the normal through selected anomaly
detection technique.

Using the toolchain and experimental setup described in Chapter 3, the
detection aspects of the system and network wide unified resilience architec-
ture has been tested under malware scenario. The Kelihos (Trojan.Kelihos-5)
trojan is chosen to test the performance of SAE and NAE components. Since
the trojan isWin.32 binary, which allows it to be executed on the target VM.
Upon execution, the malware spawns many child process and subsequently
exits from its main process. This is likely an obfuscation method to avoid
detection, but has the effect of skewing various features (system and net-
work) resulting in an anomaly. Based on the features obtained from DCE
the system and network features are aggregated into a single dataset. This
dataset is then applied to the detector (implementing PCA technique).

In order to validate if features provided by DCE can also apply in the
elastic scenario of cloud, the VM migration is performed during experiments.
The results indicated that malware is spread and re-initiated when intra or
inter-cloud VM/Service migration is performed. For the experiment pre-
sented in Figure. 4.6, each VM runs Apache HTTPd. The client host runs
custom scripts to initiate random HTTP requests from the VMs. The SAE
acquires VM memory at the hypervisor level using introspection to collect
raw-system-features such as process and memory usage. For 20 minutes run,
web traffic occurs continuously at a fixed rate, and so generate the system-
level (normal) activity. At 9 minutes into a run, Kelihos is injected, to
generate malicious activity in system. At exactly 10 minutes, a migration of
infected VM is initiated. A run therefore generate two 10 minutes system-
level datasets (features) as result of migration, the trace from the node of
the arriving VM and from the node of the departing VM.

Each dataset generated is divided into 3-second bins, and each bin is
converted into a (200 × 12) and (200 × 8) system and network level feature
vectors per node respectively. This yielded 400×12 and 400×8 feature vector
for outward and inward node. The combined feature vector is submitted
to PCA based detector to obtain the k-subspace which corresponds to the



Chapter 4. Cloud Resilience Management 75

normal behaviour of the traffic, and spans from pc1, through pck, whereas the
remaining subspace (i.e, pck+1 through pcm) maps the anomalous behaviour
with respect to the variance of the dataset. Subsequently, the magnitude of
the projection of data point xi is computed into the anomalous subspace to
quantify its malicious behaviour which is used to produce a Anomaly Score
Graph (ASG). ASG is a time-series representation which summarizes the
anomalous score of each bin in the trace indicating how anomalous each time
bin is with respect to others.
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Figure 4.6: Results of detection for Kelihos using system
and network wide features

4.2.3 Policy Engine

The central component of the CRMF is the Policy Engine (PE) as shown in
Figure 4.7, which makes use of a policy-based decision, to activate manage-
ment actions on the Cloud infrastructure at both the VM and host level, as
well as functionality exposed by existing network elements, such as routers
and switches. The policy engine is using IND2UCE6 which is a policy enforce-
ment framework based on the ECA principle. In the CRMF context, output
from the anomaly detection (AD) or from the fine grain analysis (FGA) is
used as a trigger event for the policies that can perform remediation actions.
The output depends on the detection algorithm in use by the components,
but is ultimately an indication of the current health of the VMs and the host
on which the VM is residing and takes the form of an event. Depending

6http://www.iese.fraunhofer.de/en/competencies/security/usage_control/
philosophy_uc.html

http://www.iese.fraunhofer.de/en/competencies/security/usage_control/philosophy_uc.html
http://www.iese.fraunhofer.de/en/competencies/security/usage_control/philosophy_uc.html
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on the deployed policy mechanisms, remediation actions can be performed
in the system such as migrating virtual machines to a dedicated host in the
cloud environment (sandboxing) or starting another instance of the virtual
machine to compensate overload.

An incremental approach is proposed to challenge identification, one of
the outputs of situational comprehension, whereby an evolving understanding
of the nature of a challenge is developed. The aim is to enable early remedia-
tion to protect Cloud Infrastructure from potential collapse, using imperfect
information, and subsequently use more-specific remediation activities as a
more detailed picture is constructed, i.e., as comprehension improves. This
approach is similar to that proposed by [47]. However, the proposed approach
introduce greater flexibility and re-usability of identification strategies by us-
ing policies to orchestrate the identification process. When a challenge has
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Figure 4.7: Overview of the Policy Engine

been identified, or an hypothesis about the nature of an ongoing challenge
is reached, the anomaly detection engine generates an alert. As an example
of how the architecture can be applied, consider a high traffic volume chal-
lenge, such as a Distributed Denial of Service (DDoS) attack or a flash crowd
event. Initially, NAE generates an alarm as soon as the volume of traffic goes
over a given threshold. On detection of high traffic volumes, the link on the
host could be rate limited, e.g., by randomly dropping packets, to protect
the challenge target. A Fine Grain Analysis (FGA) engine could then be in-
voked to determine the target of the challenge, leading to more specific rate
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limiting of traffic to this destination. Finally, actions can then be enforced
using policy enforcement points such as resulting in flows being blocked if
they are deemed to be malicious, or re-directed or no longer subjected to
rate-limiting if they are seen to be benign.

Below Listing 4.1, lists a few example obligation policies that can be
used to reconfigure resilience services in response to events generated by
monitoring mechanisms, NAE and FGA. This example highlights the use of
refined policies to respond to challenges such as a Denial of service (DoS)
attack targeted at the cloud infrastructure layer. In order to confront these
challenges, resilience mechanisms can be used that must co-ordinate and
co-operate to ensure resilience. Clearly, it is important that an attack be
mitigated rapidly to reduce the impact on the other tenants and protect the
infrastructure. Such mechanisms include but are not limited to anomaly
detector, flow classifier, resilience metrics reporter, malware differentiators
etc.

4.3 Qualitative Evaluation

Below a use-case is presented which describes the type of Cloud infrastructure
and services CRMF is expected to support. A scenario is considered of
a critical infrastructure provider, in this example a traffic control centre,
that in the past has not used any cloud service and stores all information
on local servers, where also the corresponding services and applications are
run. The managers of the infrastructure would like to move, as a first step,
some data to the cloud, they consider that it can save some operational and
maintenance costs, but they are concerned about security, availability once
data has been moved to the cloud, the occurrence of any malfunction or
undesired behaviour in the network may cause failures in the system. This is
the basis for a aforementioned test-case in order to evaluate the CRMF and
how different components interact to provide overall resilience.

Service of traffic management system is not available due to
Denial-of-Service attack is a test-case focuses on the “cloudification” of
the traffic control system. The system receives traffic information from sen-
sors (e.g. how many cars pass a specific junction in a given time span) and
analyses it, for example to control traffic lights in order to direct the traffic
flow efficiently (see [25] for details). The Traffic Management System (TMS)
takes advantage of information that can be provided by roadside traffic sen-
sors. The traffic control centre uses available traffic information to develop
optimal traffic control strategies addressing traffic needs at all single inter-
sections, a given corridor, or throughout a given area.

The traffic forecasting system relies on several databases to predict what
will happen next, with regards to traffic flow in the city. Several kinds of
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on highUtilisation(link , VM_ID)
do FlowExporter enable(link , VM_ID) && sandBox (VM_ID ,

newLocation);

Flow exporter is disabled when link utilisation decreases (green
policy)

and VM will not be sandboxed for further analysis.

on lowUtilisation(link , VM_ID)
if (LocalManager.anomalyList isEmpty(link , VM_ID))

do FlowExporter disable(link , VM_ID);

Configuration policy for handling high risk alert
on highRisk (link , src , dst , VM_ID)

do
{

FlowExporter notify(highRisk(link , VM_ID));
LocalManager.anomalyList add(link , src , dst);

}

Configuration policy for handling high risk alert
on highRisk (link , src , dst , VM_ID)

if (LinkMonitor getUtilisation () >= 75%)
do RateLimiter limit(link , 60%);

Configure local manager for handling Fine grain analysis
on FGA_classification(flow , value , confidence , VM_ID)

if ((value == DDoS) && (confidence < 0.4))
do
{

Visualisation notify(alert(high));
RateLimiter limit(flow.src , flow.dest , x%);

}
if ((value == DDoS) && (confidence >= 0.4) && (confidence <=

0.8))
do
{

Visualisation notify(alert(high));
RateLimiter limit(flow.src , flow.dest , y%);

}
if ((value == DDoS) && (confidence > 0.8))

do
{

Visualisation notify(alert(high));
Firewall block(flow.src , flow.dest);

}

Configure local manager for handling low risk alert (recovery)
on lowRisk (link , src , dst)

if (( LocalManager.anomalyList remove(link , src , dst , VM_ID))
isEmpty(link))

do
{

FlowExporter notify(lowRisk(link , VM_ID));
RateLimiter limit(link , 100%);

}

Listing 4.1: Example obligation policies for resilience

data are processed, including historical and actual ones plus data coming
from simulations that traffic operators normally perform. The processed
data is stored in a traffic forecasting database that is hosted in the cloud.
A situation is considered in which parts of the databases that the system
uses for its traffic forecasting system are not processed. Due to malfunction
or misbehaviour such as DDoS attack on the database server data is not
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available, rendering the system unusable. The operators of the traffic control
system want to know where the malfunction or misbehaviour occurred: cloud
or central premises. Hence a focus lies on the usage of the resilience manage-
ment framework (specifically anomaly detection) to detect and recover the
system to its normal operation.

To demonstrate the feasibility of the proposed approach the results are
shown from an earlier simulated high traffic volume example as described
in [149] and slightly modified for the considered use-case. The deployment
function starts off by analysing the security requirements and instantiat-
ing VMs for traffic management and forecasting systems, and places critical
instances, such as the databases and the TMS, on machines that are super-
vised by anomaly detection. Moreover, it will deploy redundant instances
of such high-availability components at a sufficient degree of separation in
the physical infrastructure (the configuration of a load distribution entity or
active/backup server instances are application dependent and need to be pro-
vided by the service operator). Components that need to deal with varying
load can be deployed in a scalability group.

DCE starts collecting network (such as incoming ingress and egress links)
and system (VMs) data to create the feature vectors for NAE and SAE
respectively. Figure. 4.8 shows the onset of a DDoS attack on the ingress

Figure 4.8: Results from simulations that implement an
incremental detection and remediation approach to a DDoS

attack [149]

link of a host at approximately 40 seconds (1). The raising of an alarm by
a NAE is seen at 55 seconds (2), whereby deviation from normal behaviour
is detected in the form of an excess load of traffic. Shortly thereafter, the
effects of the initial rate limiting of the link by a rate limiter remedy can
be observed. The limiter is configured by coarse grain resilience policies as
described in Policy Engine (PE), to discard 70% of all incoming traffic in
order to protect traffic management servers and infrastructure.

At same time the PE initiates a fine grain analysis (FGA) which performs
classification to localise the anomalies. At 65 seconds (3), the FGA identifies
the destination IP address of the victim. This is achieved in this case by
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examining the destination address of each incoming packet, and raising an
event when one destination accounts for 60% of all packets. The rate limiter
is now reconfigured to drop 70% of the traffic destined for the victim only.
Some legitimate traffic that is not destined for the victim, which previously
was blocked, is now not filtered. Also, a classifier is initiated at (3) and
flow exporting from the ingress link has started. Hereafter, the FGA classi-
fies, receiving flow records from the flow exporter, attempts to identify the
specific attack flows. At 125 seconds (4), rate limiting is confined just to
the attack flow and legitimate traffic to the traffic management/forecasting
service continue. After 139 seconds (5), all the malicious traffic is blocked
bringing back the traffic management system to normal operational state.

4.4 Summary

The idea behind cloud computing has been around for several decades in
the form of utility computing. However, the lack of mature virtualization
originally prevented its growth. Recent advancements in virtualization have
created an environment for the deployment of cloud even for CI. Although
relatively new, a fair amount of work [88, 127] has been done in order to
examine current and future challenges for both users and providers of cloud
computing with respect to security and resilience.

This chapter introduces a Cloud Resilience Management Framework,
which has a goal to facilitate the interactions of components that implement
resilience mechanisms, as well as the (re-)configuration of such a system. The
components of this framework aim to detect challenges and events in the sys-
tem, such as an attack or a network overload, and to react to these events by
reconfiguration, in order to maintain the operation of the system and, there-
fore, the critical services running on it. Many of the decisions to react to
events are expressed as Event-Condition-Action (ECA) policies, which bind
the components and mechanisms together. Policies sit idle until their events
occur and their conditions are met. Their actions may cause re-configuration
of the system, include the deployment or activation of new components, which
can in turn generate new events, and trigger further policies. This continuous
process will constitute a policy-driven resilience feedback control-loop, which
allows (for example) an initial network anomaly to activate closer inspection
of traffic, and eventually reconfiguration of a firewall, automatically handling
a challenge to the system, and without having expensive mechanisms (such
as the closer traffic inspection) active at all times. The salient features of the
proposed cloud resilience management framework are detailed below.

• It is designed to be reactive and pro-active to challenges for fast detec-
tion and identification, preferably before challenges causes noticeable
degradation.
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• Modular design that allow to re-use resilience strategies. This is im-
perative in case there is failure of surrounding components.

• The components of framework are easy to integrate with each other to
allow complete flexibility and adaptability.

• Easy to modify or integrate as per security and resilience requirements.

• Provide easy integration with existing cloud management systems.

• CRMF provide functionality for efficient and effective management of
resilience where needed.

• Use of policies to realize overall resilience.

• Composed of various distributed components to provide overall re-
silience which is desirable in case of failure of individual components.
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Chapter 5

Anomaly Detection using Data
Density

Cloud environments are hugely popular because they offer a range of benefi-
cial properties, such as on-demand self-service, resource pooling, rapid elas-
ticity and measured service, using virtualization as an enabling base technol-
ogy [94]. However, they are susceptible to traditional challenges including
Denial-of-Service (DoS) attacks, malware and misconfiguration. In addition,
cloud properties can also exacerbate these challenges in both their detection
and impact, hence these challenges increase the management costs, and lead
to Service Level Agreement (SLA) violations [146] [23]. A recent study by
security-as-a-service provider Alert Logic, indicates that application attacks
aimed at cloud deployments grew 45% over the previous year (2014) [82].
Their research is based on an analysis of one billion events during the whole
of 2014 across more than 3000 of its customers.

Motivated predominantly by cost reduction, cloud environments are also
being used by sectors operating critical services, such as safety-critical op-
erations (e.g., Air Traffic Control networks), critical manufacturing services
(e.g., utility networks and industrial control systems), and critical real-time
services (e.g., transportation and surveillance systems) [71] [108] [5] [20].
For these critical infrastructures, there are stringent security and resilience
requirements, which are arguably higher than traditional Information Tech-
nology (IT) services because attacks on these high-assurance IT services that
support critical infrastructures could have severe implications. Consequently,
the detection of anomalies, which can signal attacks and challenges, is a vital
element of operations in clouds. The dynamic nature of cloud environments
and the diverse workload patterns of the applications they run impact the
detection ability of anomaly detection techniques [1]. Therefore, a technique
which allows the construction, accumulation, and self-learning of a dynam-
ically evolving information model of “normality”, and which can operate in
real time, would be of great value.

The previous work [128], investigated how intra-cloud live Virtual Ma-
chine (VM) migration affects state-of-the-art anomaly detection techniques,
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potentially making them unreliable for services running in cloud environ-
ments. In order to quantify the impact of VM migration on Anomaly De-
tection (AD) techniques, and to understand their computational complex-
ity, a toolchain is developed which provides reference implementation for
six detectors based on K-means1, PCA2, Wavelet3, GMM4, SVM5 and Naïve
Bayesian6 techniques. The results suggested that in some configurations chal-
lenge anomalies are missed and some configuration anomalies are wrongly
classified. Moreover, it is noticed that the computational complexity of these
techniques is high because they require complex statistical computations, as
well as the storage of the complete historical metrics to detect anomalous
patterns. Based on these results, the argument is made that there is a need
for robust, preferably real-time, anomaly detection for cloud environments
with high degree of accuracy where migration is recognized as normal.

There exist many techniques for anomaly detection in several disciplines,
and they have exhibited sufficient detection accuracy in a variety of scenar-
ios, as indicated in a comprehensive survey [33]. In the context of cloud
computing, a few anomaly detection techniques have been adopted and re-
defined [143, 142, 55, 14]. However, these approaches use complex statistical
measures, lack scalability, and often require prior knowledge of the behaviour
of relevant patterns, making them potentially unusable in a cloud-operational
context. Further, the detection techniques used in industry are threshold-
based [63] [137] [48] which usually require upper/lower threshold values which
comes from predictions on long-term historical data analysis or from prede-
fined performance knowledge. The main issue with such methods is that they
detect anomalies after they occur instead of noticing their imminent arrival.

In contrast, a proposed technique is lightweight and aims to address the
scalability needs of cloud infrastructure. It employs a data density-based
technique that can easily scale as metric volume grows because it does not
require storing of metrics. The density computation is done on distribution of
metrics rather than individual metric thresholds. In addition, there is no need
for prior knowledge about anomalous behaviour, so it operates unsupervised.
As a result, anomalies can be detected that are not well understood (i.e., there
are no prior models) or have not been experienced previously.

The importance of anomaly detection in cloud computing is due to anoma-
lies in data translating to important actionable information. For example, an
anomalous traffic pattern could indicate the request rate for VMs suddenly
increasing, which could eventually decrease service availability to authorized

1https://en.wikipedia.org/wiki/K-means_clustering
2https://en.wikipedia.org/wiki/Principal_component_analysis
3http://www.pybytes.com/pywavelets/regression/wp.html
4http://scikit-learn.org/stable/modules/mixture.html
5http://scikit-learn.org/stable/modules/svm.html
6http://scikit-learn.org/stable/modules/naive_bayes.html

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Principal_component_analysis
http://www.pybytes.com/pywavelets/regression/wp.html
http://scikit-learn.org/stable/modules/mixture.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/naive_bayes.html
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users. In general, anomaly detection is applied at various levels of cloud
computing, due to its native strength in identifying unknown attacks.

Wang et al. [141] proposed the EbAT system to allow the on-line anal-
ysis of multiple metrics obtained from system-level components (e.g., CPU
utilization on rack servers, memory utilization, read/write counts of the OS,
etc.). The system showed potential in detection accuracy and monitoring
scalability, but it was not evaluated in the context of adequately pragmatic
cloud scenarios. Guan et al. [58] and Garfinkel et al. [50] proposed multi-level
anomaly detection techniques to detect intrusions at different levels of a cloud
system. The techniques appear to be rather inflexible and the application of
those techniques in an operational context requires better clarification. Lee
et al. [81] proposed a multi-level approach, which provided fast detection of
anomalies discovered in the system logs of each guest OS. One of its disad-
vantages is the apparent lack of scalability, since it required increasingly more
resources under high system workload. Also, it is only specific to detection
in logging data.

Similarly, Dastjerdi et al. [41] proposed an approach based on mobile
agents for an intrusion detection system for cloud systems. However, scala-
bility appears to be an issue due to the high number of virtual machines that
are required to be attached to the agent. The authors in [105] instrumented
a real-time adaptive anomaly detection framework that was able to detect
anomalies through the analysis of runtime metrics using the traditional two-
class Support Vector Machine (SVM) algorithm. However, the main issue
raised by this study was that the formulation of the two-class SVM algorithm
suffered from the data imbalance problem, which affected the training phase,
and consequently led to several mis-classifications of newly tested anomalies.

PREPARE [134] and DAPA [73] are two recently proposed frameworks
for performance evaluation based on anomaly detection for virtualized envi-
ronments. Although, their main focus is to identify SLA violations. These
frameworks only address application-related issues which are manifested into
performance anomalies. However, none of these approaches focus on the im-
pact of elasticity of the cloud such as VM live migration and high volume of
data due to heterogeneity of the cloud. In this work an attempt is made to
propose a technique that can work under these challenges.

The remainder of this chapter is organized as follows: Section 5.1 details
the proposed technique for detecting anomalies. Section 5.2 presents an
evaluation of the proposed technique. Section 5.3 describes the outcomes of
the analysis and discusses the obtained results while Section 5.4 summarizes
the contributions.
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5.1 Proposed Technique

The proposed technique is based on the concept of data density introduced
in [12], which uses a non-parametric Cauchy function [84] that can be up-
dated recursively. Due to being non-parametric, only a very small amount of
data—only the mean of all data samples µk and the scalar product quantity
Σk calculated at the current moment in time k—needs to be stored in mem-
ory and updated [9]. This has significant implications in a cloud-operating
context since it allows theoretically an infinite amount of data (infinitely
large monitoring metrics) to be processed in near real time without having
to store the historical data itself.

Let all measurable physical variables form the vector x ∈ Rn be divided
into several clusters. Then, the local density dΛ of cluster Λ, based on Eu-
clidean distance, is defined as:

dΛ =
1

1 +
1

NΛ

NΛ∑
i=1

‖xk − xfΛ
i
‖2

(5.1)

where NΛ denotes the number of data samples associated with cluster
Λ. fΛ

i transforms i (identifying a vector contributing to the cluster) into
the domain of k (identifying a vector from the complete set). In the case
of anomaly detection, xk represents the feature vector with values for the
instant k. It can be shown, that this formula can be derived as an exact
quantity [10]:

Dk =
1

1 + ‖xk − µk‖2 + Σk − ‖µk‖2
(5.2)

where both, the mean, µk and the scalar product, Σk can be updated
recursively as follows:

µk =
k − 1

k
µk−1 +

1

k
xk, µ1 = x1 (5.3)

Σk =
k − 1

k
Σk−1 +

1

k
‖xk‖2,Σ1 = ‖x1‖2 (5.4)

The data is collected continuously, in on-line mode during the detec-
tion process. Some of the new data reinforce and confirm the information
contained in the previous data. Other data, however, bring new informa-
tion, which could indicate a change in operating conditions, development of
an anomaly or simply a more significant change in the dynamic of the sys-
tem [11]. In order to detect anomalous behaviour, the variable ∆Dk is, then,
calculated as follows:

∆Dk = |Dk −Dk−1| (5.5)
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where Dk is the density calculated for the current data sample xk and
Dk−1 is the density calculated for the immediately previous data sample xk−1.
The mean of all densities so far D̄k can also be calculated, and compared
to indicate whether the system is in an anomalous state (indicated when
Dk < D̄k) or a normal state. D̄k is calculated as follows:

D̄k =

(
ks − 1

ks
µDk−1

+
1

ks
Dk

)
(1−∆Dk) +Dk∆Dk (5.6)

where k counts the number of data samples which are read, and ks counts
the number of time steps in which the system remains in the same status
(normal/anomalous). Since the computation of Dk < D̄k is based entirely on
the concept of data density, it is highly suitable and applicable for real-time
anomaly detection in cloud environments. Moreover, the time complexity
for calculating the new density Dk and mean density D̄k from their previous
value is classified as O(n).

5.2 Evaluation

The technique is evaluated using network traces obtained from a controlled
testbed resembling a cloud environment, featuring VM migration as a normal
cloud operation, plus network attacks that should be regarded as anomalies.
The main reason for deploying network level attacks is because usually in
cloud there are more end users consuming resources and this therefore in-
creases the attack surface, which can be more damaging. The cloud can offer
more computational power in the form of virtual resources, to cope with ad-
ditional work loads. This to some extent supports the attackers by enabling
them to perform a loss of availability on the intended service [131].

The proposed technique could not be evaluated without the ability to
generate anomalies within a testing environment with absolute ground truth.
The testbed allows the traces to be labelled with ground truth, about both
the expected anomalies and the presence of a migration. Comparison of the
output of a detector with ground truth allows us to determine the perfor-
mance of the technique as a detector.

5.2.1 Testbed

The cloud testbed consists of two hosts which serve as compute nodes running
multiple VMs, each VM running Apache HTTPd. The client host acts as a
controller to initiate migrations, and also to generate background traffic. The
‘challenger’ host runs custom attack scripts to generate attack traffic directed
towards the VMs’ address range for a selected attack type and intensity (i.e.,
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Algorithm 1 Proposed anomaly detection technique
1: Let x1 be the first feature vector;
2: Let S = 0; (normal state)
3: Let k = 1;
4: Let Dk = 1.0;
5: Let D̄k = Dk;
6: Let µk = xk;
7: Let Σk = ‖xk‖2;
8: Let c = 0;
9: while more vectors do

10: Let k = k + 1;
11: Let xk be the next feature vector;
12: µk = update by equation 5.3;
13: Σk = update by equation 5.4;
14: Dk = update by equation 5.2;
15: ∆Dk = |Dk −Dk−1|;
16: if S = 0 then
17: D̄k = update by equation 5.6;
18: Let ks = ks + 1;
19: if Dk ≤ D̄kTh1 then
20: Let c = c+ 1;
21: if c ≥Ws1 then
22: Let S = 1; (anomalous state)
23: Let ks = 0;
24: end if
25: else
26: Let c = 0;
27: end if
28: else
29: D̄k = D̄k−1

30: Let ks = ks + 1;
31: if Dk ≥ D̄kTh2 then
32: Let c = c+ 1;
33: if c ≥Ws2 then
34: Let S = 0; (normal state)
35: Let ks = 0;
36: Let Dk = 1.0;
37: Let D̄k = Dk;
38: Let µk = xk;
39: Let Σk = ‖xk‖2;
40: end if
41: else
42: Let c = 0;
43: end if
44: end if
45: end while

the volume of traffic it generates). Tcpdump7 is used to simultaneously col-
lect packet traces from the two virtual bridge interfaces, one in each physical

7http://www.tcpdump.org/

http://www.tcpdump.org/
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node, and so these traces represent aggregated traffic to/from all VMs on a
node. All are connected to a LAN, as shown in Fig. 5.1. Each physical node
runs KVM8 as virtualization infrastructure, and QEMU9 provides hardware
emulation. Migration is achieved with libvirt10. All VMs on a node are con-
nected to a virtual bridge interface virbr0, so their own interfaces appear to
be part of the LAN. Further details about the architecture of the system, as
well as, how the anomaly detection component may operate in the context
of a cloud infrastructure can be found in [126].

Figure 5.1: Experimental setup

This set-up allows experiments to be run in which the legitimate traffic
of several web servers is continuously populated, while anomalous traffic is
created by injecting attack traffic into the legitimate traffic at some time
during the experiment. Independently, one of the VMs running a webserver
can be migrated live between the nodes during a period of either normal
or anomalous traffic. Traces obtained at the virtual bridges are fed into the
detector to observe its reactions to normal/anomalous traffic. Network traces
are split into 1-second bins, and then a set of statistical properties (features)
of the traffic in each bin is computed; each feature vector is submitted to the
detector. The vector includes following features:

• number of packets

• number of bytes

• number of active flows in each bin

• entropy of source IP address distribution
8http://www.linux-kvm.org/
9http://www.qemu.org/

10http://libvirt.org/libvirt2

http://www.linux-kvm.org/
http://www.qemu.org/
http://libvirt.org/libvirt2
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• entropy of destination IP address distribution

• entropy of source port distribution

• entropy of destination port distribution

• entropy of packet size distribution.

For evaluation, each vector is also labelled with ground truth about the pres-
ence of anomalies and migration. Packet traces are captured with libpcap11.
Because the testbed allow to have a control over when anomaly and migra-
tion occur, the obtained traces can be confidently labelled with ground truth
about both conditions, and therefore assess the performance of proposed
detection technique.

5.2.2 Evaluation Metrics

The single metric alone is not sufficient to make a firm conclusion about
performance of underlying anomaly detection technique [80]. Therefore, the
effectiveness of the proposed technique is evaluated using several metrics.
Each input entry submitted to the detector describes the features of moni-
tored network traffic during a given time period (bin), and the detector then
computes deviation from normal traffic. Therefore, the performance can be
assessed by determining the difference between the class it produces for a
given input and the class it should have.

Correctly identified negatives are True Negatives (TN), incorrectly identi-
fied negatives are False Positives (FP), correctly identified positives are True
Positives (TP) and incorrectly identified positives are False Negatives (FN).
From this output it allows computation of the true-positive rate (TPR, sen-
sitivity or recall; TP/(TP + FN )), the false-positive rate (FPR; FP/(FP +

FN )), the precision (TP/(TP +FP)), the accuracy (TP +TN /TP +TN +

FP +FN ), the F score (2× (Precision×Recall) / (Precision +Recall)), and
the G mean (

√
Precision × Recall).

Accuracy is the degree to which the detector classifies data samples cor-
rectly; precision is a measure of how many of the positive classifications are
correct, i.e. the probability that a detected anomaly has been correctly clas-
sified; and recall is a measure of the detector’s ability to correctly identify an
anomaly, i.e. the probability that an anomalous sample will be correctly de-
tected. The final two metrics are the harmonic mean (F score) and geometric
mean (G mean), which provide a more rounded measure of the performance
of a particular detector by accounting for all of the outcomes to some degree.
The Precision and Recall are important for evaluation since there could be
a possibility that some of the data instances are few in number relative to
others. For example if the portscan attack represented 95% of total traffic

11https://github.com/the-tcpdump-group/libpcap

https://github.com/the-tcpdump-group/libpcap
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in the captured traffic and the normal data instances were 5%. If all the
predicted instances were portscan then the overall accuracy will be 5% in
spite of the lost predicted normal class of data.

5.2.3 Tuning the Algorithm

The background traffic on the testbed consists of random client HTTP re-
quests producing substantially oscillatory behaviour that could confound a
detector. To overcome this, first analysed the various experimental runs, and
introduced tuning parameters/augmentations with respect to the captured
dataset detailed below: It is worth mentioning that tuning does not affect
the generic nature of the approach and it can be used for any type of data
and application domain.

1. In order to have more defined normality regions, the mean of density
D̄k is recursively updated only for normal data.

2. Transition from one state to another is controlled by two tolerance
thresholds Th1 and Th2 and two windows Ws1, Ws2, where;

• the detector output can only switch from normal to anomalous
when Dk ≤ D̄kTh1 for Ws1 successive bins, and

• the detector output can only switch from anomalous to normal if
Dk ≥ D̄kTh2 for Ws2 successive bins.

The windows Ws1 and Ws2 are intuitive enter/exit thresholds, which
permit a good trade-off between response time and stability of the
detector.

3. Once the system is back in a normal state the density of a current sam-
ple is reset back to one, i.e., Dk = 1, to mitigate the impact of current
anomalous data density onto subsequent data density computation.
Correspondingly, other recorded values are reset, namely, D̄k = Dk,
µk = xk and Σk = ‖xk‖2.

The coefficient (1−∆Dk) will lead D̄k to near the actual mean of density
when there is a smooth change in the data, and ∆Dk will lead D̄k to near
the new value of Dk in the presence of an anomaly.

The detection technique with these modifications is shown in Algorithm 1.

5.3 Analysis of Results

To validate the tuning strategy, a collection of traces previously obtained
from the testbed is analysed. Each experimental run yields a pair of packet
traces that are labelled with the ground truth regarding the presence of attack
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Figure 5.2: Before tuning
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Figure 5.3: After tuning

traffic and migration in the trace. In each 10-minute run, background traffic
occurs continuously and hence appears throughout the trace. After the first
5 minutes in the first run, an attack script starts, hence its traffic appears
in each trace from the midpoint. At either 2.5 minutes or 7.5 minutes, a
migration of one of the VMs is initiated. A run can therefore be characterised
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Figure 5.4: Migration during anomalous period
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Figure 5.5: Migration during normal period

by the attack type (labelled DoS for denial-of-service, NS for netscan and
PS for portscan) and intensity AH for high; AL for low, and whether the
migration occurs during the attack (AM) or during the normal period (NM)
(i.e., ‘migration overlap’). Each trace from a run can be further characterised
by whether the node it was taken from experienced an outward (MDout) or
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Table 5.1: Detection results of DoS attack with MT0 under
high and low intensity

Scenario Recall Precision Accuracy F-score G-mean

High-intensity(AH)

BC0-DoS-AH-M1-
AM-MT0-MDin

0.996667 0.993377 1.0000 0.996678 0.996683

BC0-DoS-AH-M1-
AM-MT0-MDout

0.991653 0.993289 0.989967 0.991625 0.991626

BC0-DoS-AH-M1-
NM-MT0-MDin

0.923333 0.869186 0.996667 0.928571 0.930746

BC0-DoS-AH-M1-
NM-MT0-MDout

0.936561 0.887240 1.00 0.940252 0.941934

Low-intensity(AL)

BC0-DoS-AL-M1-AM-
MT0-MDin

0.978333 0.967427 0.990000 0.978583 0.978648

BC0-DoS-AL-M1-AM-
MT0-MDout

0.988333 0.980328 0.996667 0.988430 0.988464

BC0-DoS-AL-M1-NM-
MT0-MDin

0.8900 0.825000 0.990000 0.900000 0.903742

BC0-DoS-AL-M1-NM-
MT0-MDout

0.948247 0.908537 0.996656 0.950558 0.951577

inward (MDin) migration of the VM. A run is also characterised by whether
the attack targets the VM that migrates (MT1) or a VM that does not
(MT0). The fixed background traffic involves five VMs running identical
HTTP servers. Three VMs on one physical host, and two on the other. A host
external to the VM infrastructure runs HTTP clients repeatedly connecting
to each VM, two per VM. The improvement in performance is observed when
detector is augmented with the additional parameters and behaviour. For
example, for a high-intensity DoS attack with migration during the attack
DoS-AH-AM-MT0, Figure 5.2 shows the output of density-based detector
that simply signals when normalized D̄k (red) drops below Dk (blue), which
oscillates considerably even during the normal period. With D̄k relatively
stable, many normal bins are reported as anomalies, as indicated by the
green circles. In comparison, Figure 5.3 shows the same trace fed through
the augmented density-based algorithm. The window Ws1 has caused fewer
normal bins to be signalled as anomalies, reducing the false-positive rate.
Also, with D̄k not being updated once an anomaly has been signalled, fewer
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anomalous bins are signalled as normal, increasing the true-positive rate.

Table 5.2: Detection results of DoS attack with MT1 under
high and low intensity

Scenario Recall Precision Accuracy F-score G-mean

High-intensity(AH)

DoS-AH-M1-AM-
MT1-MDin

0.991667 0967532 1.0 0.983498 0.983632

DoS-AH-M1-AM-
MT1-MDout

0.978333 0.920245 1.0 0.958466 0.959294

DoS-AH-M1-NM-
MT1-MDin

0.958333 0.933754 0.986667 0.959481 0.959846

DoS-AH-M1-NM-
MT1-MDout

0.96500 0.0 NaN12 0.0 NaN

Low-intensity(AL)

DoS-AL-M1-AM-
MT1-MDin

0.981667 0.937107 0.993333 0.964401 0.964811

DoS-AL-M1-AM-
MT1-MDout

0.978297 0.925466 0.993333 0.958199 0.958799

DoS-AL-M1-NM-
MT1-MDin

0.980000 0.973684 0.986667 0.980132 0.980154

DoS-AL-M1-NM-
MT1-MDout

0.984975 0.0 NaN 0.0 NaN

5.3.1 Detection with Migration

Clouds are also characterised by the elasticity that virtualisation enables.
As such it is also important to test detection in scenarios that utilise the
elastic nature of the cloud. One such elasticity measure is migration, which
allows load balancing and fail over. Using a feature set that is capable of
encapsulating changes to the volumetric properties of traffic on the network,
the Denial-of-Service (DoS) attacks were detected on VMs using the proposed
detector with a high degree of accuracy during migration. Figures 5.4 and 5.5
visually represent detection performance under high-intensity DoS attack
with MT1 (i.e., the VM experiencing the attack is migrating) where migration
happens during anomalous and normal periods respectively. The results show
that the anomalous region precisely detected (marked by green circles) with

12The missing values are simply a matter of the detector not producing any true positives
or false positives, therefore these metrics could not be calculated
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Table 5.3: Detection results of netscan and portscan at-
tacks under high and low intensity

Scenario Recall Precision Accuracy F-score G-mean

Netscan (NS))

BC0-NS-AH-M1-AM-
MDin

0.836667 1.0 0.673333 0.804781 0.820569

BC0-NS-AH-M1-AM-
MDout

0.963272 1.0 0.926421 0.961806 0.962508

BC0-NS-AH-M1-NM-
MDin

0.828333 0.818770 0.843333 0.830870 0.830961

BC0-NS-AH-M1-NM-
MDout

0.855000 0.863481 0.843333 0.853288 0.8553348

BC0-NS-AL-M1-AM-
MDin

0.781302 0.7800000 0.782609 0.781302 0.781303

Portscan (PS)

BC0-PS-AH-M1-AM-
MDin

0.960000 0.925926 1.0 0.961538 0.962250

BC0-PS-AH-M1-AM-
MDout

0.973333 0.949367 1.0 0.974026 0.974355

BC0-PS-AH-M1-NM-
MDin

0.894825 0.837143 0.979933 0.902928 0.905728

BC0-PS-AH-M1-NM-
MDout

0.909850 0.847025 1.0 0.917178 0.920340

BC0-PS-AL-M1-AM-
MDin

0.863333 0.791444 0.986667 0.878338 0.883681

very few false-positives13. The output of the detector was used to produce
evaluation metrics according to the formulae in Section 5.2.2.

The results in Table 5.1 and Table 5.2 show that the choice of network
features is appropriate and sufficient for detecting network based DoS attacks
with high and low intensity. In order to aid the evaluation process, the
Table 5.3 presents detection results for netscan (NS) and portscan (PS).
The results of detection are promising, with excellent detection observed for
network level attacks under various intensities. In addition, this feature set
could be expanded to include statistics derived from other resources (such

13The overall results are the best measure of the performance of the detector and were
calculated by combining the results of both components as if they had been produced by
a single detector.
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as vCPU usage). There is a trade-off since more computation resources will
be required, but this could be beneficial in the detection of other types of
anomaly.

5.4 Summary

In summary, and compared to work reported in the literature on cloud
anomaly detection, the chapter presents:

1. a novel, memory-less technique for anomaly detection using density,
which can be used in cloud environments where metrics are monitored
in large volumes and in real time.

2. evaluation of the proposed technique using real data captured from
a cloud testbed with respect to various attack types and intensities
in the face of migration. Results show that the technique is effective
in detection high and low intensity network level attacks with 98%
accuracy.

The cloud-specific dataset, labelled with the ground truth of migration
and anomalies on which this work is based, is available on request. The
implementation of the density-based detector in Python is available online14.

14https://forge.comp.lancs.ac.uk/svn-repos/seccrit-internal/rde-detector/
tags/published-2015/

https://forge.comp.lancs.ac.uk/svn-repos/seccrit-internal/rde-detector/tags/published-2015/
https://forge.comp.lancs.ac.uk/svn-repos/seccrit-internal/rde-detector/tags/published-2015/
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Chapter 6

Anomaly
Detection-as-a-Service

The rapidly growing popularity of cloud environments for a number of always-
on-services has created many challenges that are not being sufficiently ad-
dressed [144]. These challenges affect several domains that aim to improve
the overall Quality-of-Service (QoS) and clearly reduce the overall reliabil-
ity and availability of the cloud, i.e., it is less resilient to challenges (where
resilience is the ability of the system to perform its function even in the
presence of challenges [132]). This implies that it is of utmost importance to
clearly understand and define what constitutes the correct, normal behaviour
so that deviation from that can be detected as anomalies and consequently a
more resilience in cloud system can be engineered. In addition, cloud proper-
ties can also exacerbate these challenges in both their detection and impact,
and so increase management costs, and lead to SLA violations [146, 23]. As
a result, detection becomes of paramount importance, both to the tenants
as well as the cloud providers, who aim to ensure continuous system oper-
ation. A recent study by security services provider Alert Logic says that
application attacks aimed at cloud deployments grew 45% over one year [82].
Their research is based on an analysis of one billion events, during the whole
of 2014, and across more than 3000 of its customers. These challenges evi-
dently reduce the overall reliability of the cloud computing. There are several
significant challenges in securing cloud infrastructures from different types of
attacks. For instance, on 29th June 2010, amazon.com experienced hours of
anomalous behaviour whereby customers were unable to place the orders.
Based on their 2010 quarterly revenues, such downtime cost Amazon up to
$1.75 million per hour.

Anomaly Detection (AD) is one of the key techniques used for securing
infrastructures against potential threats in cloud environments, despite these
techniques often generating a large number of false alarms [97]. The dynamic
nature of clouds makes AD especially challenging, as multiple applications
with diverse and evolving workload patterns impact detection ability [1].
Furthermore, the huge cost of downtime of services as a result of challenges
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drives the need for AD mechanisms that can offer online and real time de-
tection in order to further support remediation mechanisms. Therefore, the
near real time detection of anomalies with better false-positive rate is a vital
element of operations in clouds in providing the operators with a more timely
detection of potential security issues within the infrastructure. However, as
the scale and complexity of modern cloud system increase, the underlying
anomaly detection mechanisms require significant higher levels of automa-
tion i.e., continuous monitoring of resources and detection based on real
time streams of system events. But continuous monitoring in cloud lead to
profuse volume of data which may cause low detection accuracy by obscuring
the detection of anomalies and high computational complexity [125]. There-
fore, a technique which allows the building, accumulation, and self-learning
of a dynamically evolving information model of “normality”, and which can
operate in real time, is of great value.

Chapter 3 present experimental results where the investigation is made
about how elastic behaviour in cloud affects state-of-the-art anomaly detec-
tion techniques, potentially making them unreliable for services running in
cloud environments. The presented results suggested that in some config-
urations, challenge anomalies are missed and some configuration anomalies
are wrongly classified. Moreover, it is noticed that the computational com-
plexity of these techniques is high because they require complex statistical
computations, as well as storage of the complete historical metrics. Sec-
tion 6.2.5 illustrates the computational complexity analysis. Based on these
results, the argument is build that there is a need for robust, preferably real
time, anomaly detection technique embodied in a flexible and scalable service
model that a cloud provider can offer to its tenants and their customers.

There exist many techniques for anomaly detection in several disciplines
and they have exhibited sufficient detection accuracy in a variety of scenar-
ios, as indicated in the comprehensive survey by [33]. In the context of cloud
computing, a number of anomaly detection techniques have been adopted
and redefined [143, 142, 55, 56, 14]. However, these approaches use com-
plex statistical measures, lack scalability, and often require prior knowledge
about anomalous or normal behaviour, making them potentially unusable in
a cloud operational context due to high dynamic workload and large volume
of metrics in these environments. In contrast, the ’Anomaly Detection as a
Service’ (ADaaS ) model, features density-based technique that is lightweight
and aims to address the scalability needs of cloud infrastructure. It can easily
scale as volume of metrics grows because it does not require storage of past
metrics. In addition, there is no need for prior knowledge (supervised) about
anomalous/normal behaviour, so it operates unsupervised. As a result, it
can detect anomalies that are not well understood (i.e., there are no prior
models) or have not been experienced previously.
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ADaaS is a multi-tenant, highly scalable, anomaly detection-as-a-service
solution based on a monitoring API called Monasca1(more details will follow
in subsequent Section 6.1). Providing ADaaS to the cloud administrator and
users brings a number of benefits. First, ADaaS minimise the cost of own-
ership by exploiting a state-of-the-art detection tool. ADaaS makes it easier
for users to deploy AD at different cloud abstraction levels, in contrast with
ad-hoc monitoring tools or the setting up of dedicated monitoring hardware/-
software. ADaaS also enables a pay-as-you-go model for detection, e.g., a
Critical Infrastructure (CI) provider may want to have full-featured detec-
tion services based on their stringent security and resilience requirements
as opposed to a non-CI provider offering simple services. Finally, ADaaS
enables cloud providers to deliver continuous improvement on detection ser-
vices. They can develop value-added services for secure cloud environments
and create new revenue. This value addition can be achieved by clearly un-
derstanding the security and resilience requirements of a tenant and enforcing
those using deployment function provided by ADaaS. Further, comparing the
service performance and infrastructure management logs before and after the
instantiation of ADaaS would enable cloud providers to reason the value-add
in terms of how many challenges are detected and reported in timely manner.
It is envisaged that the ADaaS paradigm will become an important factor
for on-demand computing in future cloud environments, and would thus help
cloud providers in their offerings of secure and resilient infrastructure.

Technical Challenges

Accomplishing anomaly detection as a service faces various technical chal-
lenges relating to the collection and delivery of data in a cloud environment.
Real time data must be collected from a huge number of virtual instances
on multiple physical hosts, and the demand for monitoring must adapt to
the dynamic nature of service invocation and resource provision associated
with virtualization. The detection as a service also require the support of
advanced techniques to achieve high accuracy and reliable distributed mon-
itoring. For example, some task such as network traffic monitoring incur
high data collection cost in terms of storage and manipulations. Therefore,
achieving accurate yet efficient monitoring of these metrics for detection ser-
vice is difficult. Moreover, the service model must also support concurrent
use by multiple tenants.

1http://monasca.io/root/about/

http://monasca.io/root/about/
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Problem Statement and Technical Contribution

As discussed earlier, due to the scale and complexity of cloud, detection based
on continuous real time infrastructure monitoring becomes challenging. Be-
cause the monitoring leads to overwhelming volume of data which affects
detector’s ability in analysing the data. The increasing metrics in sheer vol-
ume, may cause low detection accuracy due to the fact that existing anomaly
detection techniques do not tackle high metric dimensionality explicitly [68].
In this work, the comprehensive evaluation of anomaly detection techniques
in cloud infrastructures is comprehended and a need for a real time detection
for over all resilience against challenges. A critical analysis of existing tech-
niques is presented along with a description of the need for an enhanced real
time and memory-less detector. An initial comparison concludes that, whilst
a large number of detection techniques have been proposed, none of them are
suited to work with cloud operational context [127, 125]. They either require
an extensive prior knowledge (training, signatures) from human experts for
a system to be run effectively i.e, provide high level of accuracy and low false
rate. Therefore, the overall objective of the research has been to establish
a light-weight real time anomaly detection technique which is more suited
to a cloud-operational context by keeping low false rate without the need
of prior knowledge and enable the administrator to respond to threats effec-
tively. This has culminated in the formulation of a density-based approach
on which an unsupervised technique for detection of anomalies in cloud is
founded. From this formulation, a novel ADaaS architecture has been mod-
elled as the means of implementation of the detection technique. The chapter
describes the design and features of the proposed design, focusing on the key
components forming the underlying architecture, the technique and the way
the metrics are processed and applied for overall resilience. The main con-
cepts of the novel architecture are validated through the implementation of
a prototype system for OpenStack2. A series of experiments were conducted
to assess the effectiveness of ADaaS. This aimed to prove the viability of
implementing the system in an operational context.

The remainder of this chapter is organised as follows: Section 6.1 details
the ADaaS architecture and Section 6.2 describes implementation, highlight-
ing data flow model and its components. Section 6.3 presents an experimen-
tal evaluation and describes the outcomes of the analysis and discusses the
obtained results. Section 6.4 concludes the paper.

2https://www.openstack.org/

https://www.openstack.org/
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6.1 ADaaS Architecture

ADaaS is a multi-tenant, highly scalable, anomaly detection-as-a-service so-
lution based on a monitoring API called Monasca3. The Monasca API fea-
tures a REST API through which ADaaS can interact with the cloud in-
frastructures in order to query it or send metrics for processing to anomaly
detector (C in the Figure 6.1). The current implementation is open source
and based on OpenStack. The ADaaS monitors both the OpenStack infras-
tructure as well as the virtual machines which run on it (A in the Figure 6.1).
The Monasca API gives flexibility to ADaaS to collect raw data at scale
which is then fed into detector for real time detection of anomalies. The
authentication of all requests are done via OpenStack Keystone4 service and
all data is associated with an OpenStack tenant to support multi-tenancy. In
addition, ADaaS offers flexibility to deploy the tenant instances as per their
security and resilience requirements using Deployment Function (DF) (B in
the Figure 6.1). In particular, it generates the service descriptions which can
be processed by the cloud orchestration framework such as Nova, to actually
provision the resources for the service. For the example of OpenStack, a Heat
template can be generated that contains all steps required to automate the
ADaaS process. The high level architecture of ADaaS is shown in Figure 6.1.
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Figure 6.1: High level architecture

3https://wiki.openstack.org/wiki/Monasca
4http://developer.openstack.org/api-ref-identity-v3.html

https://wiki.openstack.org/wiki/Monasca
http://developer.openstack.org/api-ref-identity-v3.html
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6.1.1 Component Description

Deployment Functions (DF) is concerned with supplying the configura-
tions describing the creation and deployment of virtual machines for instan-
tiating a service. It ensures that virtual instances are created and destroyed
according to service requirements. For example, If tenant request resilience
against network level attacks, then DF also ensures that the the necessary
components of ADaaS (agents with respective plug-ins, detectors, etc.) are
correctly instantiated with the virtual instances. Alternatively, it can also
provide information to the virtual or cloud infrastructure management in
terms of types of instances started and their respective locations, which may
allow detection and remediation mechanisms to work in collaboration. De-
tails of the deployment function are presented in Section 6.2.2 below.

ADaaS Docker is a main core engine which integrates feature extraction
scripts and anomaly detection engine implementing a density based technique
with Monasca’s core components, which are extended to work in conjunction
for real time detection of anomalies. These components include: Message
bus (Kafka5), metrics, events and alarms database (Influxdb), configuration
database (MySQL), threshold engine and notifier. These components sup-
port the ADaaS for the management of alarm definition, notification and
management of metrics.

6.2 Implementation

The container approach is used for integrating a detection technique with
Monasca stack which together form the ADaaS model. Monasca core stacks
consists of a large number of interfacing components, each with different con-
figuration, installation and operating processes, some often interfering with
existing OpenStack services when being installed on a compute node. The
Docker container6 approach allow us to encapsulate all of the Monasca’s
components preventing interferences, control the complex installation pro-
cess with a consistent environment, and only expose the interfaces required
for ADaaS delivery model. The general architecture is designed to provide
stream processing of metrics which are sent via message queue (Kafka) which
acts as a general cloud bus through the publish-subscribe principle.

6.2.1 Data Flow

The agent sends the metrics using plugins which provide feature extractions
based on their implementations. The metrics are received by the ADaaS and
published to a message queue. The transformation engine then calculates the

5http://kafka.apache.org/
6https://www.docker.com

http://kafka.apache.org/
https://www.docker.com
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Figure 6.2: ADaaS data flow.

time based derivatives, and creates metrics that are published back to the
message queue. The anomaly engine then consumes metrics from the message
queue, predict likelihood of anomalies using data density computation and
evaluates anomaly score. The results are published back to the queue as
metrics. Alarm definitions can be associated with output of the detector i.e,
anomaly score and data density metrics. For example, alarm definition can be
created to alarm on the anomaly score or data density rather than a specific
value of a metrics. The anomaly engine implements proposed density based
technique which is a non parametric and unsupervised technique to identify
anomaly from this stream data. Further details to follow in Section 6.2.4.

ADaaS leverages threshold engine provided by Monasca which consume
metrics and computes moving window thresholds. Alarm state transition
events are then published back to message queue. Alarms are automatically
created by the threshold engine based on pattern matching of incoming merits
to the alarm definitions. This is particular important feature for ADaaS
to allow new alarm creation without the intervention of an operator. The
notification engine then consumes alarm state transition message and sends
notification, such as emails when alarm state transition occurs that match
alarm definitions. Figure 6.2 illustrates the ADaaS data flow.
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6.2.2 Deployment Function

The deployment function concerns itself with supplying the Virtual or Cloud
Infrastructure Manager with configurations describing the creation and de-
ployment of virtual machines for the cloud infrastructure. Its task is to
translate high-level service descriptions and SLAs into automatically deploy-
able descriptions, such as Heat templates in the OpenStack environment. It
is therefore a part of a Tenant Infrastructure Management System, being
located between the cloud user and the Cloud Infrastructure Operator. In
particular, a deployment function is needed that places instances of virtual
resources according to the resilience and security requirements of the service
user. For example, the placement of virtual machines in dedicated security
zone and invocation of ADaaS instances using Heat templates in the Open-
Stack environment. The DF could also provide information in terms of types
of instances started and their respective locations, which may allow to define
remediation strategies based on standard traffic and behavioural patterns of
and between these instances. Below section details the sub-components of a
deployment function.

SLA Parser

This sub-component is responsible for parsing a user description of their
service, i.e., the needed service components and their relation/connectivity,
as well as the required performance and availability.

Placement Function

The requirements extracted by the SLA parser translate into a set of virtual
machines that need to be deployed in the physical infrastructure. The place-
ment function maps these instances to the offered infrastructure of the cloud
infrastructure provider.

Deployment Template Generator

Finally, the mapping must be provided in a form that is processable by the
cloud management system. This means generating a deployment, e.g., a Heat
template, using as input the placement and the additional service description
parts generated by the SLA parser.

6.2.3 Feature Extraction

The first stage of online detection is data collection, which within the ADaaS
is achieved through the use of agents and custom plugin. For instance at the
network level the plugin gathers traffic and generate a time series of features
by converting the traffic trace into various normalised statistical properties
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on a per packet basis over 3 second bins. These feature includes both volume-
based features (“number of . . . ”) and distribution-based features (“entropy
of . . . ”), and are chosen to capture the dynamics of varying anomaly types.
Herein, some exemplar features are listed which are obtained using network
and database plugins. The network plugin extract features for each bin
which include: number of packets; number of bytes; number of active flows
in each bin; entropy of source IP address distribution; entropy of destination
IP address distribution; entropy of source port distribution; entropy of des-
tination port distribution and entropy of packet size distribution. Similarly
for database plugins the features include: number of reads; bytes read; IO
stall read; number of writes; bytes written; IO stall write; IO stall and bytes
on disk. Appendix B list various metrics which are collected to build eval-
uation scenarios for ADaaS. It is worth mentioning that Monasca provides
various plugins to monitor service and API such as (memory, disk, and CPU
utilisation) which can aid ADaaS via agents towards feature extraction and
selection process, and can be used as an input to anomaly detector.

6.2.4 Density-based Technique

For online detection the ADaaS employs density based technique described in
Chapter 5. The technique concerned with identifying anomalous behaviour
in real time. The data being collected by agents as per their implementation
is processed and converted into feature vectors xk. xk represents the feature
vector with values for the instant k. Data density values are then computed
based using Equation 5.2. Based on the value of data density, the variable
∆Dk is, then, calculated for the current data sample and the immediate
previous data sample from the feature vector. Some of the new data reinforce
and confirm the information contained in the previous data. Other data,
however, bring new information, which could indicate a change in operating
conditions, development of an anomaly or simply a more significant change in
the dynamic of the system [11]. The mean of all densities so far D̄k can also be
calculated, and compared to indicate whether the system is in an anomalous
state (indicated when Dk < D̄k) or a normal state using Equation 5.6. More
details on the detection technique is available in the previous work [125].

6.2.5 Computational Complexity

First step towards integrating detection technique for proposed model of
a services is to recognise that detection approaches vary widely in terms
of computational complexity and implementation. The expert evaluation7

is carried out of various core algorithms, including statistical and machine
7The expert evaluation include the observations made during reference implementation

of these core algorithms for previous work [127, 27] on evaluation and also literature survey
of articles describing computational complexity of these techniques.



Chapter 6. Anomaly Detection-as-a-Service 106

learning methods which are being used in these detection approaches. The
computational complexities of these techniques range from linear to exponen-
tial, with difference in their computation styles as well. For instance, some
of these approaches can be used in distributed or centralised fashion to min-
imise the overhead. For comparison Table 6.1 list some of the approaches,
core algorithms and their computational complexity:

Table 6.1: Computational complexity analysis of anomaly
detection algorithms

Core Algorithms Framework Computational Complexity Reference

K-Clustering Signatures O(N−nk+1) logN [65]

Incremental Clustering Magpie O(n(N + ∆)) [28, 17]

Naïve Bayesian Signatures, Pranaali O(n2N) [37, 45]

Convolution Algorithm Blackbox O(em+ eS logS) [3]

Traversing Max O(nN) [139]

Sorting Top-K O(nN logN) [139]

PCA - OK(MN)3 [42]

Density-based ADaaS O(N) [125]

6.3 Experimental Evaluation

The detector implementation is evaluated against various traces obtained
from a controlled testbed resembling a multi node8 cloud environment. The
testbed allows traces to be labelled with ground truth, about the presence of
anomalies. Comparison of the output of a detector with ground truth allows
us to determine the performance of the technique as a detector.

6.3.1 Testbed

The cloud testbed consists of three physical hosts which serve as a controller
and two compute nodes, running the latest version of OpenStack (Mitaka)
which is widely deployed cloud software in the market [118]. The compute
node consist of Dell PowerEdge R420 server end machines, while controller
runs on Dell OptiPlex 990 workstation. These nodes communicate with each
other via dedicated management network. The controller node is responsi-
ble to centrally manage other nodes by scheduling them several tasks, and

8http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html

http://docs.openstack.org/mitaka/install-guide-ubuntu/overview.html
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also provides interface to external users via dashboard (Horizon). The com-
pute nodes hosts multiple VMs and serves users or tenants with virtual re-
sources. The controller node is installed with several services which include
Keystone for authentication, AMQP for handling inter-process messaging,
Horizon which provides web based dashboard, Glance for managing image
services and Neutron for managing networking services. Both compute nodes
are installed with Nova which handles the provision of compute resources to
VM, and Neutron agents which handle the provision of networking resources
to VM. Moreover, both compute nodes use QEMU hypervisor to run and
host multiple VMs and all of the VMs are bridged together as shown in
Figure. 6.3.

Several VMs are hosted in order to simulate real cloud operation and
also to generate background traffic during experiments. Each of the VMs
is assigned with a specific role which simulates services on the cloud. The
services include a Web server (Apache HTTPd), File server (vsftpd), Mail
server (Postfix ), Hadoop master and two Hadoop slaves9. All of the VMs are
running Ubuntu 14.04 LTS 64bit and are allocated with 2 virtual CPU, 2 GB
RAM, 40 GB disk and 386MB swap space. In addition, the ’challenger’ host
runs custom scripts to generate attack traffic for a selected attack type and
intensity (i.e., the volume of traffic it generates), and client VM generates
background traffic using several tools and custom script which continuously
request services for certain duration. Figure 6.4 below shows the logical view
of experimental setup.

6.3.2 Performance Metrics

Each input entry submitted to the detector implementation in ADaaS de-
scribes the features of monitored traffic during a given time period (bin),
and the detector then computes deviation from normal traffic. Therefore,
the performance can be assessed by determining the difference between the
class it produces for a given input and the class it should have.The various
statistical measures are defined to evaluate the efficacy of anomaly detection
technique, which are detailed in Chapter 5 in subsection 6.3.2.

6.3.3 System Metrics Variability Analysis

As stated earlier, the concept of change in data density is used across various
metrics (system and network) to identify anomalies. This change in density
is independent of normal workload intensity and normal VM configuration
changes. Hence, the first set of experiments study is to test the hypothesis,
i.e., How can it be ensured that an anomaly detector does not flag a normal

9Hadoop cluster is running version 2.6.0 YARN enabled. Hadoop master runs a Python
script which continuously put a load to Hadoop Distributed File System (HDFS) for certain
duration.
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event as an anomaly in a complex, dynamic system, such as a cloud?. The
correlation is used across various system metrics to statistically define a mea-
sure for stability, under the assumption that correlation values remain stable
with change in workload and VM configuration parameters. Therefore, the
first run of experiment, the configuration of VMs is varied running the work-
loads by changing their CPU and memory allocations. Basically, changed the
CPU and RAM allocations for VM1-VM6 (as shown in Figure. 6.4) from de-
fault values (2 virtual CPU, 2GB) to different resource configurations (25%,
50%, 75% and 100%). It is observed that the correlation values remain sta-
ble with changes in VM configuration as shown in Figure. 6.5. The results
report the average values of CPU and memory utilisation across the VMs
and establishes the stability of correlation values with changes in resource
configurations.

Similarly, next analyse the variability in workload intensity by measuring
pairwise correlation of Hadoop cluster. Figure 6.6 shows the variation in the
average pair wise correlation across system metrics (CPU, memory and disk)
with changes in workload for Hadoop cluster. The workload intensity refer
to running the HDFS write jobs with different file size of 2GB, 5GB, 7GB
and 10GB representing 25%, 50%, 75% and 100% workload respectively. It
is observed that normal workload show very little variation as represented by
pairwise correlation across system metrics. Hence, it can be concluded that
normal workload changes will not account for anomalies because anomalies
will trigger more deviation in system metrics. Therefore, feature vectors
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obtained using these metrics will be representative of those variations and
would influence the computation of data density by indicating a drop in
density values, hence, accounting towards anomalous behaviour.

6.3.4 Anomaly Scenarios

To demonstrate the effectiveness of detector, the traces are obtained from the
testbed under various anomalous scenarios. These scenarios are categorised
into three different types as per their operations as shown in Table. 6.2. The

Table 6.2: Description of scenarios

Scenarios Type Target Node

VM Resizing Management Compute

API Exhaustion Management Controller

Resource Hog (CPU) Application Compute

Resource Hog (Memory) Application Compute & Storage

Denial-of-Service (DoS) Network Controller (network)

Netscan (NS) Network Compute

Portscan (PS) Network Compute
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management type include anomalies which are due to operation of hypervi-
sor, VM or the components which provides the management services. The
network type involve the internal and external communication network of
cloud components. The application type is due to malicious operation of
applications ruining in the VM which affected the cloud components.

Malicious VM resizing is the situation where one or more VM attempt
to consume more resources then the limit of physical resources available on
machine which host the VM. The API exhaustion scenario is realised by
overwhelming the authentication API (Keystone) of OpenStack with large
number of malicious requests using a custom script which exploits Siege10

load testing features to build a scenario. To simulate the performance anoma-
lies in the experiments, the resource hog scenarios are orchestrated by loading
challenger VM with various custom scripts. The CPU hogging is achieved
by performing a floating point computations in an infinite loop, that runs on
the target VM. This consumes most of the VM’s available processor cycles,
leading to poor application performance. Similarly memory hog represents
a scenario where there is a memory leak in the application and there is no
memory left for application to function, leading to a significant drop in appli-
cation throughput. The Denial-of-Service attacks are realised using, LOIC11

which is an open source network stress testing tool, written in C#. It per-
forms DoS attacks on a target VM server by flooding the server with TCP
or UDP packets. Intensity of attack was controlled by number of attack-
ing machines and threads involved in generating attack traffic. For network

10https://www.joedog.org/siege-home/
11https://sourceforge.net/projects/loic/

https://www.joedog.org/siege-home/
https://sourceforge.net/projects/loic/
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Figure 6.6: Workload variability.

and portscan various Python scripts are written which exploit rate limiting
features of Nmap12 to control attack intensity and build attack scenarios.
These scripts take a configuration file which specifies the timing (such as
start and end time of the attack) and networking (such as IP addresses of
the VM). These scripts are further re-configurable using different scan, delay
and timing modes of the Nmap scanner.

VM Resizing

Three different resizing flavors are defined for VM resizing experiments, which
represents different amount of resource allocation. The green, amber and
red represents normal, large and malicious resizing respectively. At start of
experiments the virtual machines are initiated with a control flavor (1vCPU,
2GB memory and 40GB disk). During the experiments one or more VMs are
resized into green (2vCPU, 4GB memory and 60GB disk), amber (3vCPU,
6GB memory and 80GB disk) and red (4vCPU, 10GB memory and 120GB
disk). For these scenarios, it is hypothesised that detector should be able to
detect resizing while background traffic was running. The VM resizing was
achieved using OpenStack dashboard (Horizon), under the assumption that
attackers have managed to bypass the resizing limit restrictions by exploiting
the hypervisor bug or gaining privileged access. During the experiments
system and network metrics were collected suing Sar13 and custom scripts
respectively.

12https://nmap.org/
13https://en.wikipedia.org/wiki/Sar_(Unix)

https://nmap.org/
https://en.wikipedia.org/wiki/Sar_(Unix)
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From these experiments the raw data collected is pre-processed and re-
sulting feature vectors are fed into detector. Since, as a result of such manage-
ment operation the memory commit values of the physical host will increase
and also the management network activity would increase. Therefore, three
metrics are selected from raw data for pre-processing which include, memory
commit, byte count and packet count which is fed into detector for analysis.

Single VM resizing involves resizing of single VM (FTP). At start of
experiment (i.e 0th bin), the background traffic scripts are initiated and the
data collection begins with binning period of 1sec. The VM is resized to
green at 1 minutes. Then at the 3 minute period, the VM was resized again
to amber flavor and finally at 6 minute period the, the VM was resized to
red flavor. Similarly, for multiple VM resizing experiments two VMs (FTP
and Hadoop Slave 2 Server) resized into green, amber and red flavors. The
Figure. 6.7a and Figure. 6.7b show the density plot for single and multiple
resizing experiments respectively. The density value is dropped when resizing
is triggered. The results reveal that background traffic or activity is not being
detected as anomalies and therefore it could differentiate between resizing
operations. However, the results also indicate that initial resizing process
no matter it is green, amber or red, resizing will cause drop in data density
values. From detection point of view this is good because cloud provider
wants to know of sudden changes in system. However, it seems that in order
to differentiate between different types of resizing, the contextual information
may be useful which can complement detection process. In this particular
case, the Nova log can be used to differentiate between malicious and non-
malicious resizing. By using the contextual information (e.g., CPU value or
VM ID) the detection system can verify the anomalies. This information can
be useful to identify the resizing request with the service level agreements, if
the VM attempt to claim resources more than allowed threshold the anomaly
can be flag as malicious. The drop in density can trigger alarm in real time
which can lead to fine grained analysis using this contextual information.
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API Exhaustion

In this scenario, an attack is simulated on Keystone API of OpenStack. Key-
stone is one of the key API and perform authentication and authorisation
of various services. During the experiment, 15 hosts are emulated which are
sending huge amount of JSON requests to API services using the Siege. The
experiment run for duration of 10 minutes with background traffic. To make
sure the detection able to differentiate the anomaly created by an attack from
normal authentication operations, two VM operations were performed during
this experiments i.e., restart and deletion of a VM. Both operations require
the Nova API to use the Keystone for authentication and authorisation pro-
cess. At 1 min restart FTP server and and 3 minutes into the run delete Mail
server and at 6 minutes the ’challenger’ runs script to invoke API exhaustion
attack. The system and network metrics are collected form the controller
node because Keystone components which provides the authentication are
installed on controller node. The feature extraction and selection process is
similar to previous run of resizing experiment. Both system and network fea-
tures were fed into detector after normalisation. The results are shown in the
Figure. 6.8. The plot shows significant drop in density. The first drop at 20th
bin, when VM restart operation is invoked, the density value drop around
30%. The density then start recovery at 21st bin. Then the second operation
cause density to drop around 40%. The first and second drop are cause by
the same VM restart operation, the first anomaly happen when the VM is
turned off and the second anomaly happens when the VM is turned back on
again, thus completing the restart process. The third anomaly is at time 60
which is exactly around the time VM deletion operation is invoked. During
the deletion process density drops around 38%. This time, the density begin
to recover at 64th bin indicating the completion of the deletion process. The
fourth drop is detected at time interval 120 when the API exhaustion attack
begin. At this time the density value drops significantly 80%. The pattern
for such an attack is distinctive and one can apply thresholds on the level
of drop to isolate real anomalies. Similar to resizing, the results shows that
there is clear distinction between the anomaly of normal VM operation and
anomaly of API exhaustion attack. To reduce the alarm, the threshold of
0.5 will automatically flags malicious API request.

Resource Hogging

Generally, the hogging of physical host is due to mis-configuration errors,
software bugs or malware activity [124]. Therefore, the aim of this experi-
ment is simulate and investigate the anomalous pattern as a result of hogging
of physical resources (i.e., CPU and Memory). Similar to previous run, the
system metric data was collected every 3 seconds for duration of 10 minute
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run for each resource hogging scenario. The representative metrics collected
in the scenarios are listed in Appendix B. The Figure. 6.9 and Figure. 6.10
visually represents the output of detector (density plot) under CPU and
Memory hog respectively. The anomaly start at half way through (i.e 100th
bin). There is also drop in density around 21st and 40th bin which is due
to background traffic and operations. However, the density drop for actual
hogging process is significantly high around (80%), resulting in significantly
different anomalous pattern for resource hogging. Similar to previous obser-
vations, the results show that anomaly creates more significant drop. Hence,
an alarm can be created by applying an arbitrary threshold value of 0.6 on
density metric to flag such anomalies.

Network Attacks

To evaluate a detection technique under network attacks, three experimental
runs were performed, where each yields a packet trace representing Denial-of-
Service (DoS), Netscan (NS) and Portscan (PS) attacks. Each 10 minute run,
the background traffic occurs continuously at a fixed rate, and exactly at 5
minute, an attack script starts, hence its traffic appears in each trace from the
midpoint. Each packet trace is filtered to eliminate the related management
traffic between the VM host nodes. It is subsequently divided in 3 second
bins, and each bin is converted into feature vector. Similar to previous run
the feature vector is then submitted to detector, yielding density plot against
each run. The density plot for DoS, NS and PS is shown in Figures. 6.11, 6.12
and 6.13 respectively and it is evident that the volume based attacks cause
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Figure 6.9: CPU hog results.
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Figure 6.10: Memory hog results.

significant drop in density. Therefore, the detector is able to detect such
anomalies under high and low intensities with high accuracy and precision
as reported in Table. 6.3.

6.3.5 Detection with Migration

Clouds are also characterised by the elasticity that virtualisation enables. As
such it is also important to test detection in scenarios that utilise the elastic
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Figure 6.11: Denial-of-Service.
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Figure 6.12: Netscan.

nature of the cloud. One such elasticity measure is migration, which allows
load balancing and fail-over. To validate this, detector is applied to a Denial-
of-Service (DoS) traces previously obtained testbed and discussed in earlier
work [125]. Using a feature set that is capable of encapsulating changes to
the volumetric properties of traffic on the network, DoS attacks were detected
on VMs using the detector with a high degree of accuracy during migration.



Chapter 6. Anomaly Detection-as-a-Service 117

Bins
50 100 150 200

D
en

si
ty

0.2

0.4

0.6

0.8

1

Portscan
Attack

Figure 6.13: Portscan.

Figures 6.14a and 6.14b visually represent detection performance under high-
intensity DoS attack, when the VM experiencing the attack is migrating, and
where migration happens during anomalous and normal periods respectively.
The results show that the anomalous region precisely detected (marked by
red circles) with very few false-positives14.
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Figure 6.14: Detection results under migration

The output of the detector was used to produce evaluation metrics ac-
cording to the formulae in Section 6.3.2. The results in Table 6.3 show that
the choice of features (system and network) is appropriate and sufficient for
detecting various type of anomalies. The results of detection are promising,

14The overall results are the best measure of the performance of the detector and were
calculated by combining the results of both components as if they had been produced by
a single detector.
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with excellent detection observed for different type of anomalies with vary-
ing intensities. In addition, the feature set could be expanded to include
statistics from Monasca agents. There is trade off since more computation
resources will be required, but this could be useful in the detection of unseen
anomalies. The metrics monitored to build this and all previously described
scenarios are listed in Appendix B.

Table 6.3: Detection results of anomaly scenarios

Scenario Recall Precision Accuracy F-score G-score

Type: Management

API Exhaustion 0.955224 0.908046 0.987500 0.946108 0.946940

Type: Application

CPU Hog 0.751244 0.776596 0.715686 0.744898 0.745519

Memory Hog 0.457711 0.480874 0.862745 0.617544 0.644106

Type: Network

High Intensity (HI) and Low Intensity (LI)

Netscan (HI) 0.963272 1.0 0.926421 0.961806 0.962508

Netscan (LI) 0.870000 0.844037 0.910891 0.876190 0.876827

Portscan (HI) 0.835000 0.814815 0.871287 0.842105 0.842578

Portscan (LI) 0.863333 0.791444 0.986667 0.878338 0.883681

Type: Network anomalies under migration

AM: Migration happening during anomalous period

NM: Migration happening during normal period

DoS (HI) 0.996667 0.993377 1.0000 0.996678 0.996683

DoS (LI) 0.978333 0.967427 0.990000 0.978583 0.978648

DoS (HI-AM-MT1)15) 0.991667 0967532 1.0 0.983498 0.983632

DoS (HI-NM-MT1) 0.96500 0.0 NaN16 0.0 NaN

15MT1:Represents a scenario characterisation where attack targets the VM that migrates
to another host (live migration). AM represents whether the m migration occurs during
the attack (AM) or during the normal period (NM) (i.e., ’migration overlap’)

16The missing values are simply a matter of the detector not producing any true positives
or false positives, therefore these metrics could not be calculated
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6.3.6 Evaluation of Test Cases

A set of technical test cases have been defined to evaluate the integration
of the ADaaS in use case defined in SECCRIT project [26], called “host-
ing critical urban mobility services in the cloud”. This set of test cases
reflects usual needs identified from operating installations of the use case,
and demonstrate how the ADaaS deal with these needs and fulfil the ten-
ant requirements. The test cases and their descriptions are presented in the
Table. 6.4. The OpenStack platform is hosted in one of the Europe leading

Table 6.4: Description of Test Cases

ID Test case Description

TC1 Unexpected
Database Growth

In this scenario, the database grows unex-
pectedly in a certain period, and if growth
continues, then the database server could
run out of disk space, thus affecting the
entire system. In this case ADaaS sends
a notification to the operator in real time
to trigger further remediation actions.

TC2 Network Pattern
Change

Network traffic pattern between commu-
nications server and devices on public ar-
eas changes unexpectedly. This may indi-
cate that “something is going wrong” and
a warning must be sent to the operator.

telecommunication provider’s research labs, who act as Cloud Provider (CP)
and ADaaS is integrated to the cloud environment. Another Europe’s critical
service provider, who is tenant, installed and configured the replica of their
crital services related to Traffic Management Systems (TMS) which consist of
three virtual machines. These virtual machines include: CommsMain which
runs the communication kernel, an application in charge of communicating
with the devices on the street and providing necessary information to other
applications; UrbanMain runs the actual traffic management system appli-
cations; and the Database VM runs a Microsoft SQL Server 2012 hosting all
databases necessary for the correct operation of the system.

In order to build Test Case 1 (TC1) scenario, the customized stored pro-
cedure is installed in the SQL server, on the database. The script basically
inserts new sensor data for a set of sensors at a given rate and parameters
of the stored procedure control the growth rate. Similarly, for Test Case 2
(TC2), in order to simulate the on-street devices (mainly Traffic Controllers
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and Variable Message Signs), simulators are provided that are running out-
side the cloud environment and provide background traffic to build the sce-
nario. These simulators communicate via Internet with the CommsMain,
and simulate around 90% of the existing traffic controllers in the city and are
capable of responding to traffic control actions and sending sensor data. To
inject anomalies, the traffic controller simulators running is manipulated, so
anomalous traffic (random 256 bytes messages every 100ms) can be injected
on demand. The traffic has been collected for 15 minutes on the virtual ma-
chine that communicates directly to the traffic controllers CommsMain. The
trace is fed live to ADaaS and represents regular operation, system working
normally for first five minutes interval (0-5). For the next five minutes inter-
val (5-10) one of the traffic controllers injects additional traffic, consisting on
random 256-byte long bursts every 100ms coming and for last five minutes
interval (10-15) the anomaly stops and system returns to regular operation.

From system operator’s point of view the alert about detected anomalies
must be available in timely and interpretable manner, therefore, the notifi-
cation engine of Monsasca is extended to send alerts back to tenant man-
agement system by providing a JSON webhook so that further subsequent
remediation actions can be taken. Ten experimental run were performed and
then computed the distribution of time taken from start of the event to be
detected until the message appears in tenant management system hosted in
service provider premises.
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(a) Unexpected database growth
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(b) Network pattern change

Figure 6.15: TC1 and TC2 delay results

The Figures 6.15a and 6.15b represents the delay for TC1 and TC2 re-
spectively. The use of several metrics for calculating the overall anomaly
score allows the framework to minimize the probability of triggering false
positives, at the cost of increasing the detection time. In addition, tests
revealed an incremental tendency on the measured delays. This can be ex-
plained by the fact that the framework continuously adapts its definition of
normality. Therefore, the first measurements taken (lower than 110 seconds)
are the more significant timings representing the detection of specific prob-
lems in the systems. From the tenant point of view, this delay in getting the
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alert is acceptable, since it provides useful information and allows an early
intervention of the operators to check alerts coming from other processes and
take proper actions in the system.

The test case demonstrates how the ADaaS framework monitors relevant
metrics for detection of anomalies. The results from captured screen shots
of running systems are presented in Appendix C. Figure C.1 and Figure C.2
show that the choice of feature is appropriate and sufficient for detecting
changes in normal patterns. It can be observed that anomaly score going
high when anomalies are happening and then going down when anomaly
stops. The framework also allow us to monitor single metrics as oppose to
collection of metrics (as shown in top row of Figure C.1). The anomaly score
shown in figure is based on collection of metrics that are collected for each
scenario.

6.4 Summary

In summary, and in contrast to the reported literature on cloud anomaly
detection, the main contributions of the chapter are as follows:

1. The anomaly detection-as-a-service model is presented for Cloud in-
frastructures called ADaaS.

2. ADaaSuses an unsupervised, lightweight and memory-less detector based
on a technique presented in Chapter 5.

3. The detector is evaluated using emulated data captured from a cloud
testbed with respect to various attack types and intensities.

4. An elastic framework is developed for providing ADaaS to meet func-
tional requirements in cloud operations to provide more secure envi-
ronments to its consumers. The model is further tested in a real world
cloud environment hosting critical services of European provider with
high efficiency. The later deployment shows that the solution can cap-
ture real world applications interactions and can yield good perfor-
mance ability.

Expanding on 2) above, results show that proposed approach is effective
in detection high and low intensity attacks with high precision and
accuracy.

The cloud-specific data set labelled with ground truth of migration and
anomalies, on which this work is based, is available on request. The imple-
mentation of ADaaS in Python is available online17.

17https://forge.comp.lancs.ac.uk/svn-repos/seccrit-internal/public/
Anomaly-detection-installation-notes.html

https://forge.comp.lancs.ac.uk/svn-repos/seccrit-internal/public/Anomaly-detection-installation-notes.html
https://forge.comp.lancs.ac.uk/svn-repos/seccrit-internal/public/Anomaly-detection-installation-notes.html


122

Chapter 7

Conclusion and Future Work

The new and intrinsic capabilities of cloud environments pose a number of
security concerns that have not yet been fully assessed with respect to their
implications on the performance of traditional off-the-shelf anomaly detec-
tion solutions. In particular, methods that empower the aspects of elasticity,
resource management and service transparency such as live migration involve
a range of system and network-wide activities. These activities are difficult
to monitor, and interfere with the detection of anomalous incidents. In this
work the impact of intra-cloud live migration is assessed over the de facto
anomaly detection techniques within a controlled experimental cloud testbed.
Through the results it is demonstrated that live migration has a measurable
impact on underlying anomaly detection techniques since their performances
vary under different intensities of attack scenarios. This work has provided
initial insight towards identifying the correct requirements within the devel-
opment process of cloud resilience management framework. The work also
presents a novel real time anomaly-detection technique and the design of
ADaaS as a model for operationally applying this technique in cloud envi-
ronments.

7.1 Overview of Thesis

Chapter 2 covers relevant background information for this research and pro-
vides a detailed literature study on anomaly detection in cloud environments.
Chapter 3 describes the experimental evaluation of state-of-the-art anomaly
detection techniques in the context of live virtual machine migration, and
under various attack types and intensities. The purpose of this evaluation
was to gain an understanding of how migration affects the anomaly detec-
tion accuracy in a cloud environment. Informed by the issues identified in
the experimental evaluation (Chapter 3), Chapter 4 describes the design and
evaluation of a novel real time data density based anomaly detection tech-
nique that addresses many of the shortcomings of state-of-the-art anomaly
detection methods in the cloud context. Chapter 5 presents the design and
qualitative evaluation of a cloud resilience management framework that uses
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proposed anomaly detection technique as its detection component. The de-
sign of the resilience management framework is also informed by the chal-
lenges identified through the experimental evaluation. Chapter 6 presents the
design, implementation, and experimental results of the ADaaS model that
operationalises anomaly detection techniques and enables a cloud provider
to offer detection services based on security and resilience requirements of its
customers and tenants.

7.2 Major Contributions

In the course of the cohesive research, the following technical contributions
is made:

Cloud Resilience Management Framework (CRMF): The main
focus of the evaluation presented in Chapter 3 has been to gain an under-
standing of how migration affects the anomaly detection accuracy in a cloud
environment. The Cloud Resilience Management Framework (CRMF) (See
Chapter 4) models and then applies an existing resilience strategy in a cloud
operating context to diagnose anomalies. The framework uses end-to-end
feedback loop that allows remediation to be integrated with existing cloud
management systems. The key aspects of the framework are demonstrated
in the prototype, namely: anomaly detection for network and system level
analysis, and remediation strategies with the aid of a policy engine. An ex-
perimental infrastructure is then built to include a real cloud infrastructure
resembling two cloud data centres. This is further extended with implemen-
tations of resilience management systems to realise resilience management
under different attack scenarios.

One possible future research direction is to further refine the frame-
work as a result of lessons learned from the development of the prototype.
This mainly includes analytical capabilities to different outside applications.
Moreover, additions to the framework will be made to cover for extra aspects
to be identified in due course – which may include the need for inter-provider
resilience management and support for more resilience strategies to combat
challenges specific to service performance.

Management and resilience of the cloud environments are closely linked.
Resilience in cloud environments need to be managed to disseminate relevant
policies to the cloud provider that will implement them. Policies specifies
actions which are needed to deal with challenges and due to varying nature of
challenges these policies need to be further refined to be adaptive in response
to challenges. The recent work is presented on refinement process for policies
that has iterated phases of decompositions at its core. There are many
avenues for future work in this discipline but particularly interesting is in
policy based resilience management in the cloud.
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It would also be interesting to explore how example polices e.g described
in templates can be optimised with refinement process. The work thesis
presented on refinement procedures can be merged with the policy analysis
framework in future to see whether this can be used to guide the resilience
against challenges. There are a number of different conflicts that can arise
from policies. For example, some policies will trigger complex management
procedures which require the execution of actions that may be specified as
part of different policies. Determining the existence of conflicting configu-
rations for cloud environments is of critical importance. Under the assump-
tion that the system may be loaded with a number of policies to address
many different challenges simultaneously. Multiple policies that need to co-
exist may specify conflicting actions on the same virtual resources, or may
trigger the activation of incompatible mechanisms, thereby rendering a par-
ticular resilience strategy ineffective. Further, to investigate approaches for
the automatic identification and resolution of policy conflicts. One possible
approach around solution of this problem is the use of meta-policies which
resolve conflicting situations during run-time.

Novel Anomaly Detection Algorithm: The thesis presents a modi-
fied anomaly detector based on the density of observed feature vectors (see
Chapter 5). The modifications made have achieved improved detection for
dynamically evolving workload patterns without having pre-defined anomaly
models. This encourages further work concerning monitoring scalability in
terms of efficiency and accuracy with cloud specific workloads. The den-
sity computation is expressed recursively, i.e., based only on the signal at
the previous step together with the latest vector. This makes the algorithm
memoryless, i.e., it does not need to store historical data. The lightweight na-
ture of this approach makes it particularly suitable for deployment in cloud
environments. In particular, a detector associated with a specific VM is
sufficiently lightweight to travel with the migrating VM. This is especially
valuable, as a detector that does not migrate with a VM may interpret the
sudden departure or arrival of the VM as an anomaly.

Anomaly Detection as a Service (ADaaS): The thesis proposed an
Anomaly Detection as a Service Model for cloud infrastructures called ADaaS
(see Chapter 6). The ADaaS uses an unsupervised, lightweight and memory-
less detector. The embodied technique for detection is based on density of
observed feature vectors. ADaaS monitors a range of metrics (VM, host and
network) using Monasca API to diagnose anomalies. The extensive evalu-
ation of ADaaS is conducted offline, using representative cloud workloads,
as well as online, running in European critical infrastructure provider’s set-
up for real time anomaly detection. The results show that ADaaS achieves
high accuracy with low false alarm rate in detection anomalies. To the best
of the knowledge, ADaaS is the first system that offer anomaly detection
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as a service for cloud infrastructure. Cloud infrastructure will benefit from
this proposed approach since it is designed to be flexible and distributed as
well as being able to detect anomalies in real time. The future work will
include identification of anomalies to zoom in detection to focus on remedia-
tion actions in response to detected anomalies using service model. Further
work will look into integrating the ADaaS with Software Defined Network-
ing (SDN) solutions because these new evolving technologies will create new
vulnerabilities to the cloud computing environments; therefore an anomaly
detection system would be needed to reduce the overall risk.

7.3 Future Work

The future work will look into integrating ADaaS with Software Defined
Networking (SDN) solutions because these new evolving technologies will
create new vulnerabilities to the cloud computing environments; therefore
an anomaly detection system would be needed to reduce the overall risk.
It is also plan to further refine the framework using lessons learned from
the development of the prototype. This mainly includes specific analytical
capabilities for different outside applications. Moreover, new capabilities to
the framework may be introduced, which may include the need for inter-
provider resilience management and support for more resilience strategies to
combat challenges specific to service performance.

The future work will also explore how example polices e.g. described in
templates can be optimised with refinement process. The main aim would
be to merge the refinement procedures develop in course of this work with
the policy analysis framework to see whether this can be used to guide the
resilience against challenges. There are a number of different conflicts that
can arise from policies. For example, some policies will trigger complex
management procedures which require the execution of actions that may be
specified as part of different policies. Determining the existence of conflicting
configurations for cloud environments is of critical importance. There is an
assumption that the system may be loaded with a number of policies to ad-
dress many different challenges simultaneously. Multiple policies that need
to coexist may specify conflicting actions on the same virtual resources, or
may trigger the activation of incompatible mechanisms, thereby rendering a
particular resilience strategy ineffective. Further, to investigate approaches
for the automatic identification and resolution of policy conflicts. One pos-
sible approach around solution of this problem is the use of meta-policies
which resolve conflicting situations during at run time.

Management and resilience of the cloud environments are closely linked.
Resilience in cloud environments need to be managed to disseminate relevant
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policies to the cloud provider that will implement them. Policies specifies ac-
tions which are needed to deal with challenges and due to varying nature of
challenges these policies need to be further refined to be adaptive in response
to challenges.The recent work on refinement process is presented for policies
that has iterated phases of decompositions at its core. There are many av-
enues for future work in this discipline but in particular interesting one in
policy based resilience management in the cloud. As cloud environments
grow, the cost and performance of management also increase. Controlling
and optimizing resources for resilience management purpose can only be-
come more critical due to scale and novel challenges. In this research it is
shown that different resilience mechanisms can be used with the aid of poli-
cies to change the behaviour of how the system should respond to challenges.
However, each policy can yield different cost and performance. The focus
is needed on the design of a management plane which can realize appropri-
ate resilience strategies by deploying the most cost effective and optimized
mechanisms that are needed in response to challenges.
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Appendix A

Results of Migration on
Anomaly Detection

A.1 Combined dataset BC0-PS-AH

A.1.1 Migration effect BC0-PS-AH-PCA
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Table A.1: Anomaly Score Graph, Effect of migration on
ROC/PRC for PCA with combined dataset BC0-PS-AH
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PCA with BC0-PS-AH Without migration With migration
Error rate 0.1651 0.2080

Detection rate 83.49% 79.2%

Table A.2: Effect of migration on PCA with BC0-PS-AH

Table A.1 summarizes anomaly detector PCA when applied to dataset
BC0-PS-AH. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.2 summarizes
the error/detection rates with/without migration present.

A.1.2 Migration effect BC0-PS-AH-KM
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Table A.3: Anomaly Score Graph, Effect of migration on
ROC/PRC for KM with combined dataset BC0-PS-AH
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KM with BC0-PS-AH Without migration With migration
Error rate 0.4072 0.4318

Detection rate 59.28% 56.82%

Table A.4: Effect of migration on KM with BC0-PS-AH

Table A.3 summarizes anomaly detector KM when applied to dataset
BC0-PS-AH. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.4 summarizes
the error/detection rates with/without migration present.

A.1.3 Migration effect BC0-PS-AH-NB
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Table A.5: Anomaly Score Graph, Effect of migration on
ROC/PRC for NB with combined dataset BC0-PS-AH
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NB with BC0-PS-AH Without migration With migration
Error rate 0.2851 0.3143

Detection rate 71.49% 68.57%

Table A.6: Effect of migration on NB with BC0-PS-AH

Table A.5 summarizes anomaly detector NB when applied to dataset
BC0-PS-AH. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.6 summarizes
the error/detection rates with/without migration present.

A.1.4 Migration effect BC0-PS-AH-EMGM
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Table A.7: Anomaly Score Graph, Effect of migration on
ROC/PRC for EMGM with combined dataset BC0-PS-AH
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EMGM with BC0-PS-AH Without migration With migration
Error rate 0.5589 0.5506

Detection rate 44.11% 44.94%

Table A.8: Effect of migration on EMGM with BC0-PS-
AH

Table A.7 summarizes anomaly detector EMGM when applied to dataset
BC0-PS-AH. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.8 summarizes
the error/detection rates with/without migration present.
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A.2 Combined dataset BC0-PS-AL

A.2.1 Migration effect BC0-PS-AL-PCA
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Table A.9: Anomaly Score Graph, Effect of migration on
ROC/PRC for PCA with combined dataset BC0-PS-AL

PCA with BC0-PS-AL Without migration With migration
Error rate 0.3762 0.4879

Detection rate 62.38% 51.21%

Table A.10: Effect of migration on PCA with BC0-PS-AL

Table A.9 summarizes anomaly detector PCA when applied to dataset
BC0-PS-AL. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.10 summarizes
the error/detection rates with/without migration present.
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A.2.2 Migration effect BC0-PS-AL-KM
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Table A.11: Anomaly Score Graph, Effect of migration on
ROC/PRC for KM with combined dataset BC0-PS-AL

KM with BC0-PS-AL Without migration With migration
Error rate 0.5018 0.3

Detection rate 49.82% 51.21%

Table A.12: Effect of migration on KM with BC0-PS-AL

Table A.11 summarizes anomaly detector KM when applied to dataset
BC0-PS-AL. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.12 summarizes
the error/detection rates with/without migration present.
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A.2.3 Migration effect BC0-PS-AL-NB
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Table A.13: Anomaly Score Graph, Effect of migration on
ROC/PRC for NB with combined dataset BC0-PS-AL

NB with BC0-PS-AL Without migration With migration
Error rate 0.4126 0.4362

Detection rate 58.74% 56.38%

Table A.14: Effect of migration on NB with BC0-PS-AL

Table A.13 summarizes anomaly detector NB when applied to dataset
BC0-PS-AL. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.14 summarizes
the error/detection rates with/without migration present.
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A.2.4 Migration effect BC0-PS-AL-EMGM
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Table A.15: Anomaly Score Graph, Effect of migration on
ROC/PRC for EMGM with combined dataset BC0-PS-AL

EMGM with BC0-PS-AL Without migration With migration
Error rate 0.5013 0.5033

Detection rate 49.87% 49.67%

Table A.16: Effect of migration on EMGM with BC0-PS-
AL

Table A.15 summarizes anomaly detector EMGMwhen applied to dataset
BC0-PS-AL. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.16 summarizes
the error/detection rates with/without migration present.
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A.3 Combined dataset BC0-DoS-AL-MT1

A.3.1 Migration effect BC0-DoS-AL-MT1-PCA
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Table A.17: Anomaly Score Graph, Effect of migration on
ROC/PRC for PCA with combined dataset BC0-DoS-AL-

MT1

Table A.17 summarizes anomaly detector PCA when applied to dataset
BC0-DoS-AL-MT1. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.18
summarizes the error/detection rates with/without migration present.

A.3.2 Migration effect BC0-DoS-AL-MT1-KM

Table A.19 summarizes anomaly detector KM when applied to dataset BC0-
DoS-AL-MT1. The top half shows the Anomaly Score Graph (ASG). In the
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PCA with BC0-DoS-AL-MT1 Without migration With migration
Error rate 0.3799 0.2606

Detection rate 62.01% 73.94%

Table A.18: Effect of migration on PCA with BC0-DoS-
AL-MT1
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Table A.19: Anomaly Score Graph, Effect of migration
on ROC/PRC for KM with combined dataset BC0-DoS-AL-

MT1

KM with BC0-DoS-AL-MT1 Without migration With migration
Error rate 0.3633 0.3119

Detection rate 63.67% 68.81%

Table A.20: Effect of migration on KM with BC0-DoS-
AL-MT1
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bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.20 summarizes
the error/detection rates with/without migration present.

A.3.3 Migration effect BC0-DoS-AL-MT1-NB
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Table A.21: Anomaly Score Graph, Effect of migration
on ROC/PRC for NB with combined dataset BC0-DoS-AL-

MT1

Table A.21 summarizes anomaly detector NB when applied to dataset
BC0-DoS-AL-MT1. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.22
summarizes the error/detection rates with/without migration present.
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NB with BC0-DoS-AL-MT1 Without migration With migration
Error rate 0.2538 0.2531

Detection rate 74.62% 74.69%

Table A.22: Effect of migration on NB with BC0-DoS-AL-
MT1

A.3.4 Migration effect BC0-DoS-AL-MT1-EMGM

Table A.23 summarizes anomaly detector EMGM when applied to dataset
BC0-DoS-AL-MT1. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.24
summarizes the error/detection rates with/without migration present.
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Table A.23: Anomaly Score Graph, Effect of migration on
ROC/PRC for EMGM with combined dataset BC0-DoS-AL-

MT1

EMGM with BC0-DoS-AL-MT1 Without migration With migration
Error rate 0.6942 0.4887

Detection rate 30.58% 51.13%

Table A.24: Effect of migration on EMGM with BC0-DoS-
AL-MT1
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A.4 Combined dataset BC0-DoS-AL-MT0

A.4.1 Migration effect BC0-DoS-AL-MT0-PCA
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Table A.25: Anomaly Score Graph, Effect of migration on
ROC/PRC for PCA with combined dataset BC0-DoS-AL-

MT0

Table A.25 summarizes anomaly detector PCA when applied to dataset
BC0-DoS-AL-MT0. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.26
summarizes the error/detection rates with/without migration present.

A.4.2 Migration effect BC0-DoS-AL-MT0-KM

Table A.27 summarizes anomaly detector KM when applied to dataset BC0-
DoS-AL-MT0. The top half shows the Anomaly Score Graph (ASG). In the
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PCA with BC0-DoS-AL-MT0 Without migration With migration
Error rate 0.1177 0.1317

Detection rate 88.23% 86.83%

Table A.26: Effect of migration on PCA with BC0-DoS-
AL-MT0
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Table A.27: Anomaly Score Graph, Effect of migration
on ROC/PRC for KM with combined dataset BC0-DoS-AL-

MT0

KM with BC0-DoS-AL-MT0 Without migration With migration
Error rate 0.1157 0.2101

Detection rate 88.43% 78.99%

Table A.28: Effect of migration on KM with BC0-DoS-
AL-MT0
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bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.28 summarizes
the error/detection rates with/without migration present.

A.4.3 Migration effect BC0-DoS-AL-MT0-NB
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Table A.29: Anomaly Score Graph, Effect of migration
on ROC/PRC for NB with combined dataset BC0-DoS-AL-

MT0

Table A.29 summarizes anomaly detector NB when applied to dataset
BC0-DoS-AL-MT0. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.30
summarizes the error/detection rates with/without migration present.
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NB with BC0-DoS-AL-MT0 Without migration With migration
Error rate 0.0.0907 0.2143

Detection rate 90.93% 78.57%

Table A.30: Effect of migration on NB with BC0-DoS-AL-
MT0

A.4.4 Migration effect BC0-DoS-AL-MT0-EMGM

Table A.31 summarizes anomaly detector EMGM when applied to dataset
BC0-DoS-AL-MT0. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.32
summarizes the error/detection rates with/without migration present.
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Table A.31: Anomaly Score Graph, Effect of migration on
ROC/PRC for EMGM with combined dataset BC0-DoS-AL-

MT0

EMGM with BC0-DoS-AL-MT0 Without migration With migration
Error rate 0.3541 0.2676

Detection rate 64.59% 73.24%

Table A.32: Effect of migration on EMGM with BC0-DoS-
AL-MT0
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A.4.5 Combined dataset BC0-DoS-AH-MT1

A.4.6 Migration effect BC0-DoS-AH-MT1-PCA
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Table A.33: Anomaly Score Graph, Effect of migration on
ROC/PRC for PCA with combined dataset BC0-DoS-AH-

MT1

Table A.33 summarizes anomaly detector PCA when applied to dataset
BC0-DoS-AH-MT1. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.34
summarizes the error/detection rates with/without migration present.

A.4.7 Migration effect BC0-DoS-AH-MT1-KM

Table A.35 summarizes anomaly detector KM when applied to dataset BC0-
DoS-AH-MT1. The top half shows the Anomaly Score Graph (ASG). In the
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PCA with BC0-DoS-AH-MT1 Without migration With migration
Error rate 0.2744 0.3179

Detection rate 72.56% 68.21%

Table A.34: Effect of migration on PCA with BC0-DoS-
AH-MT1
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Table A.35: Anomaly Score Graph, Effect of migration on
ROC/PRC for KM with combined dataset BC0-DoS-AH-

MT1

KM with BC0-DoS-AH-MT1 Without migration With migration
Error rate 0.5090 0.3150

Detection rate 49.1% 68.50%

Table A.36: Effect of migration on KM with BC0-DoS-
AH-MT1
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bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.36 summarizes
the error/detection rates with/without migration present.

A.4.8 Migration effect BC0-DoS-AH-MT1-NB
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Table A.37: Anomaly Score Graph, Effect of migration
on ROC/PRC for NB with combined dataset BC0-DoS-AH-

MT1

Table A.37 summarizes anomaly detector NB when applied to dataset
BC0-DoS-AH-MT1. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.38
summarizes the error/detection rates with/without migration present.
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NB with BC0-DoS-AH-MT1 Without migration With migration
Error rate 0.2560 0.2504

Detection rate 74.4% 74.96%

Table A.38: Effect of migration on NB with BC0-DoS-AH-
MT1

A.4.9 Migration effect BC0-DoS-AH-MT1-EMGM

Table A.39 summarizes anomaly detector EMGM when applied to dataset
BC0-DoS-AH-MT1. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.40
summarizes the error/detection rates with/without migration present.
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Table A.39: Anomaly Score Graph, Effect of migration
on ROC/PRC for EMGM with combined dataset BC0-DoS-

AH-MT1

EMGM with BC0-DoS-AH-MT1 Without migration With migration
Error rate 0.5726 0.2679

Detection rate 42.74% 73.21%

Table A.40: Effect of migration on EMGM with BC0-DoS-
AH-MT1
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A.4.10 Combined dataset BC0-DoS-AH-MT0

A.4.11 Migration effect BC0-DoS-AH-MT0-PCA
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Table A.41: Anomaly Score Graph, Effect of migration on
ROC/PRC for PCA with combined dataset BC0-DoS-AH-

MT0

Table A.41 summarizes anomaly detector PCA when applied to dataset
BC0-DoS-AH-MT0. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.42
summarizes the error/detection rates with/without migration present.

A.4.12 Migration effect BC0-DoS-AH-MT0-KM

Table A.43 summarizes anomaly detector KM when applied to dataset BC0-
DoS-AH-MT0. The top half shows the Anomaly Score Graph (ASG). In the
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PCA with BC0-DoS-AH-MT0 Without migration With migration
Error rate 0.0897 0.1247

Detection rate 91.03% 87.53%

Table A.42: Effect of migration on PCA with BC0-DoS-
AH-MT0
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Table A.43: Anomaly Score Graph, Effect of migration on
ROC/PRC for KM with combined dataset BC0-DoS-AH-

MT0

KM with BC0-DoS-AH-MT0 Without migration With migration
Error rate 0.2918 0.2719

Detection rate 70.82% 72.81%

Table A.44: Effect of migration on KM with BC0-DoS-
AH-MT0
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bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.44 summarizes
the error/detection rates with/without migration present.

A.4.13 Migration effect BC0-DoS-AH-MT0-NB
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Table A.45: Anomaly Score Graph, Effect of migration
on ROC/PRC for NB with combined dataset BC0-DoS-AH-

MT0

Table A.45 summarizes anomaly detector NB when applied to dataset
BC0-DoS-AH-MT0. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.46
summarizes the error/detection rates with/without migration present.
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NB with BC0-DoS-AH-MT0 Without migration With migration
Error rate 0.0793 0.2389

Detection rate 92.07% 76.11%

Table A.46: Effect of migration on NB with BC0-DoS-AH-
MT0

A.4.14 Migration effect BC0-DoS-AH-MT0-EMGM

Table A.47 summarizes anomaly detector EMGM when applied to dataset
BC0-DoS-AH-MT0. The top half shows the Anomaly Score Graph (ASG).
In the bottom-left, two ROCs are generated by partitioning the ASG la-
belled with anomaly and migration ground truths into those with m = 0 vs.
m = 1. In the bottom-right, two PRCs are similarly generated. Table A.48
summarizes the error/detection rates with/without migration present.
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Table A.47: Anomaly Score Graph, Effect of migration
on ROC/PRC for EMGM with combined dataset BC0-DoS-

AH-MT0

EMGM with BC0-DoS-AH-MT0 Without migration With migration
Error rate 0.5556 0.5371

Detection rate 44.44% 46.29%

Table A.48: Effect of migration on EMGM with BC0-DoS-
AH-MT0
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A.4.15 Combined dataset BC0-NS-AH

A.4.16 Migration effect BC0-NS-AH-PCA
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Table A.49: Anomaly Score Graph, Effect of migration on
ROC/PRC for PCA with combined dataset BC0-NS-AH

PCA with BC0-NS-AH Without migration With migration
Error rate 0.3129 0.2840

Detection rate 68.71% 71.6%

Table A.50: Effect of migration on PCA with BC0-NS-AH

Table A.49 summarizes anomaly detector PCA when applied to dataset
BC0-NS-AH. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.50 summarizes
the error/detection rates with/without migration present.
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A.4.17 Migration effect BC0-NS-AH-KM
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Table A.51: Anomaly Score Graph, Effect of migration on
ROC/PRC for KM with combined dataset BC0-NS-AH

KM with BC0-NS-AH Without migration With migration
Error rate 0.1384 0.1843

Detection rate 86.16% 81.57%

Table A.52: Effect of migration on KM with BC0-NS-AH

Table A.51 summarizes anomaly detector KM when applied to dataset
BC0-NS-AH. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.52 summarizes
the error/detection rates with/without migration present.
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A.4.18 Migration effect BC0-NS-AH-NB
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Table A.53: Anomaly Score Graph, Effect of migration on
ROC/PRC for NB with combined dataset BC0-NS-AH

NB with BC0-NS-AH Without migration With migration
Error rate 0.1484 0.1689

Detection rate 85.16% 83.11%

Table A.54: Effect of migration on NB with BC0-NS-AH

Table A.53 summarizes anomaly detector NB when applied to dataset
BC0-NS-AH. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.54 summarizes
the error/detection rates with/without migration present.
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A.4.19 Migration effect BC0-NS-AH-EMGM
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Table A.55: Anomaly Score Graph, Effect of migration on
ROC/PRC for EMGM with combined dataset BC0-NS-AH

EMGM with BC0-NS-AH Without migration With migration
Error rate 0.1340 0.2744

Detection rate 86.6% 72.56%

Table A.56: Effect of migration on EMGM with BC0-NS-
AH

Table A.55 summarizes anomaly detector EMGMwhen applied to dataset
BC0-NS-AH. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.56 summarizes
the error/detection rates with/without migration present.
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A.4.20 Combined dataset BC0-NS-AL

A.4.21 Migration effect BC0-NS-AL-PCA
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Table A.57: Anomaly Score Graph, Effect of migration on
ROC/PRC for PCA with combined dataset BC0-NS-AL

PCA with BC0-NS-AL Without migration With migration
Error rate 0.3708 0.2292

Detection rate 62.92% 77.08%

Table A.58: Effect of migration on PCA with BC0-NS-AL

Table A.57 summarizes anomaly detector PCA when applied to dataset
BC0-NS-AL. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.58 summarizes
the error/detection rates with/without migration present.
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A.4.22 Migration effect BC0-NS-AL-KM
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Table A.59: Anomaly Score Graph, Effect of migration on
ROC/PRC for KM with combined dataset BC0-NS-AL

KM with BC0-NS-AL Without migration With migration
Error rate 0.5018 0.3079

Detection rate 49.82% 69.21%

Table A.60: Effect of migration on KM with BC0-NS-AL

Table A.59 summarizes anomaly detector KM when applied to dataset
BC0-NS-AL. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.60 summarizes
the error/detection rates with/without migration present.
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A.4.23 Migration effect BC0-NS-AL-NB
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Table A.61: Anomaly Score Graph, Effect of migration on
ROC/PRC for NB with combined dataset BC0-NS-AL

NB with BC0-NS-AL Without migration With migration
Error rate 0.4453 0.3525

Detection rate 55.47% 64.75%

Table A.62: Effect of migration on NB with BC0-NS-AL

Table A.61 summarizes anomaly detector NB when applied to dataset
BC0-NS-AL. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.62 summarizes
the error/detection rates with/without migration present.
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A.4.24 Migration effect BC0-NS-AL-EMGM

Bins
500 1000 1500 2000

A
no

m
al

y 
st

at
is

tic
s

0

0.2

0.4

0.6

0.8

1
Anomaly Score Graph

False positive rate
0 0.2 0.4 0.6 0.8 1

T
ru

e 
po

si
tiv

e 
ra

te

0

0.2

0.4

0.6

0.8

1
ROC Curve

IMI=0 IM1=1

Recall
0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

0

0.2

0.4

0.6

0.8

1
Precision-Recall Curve

IMI=0 IMI=1

Table A.63: Anomaly Score Graph, Effect of migration on
ROC/PRC for EMGM with combined dataset BC0-NS-AL

Table A.63 summarizes anomaly detector EMGMwhen applied to dataset
BC0-NS-AL. The top half shows the Anomaly Score Graph (ASG). In the
bottom-left, two ROCs are generated by partitioning the ASG labelled with
anomaly and migration ground truths into those with m = 0 vs. m = 1. In
the bottom-right, two PRCs are similarly generated. Table A.64 summarizes
the error/detection rates with/without migration present.
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EMGM with BC0-NS-AL Without migration With migration
Error rate 0.3504 0.3504

Detection rate 51.19% 64.96%

Table A.64: Effect of migration on EMGM with BC0-NS-
AL



165

Appendix B

Monitoring metrics

ADaaS collects various type of metrics for anomaly detection. These metrics
have different measurement levels. Table B.1 list the set of system, appli-
cation and network level metrics monitored by ADaaS using agents. For
the experimental evaluation Linux Sar utility is used to collect the VM level
system metrics.
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Table B.1: Monitoring metrics

Metrics
Type

Description Measurement Level Scenario

dwbr Total amount of data written to disk in
blocks per second

VM,Host Resource Hog

drbr Total amount of data read from disk in
blocks per second

VM,Host Resource Hog

dwr Number of sectors written to the disk
(each sector 512 bytes)

VM,Host Resource Hog

drr Number of sectors read to the disk (each
sector 512 bytes)

VM,Host Resource Hog

memutil % of memory used at particular time VM, Host Resource Hog, API Exhaustion

memcommit % of physical host memory needed for cur-
rent workload in relation to total amount
of memory

VM, Host Resource Hog/API Exhaus-
tion/VM Resizing

mbfused Total amount of space used in megabytes VM, Host Resource Hog / API Exhaustion

cpuuser CPU time in user space VM, Host Resource Hog/API Exhaustion

cpusystem CPU time in kernel space VM, Host Resource Hog/API Exhaustion

mngtbyteCnt Total number of packets (bytes) for man-
agement network

Network API Exhaustion/VM Resizing

mngtpktsCnt Total number of packet traversing the
management network at particular time

Network API Exhaustion/VM Resizing

mngtfr Flow rate of management network Network API Exhaustion/VM Resizing

nwIntRXr Network utilisation rate of inbound net-
work interface of the controller node

Network API Exhaustion

nwIntTXr Network utilisation rate of outbound in-
terface of the controller node

network API Exhaustion

bytecnt Total number of packets in byte for data
network for each bin

Network VM Resizing/network anomalies

pktcnt Total number of packets for the data net-
work for each bin

Network VM Resizing/network anomalies

activeflows Number of active flows in each bin Network Network anomalies

srcIPaddrdist Entropy of source IP address distribution Network Network anomalies

dstIPadddist Entropy of destination IP address distri-
bution

Network Network anomalies

srcPrtdist Entropy of source port distribution Network Network anomalies

dstPrtdist Entropy of destination port distribution Network Network anomalies

pktSizedist Entropy of packet size distribution Network Network anomalies

dbread Number of reads issued on file Application Database growth

dbwrite Number of writes issued on file Application Database growth

iostallread Total time (ms),that users waited for reads
issued on file

Application Database growth

numwrites Number of writes made on file Application Database growth

numbytes Number of bytes written on file Application Database growth

iostallwrite Total time (ms), that user waited for
writes to be completed

Application Database growth

iostall Total time (ms), that users waited for I/O
to be completed

Application Database growth

sizeondisk Number of bytes used on the disk for this
file

Application Database growth
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Appendix C

Screenshots of running ADaaS
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