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Abstract 32 

Climate change, alteration of atmospheric composition, land abandonment in some areas and 33 

land use intensification in others, wildfires and biological invasions threaten forests, 34 

shrublands and pastures all over the world. However, the impacts of the combinations 35 

between global change factors are not well understood despite its pressing importance. Here 36 

we posit that reviewing global change factors combination in an exemplary region can 37 

highlight the necessary aspects in order to better understand the challenges we face, warning 38 

about the consequences, and showing the challenges ahead of us. The forests, shrublands and 39 

pastures of the Mediterranean Basin are an ideal scenario for the study of these combinations 40 

due to its spatial and temporal heterogeneity, increasing and diverse human population and 41 

the historical legacy of land use transformations. The combination of multiple global change 42 

factors in the Basin shows different ecological effects. Some interactions alter the effects of 43 

a single factor, as drought enhances or decreases the effects of atmospheric components on 44 

plant ecophysiology. Several interactions generate new impacts: drought and land use 45 

changes, among others, alter water resources and lead to land degradation, vegetation 46 

regeneration decline, and expansion of forest diseases. Finally, different factors can occur 47 

alone or simultaneously leading to further increases in the risk of fires and biological 48 

invasions. The transitional nature of the Basin between temperate and arid climates involves 49 

a risk of irreversible ecosystem change towards more arid states. However, combinations 50 

between factors lead to unpredictable ecosystem alteration that goes beyond the particular 51 

consequences of drought. Complex global change scenarios should be studied in the 52 

Mediterranean and other regions of the world, including interregional studies. Here we show 53 

the inherent uncertainty of this complexity, which should be included in any management 54 

strategy. 55 

 56 
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1 Introduction 60 

The Earth system is subject to a wide range of new planetary-forces that are originated in 61 

human activities, ranging from the emission of greenhouse gases to the transformation of 62 

landscapes and the loss of biota. The magnitude and rates of human-induced changes to the 63 

global environment –a phenomenon known as global change- has accelerated since the 64 

second half of the last century (Steffen et al., 2004; Vitousek, 1994). There is general 65 

agreement about the factors of global environmental change and their ecological 66 

consequences on terrestrial ecosystems. They imply extreme climatic events, atmospheric 67 

chemical pollution, land use modifications, frequent fires and biological invasions, among 68 

others (Lindner et al., 2010; Sala et al., 2000). However, uncertainty prevails in our capacity 69 

to understand and predict the impact of their combination (Langley and Hungate 2014; 70 

Scherber 2015). Therefore, there is a growing interest in understanding not only the factors 71 

of global change and derived disturbances, but also the combinations among them (Moreira 72 

et al., 2011; Rosenblatt and Schmitz, 2014).  73 

Having a good knowledge of the factors of global environmental change and their 74 

interactions is crucial to understand local to global implications, anticipate effects, prepare 75 

for changes and reduce the risks of decision-making in a changing environment (Sternberg 76 

and Yakir, 2015). This is especially certain in areas where many factors are involved and 77 

intermingled, as in the Mediterranean Basin (Mooney et al., 2001; Sala et al., 2000). The 78 

heterogeneity and transitional nature of the Mediterranean biogeography and the long history 79 

of human alterations result in a spatially-structured landscape mosaic (Blondel et al., 2010; 80 

Scarascia-Mugnozza et al., 2000; Woodward, 2009). All these aspects combined have 81 

contributed to sustain a rich biota, which make the Mediterranean Basin a global biodiversity 82 

hotspot (Myers et al., 2000), and to provide a scenario where historical legacies may have a 83 

greater effect on present ecological processes than current factors (Dambrine et al., 2007). 84 

However, future scenarios indicate that global change in the Mediterranean Basin will likely 85 
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involve a great risk of biodiversity loss (Malcolm et al., 2006; Sala et al., 2000) and a decline 86 

of other ecosystem services, such as water and food resources, and carbon uptake (MEA, 87 

2005; Schröter et al., 2005).  88 

Numerous studies have examined the factors of global change on terrestrial ecosystems of 89 

the highly diverse Mediterranean Basin (as it could be appreciated in the following review), 90 

but a systematic revision of the effects of all factors of global change and their combination 91 

is lacking. Here we first review the current and future impacts of the main global change 92 

factors (drought and other climatic events, alteration of atmospheric composition, land use 93 

intensification and abandonment, wildfires and biological invasions) on forests, shrublands 94 

and pastures of the Mediterranean Basin (although the present work is focussed in terrestrial 95 

ecosystems for practical reasons, we highly recommend Coll et al., 2010, as start point to a 96 

similar review in the Mediterranean Sea) to then provide an assessment of the main types of 97 

combinations among these factors. Our principal objectives are to show the impending 98 

challenges of global change in the Mediterranean Basin and to warn about the potential 99 

consequences of different combinations of global change factors. 100 

 101 

2 Main global change factors in the Mediterranean Basin 102 

2.1 Drought and other climatic events 103 

Current aridity levels in the Mediterranean Basin appear to be unprecedented in the last 500 104 

years (Nicault et al., 2008). Most climate models forecast substantial increases in 105 

temperature and declines in precipitation, which will increase heat stress and largely reduce 106 

water availability in the Basin (Gao and Giorgi, 2008; Hoerling et al., 2011). Models also 107 

predict increases in climatic variability, with more extreme temperature and precipitation 108 

events (Gao et al., 2006; Solomon et al., 2007). 109 
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Recent changes in precipitation have already been related to field data on tree growth 110 

decreases (Sarris et al., 2007), increased growth variability (Vieira et al., 2010) and crown 111 

defoliation on Mediterranean forests, in contrast to northern Europe (Carnicer et al., 2011). 112 

Modelling exercises also project important changes in forest growth, although they also 113 

highlight the complexity of the interactions involved (Fyllas et al., 2010; Sabaté et al., 2002). 114 

Several drought simulation experiments have shown that water (Limousin et al., 2009) and 115 

carbon fluxes (Matteucci et al., 2010; Misson et al., 2010) are highly sensitive to reductions 116 

in precipitation. At the same time, phenology (Klein et al., 2013; Morin et al., 2010), nutrient 117 

allocation and accumulation (Simoes et al., 2008) and key soil processes (e.g., Curiel-Yuste 118 

et al., 2011; Sherman et al., 2012) have been shown to be affected by rainfall and 119 

temperature manipulations. Described effects on plant communities should affect faunal 120 

communities, as in the case of seed feeders (e.g., Sánchez-Humanes and Espelta, 2011) and 121 

fauna affected by habitat loss (e.g., Scalercio, 2009). The effects of other climate extremes, 122 

such as cold temperatures, have been less studied, although they may also be important 123 

(Valladares et al., 2008). 124 

Although evidence from both observational (e.g., Kazakis et al., 2007; Vennetier and Ripert, 125 

2009) and experimental studies (e.g., De Dato et al., 2008; Matías et al., 2012) suggests that 126 

changes in species composition can occur, studying these changes is difficult because they 127 

require long-term monitoring. At the same time, some reports highlight the importance of 128 

intraspecific variability, phenotypic plasticity and local adaptation (Poirier et al., 2012; 129 

Ramírez-Valiente et al., 2010), among a plethora of stabilizing processes that may prevent 130 

vegetation shifts from eventually occurring (cf. Lloret et al. 2012). Drought has also been 131 

shown to affect the composition of soil fauna (e.g., Legakis and Adamopoulou, 2005; 132 

Tsiafouli et al., 2005) and butterfly communities (Parmesan et al., 1999). 133 

 134 
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2.2 Alteration of atmospheric composition 135 

The orography of the Mediterranean Basin provokes that in summer a stagnant layer of air 136 

acts as a reservoir where most pollutants are transformed. Moreover, emissions in the Basin 137 

could be drive directly into the mid and upper troposphere, being transported toward the 138 

region (Moreno and Fellous, 1997). The impact of atmospheric composition changes in 139 

Mediterranean Basin forests has scarcely been studied, despite the fact that these forests are 140 

considered a significant carbon sink (Valentini et al., 2000).  141 

Although short-term carbon dioxide (CO2)-enrichment experiments in temperate forests 142 

show an increase in net primary production (Norby et al., 2005), several tree-ring studies 143 

have reported a general decrease in tree growth in the Mediterranean Basin (Nicault et al., 144 

2008). The controversy may be due to the constraints imposed by water or nutrient scarcity 145 

on plant growth, affecting the overall impact of increased CO2 effects (Leonardi et al., 2012; 146 

Zhao and Running, 2010). In addition, photosynthetic acclimation to high CO2 cannot be 147 

ruled out (Peñuelas et al., 2011).  148 

In the Western Mediterranean Basin, herbaria analysis shows a decrease in nitrogen (N) 149 

concentration in leaf tissues throughout the 20th century (Peñuelas and Estiarte, 1997). The 150 

increase in N deposition during recent decades in Europe (Galloway et al., 2008), can, at 151 

least partially, offset N limitation and sustain the growth promoted by the CO2 fertilization 152 

(Milne and van Oijen, 2005). Nevertheless, other nutrients, such as phosphorus (P), will 153 

remain unaltered and immobilized in biomass and soils, limiting further plant growth and 154 

generating a significant imbalance in the N:P ratio (Peñuelas et al., 2012). Furthermore, N 155 

deposition causes changes in soil quality, plant physiology and community composition, and 156 

has been recognized as an important driver in biodiversity loss (Dias et al., 2011; Ochoa-157 

Hueso et al., 2011). Total annual estimates of N deposition in the Mediterranean Basin are 158 

higher than those promoting adverse effects (Im et al., 2013). 159 
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Climatic conditions in the Mediterranean Basin favour Tropospheric ozone (O3) formation 160 

and persistence (Cristofanelli and Bonasoni, 2009; Hodnebrog et al., 2012). Mediterranean 161 

woody vegetation seems to be in general tolerant to O3 adverse effects due to its 162 

sclerophyllous leaf structure, low gas exchange rates, BVOCs emissions and active 163 

antioxidant defences (Paoletti, 2006). However, leaf senescence, increases in leaf mass per 164 

area and spongy parenchyma thickness, decreases in photochemical maximal efficiency and 165 

in the chlorophyll content, and biomass reduction caused by O3 have been described in some 166 

Mediterranean forest species (Paoletti, 2006; Ribas et al., 2005). Interactive effects between 167 

CO2 and O3 are very variable as they depend on pollutant concentrations, species sensitivity 168 

and interactions with other stresses such as plant competition, drought and nutrient 169 

availability (Karnosky et al., 2007; Wittig et al., 2009). 170 

The Mediterranean Basin is one of the hotspots of biogenic volatile organic compounds 171 

(BVOC) emissions in Europe (Steinbrecher et al., 2009). BVOCs can act as a chemical sink 172 

for O3 at the leaf level, protecting vegetation from its negative effects (Fares et al., 2008; 173 

Loreto et al., 2004), or enhancing O3 production in the atmosphere through photochemical 174 

reactions in the presence of N oxides (Peñuelas and Staudt, 2010). Increasing emissions of 175 

BVOCs have, in any case, ecological impacts on Mediterranean life, given their key role in 176 

plant defence and communication with other organisms (Peñuelas and Staudt, 2010). Rising 177 

temperatures increase BVOC emission rates by enhancing their synthesis and by facilitating 178 

vaporization (Peñuelas and Llusià, 2001), which likely results in an increasing feedback to 179 

warming. BVOC emission rates present a broad range among plant species and therefore 180 

will be largely affected by changes in vegetation biomass, vegetation types and land uses. 181 

 182 

2.3 Land use intensification and abandonment 183 
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In the Mediterranean Basin region, contrasting patterns of recent land use changes appear 184 

(Petit et al., 2001) with both abandonment and intensification co-occurring in the northern 185 

areas, while deforestation and intense use of forest resources is still dominant in the southern 186 

rim (Grove and Rackham, 2001) (Figure 1). 187 

In the southern part of the Mediterranean Basin, the increasing rates of deforestation threaten 188 

the scarce forest resources and ecological services of the region (Grove and Rackham, 2001). 189 

Even if the amount of deforestation in the southern Mediterranean in the 1990s was low 190 

compared to Latin America or Tropical Asia, the rate of increase compared to the ‘80s was 191 

four times higher (Hansen and DeFries, 2004). Consequences of deforestation in this region 192 

go beyond ecological effects, implying whole ecosystem change (Zaimeche, 1994). 193 

In the northern Mediterranean Basin, metropolitan coastal landscapes are one of the most 194 

altered in the world (Hepcan et al., 2012; Myers et al., 2000). Simultaneously, forests around 195 

northern Mediterranean cities are suffering increasing ecological impact due to intense use 196 

for leisure and progressive forest fragmentation resulting from urban sprawl (Jomaa et al., 197 

2008; Salvati et al., 2014). However, land use intensification of lowland regions is 198 

encompassed with afforestation of low productive uplands (Falcucci et al., 2007; Roura-199 

Pascual et al., 2005) due to crop and pasture abandonment (Debussche et al., 1999; Tomaz et 200 

al., 2013), and also to deliberate reforestation (Hansen and DeFries, 2004). These changes 201 

are linked to profound socioeconomic shifts that led to a rural exodus and a decrease in 202 

many of the traditional uses of forests (Grove and Rackham, 2001; Hill et al., 2008). As a 203 

result, the northern Mediterranean forest landscapes have undergone large-scale changes, not 204 

only in their general extent, but also in terms of vegetation structure, composition and 205 

dynamics (Roura-Pascual et al., 2005). Novel forests composed of pioneer and introduced 206 

species, and with relatively unknown structural and functional attributes, have proliferated 207 

(Eldridge et al., 2011; Hobbs et al., 2006). These forests are becoming essential for the 208 

restoration of landscape corridors between what remains of the historical forests and for the 209 
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recovery of forest species (Sirami et al., 2008). However, forest recovery could be heavily 210 

influenced by the long-term effects of past land uses, which might determine soil fertility, or 211 

by landscape impacts of current fire disturbance regimes (Puerta-Piñero et al., 2012). In fact, 212 

past land uses could be a key factor altering the effects of current global changes and thus 213 

differentiating the Basin from other Mediterranean regions of the world. 214 

 215 

2.4 Wild fires 216 

Wild fires of the Mediterranean Basin represent a dramatic hazard due to the dense human 217 

population of the region (Dwyer et al., 2000). Moreover, historical alteration of fire patterns 218 

in the Basin has modified vegetation resilience, differentiating it from the flora of other 219 

Mediterranean regions (Pausas, 1999). Although in recent decades there has been a steady 220 

increase in the resources invested in fire prevention and suppression, the number and extent 221 

of wildfires have increased over the same period (Carmo et al., 2011; Piñol et al., 1998). 222 

Climate has been the main driver of global biomass burning for the past two millennia 223 

(Marlon et al., 2009). In the Mediterranean region, predictions indicate a general rise in fire 224 

risk due to current warming (Moriondo et al., 2006). 225 

Changes in the fire regime modify Mediterranean communities and their resilience to fire 226 

(Paula et al., 2009; Tessler et al., 2014) in two ways. First, non-resilient tree species 227 

dominant in sub-Mediterranean regions (Lloret et al., 2005) show very low regeneration after 228 

large wildfires and are replaced by oak forests, shrublands or grasslands (Bendel et al., 2006; 229 

Retana et al., 2002). Second, the higher fire frequency and intensity in fire-prone areas might 230 

result in: (i) a decrease in the resprouting ability of plants and reduced resilience at the 231 

landscape level of forests dominated by resprouters (Díaz-Delgado et al., 2002; Marzano et 232 

al., 2012); (ii) a failure of obligate seeders regeneration when time intervals between fires are 233 
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shorter than the time required for a sufficient seed bank to build up (‘immaturity risk’, sensu 234 

Zedler, 1995). 235 

Additionally, wildfire events have major influences on the release of N and other air 236 

pollutants and on the water quality of burned catchments (Johnson et al., 2007). Moreover, 237 

increases in fire recurrence can affect ecosystem processes including long-term reductions in 238 

primary production (Delitti et al., 2005; Dury et al., 2011) and increases in erosion (Thornes, 239 

2009) as a consequence of a slow recovery of the soil organic layers (Shakesby, 2011) and 240 

changes in microbial properties (Guénon et al., 2011). These changes frequently lead to 241 

changes in plant and animal communities favoured by open areas (e.g., Broza and Izhaki, 242 

1997; Fattorini, 2010; Kiss et al., 2004).  243 

 244 

2.5 Biological invasions 245 

Patterns of recent invasions (i.e. neophytes) among habitat types seem to be quite consistent 246 

across Europe (Chytrý et al., 2008) and therefore across the Mediterrean Basin. The invasion 247 

patterns differ considerably amongst taxonomy groups, although they tend to mostly occupy 248 

anthropogenic habitats, while natural and semi-natural woody habitats are relatively resistant 249 

to invasions (Arianoutsou et al., 2010; DAISIE, 2009). As in other regions worldwide, the 250 

increase in the establishment of non-native species in the Mediterranean Basin will continue 251 

due to the expanding transport of goods and people. Currently, the information available on 252 

non-native species in the Basin is not complete and the number of non-native species across 253 

taxonomic groups is underestimated (DAISIE, 2009). Detailed information about their 254 

distribution and ecological impacts is necessary to determine exactly the current status of 255 

biological invasions in the Mediterranean region. 256 

We are starting to identify the ecological and economic consequences of invasions in 257 

terrestrial ecosystems of the Mediterranean Basin. Non-native plants compete with native 258 
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species, decreasing local diversity and changing community composition (Vilà et al., 2006). 259 

Changes in ecosystem functioning have been less explored, but they include alterations in 260 

decomposition rates (De Marco et al., 2013) and changes in soil C and N pools (Vilà et al., 261 

2006). Even though the number of successful invaders seems to be higher in plants, the 262 

consequences caused by animal invasions are not of a lower magnitude. The presence of 263 

non-native vertebrates poses severe threats to native biodiversity through competition for 264 

resources, predation and hybridization with native species, as well as economic impacts 265 

(DAISIE, 2009). Most non-native terrestrial invertebrate species established in Europe are 266 

known to be potential pests for agriculture and forestry products, while around 7 % affect 267 

human and animal health (DAISIE, 2009). The ecological consequences of non-native 268 

invertebrates have received less attention. Certain ants, such as Linepithema humile or 269 

Wasmannia auropunctata, are known to have a dramatic effect on native invertebrate 270 

communities (Blight et al., 2014; Vonshak et al., 2010). 271 

 272 

3 The combinations among factors alter the impacts of global change in the 273 

Mediterranean Basin 274 

By addressing the principal global change factors affecting the Mediterranean Basin 275 

separately, we have already covered how different pollutants can interact and how their 276 

fluxes depend on forest cover, while current increases in fire frequency imply further 277 

atmospheric alterations. In order to disentangle the possible effects of global change 278 

combinations, we have crossed the different factors among them (Table1), and different 279 

kinds of combinations have emerged (Figure 2). In the following sections we review the 280 

potential combined effects of the various processes identified in the Region (following the 281 

numbering in Table 1), boosted in many cases by the effects of drought. First, one factor can 282 

alter the effect of another factor: for instance, the effects of atmospheric chemical 283 
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compounds on plant ecophysiology can be enhanced or decreased by drought (Figure 2a; 284 

Section 3.1). Second, several interactions among factors trigger new impacts, such as the 285 

alteration of water resources, land degradation, regeneration decline, and expansion of forest 286 

diseases (Figure 2b; Sections 3.2, 3.3, 3.4, 3.5). Finally, different factors, alone or 287 

simultaneously, can enhance the risk of other factors, as in the case of wildfire or invasion 288 

risk (Figure 2c; Sections 3.6, 3.7).  289 

 290 

3.1 Modification of plant ecophysiology by interactions between atmospheric alteration and 291 

drought 292 

Water availability is the main factor limiting biological activity in Mediterranean ecosystems 293 

and, thus, modulating the response to changes in atmospheric chemistry. The direct effects 294 

of higher atmospheric CO2 include stomatal closure and enhancement of plant water-use 295 

efficiency (WUE). WUE can alleviate the effects of drought on plant physiology and slow 296 

down the depletion of soil water during drought progression (Morgan et al., 2004) (Figure 297 

2a). Observations of naturally grown Mediterranean forests show a clear increase in WUE 298 

during the 20th century, suggesting that the unobserved CO2-fertilization benefits in growth 299 

have likely been counteracted by drought (Peñuelas et al., 2011) (Figure 2a). 300 

The reduction in plant growth caused by drought might be due to less N absorption. In this 301 

sense, foliar N concentration has been found to have a positive correlation with precipitation 302 

(Nahm et al., 2006). Also, drought affects soil microbial activity, leading to a reduction in N 303 

mineralization and thus in absorption of deposited N (Rutigliano et al., 2009). All these 304 

factors can increase soil N accumulation in oxidized forms and result in greater N losses 305 

through leaching after torrential storms (Avila et al., 2010; MacDonald et al., 2002). 306 

Depending on the level of stress, drought results in both decreases and increases in BVOC 307 

emission rates (Peñuelas and Staudt, 2010). Mild heat stress may increase BVOC emissions 308 
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by making the isoprenoid synthesis pathway more competitive than carbon fixation 309 

(Niinemets, 2010). On the contrary, severe drought may greatly decrease emissions because 310 

of detrimental effects on protein levels and substrate supplies (Fortunati et al., 2008). 311 

Drought stress protects plants against O3 by inducing stomatal closure and pollutant uptake. 312 

Indeed, high summer O3 levels in the Mediterranean Basin occur when the seasonal drought 313 

is more intense and plants are less physiologically active (Gerosa et al., 2009; Safieddine et 314 

al., 2014). However, the additive effects of drought and O3 have been described mainly 315 

through an O3-induced lose of stomatal regulation favouring drought stress (McLaughlin et 316 

al., 2007). Ambient O3 concentrations can thus increase water use by forest trees, 317 

contributing to reduce water availability and thus amplifying the effects of climate change 318 

(Alonso et al., 2014). 319 

 320 

3.2 Alteration of water resources by interactions between land use change and climate 321 

change 322 

Water resources are very important in the densely populated and water-limited 323 

Mediterranean Basin. The future of water resources in catchments must be assessed not only 324 

in view of climate-forcing predictions, but also considering land-cover changes (Bates et al., 325 

2008), especially woody plant encroachment in mountain areas. A large set of catchment 326 

experiments demonstrates that changes in land cover from grassed to forested areas involve a 327 

reduction in runoff (i.e. Bosch and Hewlett, 1982; Brown et al., 2005). However, some 328 

debate exists concerning larger catchments, where the role of forest cover is not always 329 

clearly identifiable in the flow records (Andréassian, 2004; Oudin et al., 2008). 330 

Historical records of large catchments studied in southern Europe show decreasing annual 331 

trends and changes in flow regimes (e.g. Dahmani and Meddi 2009; Lespinas et al., 2010). 332 

These trends are attributed to climatic shifts, increasing water consumption and 333 
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encroachment of forest cover due to land abandonment (García-Ruiz et al., 2011; Otero et 334 

al., 2011). There seems to be a forest expansion threshold over which the effect of forest 335 

cover on river discharges can be detected. In catchments with large and rapid forest 336 

expansion, the effects of forest encroachment in the reduction of river discharges are well 337 

documented (e.g., Gallart et al., 2011; Niedda et al. 2014). However, for other catchments, 338 

the effects of forest advance on runoff are not so clear, as for example in some mountain 339 

catchments in southern France or in catchments distributed from South to Central Italy (e.g. 340 

Lespinas et al., 2010; Preti et al. 2011). 341 

Considering only climate predictions and water consumption scenarios, the frequency of 342 

floods is not expected to increase in Mediterranean Europe, except due to extreme climatic 343 

events (Lehner et al., 2006). However, the influence of land-cover changes on floods, even at 344 

the small catchment scale, is particularly difficult to assess in Mediterranean catchments 345 

(Wittenberg et al., 2007). Among other factors, less is known about the rainfall partitioning 346 

process in typical open woodlands, savannah-type ecosystems, isolated trees and shrub 347 

formations than in closed forests (Latron et al., 2009; Llorens and Domingo, 2007). 348 

 349 

3.3 Land degradation favoured by interactions between either land use change or fire and 350 

climatic events 351 

The loss of ecological and economical soil productivity is directly controlled by vegetation 352 

cover, but can be aggravated by dry and variable climates (Imeson and Emmer, 1995; 353 

Kosmas et al., 2002). Mediterranean ecosystems couple extreme climatic events with 354 

materials that are highly susceptible to erosion (Poesen and Hooke, 1997). Current 355 

predictions are that climate change, in combination with farmland abandonment, unsuitable 356 

plantations, deforestation, overgrazing and fire, can overload the resilience of natural 357 

ecosystem to erosion (Thornes, 2009).  358 
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While erosion is the initial process leading to soil and productivity losses, desertification is 359 

the irreversible positive feedback loop of overexploitation favoured in certain dryland 360 

systems (Kéfi et al., 2007; Puigdefábregas, 1995). There is a threshold over which the effects 361 

of erosion are irreversible and the ecosystem cannot recover original biomass levels 362 

(Puigdefábregas and Mendizabal, 1998). Desertification can be intensified and extended by 363 

prolonged droughts (Kosmas et al., 2002), but also by potential human demographic 364 

explosions in south-eastern Mediterranean regions (Le Houérou, 1992; Naveh, 2007). 365 

Among the aforementioned factors, farmland abandonment increases the risk of gully 366 

development when artificial systems are no longer maintained (Koulouri and Giourga, 2007; 367 

Lesschen et al., 2007). The reduction in forest cover by clear-felling or fire increases water 368 

runoff and sediment yields, especially when the organic layer is extensively affected (Imeson 369 

and Emmer, 1995; Thornes, 2009). Vegetation-cover loss caused by overgrazing also results 370 

in soil compaction, gully development and ultimately erosion hotspots (Thornes, 2005). 371 

Overgrazing can result in greater impacts as climate become drier, combining both 372 

disturbances in a negative feedback cycle (Köchy et al., 2008).  373 

Drought induces impacts on vegetation that may result in erosion intensification (Thornes 374 

and Brandt, 1994). The most direct effect of climate change may be increased rainfall 375 

erosivity in the Mediterranean Basin, where the total rainfall will decrease but rainfall 376 

intensity during certain events will increase (Nunes and Nearing, 2011). Aridity can also 377 

affect soil biota negatively and slow down soil decomposition processes, decreasing the 378 

content of organic matter (Curiel-Yuste et al., 2011; Imeson and Emmer, 1995). Appropriate 379 

vegetation recovery after abandonment, disturbance or management should prevent soil and 380 

nutrient loss (Duran Zuazo and Rodriguez Pleguezuelo, 2008; Fox et al., 2006).  381 

 382 
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3.4 Regeneration decline promoted by interactions between either land intensification or fire 383 

and drought 384 

Forest resilience is based on both the forest capacity to recover the pre-disturbance state and 385 

the rate of plant growth. In this context, an increase in drought events might cause adverse 386 

impacts on plant regeneration. Recurrent droughts affect woody species performance 387 

differently, depending on species or functional type-specific sensitivity, leading to changes 388 

in species composition and structure (De Dato, 2008; Galiano et al., 2010). 389 

Herbivory can inhibit or exacerbate plant responses to climate-change conditions (Post and 390 

Pedersen, 2008; Speed et al., 2010). In recent decades, the populations of wild ungulates 391 

have increased beyond carrying capacities in the Mediterranean Basin, particularly in 392 

protected areas and mountain regions (Noy-Meir et al., 1989). Where animals are selective 393 

consumers of saplings and resprouts (such as goats), overgrazing severely affects forest 394 

regeneration. This effect is aggravated in Mediterranean areas, where species such as Pinus 395 

sylvestris present low sapling growth rates in comparison with those of northern latitudes 396 

due to water limitation (Danell et al., 2003; Edenius et al., 1995). Furthermore, browsing on 397 

saplings and resprouts in the Mediterranean Basin is more severe in summer and dry years, 398 

when other food resources for ungulates are less abundant, diminishing the time for recovery 399 

from damage (Herrero et al., 2012; Hester et al., 2004). 400 

Fragmentation can also lead to regeneration decline in combination with drought. Smaller 401 

patches not necessarily affect plant growth, which seems to be related to water stress, but 402 

definitely affect reproduction (Matesanz et al., 2009). Considering the functionality of the 403 

plant-soil-microbial system, small patches could even ameliorate the negative impacts of 404 

drought through increasing the capacity of the soil to retain water due to higher soil organic 405 

matter content than large patches. However, expected climatic changes in the already water-406 

limited Mediterranean Basin will overcome these processes (Flores-Rentería et al., 2015). 407 
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Post-fire forest regeneration depends on the identity and the regeneration capabilities of 408 

dominant species (Buhk et al., 2007; Seligman and Henkin, 2000), which drives the 409 

regeneration pattern of the whole plant community (Montès et al., 2004). First, in forests 410 

dominated by seeders (such as several serotinous pine species, including P. halepensis, P. 411 

pinaster and P. brutia), post-fire regeneration can be affected by drought since seed 412 

germination requires imbibition of the embryo after the first autumn rains (Tsitsoni, 1997). 413 

Higher aridity may lead to a reduction in reproduction effort and diminished seed bank 414 

viability (Espelta et al., 2011; Keeley et al., 2005). Second, post-fire recovery of non-415 

serotinous pines such as P. sylvestris and P. nigra depends mainly on seed dispersal from 416 

adjacent unburned patches. Therefore, frequent and intense fires might favour species shifts 417 

(Retana et al., 2002). Finally, the resprouting ability of broadleaved forests can also decrease 418 

due to long drought periods and low soil moisture (Castellari and Artale, 2010). 419 

 420 

3.5 Disease expansions induced by interactions between land use change and climate 421 

change  422 

There is common agreement that climate change will favour forest pest species, since 423 

survival of many arthropods depends on low temperature thresholds (Williams and Liebhold, 424 

1995), while fungi or pathogens are also benefited by dry conditions (Ayres and 425 

Lombardero, 2000; Jactel et al., 2012). However, the role of forest structure and composition 426 

in disease expansion is more controversial (Figure 2b).  427 

A Mediterranean example of insect pest is the pine processionary moth (PPM) 428 

(Thaumetopoea pityocampa/T. wilkinsoni complex, Notodontidae), a well-known case due to 429 

its ecological, economic and medical importance (Erkan, 2011; Gatto et al., 2009; Vega et 430 

al., 2000). European cold-temperate species like the oak moth (T. processionea) and the 431 

summer pine processionary moth (T. pinivora) have increased the intensity of their outbreaks 432 
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during the last two or three decades (Aimi et al., 2008; Groenen and Meurisse, 2012). 433 

Meanwhile, the PPM has expanded in altitude (Battisti et al., 2005; Hódar and Zamora, 434 

2004) and latitude (Battisti et al., 2005; Kerdelhué et al., 2009). PPM is a paradigm case of 435 

sensitivity to global change for three reasons. First, due to its particular life cycle, with the 436 

larval development occurring during winter (instead of spring-summer as is usual in 437 

Lepidoptera), PPM is strongly dependent on minimum winter temperatures (Seixas Arnaldo 438 

et al., 2011). Second, PPM has also shown a high capacity for local adaptation, with some 439 

populations shifting to a summer cycle in cool areas and tolerating high temperatures at its 440 

southern limit of distribution (Pimentel et al., 2006; Santos et al., 2011). And third, extensive 441 

substitutions of broadleaved woodlands to pine plantations all over the Mediterranean have 442 

created a situation in which PPM can thrive (Jactel et al., 2009; Kerdelhué et al., 2009). 443 

Many other insect pests are showing similar dynamics and their importance is expected to 444 

increase in the coming years, although reliable estimates are still not available (Battisti, 445 

2005). 446 

The story is different for fungus pathogens, which will benefit from the physiological 447 

responses to temperature increase in combination with drought effects on plants. Cases such 448 

as charcoal disease (Biscogniauxia mediterranea; Desprez-Loustau et al., 2006), Dutch elm 449 

disease (Ophiostoma ulmi; Resco de Dios et al., 2007), chestnut blight (Cryphonectria 450 

parasitica; Waldboth and Oberhuber, 2009) or oak decline (Phytophthora cinnamomi; 451 

Brasier and Scott, 1994) are illustrative of the threats facing a large part of the Mediterranean 452 

woodlands. For example, the combination of longer drought periods and fire may extend the 453 

distribution of several diseases (such as P. cinnamomi) that affect forest stands in southern 454 

Europe (Bergot et al., 2004). However, the possible effects that host range expansion and 455 

forest connectivity increase have on pathogen dispersal have yet to be probed (Pautasso et 456 

al., 2010). 457 

 458 
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3.6 Increase of fire risk by the combination with drought and/or land-use change 459 

There is increasing evidence to show that high temperatures and low air humidity conditions 460 

have become more common in recent decades and have been correlated with an increase in 461 

the total burned surface (Dimitrakopoulos et al., 2011). Models predict that these climatic 462 

conditions are going to become more frequent (Moriondo et al., 2006), determining changes 463 

in the fire regime (Mouillot et al., 2002). Wildfires are expected to be more frequent at 464 

higher altitudes and northern regions of the Mediterranean Basin, where they occurred only 465 

occasionally in the past (for the Southern Alps, Reinhard et al., 2005). This pattern will 466 

result in important consequences as dominant species of these areas often lack efficient post-467 

fire regeneration mechanisms (Vacchiano et al., 2014; Vilà-Cabrera et al., 2012), but may 468 

also lead to more heterogeneous landscapes that have greater resilience to further 469 

disturbances. 470 

The social and ecological impacts of wildfires are related to the implementation of large-471 

scale, organized fire suppression strategies at the national level. These strategies decrease the 472 

area burned in the short term, but lead to contrasting results in the long term due to fuel 473 

accumulation (Piñol et al., 2005). In addition to climate, fuel is in fact the other main 474 

physical driver of fire. Extensive agricultural abandonment during the past century has led to 475 

extensive successional shrublands and forests mostly dominated by pines. The low 476 

investment in fuel reduction practices has favoured high fuel load and vertical continuity 477 

promoting high-intensity crown fires (Lloret et al., 2009; Mitsopoulos and Dimitrakopoulos, 478 

2007). Crown fires have also affected large areas of managed pine woodlands, probably as a 479 

result of fuel continuity across the landscape and the mountainous nature of the territory. 480 

Also, in some areas, land use transformation to extensive grazing and human leisure 481 

activities can easily give rise to fires, while rural exodus prevents early fire extinction. 482 
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In summary, the conjunction of a trend towards a homogeneous landscape dominated by 483 

fuel-loaded vegetation (Loepfe et al., 2010) and a very active fire suppression policy is 484 

favouring fuel accumulation (Lloret et al., 2009). This state of affairs, together with the 485 

increasing climatic fire risk, is likely changing the fire regime to a set of large, frequent and 486 

intense wildfires, thus challenging the resilience of the Mediterranean vegetation (Moreira et 487 

al., 2011; Tsitsoni, 1997). To some extent, we may be contemplating wildfires as the catalyst 488 

for the adjustment of many Mediterranean Basin ecosystems to a new climate-driven status 489 

closer to semi-arid. 490 

 491 

3.7 Increase of invasion risk by the combination with drought, land-use change, atmospheric 492 

alteration or fire  493 

Climate change can enhance biological invasions through increasing survival, reproduction 494 

and spread of non-native species from warm climates (Walther et al., 2009). In the 495 

Mediterranean Basin terrestrial ecosystems, many non-native species from temperate and 496 

cold climates might only be able to shift their ranges northward or to expand in altitude. 497 

However, the empirical evidence that this is occurring is anecdotal. Non-native species 498 

whose native ranges are drier and warmer than their introduced ranges can be at an 499 

advantage due to physiological or reproductive adaptations (for insects, Bale and Hayward, 500 

2010). Still, model simulations and experiments suggest that changes in temperature alone 501 

do not determine non-native plant distribution and fitness (Gritti et al., 2006; Ross et al., 502 

2008). In fact, recent studies stress the important influence of land-cover change in 503 

accelerating invasions (Boulant, et al., 2009; Polce et al., 2011). 504 

Future projections of changes in land use highlight that the invasion levels of terrestrial 505 

ecosystems will increase regardless of the socioeconomic scenario (Chytrý et al., 2012). 506 

Open areas favoured by land-use changes frequently provide “windows of opportunity” for 507 
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invasion as they increase propagule pressure and favour non-native species adapted to take 508 

advantage of resource release (Ross et al., 2008; Roura-Pascual et al., 2009). In the 509 

Mediterranean Basin, past crop uses explain the distribution and abundance of invasive 510 

species in recently recovered forests and shrublands after a process of land abandonment 511 

(Pretto et al., 2012). Moreover, certain land-use changes increase the fragmentation and 512 

isolation of forest landscapes, which are more invaded than large continuous forests 513 

(Malavasi et al., 2014). This landscape configuration enhances levels of invasion at forest 514 

edges with urbanized or agricultural areas (Carpintero et al., 2004).  515 

The interaction of atmospheric N deposition and plant invasion has not yet been explored in 516 

the Mediterranean Basin, but it has been in other Mediterranean ecosystems (Padgett and 517 

Allen, 1999). Fertilization experiments in arid scrublands of California indicate that areas 518 

with high N deposition are more susceptible to non-native grass invasions, particularly in 519 

wet years (Rao and Allen, 2010). 520 

Fire has been proven to increase the expansion of non-native perennial grasses in the 521 

Mediterranean Basin (Vilà et al., 2001; although see Dimitrakopoulos et al., 2005 for 522 

contrasting results) which could feed back to increase the burnt area (Grigulis et al., 2005). 523 

Some non-native plants invade recently burnt forests but disappear later on as their 524 

persistence is constrained by the recovery of the native vegetation (Pino et al., 2013). On the 525 

other hand, little information is available on the increasing pool of plant species able to 526 

invade deeply shaded undisturbed forests (Martin et al., 2009). There are no similar studies 527 

for non-native fauna, but fires are expected to create new opportunities for the expansion of 528 

non-native animals already inhabiting the surroundings of the burned areas.  529 

Combinations between environmental change and biological invasions are still largely 530 

unknown. However, as the interaction of different global change factors can alter historical 531 

succession patterns of native species (Keeley et al., 2005), similar interactions might lead to 532 
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more frequent and resilient invasions, challenging the resistance of the Mediterranean 533 

terrestrial ecosystems.  534 

 535 

3.8 Potential combinations between more than two factors of global change 536 

Apart of the suggested combinations, more than two factors can interact generating even 537 

more complex effects. It has been already mentioned the complex feedbacks between 538 

climate, fire and atmospheric CO2, the first increasing fire risk, which contributes to higher 539 

CO2 concentration in the atmosphere, which can in turn increase global warming (Stavros et 540 

al., 2014). More specific are the studies of Dury et al. (2011) and Hodnebrog et al. (2012), 541 

where other interactions between changes in atmospheric composition, climate and fire are 542 

shown. Modelling the interaction between increasing levels of CO2, drought and fire 543 

frequency shows dramatic effects on forest productivity and distribution (Dury et al., 2011).  544 

Also, the combined effects of fires, climate warming and different biogenic emissions affect 545 

atmospheric ozone levels (Hodnebrog et al., 2012). Gil-Tena et al. (2011) show how fire, 546 

land use changes and climate change can affect the distribution of bird species, while these 547 

effects that can not be predicted by studying only one of these factors (Clavero et al. 2011). 548 

Similarly, Mariota et al. (2014) have modelled how the combined effects of climate change 549 

and fire on vegetation could be modified by land use changes. 550 

Unfortunately, the few studies including three factors interaction mentioned in the previous 551 

paragraph are not selected examples but the only ones found after a meticulous search (lists 552 

of keywords related with each factor were included together and in all the potential different 553 

combinations of four and three factors by using different fields on the ISI Web of Science in 554 

the search of published research articles related to global change factors interaction in the 555 

Mediterranean region, from 1900 to 2015). Moreover, although interactions between more 556 
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than three factors are also likely, we were not able to find any study considering this 557 

possibility in Mediterranean forests, shrublands or pastures. 558 

 559 

4 Concluding remarks: global change combination in the Mediterranean Basin  560 

Different global change factors combine and interact causing unprecedented ecological 561 

effects, which can be hardly predicted by the analysis of each factor in isolation. These 562 

combinations and interactions bring some inherent uncertainty, which should be considered 563 

in future research guidelines and when applying forest management strategies (Doblas-564 

Miranda et al., 2015). Principal sources of uncertainty are the contrasting effects between 565 

atmospheric pollutants and drought, the role of forest cover in water availability, floods and 566 

pest expansion and the thresholds of irreversibility that lead the change from one ecosystem 567 

to another. In addition, much more complex interactions arise when combinations occur 568 

together. For example, through altering forest extension and density, reforestation can 569 

decrease erosion but may also reduce water availability, while drought can enhance erosion 570 

and decrease water reserves. Moreover, both reforestation and drought may also indirectly 571 

contribute to erosion by increasing fire risk (Figure 3). Uncertainty should be faced by 572 

developing balanced adaptive strategies that account for the most likely consequences of the 573 

major expected impacts and the inclusion of such information in any decision making 574 

process (McCarthy and Possingham, 2007). 575 

Comparative studies across regions and ecosystems by multisite approaches are necessary to 576 

understand the impacts of global change. Particularly in the Mediterranean, previous 577 

evaluations of the effects of global change have been performed (Lavorel et al., 1998; MEA, 578 

2005; Sala et al., 2000), but new considerations need to be addressed. Climate change, and 579 

especially drought, emerges as a crucial factor in most of the reviewed interactions and 580 

therefore it should be considered when it comes to designing and applying international 581 
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management policies. For example, drought effects must be present when assessing critical 582 

levels of several pollutants or mitigation effects of carbon sequestration in forests. The 583 

ecological transitional nature of the Mediterranean Basin between temperate and arid regions 584 

supposes a delicate equilibrium for multiple ecosystems, where a combination of global 585 

change factors can balance their development to new arid states. Novel communities 586 

associated to new global change factors, such as land abandonment and new fire regimes, 587 

will be more prevalent, while our information about them remains scarce (Hobbs et al., 588 

2006). The identification of transition states leading to novel systems and the understanding 589 

of the driving forces behind them remains a key priority for further research. 590 

The information compiled in the present review highlights the potential relevance and 591 

impact of interactions among emerging global change factors in the Mediterranean Basin. 592 

Although global change is unavoidable in many cases, change does not necessarily mean 593 

catastrophe, but adaptation. The enormous challenge of conserving Mediterranean terrestrial 594 

ecosystems and the services they provide can only be met by means of a collective effort 595 

involving not only the scientific community, but also forest managers and owners, decision 596 

makers and the civic responsibility of society at large. 597 
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Table 1. Principal effects derived from the combinations between global change factors in 1326 

the Mediterranean Basin region. Shaded cells correspond to repeated combinations and 1327 

combinations of the same factor (including land-use intensification and land abandonment as 1328 

the two opposite means of land-use change). As different pollutants could interact among 1329 

them, these same factor interactions are explained in the first section of the manuscript 1330 

together with other atmospheric chemical alterations. Numbered combinations are explained 1331 

in the second section of the manuscript. 1332 
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List of figure legends 1336 

 1337 

Figure 1. Results for the Mediterranean Basin from time-series analysis of Landsat 7 ETM+ 1338 

images in characterizing global forest extent and change from 2000 through 2012 (Hansen et 1339 

al., 2013). Dark grey: forest cover in 2000; black: gain forest from 2000 to 2012; white: 1340 

forest lost from 2000 to 2012. It is difficult to appreciate forest gain and losses due to the 1341 

scattered nature of the process in the Region although lower scales could be accessed in the 1342 

original webpage: http://earthenginepartners.appspot.com/science-2013-global-forest.  1343 

 1344 

Figure 2. Types of combination among global change factors. Solid arrows represent 1345 

positive effects while shaded arrows represent negative effects. Some interactions alter the 1346 

effects of a single factor (a), as for example CO2 increase affects drought effects on plant 1347 

growth through stomatal closure. New possible impacts can be caused by the interaction (b), 1348 

such as the expansion of forest pests caused by the alteration of forest structure and climate 1349 

warming. Finally, other combinations cause an increase in the risk of one of the factors 1350 

implied (c) such as fire, land-use change, N deposition and climate change effects on 1351 

invasion. 1352 

 1353 

Figure 3. Combined effects of land-use intensification and abandonment, fire and drought on 1354 

soil erosion and water availability. Solid lines represent positive effects while dashed lines 1355 

represent negative effects. 1356 
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