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Resum– El processament de llenguatge natural és la disciplina que estudia com fer que les
màquines aprenguin a llegir i interpretar el llenguatge que usem les persones, el llenguatge natural.
Però, en el món de la computació, les paraules no existeixen i són representades per seqüències de
números que a l’hora de mostrar-los per pantalla són convertits en lletres. L’anàlisi de sentiments
és el nom que obté el problema que donada una sentència o text una computadora sigui capaç
d’avaluar-lo i predir amb la màxima precisió possible el sentiment que obtindria una persona en
llegir-lo o l’opinió contextual en vers a alguna cosa. Aquest article pretén mostrar el que es pot
obtenir, en aquest àmbit, usant les eines d’aprenentatge automàtic més usades.

Paraules clau– Anàlisi de Sentiments, Mineria de Dades, Aprenentatge Automàtic, Llenguatge
Natural, Màquines de Vectors de Suport, Arbres de Decisió, Xarxes Neurals Recurrents, Naive Bayes

Abstract– The Natural language processing is the discipline that studies how to make the machines
read and interpret the language that the people use, the natural language. But in the machines
world, the words not exist and they are represented by sequences of numbers that the machine
represents with a character when displaying them on screen. The Sentiment Analysis is the name of
the problem that with a sentence or text the machine gets capable to analyze and predict with the
maximum precision possible the sentiment that will be obtained by a person when reads it or the
contextual opinion related to something. This document wants to show what we can obtain using the
most used machine learning tools.

Keywords– Sentiment Analysis, Data Mining, Machine Learning, Natural Language, Support
Vector Machines, Decision Trees, Recurrent Neural Networks, Naive Bayes
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1 INTRODUCTION

WIth the emergence of the social media, the high
availability of the information on Internet and
the users that have become prone to share on In-

ternet its feelings about products, movies or wherever they
want to share, for example in Twitter or Facebook where the
people shares how they are feeling today or if its new car is
good or not. The ability to process this information has be-
come important because, for example, we can introduce a
new product to the market and then wait to the feelings of
the people on Internet, extract them in a useful form, and
decide the future viability of this new product.

Most of this information aren’t classified or rated in any
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kind of classification range that can be easy used and is hard
to classify at massive scale with humans or normal tools.
For this reason, the development of tools that can learn to
read texts and extract the feelings is important to the future.

The natural language processing (NLP) is the discipline
in the computer science, the artificial intelligence and lin-
guistics, that pursue give the capacity to the machines to
understand the people language, like English for example.
Inside the NLP there is the field of Sentiment Analysis that
studies how to use the machines to process texts and give
to each one a kind of classification that we can understand
and use. This field uses language processing algorithms for
extract features, like words frequency, and supervised mac-
hine learning algorithms that learns from an initial set of
data initially classified by a human.

Sadly, the machines are limited and we need to be careful
on the type of texts that we want to process because it has
a high impact on the size of the vocabulary that the algo-
rithm needs to learn and the size of the text that needs to be
processed. For example, microblogging sites like Facebo-

June of 2017, School of Engineering (UAB)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/132092512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 EE/UAB FG COMPUTER ENGINEERING: Using Machine Learning Techniques for Sentiment Analysis

ok or Twitter uses relative short sentences and the language
that the people use on these sites is open and informal, the
same word or meaning can appear with lots of different re-
presentations. From another side, the sites like Imdb that
holds movie reviews are large texts and have a more formal
language. In this document, I use two different datasets, the
movie reviews from Pang et. al.[11] and the Stanford Twit-
ter Sentiment1 that are used by another’s researchers to get
comparable results.

I use different machine learning techniques that have
different ways to work and, consequently, learns different
things for the same data. This differences on the process of
learning can have a huge impact on the performance of the
final software that will use the methods. In this document, I
compare the performance of this methods and different ty-
pes of data.

2 MACHINE LEARNING METHODS

I used five different machine learning methods that has been
used with a good performance in the sentiment analysis pro-
blem [5][4][10][8], where two of them are based on neural
networks explained in section 2.4.

2.1 Naive Bayes

Naive Bayes (NB) is a simple method based on the Bayes
rule. The probability each feature contributes indepen-
dently to the final probability to be a class, each one has
its distribution. In a real problem, this independence is ra-
re. To avoid this, I use Multinomial Naive Bayes, provided
by SciKit-Learn[12], that models the same probability but
it uses a multinomial distribution[3].

2.2 Random Forest

Random Forest (RF) is a method that trains multiple deci-
sion trees. Each tree is trained using a random subset of the
vector features. The decisions of each tree are combined
using a voting algorithm that gives the result. The sequence
of features and the value of the feature generates the path
to a leaf that represents the decision. While training, the
values of the intermediate nodes are updated to minimize
a cost function that evaluates the performance of the trees.
The objective is minimize a cost function that evaluates the
performance of the trees. I use the implementation provided
by SciKit-Learn.

1https://nlp.stanford.edu/sentiment/treebank.html

2.3 Support Vector Machines
Support vector machines (SVM) is a method that considers
that each set of features represents a position inside a hy-
perspace then the SVM tries to divide it using a hyperplane
maximizing the distance between this hyperplane and each
vector, minimizing the objective function. This space divi-
sion is hard to accomplish, and sometimes impossible, for
this the SVM can use a margin that allows to misclassify
some examples but increases the overall performance.

For this document, I use the implementation provided by
SciKit-Learn using Liblinear. I also tried with Libsvm im-
plementations but tends to be slower and give worst results.

2.4 Neural Networks
Neural Networks is a method that tries to optimize some
weights, the body of the neuron, that are multiplied by the
vector of features, the dendrites. The result of this multi-
plication is the prediction made by this neuron, the axon
terminal. It can be used as a result or as a feature to the next
set of neurons, called Multi-Layer Neural Networks(MLP).
The objective is train the internal weights using the Gra-
dient Descent and Back-propagation[14] method where a
cost function is computed and the result is propagated back
to the neurons weights that gets updated to minimize the
objective function on each round.

The text classification problem can be viewed as a tem-
poral distribution of features, characters or words. In this
document, I also consider the use of Recurrent Neural
Networks(RNN) that is a special case of Neural Networks
that uses an internal memory on each neuron that represents
the intermediate understanding between features that can be
accumulated or forget[6] by the neuron. With MLP and
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RNN I have used our implementation using Tensorflow[1]
and Long-Short Term Memory(LSTM) cell.

3 OBJECTIVES

As I said before, there is a lot of important data in Internet
that, actually, is hard to use. Process this data can give the
power to predict future products, economy trends or social
facts by processing the people feelings that are shared on
Internet. The objective is learn how to process this type of
massive data and build a system that can exploit this data.
This project is divided in three phases:

• Research: Investigate different methods and algo-
rithms that exists to do Natural Language Processing,
more concretely Sentiment Analysis.

• Build a workframe: Build a system that can concate-
nate transformations to the data that can be concatena-
ted and applied to any machine learning methods.

• Build and Train models: Train different combinati-
ons of transformations and models to record the ef-
fects.

• Evaluate: Evaluate the trained models and compare
them with a reference baseline from the state of art.

To accomplish this objective, I work on each machine
learning method independently. For each one I apply the
set of text transformations, optimize its hyper-parameters
to have the maximum performance on each round, using a
test driven methodology explained in section 4, and when
the method works correctly I evaluate with the reference
dataset and record its results for compare all of them, as can
be seen at figure 1.

4 METHODOLOGY

One of the most important things that happens on machine
learning is that the algorithms can memorize the data and
when we want to use it with a new data it has a poor per-
formance, this behavior is called overfit. To avoid this pro-
blem, I work with test driven methodology. Each dataset is
divided in three random parts and each part in three more
divisions:

• Train(60%): Used to feed the machine learning algo-
rithm on the learning process

• Test(20%): Used to see if our algorithm is overfitting
or not.

• Validation(20%): Used to evaluate the performance
of the algorithm

Fig. 1: Training Process Flow

Then I use each method with these parts, evaluate its per-
formance and record a table of performances, process called
cross validation. This way, I can tune the hyper-parameters
of each algorithm and decide when the algorithm has been
optimized to work best and generalize.

At last, when I was sure that the algorithm works with
my splits I test the method with the original reference splits
to have an objective idea of the performance that I have ac-
complished and compare my results with some reference
work on the Sentiment Analysis field, because different da-
ta splits can give different results.
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5 PLANNING AND DEVELOPMENT

To develop this project, I divided it into different phases, as
mentioned in section 3. The first phase is focused on in-
vestigate, acquire data and build the base of the project that
can handle the flexibility needed to build multiple machine
learning models over it. The rest of the project are focused
on build and train multiple systems, record its performances
and compare the results. During the first phase of the pro-
ject an investigation about what is Sentiment Analysis, what
is the stat of art of the current solutions, what data transfor-
mation methods are used, an investigation about implemen-
tations of machine learning methods and acquire reference
datasets.

5.1 Workframe design and implementation
During this phase of the project I designed the workframe
that can handle the machine learning models, store and res-
tore them. Also, the workframe needs to have the flexibility
to change quickly the models and transformations because
big part of the time was reserved to train models.

Finally, a design inspired by SciKit-Learn[2] was used,
as can be viewed at figure 2. There are three important mo-
dules:

• DataInputInterface: Represents a dataset that can be
loaded in memory to be processed. This one processes
the data into arrays and generates the splits.

• TransformationInterface:Represents each transfor-
mation that are mentioned in section 8. Can be stored
into a file, if needed.

• IAInterface: Represents a machine learning model
and must be implemented by each one. Can be stored
into a file, if needed.

With the idea to process the data efficiently, a special
class exists, Pipleline, that can concatenate transformations
with a final IAInterface and store them with the same order
to reproduce the same transformations in the future, becau-
se the same transformations that are used to train the model
must be used while predicting.

5.2 Train models and collect results
Each machine learning method requires a time to develop
and integrate inside the system. This process consists in
three steps:

• Develop the Model: Integrate it in the system and con-
catenate the transformations each round.

• Test and Optimization: As I say in section 4 each
machine learning method and text transformations pair
must be tested that works correctly and optimize the
hyper-parameters of the model to archive the maxi-
mum performance.

• Collect Results: After the optimization was done.
Three more trains and test has been done with the ori-
ginal data splits of the reference documents to have an
objective idea of the general performance accomplis-
hed.

After repeating this process several times, I collected four
tables of results that can be seen at A.1, A.2, A.3 and A.4.
These results can be compared with the reference baselines
established by other researchers and state of art documents.

6 ENVIRONMENT

The machine learning methods are resource hungry algo-
rithms, especially while training them. I use an AMD
FXTM-8350 Eight-Core Processor at 4.00 Ghz. with 24 GB
of RAM and Linux kernel 4.8 with Python 3.5 to train the
models. The neural networks are a special case that can be
computed using GPU’s. To train the neural networks I use
an NVidia GTX 1060 with 6 GB GDDR and 1280 Cuda
cores at 1708 Mhz. Anyway, the machine learning met-
hods mentioned on this document are more efficient while
doing predictions and all of them can be trained in a high-
performance computer and exported to low machines.

7 DATASETS

There is a lot of data around Internet. But to face the pro-
blem, I need categorized or rated data to be used to feed the
machine learning methods and comparable data to have a
reference of the performance I accomplish.

There is a different categorizations or rates that can be
applied to the data. For example, some opinion websites
have surveys with a 5-star rating. From the point of view of
machine learning the number of classes influences the quan-
tity of data that the algorithm needs to learn and makes the
process of learning more complicated. In this document, I
use a two-class classification because is out of the scope of
this project to see if is better to use two or more classes and
I’m interested on classify the data as positive or negative.
Anyway, classify the data with more than two classes like
positive, negative and neutral, for example, can make sense
because there is data that doesn’t apply any specific senti-
ment when we read them, but add more than three classes
can tend in a more relative opinions and classifications and
let the algorithm training forever trying to learn to reprodu-
ce different opinions and points of views.

7.1 Movie reviews
This data was used on Pang et. al.[11] and published by
Cornell University2. Is a part of the data from the Internet
Movie Database. They have been selected only the revi-
ews where the author rating was expressed with stars or any
kind of classification convention that can be automatically
processed, approximately 752 negative and 1301 positive
documents with 122 authors represented. Ratings were au-
tomatically extracted and converted into one of three cate-
gories: positive, negative, or neutral. As the original paper,
I’m only discriminating between positive and negative sen-
timent and I tried to avoid the class unbalance.

7.2 Standford Twitter Sentiment
This data was used by Go et. al.[4] and at Stanford Uni-
versity. Is a series of messages recorded at the Twitter so-

2http://www.cs.cornell.edu/people/pabo/movie-review-data/
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Fig. 2: Class diagram

cial network (called ”tweets”). This dataset plays with the
idea that some emoticons like ”:)” or ”:(” is an explicit
declaration of a positive or negative feeling, then they use
the presence of the emoticon to automatically categorize the
tweets. This days, Twitter have a very high activity and its
API gives us access to collect thousands or millions of twe-
ets with emoticons easy. Again, as the original paper, I only
consider the use of positive or negative examples. This data-
set contains 1.6 million of categorized tweets but our com-
putational power is limited because 1.6 million of tweets
with 140 characters each one converted into 32-bit repre-
sentation oversize’s the 24 GB of ram of my machine, and,
need remember that I’m using techniques that generates a
feature vector with all words on all texts, for example. To
avoid this problem, I only use the first and last 100 thousand
tweets where half of them are positive and the rest negative,
to avoid the class unbalance that is a problem outside the
scope of this work.

8 TRANSFORMATIONS

Machine learning methods have limitations and, actually,
can’t work at a character level like humans. To improve the
performance of the methods I have used some transformati-
ons on the original data that makes it easier to be processed
by the machine learning methods. Each sentence is con-
verted into a vector of features, for example a sequence of
numbers representing the words. Some of them are focused
to generate new feature vectors that tries to represent the
data in a more compact way and the rest are focused on mo-
dify the original data to reduce the size of the feature vector.
Need to keep in mind that any type of modifications that are
made to the data have any kind of information loose.

8.1 Lower case

One transformation that has used on all the data is the con-
version to lower case of the data. This is because the cha-
racter “A” and “a” have a different representation inside the
machines memory and represented with a different num-
ber, but we already know that the word Play and play is the

same. All the machine learning methods are based on nu-
merical computation. Transforming the data to lower case
have a positive impact, as we can see in section 9, but also
have negative effects, for example ”Apple”, referencing the
business, is not the same as ”apple”the fruit.

8.2 Punctuations
Punctuations like admiration(!) or question(?) marks have
only a little effect on the sentiment meaning of the word and
can be irrelevant. Because the fact of be or not a question
or admiration does not have any effect on the meaning of
have a negative or positive sentiment. With the same way,
the dot(.) can means that the current feeling has ended and
a new one is starting.

Another punctuation’s, like accents, was converted into
a similar form. For example, my own name “Óscar”, in
Spanish, can be writed as “Oscar” without confusion. But,
in a similar way, another words like “más” and “mas”, in
Spanish, has a different meaning and can be confused.

8.3 Bag of words
The bag of words are methods that ignores the order of the
words and generates a reduced form of the sentence con-
taining the number of occurrences or the frequency of each
word in the texts.

8.3.1 Count vector

The general idea behind the count vector is that a sentence
can be represented by the words and the number of occur-
rences of each word in the document, generating a bag of
word counts for each sentence.

For example:

• “Im happy” can be represented as the vector
( Im: 1, happy: 1, you : 0, today : 0) = (1, 1, 0, 0)

The problem is that each vector will contain all words in
all the documents. It’s important to cut the size in the vec-
tor, for example using only the more common words[11],
explained at section 8.9 .
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8.3.2 Time Frequency and Inverse Document Fre-
quency

The Time Frequency and Inverse Document Frequency(TF-
IDF) value increases proportionally to the number of times
a word appears in dataset which helps to adjust for the fact
that some words appear more frequently in general. The
idea behind is that the most used words have highest values
than the others less used.

TF =
Number of times that the word appears

Number of words in the text

IDF =
Number of texts

Number of words in the text

TF − IDF = TF ∗ IDF

8.4 Dictionary of Words
With this method, a dictionary containing all words in the
texts is created and then each word in the text is converted
to the index of the word inside the dictionary. This method
does not break the words order and, also, does not group the
words. This transformation can generate a huge dictionary
because the machine is case sensitive, for example, and can
generate a different index for the same word. Also, is hard
to have a dictionary with all words on any language and all
of its forms, formal or informal.

This method can make a good performance in machine
learning methods that can work with time-dependent data
like Recurrent Neural Networks and Decision Trees.

8.5 Stemming
The idea behind stemming is that in the natural language
there is a lot of morphologies of the same word. The com-
puter will see each morphology as a different word. Stem-
ming cuts this words with a common root that reduces the
number of representations of the same word. For example,
argue, argued, argues and arguing will be reduced to argu.
The problem with stemming is that different words can be
reduced to the same word, for example catastrophe and cats
can have the same root cat depending on the heuristics used
to generate these common roots.

8.6 Lemmatization
Is a similar idea than stemming but tries to use the natural
word root or its base form, called “lemma’‘. For exam-
ple, the word meeting has the lemma meet. This way tries
to solve the collisions that can happens on stemming. The
main problem is that is hard to have a dictionary for every
word and casual representations of the words are unknown
and can be considered individuals. For this task, I used the
parser and the dictionary provided by the Natural Language
Toolkit[7].

8.7 Stop-words
In some problems, like search engines, removing the words
that does not have a special meaning by itself, like connec-
tors, can be helpful and reduce the number of features of
the final vector and improve the performance. But needs to

keep in mind that removing these words can lead to another
expression that have another meaning. For example, “not”
is considered a stop word but if we delete it in the sentence
“Im not happy” the meaning has changed to the inverse “Im
happy” and make a wrong classification.

8.8 Unigrams, bigrams or n-grams
The N-grams are collections of words grouped N by N. In
the bigrams case, they are grouped by 2. And the unigrams
reference the single words, grouped by 1. The use of n-
grams has been used, with results, by Pang et. al.[11], Go
et. al.[4] and others[9]. For example:

• Unigrams: The sentence “Im not happy” is converted
to the vector (“Im”, “not”, “happy”)

• Bigrams: The sentence “Im not happy” is converted
to the vector (“Im not”, “not happy”)

This type of transformation makes the relation between
words more explicit but one thing to be careful is that the
usage of n-grams bigger than two can have a huge impact
on the number of features and, consequently, an increase of
the size of the vocabulary and the feature vectors.

8.9 Feature Selection
As I said before, the vocabulary size has a high impact
on the memory footprint and the computational cost of the
machine learning methods. To reduce the vocabulary, after
applying the other transformations only the first 50 thou-
sand words, ordered by the most used first, was used to feed
the machine learning methods.

This transformation has a high loss of information and
features but can have a high positive impact on the final
performance because the machine learning method can le-
arn only the words that are important, like “‘happy”’ and
skip other words like onomatopoeias that are rare.

8.10 A Special case: Twitter
In the Twitter datasets, we must consider that the texts have
some special characters used by the social platform to make
relation between texts. With a similar way than Go et Al.[4],
Vosoughi et al. [15] and Pak et al.[9] I used some rules with
these special words:

• Hashtags(starts with #): I delete all the hash of the
hashtags and leave the word. For example, “Im so
#happy” gets converted to “Im so happy”

• Usernames(starts with @): I delete all the user-name
because it hasn’t any special effect on the sentiment
analysis. Only references an individual.

• URL, Links, Images.. All these things get deleted
because they not have any special meaning by itself.

9 RESULTS

For each dataset, I execute all the machine learning methods
and in each round, I apply different transformations with the
objective to see if have a positive effect on the results. On
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each round, I optimize the method to archive the maximum
performance.

9.1 Results with Movie Reviews
I have archived on this dataset better results than the esta-
blished baseline by Pang et. al.[11] and a similar perfor-
mance with Mullen et. al.[8]. One curious thing is if we
look on the F-Score, in general, the capacity to predict po-
sitive is better than classify the negative examples. This
can be because things like sarcasm, where we want to say a
negative thing instead a positive or positive instead of nega-
tive, are more often used with a negative sentiment.

9.1.1 Unigrams

As we can see in the table A.1 with unigrams the effect of
apply TF-IDF have a little better effect than count vectors.
Also, apply lemmatization was better than apply Stemming.
One thing is that the best results has been obtained without
doing any additional transformations like remove the stop-
words or the punctuations. This have a logical sense as we
said in 8.7.

On the machine learning methods side the RNN and the
SVM have the best performance followed by the Random
Forests. This can be because the RNN is a special case of
Neural Networks for time based problems and the SVM are
easy to be tuned with less hyper-parameters, and the way
that they work. The MLP also gives a good result with 2
layers with 1024 and 512 neurons. Must be mentioned that
the MLP and RNN have a lot of hyper-parameters and with
more time more accurate configuration can be studied.

9.1.2 Bigrams

In the table A.2 we can see similar results but with a diffe-
rent effect. Apply Count or TF-IDF gets more remarkable
than apply another transform. This have the meaning that
the stop-words and the punctuations can have any type of
impact on the sentiment analysis.

One thing is that the direct conversion from unigrams to
bigrams was impossible because it multiplies the number of
features by 4, on this dataset. A similar way than Pang et.
al.[11] was used to select the most useful features, as descri-
bed in section 8.9. With the machine learning methods, the
MLP and RNN archived similar performance and the SVM
stays with the same performance. The Naive Bayes method
now gets better results because in the bigrams the words re-
lations gets more explicitly declared, for example the pairs
“not happy” causes a negative relation and the sentiment is
not only dependent by the word “happy”.

9.2 Results with STS
With this dataset, I archived similar performance than Go et.
al.[4] and Saif et. al.[13] but less than Vosoughi et. al.[15].
This is because the reduction of the dataset I applied and the
transformations mentioned at 8.10.

9.2.1 Unigrams

As we can see on the table A.3 in this case the effect to dele-
te the stop words, the punctuations and apply lemmatization

or stemming have a positive effect on the results. This is be-
cause tweeter generates a huge vocabulary and apply these
transformations can reduce it.

For the methods, we can appreciate better results with
Decision Trees and Naive Bayes, compared to movie revi-
ews. Some methods have problems to converge with this
dataset and they required a special attention to finalize or
the training process becomes infinite jumps between local
minimums of the cost function. The RNN continues to be
the best machine learning method.

9.2.2 Bigrams

On the table A.4 we can appreciate the same effect as the
unigrams with the transformations. But, in general, the per-
formance gets worst because the effect to generate pairs of
words makes the vocabulary bigger.

On the methods side, all the methods have less perfor-
mance in general. The worst drop in performance have be-
en archived by SVM. The Naive Bayes, Decision Trees and
RNN have resisted better.

10 CONCLUSIONS

I build, test and evaluate several machine learning methods
for the Sentiment Analysis task. I learned a lot of things
about how to face a machine learning problem and how to
do data analysis to make the work easier to the machine to
learn. I see that one of the most important things when we
are facing a text classification problem is the type of text
and the words that we can see in the data. This is because
it has an important impact on the number of words that the
machine learning methods will learn and, in consequence,
the final number of features.

In this document, we can see that the effect of apply
transformations on the data can improve the performance
of the classification methods but the type of transformati-
ons depends on the dataset and the type of the language it
has. In consequence, look the data, make a feature selecti-
on, apply transformations and filter the data that have less
importance and information can make the machine learning
method learn more efficiently and generalize better, becau-
se this days the machines have limitations and can’t handle
all the data without any kind of prior process.

In general, the machine learning methods tends to give
similar results and, again, the results depend on the type
of the data. A special mention to the Recurrent Neural
Networks that the capacity to learn temporal dependences
between words gives better results on all data that can be
seen on this document.

10.1 Future Work
I suggest that a future work on the Recurrent Neural
Networks can give better results. Because, they suggest that
is one of the better methods for this type of problem. Also,
with the emergence of specialized hardware and the ability
to train with large datasets that does not fit in memory, using
Gradient Descend, makes the neural networks the most pro-
mising method.

To improve the general performance more investigation
must be done on learn with less transformations. This is be-
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cause, all the text transformations have a loss on the quan-
tity of information we process, as more transformations less
information, and if we have less information the possibility
to do a wrong classification augments.

Finally, work at character level can make a high impact
on the vocabulary size because can be reduced from 50
thousand to, nearly, 3 hundred characters that can represent
the most words in the language. Also, is the way that the hu-
mans read. The problem is that, today, the machine learning
methods have problems processing the intermediate mea-
ning behind the time dependency between words and, in
the same way, the dependency between characters. In Twit-
ter, for example, a sentence has around 20 words that means
that the machine needs to learn the dependence between 20
time steps and interpret the hidden sentiment while reading.
If we work at character level the machine needs to learn
more than 300 hundred time steps. More investigation is
needed to make the machines learn like humans reading the
sentences at character level.
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APPENDIX

A.1 Results for unigrams and Movie Reviews

Model Transforms Acc F1
RNN 87 87
SVM TF-IDF 86 87
SVM TF-IDF Lemmanize, remove StopWords Punctuations 86 87
RNN Lemmanize, remove StopWords Punctuations 86 86
RBF Count Lemmanize, remove StopWords Punctuations 86 85
Mullen et al 2004 86
RNN Stemming, remove StopWords Punctuations 85 85
MLP TF-IDF 84 85
MLP Count Lemmanize, remove StopWords Punctuations 84 85
RBF CountVectorizer, unigram,200 estimators 84 84
SVM TF-IDF Stemming, remove StopWords Punctuations 84 84
SVM Count Stemming, remove StopWords Punctuations 84 84
MLP TF-IDF Lemmanize, remove StopWords Punctuations 84 84
MLP CountVectorizer, unigram 83 84
MLP Count Stemming, remove StopWords Punctuations 83 84
SVM CountVectorizer, unigram 83 83
MLP TF-IDF Stemming, remove StopWords Punctuations 83 83
SVM Count Lemmanize, remove StopWords Punctuations 83 83
Pang et al 2002 82,9
RBF Count Stemming, remove StopWords Punctuations 82 83
RBF TF-IDF 82 82
RBF TF-IDF Stemming, remove StopWords Punctuations 82 82
NB CountVectorizer, unigram 81 81
NB TF-IDF Stemming, remove StopWords Punctuations 80 80
NB Count Stemming, remove StopWords Punctuations 80 80
RBF TF-IDF Lemmanize, remove StopWords Punctuations 80 80
NB TF-IDF Lemmanize, remove StopWords Punctuations 79 79
NB Count Lemmanize, remove StopWords Punctuations 79 79
NB TF-IDF 78 78
NB Raw data, Char Level 55 51
RBF Raw data, Char Level 54 54
SVM Raw data, Char Level 53 53
MLP Raw data, Char Level 51 42
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A.2 Results for Bigrams and Movie Reviews

Model Transforms Acc F1
Mullen et al 2004 86
MLP CountVectorizer, bigrams 85 85
MLP TF-IDF, bigrams 85 85
RNN 85 84
SVM TF-IDF, bigrams 84 85
RNN Lemmanize, remove StopWords Punctuations 84 84
- RNN Stemming, remove StopWords Punctuations 84 84
NB CountVectorizer, bigrams 83 83
NB TF-IDF, bigrams 83 83
Pang et al 2002 82,9
SVM CountVectorizer, bigrams 82 82
MLP Count Stemming, remove StopWords Punctuations, bigrams 82 82
NB Count Stemming, remove StopWords Punctuations, bigrams 81 81
NB Count Lemmanize, remove StopWords Punctuations, bigrams 81 81
NB TF-IDF Lemmanize, remove StopWords Punctuations, bigrams 80 81
SVM TF-IDF Lemmanize, remove StopWords Punctuations, bigrams 80 81
NB TF-IDF Stemming, remove StopWords Punctuations, bigrams 80 80
SVM TF-IDF Stemming, remove StopWords Punctuations, bigrams 80 80
MLP TF-IDF Stemming, remove StopWords Punctuations, bigrams 80 80
MLP TF-IDF Lemmanize, remove StopWords Punctuations, bigrams 79 79
SVM Count Stemming, remove StopWords Punctuations, bigrams 78 78
SVM Count Lemmanize, remove StopWords Punctuations, bigrams 77 77
MLP Count Lemmanize, remove StopWords Punctuations, bigrams 76 76
RBF Count Lemmanize, remove StopWords Punctuations, bigrams 75 75
RBF TF-IDF Stemming, remove StopWords Punctuations, bigrams 74 74
RBF CountVectorizer, bigrams 73 73
RBF TF-IDF, bigrams 73 69
RBF TF-IDF Lemmanize, remove StopWords Punctuations, bigrams 72 72
RBF Count Stemming, remove StopWords Punctuations, bigrams 71 70
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A.3 Results for Unigrams and STS

Model Transforms Acc F1
Vosoughi et al 2015 86,2
RNN Lemmanize, remove StopWords Punctuations 84 84
RNN Stemming, remove StopWords Punctuations 84 84
RNN 83 84
Go et al 2009 83
RBF Count Stemming, remove StopWords Punctuations 81 81
Saif et al. 2013 80,1
RBF Count Lemmanize, remove StopWords Punctuations 80 80
RBF CountVectorizer, unigram,200 estimators 78 79
RBF TF-IDF Stemming, remove StopWords Punctuations 78 79
NB Count Lemmanize, remove StopWords Punctuations 78 78
NB TF-IDF 78 78
RBF TF-IDF Lemmanize, remove StopWords Punctuations 77 78
NB CountVectorizer, unigram 77 78
NB Count Stemming, remove StopWords Punctuations 77 77
NB TF-IDF Stemming, remove StopWords Punctuations 76 77
SVM TF-IDF 76 76
NB TF-IDF Lemmanize, remove StopWords Punctuations 76 76
RBF TF-IDF 74 75
MLP TF-IDF Stemming, remove StopWords Punctuations 74 74
SVM TF-IDF Lemmanize, remove StopWords Punctuations 73 73
MLP Count Lemmanize, remove StopWords Punctuations 72 73
SVM TF-IDF Stemming, remove StopWords Punctuations 72 72
MLP CountVectorizer, unigram 72 72
SVM CountVectorizer, unigram 71 71
MLP Count Stemming, remove StopWords Punctuations 71 71
SVM Count Lemmanize, remove StopWords Punctuations 70 70
MLP TF-IDF 70 69
SVM Count Stemming, remove StopWords Punctuations 69 69
MLP TF-IDF Lemmanize, remove StopWords Punctuations 69 69
RBF Raw data, Char Level 52 50
NB Raw data, Char Level 50 50
SVM Raw data, Char Level 47 46
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A.4 Results for Bigrams and STS

Model Transforms Acc F1
Vosoughi et al 2015 86,2
Go et al 2009 83
Saif et al. 2013 80,1
RNN 80 81
RNN Stemming, remove StopWords Punctuations 79 78
RNN Lemmanize, remove StopWords Punctuations 78 79
RBF Count Stemming, remove StopWords Punctuations 78 78
RBF CountVectorizer 76 76
NB Count Lemmanize, remove StopWords Punctuations 76 76
RBF TF-IDF Stemming, remove StopWords Punctuations 75 75
NB TF-IDF 75 75
NB CountVectorizer, 74 74
NB Count Stemming, remove StopWords Punctuations 74 74
RBF Count Lemmanize, remove StopWords Punctuations 73 73
RBF TF-IDF Lemmanize, remove StopWords Punctuations 73 73
NB TF-IDF Stemming, remove StopWords Punctuations 73 73
NB TF-IDF Lemmanize, remove StopWords Punctuations 73 73
SVM TF-IDF 72 72
RBF TF-IDF 72 72
MLP TF-IDF Stemming, remove StopWords Punctuations 71 71
SVM TF-IDF Lemmanize, remove StopWords Punctuations 70 70
MLP Count Lemmanize, remove StopWords Punctuations 70 70
SVM TF-IDF Stemming, remove StopWords Punctuations 70 70
MLP CountVectorizer 69 69
MLP Count Stemming, remove StopWords Punctuations 69 69
SVM CountVectorizer 69 69
SVM Count Lemmanize, remove StopWords Punctuations 68 68
MLP TF-IDF 67 67
SVM Count Stemming, remove StopWords Punctuations 66 66
MLP TF-IDF Lemmanize, remove StopWords Punctuations 65 65


