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INTRODUCTION

Provenance studies in terrigenous sedimentary sequences 
are crucial for paleogeographic and morpho-tectonic 
reconstructions (e.g., uplift-erosion, paleotopography, 

paleofluvial networks, etc.) in mountain ranges and 
associated sedimentary basins (Pettijohn, 1975; Dickinson, 
1985; Bernet and Spiegel, 2004; Garzanti et al., 2007). 
In recent decades, the study of heavy mineral fractions, 
geochronology of detrital phases (e.g., U/Pb dating of 
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Typology and internal texture analyses were performed on detrital zircons obtained from the Miocene sandstones of 
the Ladrilleros-Juanchaco sedimentary sequence (Colombia, Equatorial Pacific). This analysis was complemented 
with zircon U/Pb dating to identify typology-age associations as indicators of sediment provenance. Our results 
show that zircons with S and P dominant typologies have internal structures/zoning indicative of igneous, and 
potentially also metamorphic, origins. Morphometric results suggest limited transport from source areas. Both 
typology and U/Pb data point to the Western Cordillera as the principal source of detrital materials for this 
sedimentary sequence. A paleogeographic reconstruction shows that, during the Late Miocene, significant portions 
of the Western Cordillera were uplifted and actively eroding, thereby forming a fluvio-topographic barrier that 
prevented sediments from the Central Cordillera reaching the Pacific basins. Exhumed Miocene plutons located 
along the axis of the Western Cordillera may also have played a role as geomorphologically active massifs. This 
study demonstrates that typologic analysis on detrital zircon grains is a useful tool for establishing provenance 
and paleogeography in complex litho-tectonic areas where overlapping U/Pb signatures can lead to contradictory 
results..
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zircon), and geochemical analysis of detrital materials 
(trace elements and isotopes) have been incorporated 
into provenance studies to provide valuable data on the 
configuration of source areas and their proximity to 
depositional environments (Armstrong-Altrin et al., 2004; 
Belousova et al., 2005; Boggs, 2009; Dostal and Keppie, 
2009; Etemad-Saeed et al., 2011; Grimes et al., 2015).

Although rock fragments (lithics) and individual 
mineral grains are excellent indicators of source area, 
several problems can arise during interpretation. These are 
related primarily to the lithological and/or compositional 
similarities between different source areas and to the biased 
distribution of detrital materials in the sedimentary rock 
due to the different responses of each fragment/mineral to 
weathering, erosion, transport, and/or diagenesis (Boggs, 
2009). One approach to overcoming these limitations 
is to use zircons found in the sedimentary rocks. Being 
chemically and physically refractory, zircon is an ultra-
stable mineral phase that is capable of enduring multiple 
geological cycles in sedimentary, metamorphic and/or 
igneous environments (Garzanti et al., 1987; Finch and 
Hanchar, 2003; Hanchar and Hoskin, 2003; Mange and 
Wright, 2007; Gehrels, 2012, 2014). At present, zircons 
are employed as key source indicators, based on age of the 
parental rock through radiometric dating or age of cooling 
events via thermochronology (Bernet and Spiegel, 2004; 
Carrapa, 2010; Thomas, 2011; Garver, 2014; Gehrels, 2014). 
The relatively recent development of dating techniques 
(e.g., U/Pb via LA-ICP-MS) that can target specific regions 
within a single crystal has enabled space-explicit dating of 
complex multiphase zircon grains, while reducing analytical 
costs and increasing data throughput as several hundred 
grains in detrital samples can be analyzed in a short time 
(Bowring and Schmitz, 2003; Davis et al., 2003; Košler 
and Sylvester, 2003; Bernet and Spiegel, 2004; Schoene, 
2014). Thus, in the last decade, U/Pb age spectra in detrital 
zircons has been used widely to improve constraint of 
source areas (Thomas, 2011; Gehrels, 2014). Nonetheless, 
U/Pb age signatures have been shown to be problematic 
in regions where there is high litho-structural complexity, 
such as age overlaps between different geological provinces, 
multiple litho-tectonic blocks with similar lithologies/ages, 
etc. (Reiners et al., 2005; Carrapa, 2010). One such region 
is the northern Andes in Colombia (Restrepo and Toussaint, 
1988; Toussaint, 1995; Cediel et al., 2003; Moreno-Sánchez 
and Pardo-Trujillo, 2003) (Figs. 1; 2), where similar U/Pb 
datasets have resulted in contradictory interpretations (e.g., 
Montes et al., 2015; O’Dea et al., 2016).

Another approach to studying zircons that have been 
part of the erosive cycle (i.e., eroded, reworked, and 
redeposited in sedimentary sequences) is the analysis 
of different typologies, such as crystal form, degree of 
elongation, and coloration (Fedo et al., 2003; Anani 

etal., 2011; Zoleikhaei et al., 2016). Typology of zircon 
populations (morphology and color) is controlled by the 
physical and chemical conditions during crystallization 
(Anani et al., 2011). Morphologic and chromatic features 
can be examined at high resolution under a petrographic 
microscope (transmitted and reflected light), and can be 
associated with the various lithologies present in source 
areas (Dabard et al., 1996).

In addition to the conventional characterization of 
zircon morphology by visual inspection under an optical 
microscope, the development of high-resolution Scanning 
Electron Microscopy and Cathodoluminescence (SEM-
CL) enables us to characterize the internal structure and 
zonation patterns for each zircon grain dated in a detrital 
sample, further facilitating the discrimination of igneous 
and metamorphic zircons, as well as zircons with complex 
histories (Hanchar and Rudnick, 1995; Corfu et al., 2003). 
The combination of different techniques such as U/Pb 
dating and zircon typological analysis, together with 
internal texture analysis using SEM-CL, is conducive to 
more robust studies in terms of the discrimination of source 
areas (Loi and Dabard, 1997; Willner et al., 2003; Anani et 
al., 2012); an approach strongly needed in complex litho-
structural domains such as the Northern Andes (Restrepo-
Moreno et al., 2015).

In this work we carry out a detailed analysis of detrital 
zircons from the Ladrilleros-Juanchaco Sedimentary 
Sequence (LJSS) based on external and internal zircon 
morphology using optical (Gärtner et al., 2013) and SEM-
CL (Corfu et al., 2003) microscopy. This approach is 
complemented with zircon chromatic analysis (Pupin and 
Turco, 1972b; Pupin, 1980; Velez et al., 2005; Shahbazi et 
al., 2014) and zircon U/Pb dating by LA-ICP-MS (Košler 
and Sylvester, 2003; Chang et al., 2006; Solari and Tanner, 
2011; Schoene, 2014).

The combination of these techniques provides a robust 
methodological approach to discriminate among zircons on 
the basis of more than just their radiometric age and external 
and internal morphology, thus allowing us to determine the 
age and conditions of zircon formation in the crystalline 
source (igneous vs. metamorphic) (Poldevaart, 1950; Pupin 
and Turco, 1972b; Pupin et al., 1978; Pupin, 1988; Corfu et 
al., 2003). These multi-technique approach is applicable to 
detrital zircons, enhancing the accuracy in the determination 
of source areas (Loi and Dabard, 1997; Willner et al., 2003; 
Anani et al., 2012; Shahbazi et al., 2014).

STUDY AREA

The LJSS is located in northwestern South America 
on the Equatorial Pacific coastline, at ~5°N latitude. 
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Strata of this sequence outcrop in coastal cliffs along La 
Barra-Juanchaco Beach and Malaga Bay, approximately 
40 km northwest of the city of Buenaventura (Fig. 1). 
Physiographically, the LJSS occupies a littoral position 
on the Pacific lowlands to the west of the Western 
Cordillera and to the south of the Serranía Baudó. The 
LJSS is part of the San Juan Sub-basin that, from a 
stratigraphic and deep marine deposits sedimentary point 
of view, is correlated with deep marine deltaic activity 
(ANH-Universidad de Caldas, 2011). The main modern 
fluvial system in the area, the Río San Juan, drains the 
western flank of the Western Cordillera to form one 
of the largest deltaic systems of the South American 
Equatorial Pacific (González and Correa, 2001). 

Litho-structurally, the LJSS (Figs. 1; 2) lies within 
a tectonic setting known as the Panamá-Choco Block 
(PCB) and is part of the San Juan Sub-basin, delimited 
to the south by the Garrapatas fault system and to the 
north by the San Juan fault system (Cediel et al., 2003, 
2009). The regional geodynamic framework is marked 
by the interaction of major tectonic plates (Nazca, Cocos, 
Caribbean and South America) in a combined subduction 
and collision convergent regimen (Kellogg and Bonini, 
1982; Kellogg, 1984; Taboada et al., 2000; Spikings et al., 
2001; Pindell et al., 2005; Bayona et al., 2011; Pindell and 
Kennan, 2013). Smaller lithospheric/crustal blocks like 
the PCB and the Nor-Andean Block (NAB) (Fig.1) also 
play an important role in the litho-tectonic configuration of  
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the area. The PCB, for instance, is associated with the last 
collisional episode in the region from Oligocene to present 
times (Duque-Caro, 1990; Farris et al., 2011).

Previous studies indicate that the LJSS consists of a 
continuous, well-exposed sequence of clastic materials, 
such as mudstones with sandstone intercalations, deposited 
in a marine environment (ANH-Universidad de Caldas, 
2011). The sequence is approximately 750m thick (Fig. 3), 
although Miocene beds can reach thicknesses of >3000m 

(Cediel et al., 2003). The sedimentary fill of the basin 
rests on oceanic rocks typical of Colombia’s western 
crustal domain, west of the Cauca-Romeral fault, i.e., 
the Provincia Litosférica Oceánica Cretácico Occidental 
(PLOCO) (Gómez et al., 2015). According to Muñoz and 
Gómez (2014), the LJSS sandstones correspond to lithic 
arkoses, feldspathic litharenites, and litharenites that are 
texturally (clay matrix, poor selection, and grain angularity) 
and compositionally immature. These sandstones are 
also characterized by a significant input of volcaniclastic 
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materials (volcanic fragments, horblende + pyroxene 
associations, long and euhedral zircon grains) and other 
detrital components (quartz, metamorphic fragments(?), 
etc.). The presence of volcanic elements affords the 
opportunity not only to constrain the age of the sequence 
but to discriminate among source areas associated with 
either volcano-magmatic arcs (ages varying between the 
Cretaceous and the Miocene) or metamorphic elements 
that can be related to mountain ranges with metamorphic 
basement rocks such as the Central Cordillera (Muñoz and 
Gómez, 2014). A Burdigalian-Tortonian age (~16-10Ma) 
has been established for this sedimentary unit based on 
calcareous microfossils (Vallejo et al., 2016). To date, no 
geochronological dataset has been used to constrain the 
age of the LJSS. 

Based on a combined analysis of zircon typology, 
internal textures/zonation patterns and U/Pb dating, our 
work improves the dating resolution of the sequence, 
establishes the origin of detrital components, and identifies 
the paleogeographic conditions that lead to the development 
of the LJSS.

METHODS

Eleven sandstone samples were collected along various 
stratigraphic levels of the LJSS to separate zircon grains 
for typological analysis (Fig. 3). An additional sample was 
collected from the top of the sequence for LA-ICP-MS U/
Pb dating and the generation of age spectra, as well as to 
determine internal zircon zonation patterns through SEM-
CL imagery. All zircon grains were separated by gravimetric 
methods combining Wilfley® table/gold pan and heavy 
liquid runs (TBE: 2.96g/cm³). Mineral concentrates were 
further purified through additional heavy liquid (MeI: 
3.32g/cm3) and Frantz® Isodynamic magnetic separations. 
Zircon grains were mounted in cylindrical resin plugs 
(2cm diameter, 1cm thick) for their subsequent preparation 
(grinding and polishing to expose internal areas) for U/Pb 
dating. To ensure a random, unbiased assembly of zircon 
grains from detrital samples, we emptied ~200-300 grains 
directly from the vial. Finally, we obtained petrographic 
and SEM-CL microscopy images of the zircons to reveal 
the external morphology and chromatic features and to 
examine internal zonation patterns, respectively. 

To assess zircon typology, we implemented the 
methodology of Pupin (1980) and Gärtner et al. (2013) to 
correlate the analyzed zircons with source area lithologies 
(e.g., plutonic, volcanic and/or metamorphic), while 
providing information in terms of multi-cycle zircons. 
To characterize zircon crystals based on morphology/
typology, the following steps were undertaken after Pupin 
and Minéraux (1976), Pupin (1980), and Gärtner et al. 

(2013): i) Scanning of grain mounts under the optical 
microscope to identify ~150 grains of detrital zircon; ii) 
zircon grain characterization by specific morphometric 
parameters, such as elongation, roundness, length/width 
ratios, and degree of face development; iii) zircon grain 
characterization by color tones and intensity (e.g., hue, 
saturation, and brightness) and degree of transparency; iv) 
zircon classification (Fig. 4); v) statistical calculations to 
quantify variability along the morphometric correlation 
matrices for each sample; vi) generate specific typological 
classifications. Microscopic analyses under transmitted 
and reflected light were carried out at the Instituto de 
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Investigaciones en Estratigrafía (IIES) of the Universidad 
de Caldas (Colombia) using a Nikon LV100® Tri-Polar 
Pol Universal and PET SMZ1500® stereomicroscope, 
coupled with a high-resolution Nikon DS-F11® camera. 
NIS Elements 3.2® software was used for measuring 
morphometric features. SEM-CL images were obtained 
using a SEM-Quanta 250® coupled with Chroma CL 
Gatan® cathodoluminescence device.

All U/Pb measurements were performed by LA-
ICPMS (Chang et al., 2006; Schoene, 2014), using a 
213nm New Wave Nd: YAG UV laser, coupled to a 
Thermo-Finnigan Element-2 dual-focus monocollector 
ICP-MS mass spectrometer. Isotopic measurements were 
carried out at the University of Arizona’s Laser-Chron 
Laboratory (USA) using the approach proposed by Chang 
et al. (2006).

RESULTS

Zircon morphology and typology

In the following section, we present morphometric 
characteristics of zircon grains analyzed under optical 
microscopy. 

Zircon roundness and elongation 

LJSS zircons fall primarily in the non-rounded 
or poorly rounded fields 1, 2, 3 and 4 according to 
Gärtner et al. (2013) (Fig. 5A). We note that some 
crystal faces and edges are still recognizable even 
when the grains exhibit a degree of roundness, thereby 
allowing typological characterization (Pupin, 1980). A 
smaller proportion (~4%) of zircons fall in categories 9 
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and 10, corresponding to grains whose faces and some 
edges are partially recognizable or unrecognizable due 
to rounding by transport/abrasion (Köster, 1964; Dietz, 
1973).

Zircon length varies between ~65 and 500μm, with the 
majority giving values of ~100μm. Variations in thickness 
range from ~60 to 250μm. In terms of elongation (Gärtner 
et al., 2013), most zircons fall within fields 2 and 3 (Fig. 
5B) and exhibit length/width ratios between ~1.5 and 2.0. 
Zircons in the lower portion of this range are classified 
as low elongation, while maximum values are classified 
as having moderate elongation (Poldevaart, 1950; 
Poldervaart, 1955; Hoppe, 1963; Finger and Haunschmid, 
1988; Gärtner et al., 2013). Elongation ratios >3 are rare 
and only occur in significant numbers in two samples (Fig. 
5B). 

Zircon typology

The different zircon typologies identified in samples 
analyzed via petrographic and SEM-CL microscopy are 
shown in Figures 6 and 7. There are few variations in 
crystal morphologies that were recognized (Fig. 7). Zircons 
are characterized by high values of A and T indices, and 
diameters greater than 100μm, thus allowing recognition 
of crystallographic features. 

Zircon crystalline faces are characterized by pyramids 
{101} and {101} >> {211} and prisms {100} {110} and 
{100} >> {110}. The typological distribution (Pupin 
and Turco, 1972a; Pupin, 1980) is similar between most 
grains (Fig. 7), with P1, P2, P3, P4, and P5 being the 

most common subtypes (5%-40%). Other subtypes are 
S5, S10, L5, D (3%-9%). Relatively few grains (1%-
3%) fall within the J4 and R5 typologies. Analyzed 
zircon crystals exhibit a marked homogeneity both in 
their morphology and optical characteristics (color, 
degree of transparency, etc.). Due to the homogeneity 
of the different subtypes, we calculated the mean values 
of AI and IT for each typology (Fig. 8). These values 
show that the LJSS zircons are in a mixed field (5 and 6), 
corresponding to sources of igneous rocks in the granular 
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subalkaline and alkaline series. Approximately 92% of 
the zircons are colorless, optically pure (few inclusions, 

fractures, oxide coatings, etc.). A small proportion (8%) 
exhibits some degree of coloration, specifically yellow 
to pale pink. Most mineral inclusions are identified as 
acicular and/or fine columnar and/or tabular. These are 
generally oriented along the C axis with a variety of 
optical shades (colorless, green, brown, etc. (see Fig. 
6D, F, I, N, Q).

Detrital U/Pb dating by LA-ICP-MS

U/Pb dating was performed on 114 individual 
zircon crystals obtained from a sample at the top of 
the LJSS (Fig. 9). The results show dominant Miocene 
peaks (~55% of all dated grains) with absolute ages 
over tight intervals at approximately 10-13Ma and, the 
more abundant population (about 60 grains) with ages 
between ~18-21Ma (Fig. 9). A second age group exhibits 
Oligocene ages between ~23-31Ma, followed by two 
Mesozoic clusters with a Cretaceous peak at ~75-82Ma 
and some zircons with Triassic ages ~230-240Ma. The 
last age group comprises a small set of zircons (less than 
3%) that are older than 500Ma and reach to ~2800Ma. 
The youngest detrital zircon age population within the 
Miocene age is interpreted as an estimate of the maximum 
depositional age for the LJSS in the Tortonian. This date 
agrees with a biostratigraphically estimated age based on 
nannofossils assemblages (Vallejo et al., 2016).
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FIGURE 7. Results of the LJSS zircon typology analysis based on the A.I-T.I diagram of Pupin (1980).

1

3

4

5

6
8

7

2

I.A

T.I.

800100

100

800

FIGURE 8. Distribution of granitic rocks in the typology diagram 
derived from the mean value of AI and TI (Pupin, 1988): 1) alumina 
leucogranites, 2) monzogranites-granodiorites (sub)autochthonous, 
3) monzogranite-granodiorite aluminum intrusives, 4) calc-alkaline 
and K-rich calc-alkaline series granites, 5) sub-alkaline series 
granites, 6) alkaline series granites, 7) tholeiitic continental granites, 
8) tholeiitic series oceanic granites. Purple points represent the 
results of zircons analyzed in this study.
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Cathodoluminescence images

Dated zircons were analyzed by SEM-CL images, 
allowing us to identify a variety of internal textures and 
to establish differences within the age populations. In 
general, Precambrian zircons have rounded and irregular 
shapes. In some dated zircons, it was possible to identify 
their typology to reveal a predominance of subtypes P4 and 
P5. Internal zircon textures exhibit weak-wide zonation 
patterns and overlapping zonation domains, as well as 
some less conspicuous oscillatory zoning patterns (Corfu 
et al., 2003) (Fig. 10). Mesozoic zircons, which are largely 
Triassic in age, present a correlation with subtypes such 
as S10, P2, P3, P4, and P5. Internally, these zircons are 
characterized by overlapping domains of non-zoned cores 
surrounded by domains of very fine and strong oscillatory 
zoning. Finally, Miocene zircons are correlated with a 
greater variety of S and P typologies, are smaller in size with 
respect to other populations, and show a better development 
of crystalline faces. They exhibit varied internal textures 
including reabsorbed cores with overgrowth, superposition 
of zonation domains, and fine bimodal zonation (Fig. 10).

DISCUSSION

Applied as integrated provenance analyses, typology and 
U/Pb geochronology in detrital zircons enables us to constrain 
the sources of sedimentary material that filled the San Juan 
Sub-basin during the Miocene. In terms of roundness, the 
prevalence (91%) of well-faceted to poorly rounded grains 
indicates that the analyzed zircons were slightly affected 
by abrasion, suggesting JLSS zircons underwent minimal 
transport from proximal sources and/or that the kinetic energy 
during transport was low (Caspers, 1967; Dietz, 1973).  

Elongation analysis is a good indicator of potential 
source rocks (Poldervaart, 1955; Poldervaart, 1956; Hoppe, 
1963; List, 1966). In our study, the more elongated zircons 
are associated with granitic and/or medium- to high-grade 
metamorphic origins, while short and rounded zircons 
are linked to reworking or low-grade metamorphism 
(Poldevaart, 1950; Hoppe, 1963; Finger and Haunschmid, 
1988). Elongation is also an indicator of cooling rates, 
where rapid cooling (i.e., volcanic) generates mostly longer 
crystals (elongation ratio >3). In this sense, our results 
show that LJSS zircons do not exhibit a single tendency 
of elongation. Instead, the majority of crystals analyzed 
present moderate to high ratios (between ~2 and 3), while 
two samples give elongation ratios of 5, suggesting that 
most zircons have an igneous origin characterized by rapid 
cooling (e.g., shallow intrusions and/or volcanics). 

SEM-CL images allow identification of internal 
textural differences within zircon populations. Precambrian 

zircons present weak and wide zonation with overlapping 
domains. Mesozoic zircons display superposition of 
domains exhibiting non-zoned cores with overgrowth and 
strong zonation. Such patterns are characteristic of granitic 
igneous rocks but may also occur in some metamorphic 
rocks (Corfu et al., 2003). Finally, Miocene zircons are 
characterized by internal textures exhibiting reabsorbed 
cores with overgrowth, superposition of zonation domains, 
and fine bimodal oscillatory zonation (Fig. 10). These 
textural features are typical of zircons formed in acid to 
intermediate igneous rocks and develop during zircon 
crystallization, reflecting processes of reabsorption, 
precipitation, and crystal growth inside magmatic chambers 
with compositional variations (Corfu et al., 2003). Zircon 
typologies in our study indicate that the majority originated 
from granitic rocks of subalkaline affinity, in addition to 
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alkaline granitic rocks (Figs. 7; 8). However, an association 
of zircon morphology/typology with metamorphic rocks 
cannot be ruled out.

Detrital zircon populations analyzed for U/Pb ages show 
age spectra with significant peaks at ca. 10Ma, 12-13Ma, 
and 18-21Ma (Fig. 9). Less prominent peaks are occur in 
the intervals ~23-31Ma, ~38-40Ma, ~75-82Ma, and ~230-
240Ma. A small proportion of zircons with ages between 
500Ma and 2800Ma are also present. Zircons with U/Pb 
ages in the Burdigalian-Aquitanian interval confirm that 
material was sourced primarily from plutonic and volcanic 
rocks of known Miocene age (ca. 18-20Ma), such as the 
Aguaclara Stock, Danubio Stock, Anchicayá Stock, and 
Torra Pluton (Brook, 1984; ANH-Universidad de Caldas, 
2011). In addition, the younger plutonic Miocene bodies, 
Serravallian to Tortonian (ca. 10-14Ma), may indicate 
detrital signatures from northern intrusive sources including 
the Farallones Batholith, the Horqueta Stock, and other 
bodies reported by Calle et al. (1980), García and García 
(2012) and Restrepo-Moreno et al. (2013). Oligocene U/Pb 
signatures are attributable to plutons such as the Piedrancha 
Batholith (Brook, 1984). The contribution of Cretaceous 
granites can be linked to the Buga Batholith (Villagómez et 
al., 2011) and the Mistrató Stock (Calle and González, 1982; 
Moreno-Sanchez and Pardo-Trujillo, 2003). However, the 
presence of volcanic lithics and hornblende + pyroxene 
associations (Muñoz and Gomez, 2014), in conjunction 
with the euhedral and elongated morphology of some zircon 
grains (elongation ratios >3), with U/ Pb ages predominantly 
between 10 and 21Ma, are clear indications of volcanic 
activity during the Miocene depositional stages of the LJSS 
in western Colombia.

Our results indicate that the primary sources of detrital 
material for the LJSS correspond to the Late Mesozoic 
(i.e., Cretaceous) and Cenozoic litho-stratigraphic 
provinces (Fig. 2), which can be correlated with the present 
configuration of basement rocks of the Western Cordillera. 
The age ranges reported above are typical of the Western 
Cordillera’s plutonic (intermediate to mafic) and volcanic 
(intermediate) rocks, suggesting that this mountain range 
was already a significant topographic barrier, with exposed 
and geomorphically active crystalline massifs. Conversely, 
Triassic to Precambrian zircons are often associated with 
crystalline rocks of the Central Cordillera (Horton et al., 
2015; Nie et al., 2010; Vinasco et al., 2006). The presence 
of a few zircon grains in this U/Pb age-range, with typical 
peaks at ~230-250Ma, 600Ma, 900-1000Ma, etc., does 
not necessarily imply a direct fluvial connection between 
the Central Cordillera and sedimentary formations along 
the Pacific coast. We interpret such zircons as being 
derived from reworking of Cretaceous sedimentary covers 
positioned over the Western Cordillera (e.g., Penderisco 
Formation, Urrao Member) where populations with these 
Paleozoic and Precambrian ages have been reported (i.e., 
polycyclic zircons; ANH-Universidad de Caldas, 2011).

Based on the presence of Cretaceous zircons in the 
LJSS, it could be argued that, since the Central Cordillera 
also exhibits considerable pulses of Cretaceous magmatism 
(Restrepo-Moreno et al., 2009; Villagómez and Spikings, 
2013; Cochrane et al., 2014), the possibility of a fluvial 
connection between the Central Cordillera and the LJSS 
should not be discounted. Yet, the absence of Jurassic U/
Pb ages from the SSJL is notable, despite of the fact that 
there are plutonic masses of considerable size and Jurassic 
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Miocene. Black circles correspond to ablation pits from U/Pb dating.
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age in the Central Cordillera, such as the Ibague Batholith 
(Gómez et al., 2015), positioned at almost the same latitude 
as the SSJL.

Relative to the PCB, the virtual absence of Eocene 
zircons in the interval ~38-50Ma, corresponding to 
some intrusives typical of the Panamanian Arc (e.g., 
Mandé Batholith (Botero, 1981; Villagómez and 
Spikings, 2013) and/or the Acandí Batholith (Álvarez 
and Parra, 1971; Sillitoe et al., 1982), would indicate 
that: i) the PCB was still in a distal position with 
respect to the LJSS at 10Ma, ii) Mandé-like plutonic 
units were still unexposed massifs (i.e., in subsurficial 
positions and in the process of exhumation) and thus did 
not contribute sediments to the basin and/or iii) there 
was no fluvial network connecting geomorphically 
active Panamanian elements with the LJSS. However, 
recent studies indicate that the plutonic masses of the 
Panamanian Arc were already exhumed and served as 
source areas for sedimentary formations in Panamá 
(Ramírez et al., 2016), making options i) and iii) above 
more reasonable.

The prevalence of Western Cordillera-like zircon detrital 
signatures (based on U/Pb age and typologies, this study), 
the dominant heavy mineral fractions for these sediments 
(Muñoz and Gómez, 2014) and the absence of significant 
zircon U/Pb age signals older than the Cretaceous can be 
considered as preliminary evidence for the topographic 
control exerted by the Western Cordillera hindering fluvial 
connections between the Central Cordillera and the LJSS. 
In addition, the presence of zircons potentially derived 
from Miocene plutonic bodies (e.g., Farallones Stock, 
Tatamá Pluton, etc.) located north and east of the LJSS, 
and on an axial portion on the Western Cordillera, indicates 
that such plutons were exhumed and geomorphically 
active and thereby formed areas of detrital contribution 
within the paleofluvial network. Further to this detrital-
fluvial contribution, we suggest there may have been a 
significant direct contribution from the volcanic products 
of a Miocene magmatic arc.  

Based on our results, a feasible paleogeographic 
reconstruction shows that during the time of LJSS 
sedimentation (Burdigalian-Tortonian) there was a 
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volcanic-magmatic arc in the Western Cordillera of 
sufficient topographic relief to separate Central Cordillera 
source areas from Pacific basins. Marked pulses of uplift 
and erosional exhumation are also reported for the Western 
Cordillera for the interval 15-9Ma (Restrepo-Moreno et 
al., 2015). As in present times, this topographic barrier 
played a pivotal role for a river network restricted to the 
western flank of the Western Cordillera that controlled 
the extent of fluvial dissection, erosion, and sediment 
production-routing into the Pacific plains (Fig. 11). The 
proposition of an already existing Western Cordillera as a 
considerable topographic barrier since the middle Miocene 
is consistent with determinations, based on evidence from 
borehole and seismic data, on the extent of Pacific basins 
in Colombia (i.e., those situated to the west of the Western 
Cordillera) that show significant reduction in thickness as 
one moves from west to east (i.e., from the Pacific Ocean 
to the Western Cordillera).

CONCLUSIONS

Integration of techniques such as detrital zircon 
typology/morphometry, U/Pb dating, and SEM-CL imaging 
in samples from the LJSS arenites affords improved 
constraint of the depositional age and provenance of the 
terrigenous materials deposited in the basin during the 
Burdigalian-Tortonian. The high affinity of the zircons 
(typology/age/internal zonation patterns) with Miocene 
igneous rocks (plutonic and volcanic) potentially implies 
that an active volcanic-magmatic arc with significant 
topography existed in the Western Cordillera and was 
the main sediment source. Detrital sources on the Central 
Cordillera were separated from the Pacific realm by well-
established Western Cordillera topographic barriers. 

Our methodological approach to evaluate provenance 
in a complex litho-structural regime represents a viable 
development of the standard methodology, considering 
the quantity of information provided in provenance 
studies and paleogeographic reconstruction, and should be 
systematically used in other sedimentary sequences in the 
northern Andes.  
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