Publ. Mat. 61 (2017), 363–394 DOI: 10.5565/PUBLMAT6121703

IRREDUCIBLE REPRESENTATIONS OF KNOT GROUPS INTO $SL(n, C)$

Leila Ben Abdelghani and Michael Heusener

Abstract: The aim of this article is to study the existence of certain reducible, metabelian representations of knot groups into $SL(n, C)$ which generalize the representations studied previously by G. Burde and G. de Rham. Under specific hypotheses we prove the existence of irreducible deformations of such representations of knot groups into $SL(n, \mathbb{C})$.

2010 Mathematics Subject Classification: 57M25, 57M05, 57M27.

Key words: Knot group, Alexander module, representation variety.

1. Introduction

In [[3](#page-30-0)] the authors studied the deformations of certain metabelian, reducible representations of knot groups into $SL(3, \mathbb{C})$. In this paper we continue this study by generalizing the results of [[3](#page-30-0)] to the group $SL(n, \mathbb{C})$ (see Theorem [1.1\)](#page-1-0).

Let Γ be a finitely generated group. The set $R_n(\Gamma) := R(\Gamma, SL(n, \mathbb{C}))$ of homomorphisms of Γ in $SL(n, \mathbb{C})$ is called the $SL(n, \mathbb{C})$ -representation variety of Γ. It is a (not necessarily irreducible) algebraic variety. A representation $\rho: \Gamma \to SL(n, \mathbb{C})$ is called abelian (resp. metabelian) if the restriction of ρ to the first (resp. second) commutator subgroup of Γ is trivial. The representation $\rho \colon \Gamma \to SL(n)$ is called *reducible* if there exists a proper subspace $V \subset \mathbb{C}^n$ such that $\rho(\Gamma)$ preserves V. Otherwise ρ is called *irreducible*.

Let $K \subset M^3$ be a knot in a three-dimensional integer homology sphere M^3 . We let $\Gamma = \Gamma_K$ denote the *knot group* of K i.e. Γ_K is the fundamental group of the knot complement $M^3 \setminus K$. Since the ring of complex Laurent polynomials $C[t^{\pm 1}]$ is a principal ideal domain, the complex *Alexander module* $A(t)$ of K decomposes into a direct sum of cyclic modules. A generator of the order ideal of $A(t)$ is called the Alexander polynomial of K. It will be denoted by $\Delta_K(t) \in \mathbb{C}[t^{\pm 1}]$, and it is unique up to multiplication by a unit $ct^k \in \mathbb{C}[t^{\pm 1}]$, $c \in \mathbb{C}^*, k \in \mathbb{Z}$.

For a given root $\alpha \in \mathbb{C}^*$ of $\Delta_K(t)$ we let τ_α denote the $(t - \alpha)$ -torsion of the Alexander module. (For details see Section [2.](#page-1-1))

The main result of this article is the following theorem which gener-alizes the results of [[3](#page-30-0)] where the case $n = 3$ was investigated. It also applies in the case $n = 2$ which was studied in [[1](#page-29-0)] and [[14](#page-30-1), Theorem 1.1].

Theorem 1.1. Let K be a knot in the 3-dimensional integer homology sphere M^3 . If the $(t - \alpha)$ -torsion τ_{α} of the Alexander module is cyclic of the form $\mathbf{C}[t^{\pm 1}]/(t-\alpha)^{n-1}$, $n \geq 2$, then for each $\lambda \in \mathbf{C}^*$ such that $\lambda^n = \alpha$ there exists a certain reducible metabelian representation ρ_{λ} of the knot group Γ into $SL(n, \mathbb{C})$. Moreover, the representation ρ_{λ} is a smooth point of the representation variety $R_n(\Gamma)$. It is contained in a unique (n^2+n-2) -dimensional component $R_{\varrho_{\lambda}}$ of $R_n(\Gamma)$ which contains irreducible non-metabelian representations which deform ϱ_{λ} .

This paper is organised as follows. In Section [2](#page-1-1) we introduce some notations and recall some facts which will be used in this article. In Section [3](#page-6-0) we study the existence of certain reducible representations. These representations were previously studied in [[16](#page-30-2)], and we treat the existence results from a more general point of view. Section [4](#page-12-0) is devoted to the proof of Proposition [4.1,](#page-13-0) and it contains all necessary cohomological calculations. In the last section we prove that there are irreducible non-metabelian deformations of the initial reducible representation.

Acknowledgements. Both authors are pleased to acknowledge the support by the French-Tunisian CMCU project n \degree 12G/1502. Moreover, the first author was supported by the project Erasmus mundus E-GOV-TN. The second author acknowledges support from the ANR projects SGT and ModGroup. Also, the authors like to thank the anonymous referee for her/his valuable remarks. Her/his suggestions helped to improve in a substantial way the exposition and the content of the paper.

2. Notations and facts

To shorten notation we will simply write $SL(n)$ and $GL(n)$ instead of $SL(n, \mathbb{C})$ and $GL(n, \mathbb{C})$ respectively. The same notation applies for the Lie algebras $\mathfrak{sl}(n) = \mathfrak{sl}(n, \mathbf{C})$ and $\mathfrak{gl}(n) = \mathfrak{gl}(n, \mathbf{C})$.

2.1. Group cohomology. The general reference for group cohomology is K. S. Brown's book [[6](#page-30-3)]. Let A be a Γ-module. We denote by $C^*(\Gamma; A)$ the cochain complex; the coboundary operator δ : $C^n(\Gamma; A) \to C^{n+1}(\Gamma; A)$

is given by:

$$
\delta f(\gamma_1, ..., \gamma_{n+1}) = \gamma_1 \cdot f(\gamma_2, ..., \gamma_{n+1})
$$

+
$$
\sum_{i=1}^n (-1)^i f(\gamma_1, ..., \gamma_{i-1}, \gamma_i \gamma_{i+1}, ..., \gamma_{n+1})
$$

+
$$
(-1)^{n+1} f(\gamma_1, ..., \gamma_n).
$$

The coboundaries (respectively cocycles, cohomology) of Γ with coefficients in A are denoted by $B^*(\Gamma; A)$ (respectively $Z^*(\Gamma; A)$, $H^*(\Gamma; A)$). In what follows 1-cocycles and 1-coboundaries will be also called *deriva*tions and principal derivations respectively.

Let A_1 , A_2 , and A_3 be Γ-modules. The cup product of two cochains $u \in C^p(\Gamma; A_1)$ and $v \in C^q(\Gamma; A_2)$ is the cochain $u \setminus v \in C^{p+q}(\Gamma; A_1 \otimes A_2)$ defined by

$$
(1) u \smile v(\gamma_1,\ldots,\gamma_{p+q}) := u(\gamma_1,\ldots,\gamma_p) \otimes (\gamma_1 \cdots \gamma_p) \cdot v(\gamma_{p+1},\ldots,\gamma_{p+q}).
$$

Here $A_1 \otimes A_2$ is a Γ-module via the diagonal action. It is possible to combine the cup product with any Γ-invariant bilinear map $A_1 \otimes A_2 \rightarrow$ A_3 . We are mainly interested in the product map $C \otimes C \rightarrow C$.

Remark 2.1. Notice that our definition of the cup product [\(1\)](#page-2-0) differs from the convention used in [[6](#page-30-3), V.3] by the sign $(-1)^{pq}$. Hence with the definition [\(1\)](#page-2-0) the following formula holds:

$$
\delta(u \smile v) = (-1)^q \, \delta u \smile v + u \smile \delta v.
$$

A short exact sequence

$$
0 \longrightarrow A_1 \stackrel{i}{\longrightarrow} A_2 \stackrel{p}{\longrightarrow} A_3 \longrightarrow 0
$$

of Γ-modules gives rise to a short exact sequence of cochain complexes:

$$
0 \longrightarrow C^*(\Gamma; A_1) \xrightarrow{i^*} C^*(\Gamma; A_2) \xrightarrow{p^*} C^*(\Gamma; A_3) \longrightarrow 0.
$$

We will make use of the corresponding long exact cohomology sequence (see $[6, III.$ $[6, III.$ $[6, III.$ Proposition 6.1]):

$$
0 \longrightarrow H^0(\Gamma; A_1) \longrightarrow H^0(\Gamma; A_2) \longrightarrow H^0(\Gamma; A_3) \stackrel{\beta^0}{\longrightarrow} H^1(\Gamma; A_1) \longrightarrow \cdots
$$

Recall that the Bockstein homomorphism β^n : $H^n(\Gamma; A_3) \to H^{n+1}(\Gamma; A_1)$ is determined by the snake lemma: if $z \in Zⁿ(\Gamma; A_3)$ is a cocycle and if $\tilde{z} \in (p^*)^{-1}(z) \subset C^n(\Gamma; A_2)$ is any lift of z then $\delta_2(\tilde{z}) \in \text{Im}(i^*)$, where δ_2 denotes the coboundary operator of $C^*(\Gamma; A_2)$. It follows that any cochain $z' \in C^{n+1}(\Gamma; A_3)$ such that $i^*(z') = \delta_2(\tilde{z})$ is a cocycle and that its cohomology class only depends on the cohomology class represented by z. The cocycle z' represents the image of the cohomology class represented by z under β^n .

Remark 2.2. By abuse of notation and if no confusion can arise, we will write sometimes $\beta^{n}(z)$ for a cocycle $z \in Z^{n}(\Gamma; A_{3})$ even if the map β^{n} is only well defined on cohomology classes. This will simplify the notations.

We will make use of the following known fact [[13](#page-30-4), Lemma 3.1]:

Lemma 2.3. Let Γ be a finitely presented group, and A a Γ -module. Suppose that X is any CW-complex with $\pi_1(X) \cong \Gamma$. Then there are natural morphisms $H_i(X;A) \to H_i(\Gamma;A)$ which are isomorphisms for $i = 0, 1$ and a surjection for $i = 2$. In cohomology there are natural morphisms $H^i(\Gamma; A) \to H^i(X; A)$ which are isomorphisms for $i = 0, 1$ and an injection for $i = 2$.

2.2. The Alexander module. Let $K \subset M^3$ be a knot in a threedimensional integer homology sphere M^3 . We let $X = M^3 \backslash V(K)$ denote its complement where $V(K)$ is a tubular neighborhood of K. Let $\Gamma = \pi_1(X)$ denote the fundamental group of X and $h: \Gamma \to \mathbb{Z}$, $h(\gamma) =$ $lk(\gamma, K)$, the canonical projection. There is a short exact splitting sequence

(2)
$$
1 \longrightarrow \Gamma' \longrightarrow \Gamma \longrightarrow \langle t | - \rangle \longrightarrow 1,
$$

where $\Gamma' = [\Gamma, \Gamma]$ denotes the commutator subgroup of Γ . The surjection is given by $\gamma \mapsto t^{h(\gamma)}$. Hence Γ is isomorphic to the semi-direct product $\Gamma' \rtimes \mathbb{Z}$. Note that Γ' is the fundamental group of the infinite cyclic covering X_{∞} of X. The abelian group $\Gamma/\Gamma'' \cong H_1(X_{\infty}; \mathbb{Z})$ becomes a $\mathbf{Z}[t^{\pm 1}]$ -module via the action of the group of covering transformations which is isomorphic to $\langle t | - \rangle$. The $\mathbf{Z}[t^{\pm 1}]$ -module $H_1(X_\infty; \mathbf{Z})$ is a finitely generated torsion module called the Alexander module of K. There are isomorphisms of $\mathbf{Z}[t^{\pm 1}]$ -modules

$$
H_q(\Gamma; \mathbf{Z}[t^{\pm 1}]) \cong H_q(X; \mathbf{Z}[t^{\pm 1}]) \cong H_q(X_\infty; \mathbf{Z}), \quad q = 0, 1,
$$

where Γ acts on $\mathbf{Z}[t^{\pm 1}]$ via $\gamma p(t) = t^{h(\gamma)} p(t)$ for all $\gamma \in \Gamma$ and $p(t) \in$ $\mathbf{Z}[t^{\pm 1}]$. (See [[9](#page-30-5), Chapter 5] for more details.) In what follows we are mainly interested in the complex version $\mathbf{C} \otimes \Gamma'/\Gamma'' \cong H_1(\Gamma; \mathbf{C}[t^{\pm 1}])$ of the Alexander module. As $C[t^{\pm 1}]$ is a principal ideal domain, the Alexander module $H_1(\Gamma;{\bf C}[t^{\pm 1}])$ decomposes into a direct sum of cyclic modules of the form $\mathbf{C}[t^{\pm 1}]/(t-\alpha)^k$, $\alpha \in \mathbf{C}^* \setminus \{1\}$ i.e. there exist $\alpha_1, \ldots, \alpha_s \in \mathbf{C}^*$ such that

$$
H_1(\Gamma; \mathbf{C}[t^{\pm 1}]) \cong \tau_{\alpha_1} \oplus \cdots \oplus \tau_{\alpha_s}, \text{ where } \tau_{\alpha_j} = \bigoplus_{i_j=1}^{n_{\alpha_j}} \mathbf{C}[t^{\pm 1}]/(t - \alpha_j)^{r_{i_j}}
$$

denotes the $(t - \alpha_j)$ -torsion of $H_1(\Gamma; \mathbf{C}[t^{\pm 1}])$. A generator of the order ideal of $H_1(X_\infty; \mathbf{C})$ is called the Alexander polynomial $\Delta_K(t) \in \mathbf{C}[t^{\pm 1}]$ of K i.e. $\Delta_K(t)$ is the product

$$
\Delta_K(t) = \prod_{j=1}^s \prod_{i_j=1}^{n_{\alpha_j}} (t - \alpha_j)^{r_{j_i}}.
$$

Notice that the Alexander polynomial is symmetric and is well defined up to multiplication by a unit ct^k of $\mathbf{C}[t^{\pm 1}]$, $c \in \mathbf{C}^*, k \in \mathbf{Z}$. Moreover, $\Delta_K(1) \neq 0$ (see [[8](#page-30-6)]), and hence the $(t - 1)$ -torsion of the Alexander module is trivial. In fact, it is well known that, up to multiplication by a unit, we can assume that Δ_K is *normalized* in the following way: $\Delta_K \in \mathbf{Z}[t] \subset \mathbf{C}[t^{\pm 1}]$ is a polynomial with integer coefficients such that $\Delta_K(0) \neq 0$ and $\Delta_K(1) = 1$ (see [[8](#page-30-6), 8.D]).

For completeness we will state the next lemma which shows that the cohomology groups $H^*(X; C[t^{\pm 1}]/(t-\alpha)^k)$ are determined by the Alexander module $H_1(\Gamma; \mathbf{C}[t^{\pm 1}])$. Recall that the action of Γ on $\mathbf{C}[t^{\pm 1}]/(t-\alpha)^k$ is induced by $\gamma p(t) = t^{h(\gamma)} p(t)$.

Lemma 2.4. Let $K \subset M^3$ be a knot with exterior $X = \overline{M^3 \setminus V(K)}$ and Γ its fundamental group. Let $\alpha \in \mathbf{C}^*$ and let $\tau_{\alpha} = \bigoplus_{i=1}^{n_{\alpha}} \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{r_i}$ denote the $(t - \alpha)$ -torsion of the Alexander module $H_1(\Gamma; \mathbf{C}[t^{\pm 1}])$. Then if $\alpha = 1$ we have that τ_1 is trivial and

$$
H^{q}(X; \mathbf{C}[t^{\pm 1}]/(t-1)^{k}) \cong \begin{cases} \mathbf{C} & \text{for } q = 0, 1, \\ 0 & \text{for } q \ge 2. \end{cases}
$$

Moreover, for $\alpha \neq 1$ we have:

$$
H^{q}(X; \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{k}) \cong \begin{cases} 0 & \text{for } q \neq 1, 2, \\ \bigoplus_{i=1}^{n_{\alpha}} \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{\min(k,r_{i})} & \text{for } q = 1, 2. \end{cases}
$$

In particular, $H^1(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-\alpha)^k) \neq 0$ if and only $H_1(\Gamma; \mathbf{C}[t^{\pm 1}])$ has non-trivial $(t - \alpha)$ -torsion i.e. if $\Delta_K(\alpha) = 0$.

Proof: During this proof we put $\Lambda = \mathbb{C}[t^{\pm 1}]$. Let A be a Λ -module, then by the extension of scalars [[6](#page-30-3), III.3] we have an isomorphism

$$
H^{q}(X; A) \cong H^{q}(\text{Hom}_{\Lambda}(C_{*}(X_{\infty}; \mathbf{C}); A)).
$$

Since Λ is a principal ideal domain, we can apply the universal coefficient theorem and obtain

$$
H^{q}(X; A) \cong \text{Ext}^{1}_{\Lambda}(H_{q-1}(X_{\infty}; \mathbf{C}), A) \oplus \text{Hom}_{\Lambda}(H_{q}(X_{\infty}; \mathbf{C}), A).
$$

Now $H_0(X_\infty; \mathbf{C}) \cong \mathbf{C} \cong \Lambda/(t-1)$ and $H_k(X_\infty; \mathbf{C}) = 0$ for $k \geq 2$ (see [[8](#page-30-6), Proposition 8.16]). Therefore,

$$
H^{0}(X; A) \cong \text{Hom}_{\Lambda}(H_{0}(X_{\infty}; \mathbf{C}), A),
$$

\n
$$
H^{1}(X; A) \cong \text{Ext}^{1}_{\Lambda}(H_{0}(X_{\infty}; \mathbf{C}), A) \oplus \text{Hom}_{\Lambda}(H_{1}(X_{\infty}; \mathbf{C}), A),
$$

\n
$$
H^{2}(X; A) \cong \text{Ext}^{1}_{\Lambda}(H_{1}(X_{\infty}; \mathbf{C}), A).
$$

To complete the proof, observe that for $\alpha, \beta \in \mathbb{C}^*$ and $k, l \in \mathbb{N}$ we have the following:

$$
\text{Hom}_{\Lambda}(\Lambda/(t-\alpha)^{k}, \Lambda/(t-\beta)^{l}) \cong \begin{cases} 0 & \text{if } \alpha \neq \beta, \\ \Lambda/(t-\alpha)^{m} & \text{if } \alpha = \beta, \end{cases}
$$

$$
\text{Ext}^{1}_{\Lambda}(\Lambda/(t-\alpha)^{k}, \Lambda/(t-\beta)^{l}) \cong \begin{cases} 0 & \text{if } \alpha \neq \beta, \\ \Lambda/(t-\alpha)^{m} & \text{if } \alpha = \beta, \end{cases}
$$

where $m = \min\{k, l\}$ (see [[9](#page-30-5), Proposition 2.4]). Notice that for $\beta \neq \alpha$, multiplication by $(t - \beta)$ induces an isomorphism of $\Lambda/(t - \alpha)^k$. \Box

Corollary 2.5. Let $K \subset M^3$ be a knot and Γ its group. Let $\alpha \in \mathbb{C}^*$ and let $\tau_{\alpha} = \bigoplus_{i=1}^{n_{\alpha}} \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{r_i}$ denote the $(t-\alpha)$ -torsion of the Alexander module $H_1(\Gamma; \mathbf{C}[t^{\pm 1}])$. Then we have that

$$
H^{q}(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-1)^{k}) \cong \begin{cases} \mathbf{C} & \text{for } q = 0, 1, \\ 0 & \text{for } q = 2, \end{cases}
$$

and, for $\alpha \neq 1$ we have:

$$
H^{q}(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{k}) \cong \begin{cases} 0 & \text{for } q = 0, \\ \bigoplus_{i=1}^{n_{\alpha}} \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{\min(k,r_{i})} & \text{for } q = 1. \end{cases}
$$

Proof: This is an immediate consequence of Lemmas [2.3](#page-3-0) and [2.4.](#page-4-0) \Box

2.3. Representation variety. Let Γ be a finitely generated group. The set of all homomorphisms of Γ into $SL(n)$ has the structure of an affine algebraic set (see [[17](#page-31-0)] for details). In what follows this affine algebraic set will be denoted by $R(\Gamma, SL(n))$ or simply by $R_n(\Gamma)$. Let $\rho: \Gamma \to SL(n)$ be a representation. The Lie algebra $\mathfrak{sl}(n)$ becomes a Γ-module via Ad $\circ \rho$. This module will be simply denoted by $\mathfrak{sl}(n)_{\rho}$. A 1-cocycle or derivation $d \in Z^1(\Gamma; \mathfrak{sl}(n)_{\rho})$ is a map $d \colon \Gamma \to \mathfrak{sl}(n)$ satisfying

$$
d(\gamma_1 \gamma_2) = d(\gamma_1) + \mathrm{Ad} \circ \rho(\gamma_1) (d(\gamma_2)), \quad \forall \gamma_1, \gamma_2 \in \Gamma.
$$

It was observed by André Weil [[19](#page-31-1)] that there is a natural inclusion of the Zariski tangent space $T_{\rho}^{\text{Zar}}(R_n(\Gamma)) \hookrightarrow Z^1(\Gamma; \mathfrak{sl}(n)_{\rho}).$ Informally speaking, given a smooth curve ρ_{ϵ} of representations through $\rho_0 = \rho$ one gets a derivation $d: \Gamma \to \mathfrak{sl}(n)$ by defining

$$
d(\gamma) := \left. \frac{d \rho_{\epsilon}(\gamma)}{d \epsilon} \right|_{\epsilon=0} \rho(\gamma)^{-1}, \quad \forall \gamma \in \Gamma.
$$

It is easy to see that the tangent space to the orbit by conjugation corresponds to the space of principal derivations $B^1(\Gamma; \mathfrak{sl}(n)_{\rho})$. Here, $b: \Gamma \to \mathfrak{sl}(n)$ is a principal derivation if there exists $x \in \mathfrak{sl}(n)$ such that $b(\gamma) = \text{Ad}\circ\rho(\gamma)(x) - x$. A detailed account can be found in [[17](#page-31-0)].

For the convenience of the reader, we state the following result which is implicitly contained in $\mathbf{3, 14, 13}$ $\mathbf{3, 14, 13}$. A detailed proof of the following streamlined version can be found in [[12](#page-30-7)]:

Proposition 2.6. Let M be an orientable 3-manifold with infinite fundamental group $\pi_1(M)$ and incompressible torus boundary, and let $\rho: \pi_1(M) \to SL(n)$ be a representation.

If $\dim H^1(\pi_1(M); \mathfrak{sl}(n)_{\rho}) = n-1$ then ρ is a smooth point of the $SL(n)$ -representation variety $R_n(\pi_1(M))$. More precisely, ρ is contained in a unique component of dimension $n^2 + n - 2 - \dim H^0(\pi_1(M); \mathfrak{sl}(n)_{\rho}).$

3. Reducible metabelian representations

Recall that every nonzero complex number $\alpha \in \mathbb{C}^*$ determines an action of a knot group Γ on the complex numbers given by $\gamma x = \alpha^{h(\gamma)}x$ for $\gamma \in \Gamma$ and $x \in \mathbb{C}$. The resulting Γ-module will be denoted by \mathbb{C}_{α} . Notice that \mathbf{C}_{α} is isomorphic to $\mathbf{C}[t^{\pm 1}]/(t-\alpha)$.

It is easy to see that a map $\Gamma \to GL(2, \mathbb{C})$ given by

(3)
$$
\gamma \longmapsto \begin{pmatrix} 1 & z_1(\gamma) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha^{h(\gamma)} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha^{h(\gamma)} & z_1(\gamma) \\ 0 & 1 \end{pmatrix}
$$

is a representation if and only if the map $z_1 : \Gamma \to \mathbb{C}_{\alpha}$ is a derivation i.e.

$$
\delta z_1(\gamma_1, \gamma_2) = \alpha^{h(\gamma_1)} z_1(\gamma_2) - z_1(\gamma_1 \gamma_2) + z_1(\gamma_1) = 0
$$
 for all $\gamma_1, \gamma_2 \in \Gamma$.

The representation given by [\(3\)](#page-6-1) is non-abelian if and only if $\alpha \neq 1$ and the derivation z_1 is not a principal one. Hence it follows from Corollary [2.5](#page-5-0) that such a reducible non-abelian representation exists if and only if α is a root of the Alexander polynomial. These representations were first studied independently by G. Burde $|7|$ $|7|$ $|7|$ and G. de Rham $|10|$ $|10|$ $|10|$.

We extend these considerations to a map $\Gamma \to GL(3, \mathbb{C})$. It follows easily that

(4)
$$
\gamma \longmapsto \begin{pmatrix} \alpha^{h(\gamma)} & z_1(\gamma) & z_2(\gamma) \\ 0 & 1 & h(\gamma) \\ 0 & 0 & 1 \end{pmatrix}
$$

is a representation if and only if $\delta z_1 = 0$ and $\delta z_2 + z_1 \smile h = 0$ i.e.

$$
\begin{cases}\n\delta z_1(\gamma_1, \gamma_2) = 0 & \text{for all } \gamma_1, \gamma_2 \in \Gamma, \\
\delta z_2(\gamma_1, \gamma_2) + z_1(\gamma_1)h(\gamma_2) = 0 & \text{for all } \gamma_1, \gamma_2 \in \Gamma.\n\end{cases}
$$

It was proved in [[4](#page-30-10), Theorem 3.2] that the 2-cocycle $z_1 \sim h$ represents a non-trivial cohomology class in $H^2(\Gamma; \mathbb{C}_{\alpha})$ provided that z_1 is not a principal derivation and that the $(t-\alpha)$ -torsion of the Alexander module is semi-simple i.e. $\tau_{\alpha} = \mathbf{C}[t^{\pm 1}]/(t - \alpha) \oplus \cdots \oplus \mathbf{C}[t^{\pm 1}]/(t - \alpha)$. Hence if we suppose that z_1 is not a principal derivation then it is clear that a non-abelian representation $\Gamma \to GL(3, \mathbb{C})$ given by [\(4\)](#page-6-2) can only exist if the $(t - \alpha)$ -torsion τ_{α} of the Alexander module has a direct summand of the form $\mathbf{C}[t^{\pm 1}]/(t-\alpha)^s$, $s \geq 2$.

Representations $\Gamma \to GL(n, \mathbb{C})$ of this type were studied in [[16](#page-30-2)] where it was shown that the whole structure of the $(t-\alpha)$ -torsion of the Alexander module can be recovered.

Let $\alpha \in \mathbb{C}^*$ be a non-zero complex number and $n \in \mathbb{Z}$, $n > 1$. In what follows we consider the cyclic $\mathbf{C}[t^{\pm 1}]$ -module $\mathbf{C}[t^{\pm 1}]/(t-\alpha)^{n-1}$ and the semi-direct product

$$
\mathbf{C}[t^{\pm 1}]/(t-\alpha)^{n-1} \rtimes \mathbf{Z},
$$

where the multiplication is given by $(p_1, n_1)(p_2, n_2) = (p_1 + t^{n_1}p_2, n_1 + n_2)$. Let $I_n \in SL(n)$ and $N_n \in GL(n)$ denote the identity matrix and the upper triangular Jordan normal form of a nilpotent matrix of degree n respectively. For later use we note the following lemma which follows easily from the Jordan normal form theorem:

Lemma 3.1. Let $\alpha \in \mathbb{C}^*$ be a nonzero complex number and let \mathbb{C}^n be the $\mathbf{C}[t^{\pm 1}]$ -module with the action of t^k given by

(5)
$$
t^k \mathbf{a} = \alpha^k \mathbf{a} J_n^k,
$$

where $\mathbf{a} \in \mathbb{C}^n$ and $J_n = I_n + N_n$. Then the $\mathbf{C}[t^{\pm 1}]$ -module \mathbf{C}^n is isomorphic to $\mathbf{C}[t^{\pm 1}]/(t-\alpha)^n$.

There is a direct method to construct a reducible metabelian representation of $\mathbf{C}[t^{\pm 1}]/(t-\alpha)^{n-1} \rtimes \mathbf{Z}$ into $GL(n, \mathbf{C})$ (see [[5](#page-30-11), Proposition 3.13]). A direct calculation gives that

$$
(\mathbf{a},0) \longmapsto \begin{pmatrix} 1 & \mathbf{a} \\ \mathbf{0} & I_{n-1} \end{pmatrix}, \quad (0,1) \longmapsto \begin{pmatrix} \alpha & \mathbf{0} \\ \mathbf{0} & J_{n-1}^{-1} \end{pmatrix}
$$

defines a faithful representation $\mathbf{C}[t^{\pm 1}]/(t-\alpha)^{n-1} \rtimes \mathbf{Z} \to \mathrm{GL}(n, \mathbf{C}).$

Note that the short exact splitting sequence [\(2\)](#page-3-1) induces the sequence

$$
1\longrightarrow \Gamma'/\Gamma'' \longrightarrow \Gamma/\Gamma'' \longrightarrow \langle t\mid-\rangle \longrightarrow 1.
$$

Hence Γ/Γ'' is isomorphic to the semi-direct product $\Gamma'/\Gamma'' \rtimes \mathbf{Z}$. Now, if $\rho: \Gamma \to GL(n, \mathbb{C})$ is a metabelian representation, then ρ factors through Γ/Γ'' and thus through the metabelian group $\Gamma'/\Gamma'' \rtimes \mathbf{Z}$.

Therefore, if the Alexander module $H_1(X_\infty, \mathbb{C})$ has a direct summand of the form $\mathbb{C}[t^{\pm 1}]/(t-\alpha)^s$ with $s \geq n-1 \geq 1$, we obtain a reducible, metabelian, non-abelian representation $\tilde{\varrho} \colon \Gamma \to \mathrm{GL}(n,\mathbf{C})$ as follows:

$$
\tilde{\varrho}: \Gamma \cong \Gamma' \rtimes \mathbf{Z} \longrightarrow \Gamma'/\Gamma'' \rtimes \mathbf{Z} \longrightarrow (\mathbf{C} \otimes \Gamma'/\Gamma'') \rtimes \mathbf{Z} \longrightarrow \mathbf{C}[t^{\pm 1}]/(t-\alpha)^s \rtimes \mathbf{Z} \longrightarrow \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{n-1} \rtimes \mathbf{Z} \longrightarrow \text{GL}(n, \mathbf{C})
$$

and given by

(6)
$$
\tilde{\varrho}(\gamma) = \begin{pmatrix} 1 & \tilde{\mathbf{z}}(\gamma) \\ 0 & I_{n-1} \end{pmatrix} \begin{pmatrix} \alpha^{h(\gamma)} & 0 \\ 0 & J_{n-1}^{-h(\gamma)} \end{pmatrix}.
$$

It is easy to see that a map $\tilde{\rho} \colon \Gamma \to \mathrm{GL}(n)$ given by [\(6\)](#page-8-0) is a homomorphism if and only if $\tilde{\mathbf{z}}\colon \Gamma \to \mathbf{C}^{n-1}$ is a derivation i.e. for all $\gamma_1, \gamma_2 \in \Gamma$ we have

(7)
$$
\tilde{\mathbf{z}}(\gamma_1 \gamma_2) = \tilde{\mathbf{z}}(\gamma_1) + \alpha^{h(\gamma_1)} \tilde{\mathbf{z}}(\gamma_2) J_{n-1}^{h(\gamma_1)}.
$$

For a better description of the cocycle \tilde{z} , we introduce the following notations: for $m, k \in \mathbb{Z}, k \geq 0$, we define (8)

$$
h_k(\gamma) := \binom{h(\gamma)}{k}, \quad \text{where} \quad \binom{m}{k} := \begin{cases} \frac{m(m-1)\cdots(m-k+1)}{k!} & \text{if } k > 0, \\ 1 & \text{if } k = 0. \end{cases}
$$

Observe that if $m, k \in \mathbb{Z}$ and $0 \leq m < k$ then $\binom{m}{k} = 0$.

It follows directly from the properties of the binomial coefficients that for each $k \in \mathbb{Z}$, $k \geq 0$, the cochains $h_k \in C^1(\Gamma; \mathbb{C})$ are defined and satisfy:

(9)
$$
\delta h_k + \sum_{i=1}^{k-1} h_i \smile h_{k-i} = 0.
$$

Lemma 3.2. Let $\tilde{\mathbf{z}}$: $\Gamma \to \mathbf{C}^{n-1}$ be a map satisfying [\(7\)](#page-8-1). The components $\tilde{z}_k : \Gamma \to \mathbf{C}_{\alpha}, 1 \leq k \leq n-1$, of $\tilde{\mathbf{z}}$ satisfy the equations

$$
\delta \tilde{z}_k + \sum_{i=1}^{k-1} h_i \smile \tilde{z}_{k-i} = 0.
$$

In particular $\tilde{z}_1 : \Gamma \to \mathbf{C}_{\alpha}$ is a derivation.

Proof: Note that $h_0 \equiv 1$, $h_1 = h$, $J_{n-1}^m = (I_{n-1} + N_{n-1})^m = \sum_{i \geq 0} {m \choose i} N_{n-1}^i$, and $(x_1, \ldots, x_{n-1})J_{n-1}^m = (x'_1, x'_2, \ldots, x'_{n-1})$ where

$$
x'_{k} = \sum_{i=0}^{k-1} {m \choose i} x_{k-i} = x_{k} + \sum_{i=1}^{k-1} {m \choose i} x_{k-i}.
$$

It follows from this formula that $\tilde{\mathbf{z}}(\gamma_1\gamma_2) = \tilde{\mathbf{z}}(\gamma_1) + \alpha^{h(\gamma_1)}\tilde{\mathbf{z}}(\gamma_2)J_{n-1}^{h(\gamma_1)}$ holds if and only if for $k = 1, \ldots, n-1$ we have

$$
\tilde{z}_k(\gamma_1\gamma_2) = \tilde{z}_k(\gamma_1) + \alpha^{h(\gamma_1)}\tilde{z}_k(\gamma_2) + \sum_{i=1}^{k-1} h_i(\gamma_1) \alpha^{h(\gamma_1)}\tilde{z}_{k-i}(\gamma_2).
$$

In other words $0 = \delta \tilde{z}_k + \sum_{i=1}^{k-1} h_i \setminus \tilde{z}_{k-i}$ holds.

From now on we will suppose that, for $\alpha \in \mathbb{C}^* \setminus \{1\}$, the $(t-\alpha)$ -torsion of the Alexander module is cyclic of the form

$$
\tau_{\alpha} = \mathbf{C}[t^{\pm 1}]/(t - \alpha)^{n-1}, \quad \text{where } n \ge 2.
$$

This is equivalent to requiring that α is a root of the Alexander polynomial $\Delta_K(t)$ of multiplicity $n-1$ and that dim $H^1(\Gamma; \mathbf{C}_{\alpha}) = 1$ (see Corollary [2.5\)](#page-5-0).

Remark 3.3. Notice that by Blanchfield-duality [[11](#page-30-12), Chapter 7] the $(t \alpha^{-1}$)-torsion of the Alexander module $H_1(\Gamma; \mathbf{C}[t^{\pm 1}])$ is also of the form

$$
\tau_{\alpha^{-1}} = \mathbf{C}[t^{\pm 1}]/(t - \alpha^{-1})^{n-1}.
$$

More precisely, the Alexander polynomial $\Delta_K(t)$ is symmetric and hence α^{-1} is also a root of $\Delta_K(t)$ of multiplicity $n-1$ and $\dim H^1(\Gamma; \mathbf{C}_{\alpha^{-1}}) = 1$.

Let $\tilde{\rho}: \Gamma \to \mathrm{GL}(n)$ be a representation given by [\(6\)](#page-8-0) i.e. for all $\gamma \in \Gamma$ we have

$$
\tilde{\varrho}(\gamma) = \begin{pmatrix} 1 & \tilde{\mathbf{z}}(\gamma) \\ 0 & I_{n-1} \end{pmatrix} \begin{pmatrix} \alpha^{h(\gamma)} & 0 \\ 0 & J_{n-1}^{-h(\gamma)} \end{pmatrix}.
$$

We will say that $\tilde{\varrho}$ can be upgraded to a representation into $GL(n+1, \mathbb{C})$ if there is a cochain $\tilde{z}_n : \Gamma \to \mathbf{C}_{\alpha}$ such that the map $\Gamma \to \mathrm{GL}(n+1, \mathbf{C})$ given by

$$
\gamma \longmapsto \begin{pmatrix} 1 & (\tilde{\mathbf{z}}(\gamma), \tilde{z}_n(\gamma)) \\ 0 & I_n \end{pmatrix} \begin{pmatrix} \alpha^{h(\gamma)} & 0 \\ 0 & J_n^{-h(\gamma)} \end{pmatrix}
$$

is a representation.

Lemma 3.4. Suppose that the $(t - \alpha)$ -torsion of the Alexander module is cyclic of the form $\tau_{\alpha} = C[t^{\pm 1}]/(t-\alpha)^{n-1}$, $n \geq 2$ and let $\tilde{\varrho} \colon \Gamma \to$ $GL(n, \mathbb{C})$ be a representation given by [\(6\)](#page-8-0).

Then $\tilde{\rho}$ cannot be upgraded to a representation into $GL(n+1, \mathbb{C})$ unless $\tilde{z}_1 : \Gamma \to \mathbf{C}_{\alpha}$ is a principal derivation.

 \Box

Proof: By Lemma [3.1,](#page-7-0) the $C[t^{\pm 1}]$ -module C^{n-1} with the action given by $t \mathbf{a} = \alpha \mathbf{a} J_{n-1}$ is isomorphic to $\mathbf{C}[t^{\pm 1}]/(t-\alpha)^{n-1}$. Hence it follows from the universal coefficient theorem that, for $l \geq n-1$, we have:

$$
H^{1}(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{l}) \cong \text{Hom}_{\mathbf{C}[t^{\pm 1}]}(H_{1}(\Gamma; \mathbf{C}[t^{\pm 1}]), \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{l})
$$

\n
$$
\cong \text{Hom}_{\mathbf{C}[t^{\pm 1}]}(\mathbf{C}[t^{\pm 1}]/(t-\alpha)^{n-1}, \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{l})
$$

\n
$$
\cong \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{n-1}.
$$

Hence if $l > n - 1$ then every derivation $\tilde{z} \colon \Gamma \to \mathbf{C}[t^{\pm 1}]/(t - \alpha)^l$, given by $\tilde{z}(\gamma) = (\tilde{z}_1(\gamma), \ldots, \tilde{z}_l(\gamma))$ is cohomologous to a derivation for which the first $l - n + 1$ components vanish. This proves the conclusion of the lemma. П

Notice that the unipotent matrices J_n and J_n^{-1} are similar: a direct calculation shows that $P_n J_n P_n^{-1} = J_n^{-1}$ where $P_n = (p_{ij})$, $p_{ij} =$ $(-1)^{j}$ $\left(\frac{j}{i}\right)$. The matrix P_n is upper triangular with ± 1 in the diagonal and P_n^2 is the identity matrix, and therefore $P_n = P_n^{-1}$.

Hence $\tilde{\varrho}$ is conjugate to a representation $\varrho \colon \Gamma \to \mathrm{GL}(n, \mathbb{C})$ given by (10)

$$
\varrho(\gamma) = \begin{pmatrix} \alpha^{h(\gamma)} & z(\gamma) \\ 0 & J_{n-1}^{h(\gamma)} \end{pmatrix} = \begin{pmatrix} \alpha^{h(\gamma)} & z_1(\gamma) & z_2(\gamma) & \dots & z_{n-1}(\gamma) \\ 0 & 1 & h_1(\gamma) & \dots & h_{n-2}(\gamma) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix},
$$

where $\mathbf{z} = (z_1, \ldots, z_{n-1}) : \Gamma \to \mathbf{C}^{n-1}$ satisfies

$$
\mathbf{z}(\gamma_1\gamma_2)=\alpha^{h(\gamma_1)}\mathbf{z}(\gamma_2)+\mathbf{z}(\gamma_1)J_{n-1}^{h(\gamma_2)}.
$$

It follows directly that $\mathbf{z}(\gamma) = \tilde{\mathbf{z}}(\gamma) P_{n-1} J_{n-1}^{h(\gamma)}$ and in particular $z_1 = -\tilde{z}_1$.

The same argument as in the proof of Lemma [3.2](#page-8-2) shows that the cochains $z_k : \Gamma \to \mathbf{C}_{\alpha}$ satisfy:

$$
\delta z_k + \sum_{i=1}^{k-1} z_i \smile h_{k-i} = 0 \quad \text{for } k = 1, \dots, n-1.
$$

Therefore, the representation $\rho: \Gamma \to GL(n, \mathbb{C})$ can be upgraded into a representation $\Gamma \to GL(n+1, \mathbb{C})$ if and only if $\sum_{i=1}^{n-1} z_i \smile h_{n-i}$ is a principal derivation.

Hence we obtain the following:

Proposition 3.5. Suppose that the $(t-\alpha)$ -torsion of the Alexander module is cyclic of the form $\tau_{\alpha} = C[t^{\pm 1}]/(t-\alpha)^{n-1}, n \geq 2$. Let $\tilde{\varrho}, \varrho \colon \Gamma \to$ $GL(n, \mathbb{C})$ be the representations given by [\(6\)](#page-8-0) and [\(10\)](#page-10-0) respectively where $\tilde{z}_1 = -z_1 \colon \Gamma \to \mathbf{C}_{\alpha}$ is a non-principal derivation. Then the representations $\tilde{\rho}$ and ρ cannot be upgraded to representations $\Gamma \to GL(n+1, \mathbb{C})$ i.e. the cocycles

$$
\sum_{i=1}^{n-1} h_i \smile \tilde{z}_{n-i} \quad and \quad \sum_{i=1}^{n-1} z_i \smile h_{n-i}
$$

represent nontrivial cohomology classes in $H^2(\Gamma; \mathbf{C}_\alpha)$.

Proof: The proposition follows from Lemma [3.4](#page-9-0) and the above considerations. \Box

Corollary 3.6. Suppose that the $(t-\alpha)$ -torsion of the Alexander module is cyclic of the form $\tau_{\alpha} = \mathbb{C}[t^{\pm 1}]/(t-\alpha)^{n-1}, n \geq 2$. Then

$$
\dim H^2(\Gamma; \mathbf{C}_{\alpha^{\pm 1}}) = 1.
$$

Proof: Proposition [3.5](#page-11-0) implies that dim $H^2(\Gamma; \mathbb{C}_{\alpha^{\pm 1}}) \geq 1$, and by Lemmas [2.4](#page-4-0) and [2.3](#page-3-0) we obtain the claimed result. □

Example 3.7. Let us consider the knots 3_1 , 8_{10} , and 8_{20} in S^3 . Their Alexander polynomials are given by $\Delta_{3_1}(t) = t^2 - t + 1$, $\Delta_{8_{20}}(t) =$ $(t^2 - t + 1)^2$, and $\Delta_{8_{10}}(t) = (t^2 - t + 1)^3$. In each case the Alexander module is cyclic.

A presentation of Γ_{3_1} is given by $\Gamma_{3_1} = \langle S, T | STS = TST \rangle$. The knots 8_{10} and 8_{20} can be realized as the closures of $\hat{\sigma} = 8_{10}$ and $\hat{\tau} = 8_{20}$ of the braids $\sigma = \sigma_1^{-1} \sigma_2^2 \sigma_1^{-2} \sigma_2^3$ and $\tau = \sigma_1^3 \sigma_2 \sigma_1^{-3} \sigma_2$ in the braid group B_3 on three strands. This gives the following presentations for the knot groups:

$$
\Gamma_{8_{10}} = \langle x_1, x_2, x_3 | x_1 = \sigma(x_1), x_2 = \sigma(x_2) \rangle,
$$

\n
$$
\Gamma_{8_{20}} = \langle y_1, y_2, y_3 | y_1 = \tau(y_1), y_2 = \tau(y_2) \rangle.
$$

All our computer supported calculations were carried out by using SageMath [[18](#page-31-2)]. Moreover, we made a worksheet which contains the calculations and more details (available at [http://mat.uab.cat/pubmat](http://mat.uab.cat/pubmat/fitxers/download/FileType:other/FolderName:./FileName:Examples_SLn.ipynb)).

We let α denote the primitive 6-th root of unity. For the trefoil knot a non-abelian reducible representation [\(10\)](#page-10-0) is given by

$$
\varrho_{3_1}(S) = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \text{ and } \varrho_{3_1}(T) = \begin{pmatrix} \alpha & 1 \\ 0 & 1 \end{pmatrix}.
$$

Notice that ϱ_{3_1} can not be upgraded to a representation into $GL(3, \mathbf{C})$ since α is a simple root of Δ_{3_1} . This follows from Proposition [3.5](#page-11-0) or from direct calculation (see also the worksheet).

For the knot 8_{20} a non-principal derivation $z_1: \Gamma_{8_{20}} \to \mathbb{C}_{\alpha}$ is given by $z_1(y_1) = 0$, $z_1(y_2) = z_1(y_3) = 1$. Thus we obtain the reducible metabelian representation $\varrho_{8_{20}}^{(2)} : \Gamma_{8_{20}} \to GL(2, \mathbb{C})$ given by

$$
\varrho_{8_{20}}^{(2)}(y_1) = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}, \quad \varrho_{8_{20}}^{(2)}(y_2) = \begin{pmatrix} \alpha & 1 \\ 0 & 1 \end{pmatrix}, \quad \varrho_{8_{20}}^{(2)}(y_3) = \begin{pmatrix} \alpha & 1 \\ 0 & 1 \end{pmatrix}
$$

.

This representation can be upgraded to the representation $\rho_{8_{20}}^{(3)}$: $\Gamma_{8_{20}} \rightarrow$ $GL(3, \mathbf{C})$ given by $\varrho_{8_{20}}^{(3)}(y_i) = A_i$ where

$$
A_1 = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} \alpha & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} \alpha & 1 & \alpha + 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.
$$

Proposition [3.5](#page-11-0) or computer supported calculations (see the worksheet) show that $\varrho_{8_{20}}^{(3)}$ can not be upgraded to a representation into GL(4, C).

Similarly, for the knot 8_{10} the representations $\varrho_{8_{10}}^{(2)}$ and $\varrho_{8_{10}}^{(3)}$ can be upgraded but $\varrho_{8_{10}}^{(4)}$ cannot (see the worksheet). The representation $\varrho_{8_{10}}^{(4)}$: $\Gamma_{8_{10}} \rightarrow GL(4, \mathbf{C})$ is given by $\varrho_{8_{10}}^{(4)}(x_i) = B_i$ where

$$
B_1 = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad B_2 = \begin{pmatrix} \alpha & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},
$$

$$
B_3 = \begin{pmatrix} \alpha & 1 & \alpha - 2 & \alpha + 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.
$$

4. Cohomological computations

We suppose throughout this section that $K \subset M^3$ is a knot in a three dimensional integer homology sphere M^3 and that the $(t - \alpha)$ -torsion of its Alexander module is cyclic of the form $\tau_{\alpha} = \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{n-1}$, $n \geq 2$, where $\alpha \in \mathbb{C}^*$ is a nonzero complex number. Let $\varrho: \Gamma \to \mathrm{GL}(n)$ be a representation given by [\(10\)](#page-10-0) where $z_1 : \Gamma \to \mathbf{C}_{\alpha}$ is a non-principal derivation:

$$
\varrho(\gamma) = \begin{pmatrix} \alpha^{h(\gamma)} & z(\gamma) \\ 0 & J_{n-1}^{h(\gamma)} \end{pmatrix} = \begin{pmatrix} \alpha^{h(\gamma)} & z_1(\gamma) & z_2(\gamma) & \dots & z_{n-1}(\gamma) \\ 0 & 1 & h_1(\gamma) & \dots & h_{n-2}(\gamma) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}.
$$

We choose an *n*-th root λ of α and we define a reducible metabelian representation $\varrho_\lambda \colon \Gamma \to \mathrm{SL}(n)$ by

(11)
$$
\varrho_{\lambda}(\gamma) = \lambda^{-h(\gamma)} \varrho(\gamma).
$$

The aim of the following sections is to calculate the first cohomology groups of Γ with coefficients in the Lie algebra $\mathfrak{sl}(n)_{\text{Ad}\circ \varrho_\lambda}$. Notice that the action of Γ via Ad $\circ \varrho$ and Ad $\circ \varrho_\lambda$ preserve $\mathfrak{sl}(n)$ and coincide since the center of $GL(n)$ is the kernel of Ad: $GL(n) \to Aut(\mathfrak{gl}(n))$. Hence we have the following isomorphisms of Γ-modules:

(12) $\mathfrak{sl}(n)_{\mathrm{Ad}\circ \varrho_\lambda} \cong \mathfrak{sl}(n)_{\mathrm{Ad}\circ \varrho}$ and $\mathfrak{gl}(n)_{\mathrm{Ad}\circ \varrho} = \mathfrak{sl}(n)_{\mathrm{Ad}\circ \varrho} \oplus \mathbf{C} I_n$, where Γ acts trivially on the center $\mathbf{C}I_n$ of $\mathfrak{gl}(n)$. We will prove the following result:

Proposition 4.1. Let $K \subset M^3$ be a knot and suppose that the $(t-\alpha)$ -torsion of the Alexander module of K is of the form $\tau_{\alpha} = \mathbf{C}[t^{\pm 1}]/(t-\alpha)^{n-1}$. Then for the representation $\rho_{\lambda} \colon \Gamma \to SL(n)$ we have $H^0(\Gamma; \mathfrak{sl}(n)_{\text{Ad} \circ \rho_{\lambda}}) =$ 0 and

$$
\dim H^1(\Gamma; \mathfrak{sl}(n)_{\mathrm{Ad}\circ \varrho_\lambda}) = n - 1.
$$

Notice that Propositions [4.1](#page-13-0) and [2.6](#page-6-3) will prove the first part of Theorem [1.1.](#page-1-0) The proof of Proposition [4.1](#page-13-0) will occupy the rest of this section.

Example 4.2. Proposition [4.1](#page-13-0) applies to the representations $\varrho_{3_1}^{(2)}$, $\varrho_{8_{20}}^{(3)}$, and $\varrho_{8_{10}}^{(4)}$. Therefore, the corresponding SL(*n*)-representations are smooth points of the representation variety, and are limits of irreducible representations.

Computer supported calculations for 8_{20} show that

$$
\dim H^1(\Gamma;\mathfrak{sl}(2)_{\mathrm{Ad}\,\circ\,\varrho_{8_{20}}^{(2)}})=2.
$$

Similar calculations for 8_{10} give

$$
\dim H^1(\Gamma; \mathfrak{sl}(2)_{\mathrm{Ad}\circ \varrho_{8_{10}}^{(2)}}) = 2 \quad \text{and} \quad \dim H^1(\Gamma; \mathfrak{sl}(3)_{\mathrm{Ad}\circ \varrho_{8_{10}}^{(3)}}) = 3
$$

(see the worksheet). Therefore, Proposition [4.1](#page-13-0) does not apply for the corresponding SL(*n*)-representations. However, the representations $\varrho_{8_{20}}^{(2)}$

and $\varrho_{8_{10}}^{(2)}$ factor through surjections $\pi_1 \colon \Gamma_{8_{10}} \to \Gamma_{3_1}$ and $\pi_2 \colon \Gamma_{8_{20}} \to \Gamma_{3_1}$ respectively. These surjections are defined by $\pi_1(x_1) = T$, $\pi_1(x_2) = S$, $\pi_1(x_3) = T$, and $\pi_2(y_1) = S$, $\pi_2(y_2) = \pi_2(y_3) = T$ as indicated in Figure [1](#page-14-0) (see also the worksheet). Hence, $\varrho_{8_{20}}^{(2)}$ and $\varrho_{8_{10}}^{(2)}$ are limits of irreducible representations. See also [[2](#page-29-1)].

FIGURE 1. The surjections $\pi_1: \Gamma_{8_{10}} \to \Gamma_{3_1}$ and $\pi_2\colon \Gamma_{8_{20}} \to \Gamma_{3_1}.$

Throughout this section we will consider $\mathfrak{gl}(n)$ as a Γ-module via Ad $\circ \rho$ and for simplicity we will write $\mathfrak{gl}(n)$ for $\mathfrak{gl}(n)_{\text{Ad}}$ $\circ \rho$. It follows from Equation [\(12\)](#page-13-1) that

(13)
$$
H^*(\Gamma; \mathfrak{gl}(n)) \cong H^*(\Gamma; \mathfrak{sl}(n)) \oplus H^*(\Gamma; \mathbf{C}).
$$

In order to compute the first cohomology groups $H^*(\Gamma, \mathfrak{gl}(n))$ and describe the cocycles, we will construct and use an adequate filtration of the coefficient algebra $\mathfrak{gl}(n)$.

4.1. The setup. Let (E_1, \ldots, E_n) denote the canonical basis of the space of column vectors. Hence $E_i^j := E_i \cdot {}^t E_j$, $1 \le i, j \le n$, form the canonical basis of $\mathfrak{gl}(n)$.

Note that for $A \in GL(n)$, $Ad_A(E_i^j) = (AE_i)({}^tE_jA^{-1})$. The Lie algebra $\mathfrak{gl}(n)$ turns into a Γ-module via Ad $\circ \varrho$ i.e. for all $\gamma \in \Gamma$ we have

$$
\gamma \cdot E_i^j = (\varrho(\gamma) E_i)({}^t E_j \varrho(\gamma^{-1})).
$$

Explicitly we have

(14)
\n
$$
\gamma \cdot E_1^1 = \begin{pmatrix} \alpha^{h(\gamma)} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \left(\alpha^{-h(\gamma)}, z_1(\gamma^{-1}), \dots, z_{n-1}(\gamma^{-1}) \right)
$$
\n
$$
= E_1^1 + \alpha^{h(\gamma)} z_1(\gamma^{-1}) E_1^2 + \dots + \alpha^{h(\gamma)} z_{n-1}(\gamma^{-1}) E_1^n;
$$

for $1 < k \leq n$:

(15)
$$
\gamma \cdot E_1^k = \alpha^{h(\gamma)} E_1^k + \alpha^{h(\gamma)} h_1(\gamma^{-1}) E_1^{k+1} + \dots + \alpha^{h(\gamma)} h_{n-k}(\gamma^{-1}) E_1^n;
$$

(16)
$$
\gamma \cdot E_k^1 = \begin{pmatrix} z_{k-1}(\gamma) \\ h_{k-2}(\gamma) \\ \vdots \\ h_1(\gamma) \\ 1 \\ 0 \\ \vdots \end{pmatrix} \left(\alpha^{-h(\gamma)}, z_1(\gamma^{-1}), \dots, z_{n-1}(\gamma^{-1}) \right);
$$

and for $1 < i, j \leq n$:

(17)
$$
\gamma \cdot E_i^j = \begin{pmatrix} z_{i-1}(\gamma) \\ h_{i-2}(\gamma) \\ \vdots \\ h_1(\gamma) \\ 1 \\ 0 \\ \vdots \end{pmatrix} \left(0, \ldots, 0, 1, h_1(\gamma^{-1}), \ldots, h_{n-j}(\gamma^{-1})\right).
$$

For a given family $(X_i)_{i \in I}$, $X_i \in \mathfrak{gl}(n)$, we let $\langle X_i | i \in I \rangle \subset \mathfrak{gl}(n)$ denote the subspace of $\mathfrak{gl}(n)$ generated by the family.

Remark 4.3. A first consequence of these calculations is that if $c \in$ $C^1(\Gamma; \mathbf{C})$ is a cochain, then for $2 \leq i \leq n$ and $1 \leq j \leq n$ we have:

 $\delta^{\mathfrak{gl}}(cE_i^j) = (\delta c)E_i^j + (h_1 \smile c)E_{i-1}^j + \cdots + (h_{i-2} \smile c)E_2^j + (z_{i-1} \smile c)E_1^j + x,$ where $x \colon \Gamma \times \Gamma \to \langle E_k^l \mid 1 \leq k \leq i, j < l \leq n \rangle$ is a 2-cochain. Here $\delta^{\mathfrak{gl}}$ and δ denote the coboundary operators of $C^1(\Gamma; \mathfrak{gl}(n))$ and $C^1(\Gamma; \mathbb{C})$ respectively.

In what follows we will also make use of the following Γ-modules: for $0 \leq i \leq n-1$, we define $C(i) = \langle E_k^l \mid 1 \leq k \leq n, n-i \leq l \leq n \rangle$. We have

(18)
$$
C(i) = \left\{ \begin{pmatrix} 0 & \dots & 0 & c_{1,n-i} & \dots & c_{1,n} \\ 0 & \dots & 0 & c_{2,n-i} & \dots & c_{2,n} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & c_{n-1,n-i} & \dots & c_{n-1,n} \\ 0 & \dots & 0 & c_{n,n-i} & \dots & c_{n,n} \end{pmatrix} : c_{i,j} \in \mathbf{C} \right\}
$$

and $\mathfrak{gl}(n) = C(n-1) \supset C(n-2) \supset \cdots \supset C(0) = \langle E_1^n, \ldots, E_n^n \rangle \supset$ $C(-1) = 0.$

We will denote by $X + C(i) \in C(k)/C(i)$ the class represented by $X \in C(k)$, $0 \leq i < k \leq n-1$.

4.2. Cohomology with coefficients in $C(i)$. The aim of this subsection is to prove that for $0 \leq i \leq n-2$ the cohomology groups $H^q(\Gamma; C(i))$, $0 \le q \le 2$, vanish (see Proposition [4.8\)](#page-20-0). First we will prove this for $i = 0$ and in order to conclude we will apply the isomorphism $C(0) \cong C(i)/C(i-1)$ (see Lemma [4.6\)](#page-18-0). Finally Lemma [4.7](#page-19-0) permits us to compute a certain Bockstein operator.

Lemma 4.4. The vector space $\langle E_1^n \rangle$ is a submodule of $C(0)$ and thus of $\mathfrak{gl}(n) = C(n-1)$ and we have

$$
H^{0}(\Gamma; \langle E_{1}^{n} \rangle) = 0, \dim H^{1}(\Gamma; \langle E_{1}^{n} \rangle) = \dim H^{2}(\Gamma; \langle E_{1}^{n} \rangle) = 1.
$$

More precisely, the cocycles $z_1 E_1^n \in Z^1(\Gamma; \langle E_1^n \rangle)$ and

$$
\left(\sum_{i=1}^{n-1} z_i \smile h_{n-i}\right) E_1^n \in Z^2(\Gamma; \langle E_1^n \rangle)
$$

represent generators of $H^1(\Gamma; \langle E_1^n \rangle)$ and $H^2(\Gamma; \langle E_1^n \rangle)$ respectively.

Proof: The isomorphism $\langle E_1^n \rangle \cong \mathbb{C}_{\alpha}$, Corollary [2.5,](#page-5-0) and Corollary [3.6](#page-11-1) imply the dimension formulas. The form of the generating cocycles follows from the isomorphism $\langle E_1^n \rangle \cong \mathbf{C}_{\alpha}$ and Proposition [3.5.](#page-11-0) □

Lemma 4.5. The Γ -module $C(0)/\langle E_1^n \rangle$ is isomorphic to $C[t^{\pm 1}]/(t 1)^{n-1}$. In particular, we obtain:

- (1) for $q = 0, 1 \dim H^q(\Gamma; C(0)/\langle E_1^n \rangle) = 1$ and $H^2(\Gamma; C(0)/\langle E_1^n \rangle) = 0$,
- (2) the vector E_2^n represents a generator of $H^0(\Gamma; C(0)/\langle E_1^n \rangle)$ and the cochain $\bar{v}_1 : \Gamma \to C(0)$ given by

$$
\bar{v}_1(\gamma) = h_1(\gamma)E_n^n + h_2(\gamma)E_{n-1}^n + \dots + h_{n-2}(\gamma)E_2^n
$$

represents a generator of $H^1(\Gamma; C(0)/\langle E_1^n \rangle)$.

Proof: First notice that $C(0)/\langle E_1^n \rangle$ is a $(n-1)$ -dimensional vector space. More precisely, a basis of this space is represented by the elements

$$
E_n^n, E_{n-1}^n, \ldots, E_2^n.
$$

It follows from [\(17\)](#page-15-0) that the action of Γ on $C(0)/\langle E_1^n \rangle$ factors through $h: \Gamma \to \mathbb{Z}$. More precisely, we have for all $\gamma \in \Gamma$ such that $h(\gamma) = 1$ and for all $0 \leq l \leq n-1$

$$
\gamma \cdot E_{n-l}^n = E_{n-l}^n + E_{n-l-1}^n.
$$

Here we used the fact that if $h(\gamma) = 1$ then $h_i(\gamma) = 0$ for all $2 \leq i \leq n-1$.

On the other hand

$$
(1 = (t-1)^0, (t-1), \dots, (t-1)^{n-2})
$$

represents a basis of $C[t^{\pm 1}]/(t-1)^{n-1}$ and we have for all $\gamma \in \Gamma$ such that $h(\gamma) = 1$:

$$
\gamma \cdot (t-1)^l = (t-1)^l + (t-1)^{l+1} + p,
$$

where $p \in (t-1)^{n-1} \mathbb{C}[t^{\pm 1}]$ and $0 \leq l \leq n-2$. Hence the bijection

$$
\varphi\colon \{(t-1)^l \mid 0 \le l \le n-2\} \longrightarrow \{E^n_{n-l} \mid 0 \le l \le n-2\}
$$

given by $\varphi: (t-1)^l \mapsto E_{n-l}^n, 0 \le l \le n-2$, induces an isomorphism of Γ-modules

$$
\varphi\colon \mathbf{C}[t^{\pm 1}]/(t-1)^{n-1} \xrightarrow{\cong} C(0)/\langle E_1^n\rangle.
$$

Now, the first assertion follows from Corollary [2.5.](#page-5-0)

Moreover, it follows from the above considerations that E_2^n represents a generator of $H^0(\Gamma; C(0)/\langle E_1^n \rangle)$. To prove the second assertion consider the following short exact sequence

$$
0 \longrightarrow \mathbf{C}[t^{\pm 1}]/(t-1)^{n-2} \xrightarrow{(t-1)} \mathbf{C}[t^{\pm 1}]/(t-1)^{n-1} \longrightarrow \mathbf{C} \longrightarrow 0
$$

which gives the following long exact sequence in cohomology:

$$
0 \longrightarrow H^{0}(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-1)^{n-2}) \stackrel{\cong}{\longrightarrow} H^{0}(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-1)^{n-1})
$$

$$
\longrightarrow H^{0}(\Gamma; \mathbf{C}) \stackrel{\beta^{0}}{\longrightarrow} H^{1}(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-1)^{n-2})
$$

$$
\longrightarrow H^{1}(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-1)^{n-1}) \stackrel{\cong}{\longrightarrow} H^{1}(\Gamma; \mathbf{C})
$$

$$
\longrightarrow H^{2}(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-1)^{n-2}) = 0.
$$

The isomorphisms and the vanishing of $H^2(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-1)^{n-2})$ follow directly from Corollary [2.5.](#page-5-0)

Hence the Bockstein operator β^0 is an isomorphism: the element $e_0 =$ $1 \in \mathbf{C}[t^{\pm 1}]/(t-1)^{n-1}$ projects onto a generator of $H^0(\Gamma;\mathbf{C})$ and if δ^{n-1} denotes the coboundary operator of $C^*(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-1)^{n-1})$ we obtain:

$$
\delta^{n-1}(e_0)(\gamma) = (\gamma - 1) \cdot e_0
$$

= $h_1(\gamma)e_1 + h_2(\gamma)e_2 + \dots + h_{n-2}(\gamma)e_{n-1}$
= $(t - 1) \cdot (h_1(\gamma)e_0 + h_2(\gamma)e_1 + \dots + h_{n-2}(\gamma)e_{n-2}).$

Hence the cocycle $\gamma \mapsto h_1(\gamma)e_0 + h_2(\gamma)e_1 + \cdots + h_{n-2}(\gamma)e_{n-2}$ represents a generator of $H^1(\Gamma; \mathbf{C}[t^{\pm 1}]/(t-1)^{n-2})$. To conclude, recall that the isomorphism $\mathbf{C}[t^{\pm 1}]/(t-1)^{n-1} \cong C(0)/\langle E_1^n \rangle$ is induced by the map $\varphi: e_l \mapsto E_{n-l}^n, 0 \le l \le n-2.$ \Box

Lemma 4.6. For $i \in \mathbb{Z}$, $0 \le i \le n-3$, the Γ -module $C(i+1)/C(i)$ is isomorphic to $C(0)$.

Proof: It follows from [\(17\)](#page-15-0) that, for all $i \in \mathbb{Z}$, $0 \leq i \leq n-2$, the bijection

$$
\phi \colon \{ E_{n-j}^{n-(i+1)} + C(i) \mid 0 \le j \le n-1 \} \longrightarrow \{ E_{n-j}^{n} \mid 0 \le j \le n-1 \}
$$

given by $\phi(E_{n-j}^{n-(i+1)} + C(i)) = E_{n-j}^n$ induces an isomorphism of Γ -modules $\phi: C(i+1)/C(i) \rightarrow C(0)$. \Box

Let us recall the definition of the cochains $h_i \in C^1(\Gamma; \mathbb{C})$, given by $h_i(\gamma) = \binom{h(\gamma)}{i}$ (see Equation [\(8\)](#page-8-3)). Recall also that for $1 \le i \le n-1$ the cochains $h_i \in C^1(\Gamma; \mathbf{C})$ satisfy Equation [\(9\)](#page-8-4):

$$
\delta h_i + \sum_{j=1}^{i-1} h_j \circ h_{i-j} = 0.
$$

Lemma 4.7. Let $\delta^{\mathfrak{gl}}$ denote the coboundary operator of $C^*(\Gamma; \mathfrak{gl}(n))$. Then for all $0 \le k \le n-2$ there exists a cochain $x_{k-1} \in C^2(\Gamma; C(k-1))$ such that

$$
\delta^{\mathfrak{gl}}\left(\sum_{i=2}^{n}h_{n-i+1}E_{i}^{n-k}\right)=\left(\sum_{i=1}^{n-1}z_{i}\smile h_{n-i}\right)E_{1}^{n-k}+x_{k-1}.
$$

Proof: Equation [\(17\)](#page-15-0) and Remark [4.3](#page-16-0) imply that

$$
\delta^{\mathfrak{gl}}(h_{n-i+1}E_i^{n-k}) = z_{i-1} \smile h_{n-i+1} E_1^{n-k} + \sum_{l=2}^{i-1} h_{i-l} \smile h_{n-i+1} E_l^{n-k} + \delta h_{n-i+1} E_i^{n-k} + x_{i,k-1},
$$

where $x_{i,k-1} \in C^2(\Gamma; C(k-1))$ and δ is the boundary operator of $C^*(\Gamma; \mathbf{C})$. Therefore,

$$
\delta^{\mathfrak{gl}}\left(\sum_{i=2}^{n} h_{n-i+1} E_i^{n-k}\right) = \left(\sum_{i=2}^{n} z_{i-1} \smile h_{n-i+1}\right) E_1^{n-k} + \sum_{i=2}^{n} \sum_{l=2}^{i-1} h_{i-l} \smile h_{n-i+1} E_l^{n-k} + \sum_{i=2}^{n} \delta h_{n-i+1} E_i^{n-k} + x_{k-1},
$$

where $x_{k-1} = \sum_{i=2}^{n} x_{i,k-1} \in C^2(\Gamma; C(k-1)),$ A direct calculation gives that

$$
\sum_{i=2}^{n} \sum_{l=2}^{i-1} h_{i-l} \smile h_{n-i+1} E_l^{n-k} = \sum_{l=2}^{n-1} \sum_{i=l+1}^{n} h_{i-l} \smile h_{n-i+1} E_l^{n-k}
$$

$$
= \sum_{l=2}^{n-1} \left(\sum_{i=1}^{n-l} h_i \smile h_{n-l+1-i} \right) E_l^{n-k}.
$$

Thus

$$
\delta^{\mathfrak{gl}}(h_{n-i+1}E_i^{n-k}) = \left(\sum_{i=1}^{n-1} z_i \smile h_{n-i}\right) E_1^{n-k} + \delta h_1 E_n^{n-k} + \sum_{i=1}^{n-2} \left(\delta h_{n-i} + \sum_{l=1}^{n-i-1} h_l \smile h_{n-i-l}\right) E_i^{n-k} + x_{k-1}.
$$

Now $\delta h_1 = 0$ and by [\(9\)](#page-8-4) we have $\delta h_{n-i} + \sum_{l=1}^{n-i} h_l \setminus h_{n-i+1-l} = 0$. Hence we obtain the claimed formula.

Proposition 4.8. For all $i \in \mathbb{Z}$, $0 \leq i \leq n-2$, and $0 \leq q \leq 2$ we have

$$
H^q(\Gamma; C(i)) = 0.
$$

Proof: We start by proving the result for $i = 0$. Consider the short exact sequence

(19)
$$
0 \longrightarrow \langle E_1^n \rangle \longrightarrow C(0) \longrightarrow C(0) / \langle E_1^n \rangle \longrightarrow 0.
$$

As the $\mathbf{C}[t^{\pm 1}]$ -modules $\langle E_1^n \rangle$ and $\mathbf{C}_{\alpha} \cong \mathbf{C}[t^{\pm 1}]/(t - \alpha)$ are isomorphic, the sequence [\(19\)](#page-20-1) gives us a long exact sequence in cohomology:

$$
0 = H^{0}(\Gamma; \langle E_{1}^{n} \rangle) \longrightarrow H^{0}(\Gamma; C(0)) \longrightarrow H^{0}(\Gamma; C(0)/\langle E_{1}^{n} \rangle)
$$

\n
$$
\xrightarrow{\beta_{0}^{0}} H^{1}(\Gamma; \langle E_{1}^{n} \rangle) \longrightarrow H^{1}(\Gamma; C(0)) \longrightarrow H^{1}(\Gamma; C(0)/\langle E_{1}^{n} \rangle)
$$

\n
$$
\xrightarrow{\beta_{0}^{1}} H^{2}(\Gamma; \langle E_{1}^{n} \rangle) \longrightarrow H^{2}(\Gamma; C(0)) \longrightarrow H^{2}(\Gamma; C(0)/\langle E_{1}^{n} \rangle) = 0.
$$

Here, for $q = 0, 1$, we denoted by β_0^q : $H^q(\Gamma; C(0)/\langle E_1^n \rangle) \rightarrow H^{q+1}(\Gamma; \langle E_1^n \rangle)$ the Bockstein homomorphism. By Lemma [4.5,](#page-17-0) E_2^n represents a generator of $H^0(\Gamma; C(0)/\langle E_1^n \rangle)$, so

$$
\beta_0^0(E_2^n)(\gamma) = (\gamma - 1) \cdot (E_2^n) \n= \gamma \cdot E_2^n - E_2^n = z_1(\gamma)E_1^n.
$$

By Lemma [4.4,](#page-16-1) $z_1 E_1^n$ is a generator of $H^1(\Gamma;\langle E_1^n \rangle)$, and by Lemma [4.5](#page-17-0) $\dim H^0(\Gamma; C(0)/\langle E_1^n \rangle) = 1 = \dim H^1(\Gamma; \langle E_1^n \rangle)$, thus β_0^0 is an isomorphism. Consequently $H^0(\Gamma; C(0)) = 0$ as $H^0(\Gamma; \langle E_1^n \rangle) = 0$ by Lemma [4.4.](#page-16-1)

Now by Lemma [4.5,](#page-17-0) the cochain $\bar{v}_1 : \Gamma \to C(0)$ given by

$$
\bar{v}_1(\gamma) = h_1(\gamma)E_n^n + h_2(\gamma)E_{n-1}^n + \dots + h_{n-1}(\gamma)E_2^n
$$

represents a generator of $H^1(\Gamma; C(0)/\langle E_1^n \rangle)$ and by Lemma [4.7](#page-19-0)

$$
\beta_0^1(h_1 E_n^n + h_2 E_{n-1}^n + \dots + h_{n-1} E_2^n) = \left(\sum_{i=1}^{n-1} z_i \smile h_{n-i}\right) E_1^n.
$$

Moreover, by Proposition [3.5](#page-11-0) the cocycle $\left(\sum_{i=1}^{n-1} z_i \smile h_{n-i}\right) \! E_1^n$ represents a generator of $H^2(\Gamma;\langle E_1^n \rangle)$. Thus β_0^1 is an isomorphism and $H^q(\Gamma; C(0))$ = 0 for $q = 1, 2$.

Now suppose that $H^q(\Gamma; C(i_0)) = 0$ for $0 \le i_0 \le n-3$, $q = 0, 1, 2$, and consider the following short exact sequence of Γ-modules:

(20)
$$
0 \longrightarrow C(i_0) \longrightarrow C(i_0 + 1) \longrightarrow C(i_0 + 1)/C(i_0) \longrightarrow 0.
$$

This sequence induces a long exact sequence in cohomology

$$
0 \longrightarrow H^{0}(\Gamma; C(i_{0})) \longrightarrow H^{0}(\Gamma; C(i_{0}+1))
$$

\n
$$
\longrightarrow H^{0}(\Gamma; C(i_{0}+1)/C(i_{0})) \longrightarrow H^{1}(\Gamma; C(i_{0})) \longrightarrow H^{1}(\Gamma; C(i_{0}+1))
$$

\n
$$
\longrightarrow H^{1}(\Gamma; C(i_{0}+1)/C(i_{0})) \longrightarrow H^{2}(\Gamma; C(i_{0})) \longrightarrow H^{2}(\Gamma; C(i_{0}+1))
$$

\n
$$
\longrightarrow H^{2}(\Gamma; C(i_{0}+1)/C(i_{0})) \longrightarrow \cdots
$$

By Lemma [4.6](#page-18-0) we have $C(i_0 + 1)/C(i_0) \cong C(0)$. Hence $H^q(\Gamma; C(i_0 +$ $1)/C(i_0) = 0$, and the hypothesis implies that $H^q(\Gamma; C(i_0 + 1)) \cong$ $H^q(\Gamma; C(i_0)) = 0$ for $q = 0, 1, 2$. \Box

4.3. Cohomology with coefficients in $\mathfrak{gl}(n)$. In this subsection we will prove Proposition [4.1.](#page-13-0)

Proof of Proposition [4.1:](#page-13-0) In order to compute the dimensions of the cohomology groups $H^q(\Gamma; \mathfrak{gl}(n))$, $q = 0, 1$, we consider the short exact sequence

(21)
$$
0 \longrightarrow C(n-2) \longrightarrow C(n-1) = \mathfrak{gl}(n) \longrightarrow \mathfrak{gl}(n)/C(n-2) \longrightarrow 0.
$$

The sequence [\(21\)](#page-21-0) gives rise to the following long exact cohomology sequence:

$$
0 \longrightarrow H^{0}(\Gamma; C(n-2)) \longrightarrow H^{0}(\Gamma; \mathfrak{gl}(n))
$$

\n
$$
\longrightarrow H^{0}(\Gamma; \mathfrak{gl}(n)/C(n-2)) \longrightarrow H^{1}(\Gamma; C(n-2)) \longrightarrow H^{1}(\Gamma; \mathfrak{gl}(n))
$$

\n
$$
\longrightarrow H^{1}(\Gamma; \mathfrak{gl}(n)/C(n-2)) \longrightarrow H^{2}(\Gamma; C(n-2)) \longrightarrow \cdots
$$

As $H^q(\Gamma; C(n-2)) = 0, q = 0, 1, 2$, we conclude that

$$
H^{q}(\Gamma; \mathfrak{gl}(n)) \cong H^{q}(\Gamma; \mathfrak{gl}(n)/C(n-2)) \text{ for } q = 0, 1.
$$

It remains to understand the quotient $\mathfrak{gl}(n)/C(n-2)$.

Clearly the vectors E_n^1, \ldots, E_1^1 represent a basis of $\mathfrak{gl}(n)/C(n-2)$ and there exists a Γ -module A such that the following sequence

(22)
$$
0 \longrightarrow \langle E_1^1 + C(n-2) \rangle \longrightarrow \mathfrak{gl}(n)/C(n-2) \longrightarrow A \longrightarrow 0
$$

is exact. Now the sequence [\(22\)](#page-21-1) induces the following exact cohomology sequence:

(23)
$$
0 \longrightarrow H^{0}(\Gamma; \langle E_{1}^{1}+C(n-2) \rangle) \longrightarrow H^{0}(\Gamma; \mathfrak{gl}(n)/C(n-2)) \longrightarrow H^{0}(\Gamma; A)
$$

$$
\longrightarrow H^{1}(\Gamma; \langle E_{1}^{1}+C(n-2) \rangle) \longrightarrow H^{1}(\Gamma; \mathfrak{gl}(n)/C(n-2))
$$

$$
\longrightarrow H^{1}(\Gamma; A) \longrightarrow H^{2}(\Gamma; \langle E_{1}^{1}+C(n-2) \rangle)
$$

$$
\longrightarrow H^{2}(\Gamma; \mathfrak{gl}(n)/C(n-2)) \longrightarrow H^{2}(\Gamma; A) \longrightarrow \cdots
$$

Observe that the action of Γ on $\langle E_1^1 + C(n-2) \rangle$ is trivial. Therefore, $\langle E_1^1 + C(n-2) \rangle$ and **C** are isomorphic Γ-modules. By Corollary [2.5](#page-5-0) we obtain

$$
\dim H^q(\Gamma; \langle E_1^1 + C(n-2) \rangle) = 1
$$
 for $q = 0, 1$

and $H^2(\Gamma; \langle E_1^1 + C(n-2) \rangle) = 0.$

To complete the proof we will make use of Lemma [4.9,](#page-22-0) which states that the Γ-module A is isomorphic to $\mathbb{C}[t^{\pm 1}]/(t-\alpha^{-1})^{n-1}$. Recall that Lemma [2.4](#page-4-0) implies that $H^0(\Gamma; C[t^{\pm 1}]/(t - \alpha^{-1})^{n-1}) = 0$ and

$$
\dim H^1(\Gamma; \mathbf{C}[t^{\pm 1}]/(t - \alpha^{-1})^{n-1}) = n - 1.
$$

Therefore, sequence [\(23\)](#page-22-1) gives:

$$
H^{0}(\Gamma; \mathfrak{gl}(n)) \cong H^{0}(\Gamma; \mathfrak{gl}(n)/C(n-2)) \cong H^{0}(\Gamma; \mathbf{C}) \cong \mathbf{C}.
$$

The short exact sequence

$$
0 \longrightarrow H^{1}(\Gamma; \mathbf{C}) \longrightarrow H^{1}(\Gamma; \mathfrak{gl}(n)/C(n-2))
$$

$$
\cong H^{1}(\Gamma; \mathfrak{gl}(n)) \longrightarrow H^{1}(\Gamma; A) \longrightarrow 0
$$

implies that $\dim H^1(\Gamma;\mathfrak{gl}(n)) = n$. The proposition follows now from Equation [\(13\)](#page-14-1). \Box

Lemma 4.9. The Γ -module A is isomorphic to $\mathbf{C}[t^{\pm 1}]/(t-\alpha^{-1})^{n-1}$. Consequently

$$
H^0(\Gamma; A) = 0, \quad \dim H^1(\Gamma; A) = n - 1.
$$

Proof of Lemma [4.9:](#page-22-0) The proof is similar to the proof of Lemma [4.5.](#page-17-0) As a C-vector space the dimension of A is $n-1$ and a basis is given by $(\overline{E_n^1}, \ldots, \overline{E_2^1})$ where $\overline{E}_i^1 = E_i^1 + C(n-2) \in A$ is the class represented by $E_i^1, 2 \leq i \leq n$. In order to prove that A is isomorphic to $\mathbb{C}[t^{\pm 1}]/(t (\alpha^{-1})^{n-1}$ observe that by [\(16\)](#page-15-1)

$$
\gamma \cdot E_k^1 = \alpha^{-h(\gamma)} (E_k^1 + h_1(\gamma) E_{k-1}^1 + \dots + h_{k-2}(\gamma) E_2^1) + X_k,
$$

where $X_k \in E_1^1 + C(n-2)$. Therefore, the action of Γ on A factors through $h: \Gamma \to \mathbb{Z}$. More precisely, we have for all $\gamma \in \Gamma$ such that $h(\gamma)=1$

$$
\gamma \cdot \overline{E}_k^1 = \alpha^{-1} (\overline{E}_k^1 + \overline{E}_{k-1}^1).
$$

On the other hand $e_l = (\alpha(t - \alpha^{-1}))^l$, $0 \le l \le n - 2$, represents a basis of $\mathbf{C}[t^{\pm 1}]/(t-\alpha^{-1})^{n-1}$ and we have for all $\gamma \in \Gamma$ such that $h(\gamma) = 1$:

$$
\gamma \cdot e_l = \alpha^{-1}(e_l + e_{l+1}) + p
$$
, where $p \in (t - \alpha^{-1})^{n-1} \mathbf{C}[t^{\pm 1}].$

Hence the bijection ψ : { e_l | 0 $\leq l \leq n-2$ } $\rightarrow \{\overline{E}_k^1\}$ $\binom{1}{k}$ | $2 \leq k \leq n$ } given by $\varphi: e_l \mapsto \overline{E}_n^1$ n_{n-l} , $0 \le l \le n-2$, induces an isomorphism of Γ -modules $\psi: \mathbf{C}[t^{\pm 1}]/(t-\alpha^{-1})^{n-1} \stackrel{\cong}{\longrightarrow} A.$

Finally, the dimension equations follow from Lemma [2.4](#page-4-0) and Remark [3.3.](#page-9-1) \Box

We obtain immediately that under the hypotheses of Proposition [4.1](#page-13-0) the representation ρ_{λ} is a smooth point of the representation variety $R_n(\Gamma)$. This proves the first part of Theorem [1.1.](#page-1-0)

Proposition 4.10. Let $K \subset M^3$ be a knot in the homology sphere M^3 . If the $(t - \alpha)$ -torsion τ_{α} of the Alexander module is cyclic of the form $\mathbf{C}[t,t^{-1}]/(t-\alpha)^{n-1},\;n\geq 2,\;$ then the representation ϱ_{λ} is a smooth point of the representation variety $R_n(\Gamma)$; it is contained in a unique $(n^2 + n - 2)$ -dimensional component $R_{\varrho_{\lambda}}$ of $R_n(\Gamma)$.

Proof: By Proposition [2.6](#page-6-3) and Proposition [4.1,](#page-13-0) the representation ρ_{λ} is contained in a unique component $R_{\varrho_{\lambda}}$ of dimension $(n^2 + n - 2)$. Moreover,

$$
\dim Z^1(\Gamma; \mathfrak{sl}(n)) = \dim H^1(\Gamma; \mathfrak{sl}(n)) + \dim B^1(\Gamma; \mathfrak{sl}(n))
$$

$$
= (n-1) + (n^2 - 1)
$$

$$
= n^2 + n - 2.
$$

Hence the representation ϱ_{λ} is a smooth point of $R_n(\Gamma)$ which is contained in an unique $(n^2 + n - 2)$ -dimensional component $R_{\varrho_{\lambda}}$. □

For later use, we describe more precisely the derivations $v_k : \Gamma \to$ $\mathfrak{sl}(n), 1 \leq k \leq n-1$, which represent a basis of $H^1(\Gamma; \mathfrak{sl}(n)).$

Corollary 4.11. There exists cochains $z_1^-,\ldots,z_{n-1}^- \in C^1(\Gamma; \mathbf{C}_{\alpha^{-1}})$ such that δz_k^- + $\sum_{i=1}^{k-1} h_i \setminus z_{k-i}^- = 0$ for $k = 1, \ldots, n-1$ and $z_1^- : \Gamma \to$ $\mathbf{C}_{\alpha^{-1}}$ is a non-principal derivation.

Moreover, there exist cochains $g_k : \Gamma \to \mathbf{C}$ and $x_k : \Gamma \to \mathbf{C}(n-2)$, $1 \leq k \leq n-1$, such that the cochains $v_k : \Gamma \to \mathfrak{sl}(n)$ given by

$$
v_k = g_k E_1^1 + z_k^- E_2^1 + \dots + z_1^- E_{k+1}^1 + x_k
$$

are cocycles and represent a basis of $H^1(\Gamma; \mathfrak{sl}(n)).$

Proof: Recall that the vector space A admits as a basis the family $\left(\overline{E}_n^1\right)$ $\frac{1}{n},\ldots,\overline{E}_2^1$ $\binom{1}{2}$ and that it is isomorphic to $\mathbf{C}[t^{\pm 1}]/(t-\alpha^{-1})^{n-1}$. Moreover it is easily seen that A is isomorphic to the Γ -module of column vectors \mathbf{C}^{n-1} where the action is given by $t^k a = \alpha^{-k} J_{n-1}^k a$. Hence a cochain $\mathbf{z}^- : \Gamma \to A$ with coordinates $\mathbf{z}^- = {}^t(z_{n-1}^-,\ldots,z_1^-)$ is a cocycle in $Z^1(\Gamma; A)$ if and only if for all $\gamma_1, \gamma_2 \in \Gamma$

$$
\mathbf{z}^-(\gamma_1\gamma_2) = \mathbf{z}^-(\gamma_1) + \alpha^{-h(\gamma_1)} J_{n-1}^{h(\gamma_1)} \mathbf{z}^-(\gamma_2).
$$

It follows, as in the proof of Lemma [3.2,](#page-8-2) that this is equivalent to

$$
z_k^-(\gamma_1\gamma_2) = z_k^-(\gamma_1) + \alpha^{-h(\gamma_1)}z_k^-(\gamma_2) + \sum_{i=1}^{k-1} h_i(\gamma_1)\alpha^{-h(\gamma_1)}z_{k-i}^-(\gamma_2).
$$

In other words, for $1 \leq k \leq n-1$,

$$
0 = \delta z_k^- + \sum_{i=1}^{k-1} h_i \smile z_{k-i}^-.
$$

By Remark [3.3,](#page-9-1) if $z_1^- \in Z^1(\Gamma; \mathbb{C}_{\alpha^{-1}})$ is a non-principal derivation, there exist cochains $z_k^- : \overline{\Gamma} \to \mathbf{C}_{\alpha^{-1}}$, $2 \le k \le n - 1$, such that

$$
0 = \delta z_k^- + \sum_{i=1}^{k-1} h_i \smile z_{k-i}^-.
$$

Consequently, as dim $H^1(\Gamma; A) = n - 1$, the cochains

$$
\mathbf{z}_k^- = z_k^- \overline{E}_2^1 + \cdots + z_1^- \overline{E}_{k+1}^1, \quad 1 \le k \le n-1,
$$

represent a basis of $H^1(\Gamma; A)$. The proof is completed by noticing that the projection $H^1(\Gamma;\mathfrak{gl}(n)) \to H^1(\Gamma;A)$ restricts to an isomorphism between $H^1(\Gamma; \mathfrak{sl}(n))$ and $H^1(\Gamma; A)$. \Box

5. Irreducible $SL(n)$ representations

This section will be devoted to the proof of the last part of Theo-rem [1.1.](#page-1-0) In Proposition [4.10](#page-23-0) we proved that the representation ρ_{λ} is a smooth point of $R_n(\Gamma)$ which is contained in a unique $(n^2 + n - 2)$ -dimensional component $R_{\varrho_{\lambda}}$. Then, to prove the existence of irreducible representations in that component, we will make use of Corollary [4.11](#page-23-1) and Burnside's theorem on matrix algebras.

We start with the following technical lemma which is implicitly contained in $[14, §2]$ $[14, §2]$ $[14, §2]$.

Lemma 5.1. Let Γ be the knot group of $K \subset M^3$, and let $\varphi \colon \Gamma \to \mathbb{Z}$ be an epimorphism. Then there exists a presentation

$$
\Gamma \cong \langle S_1, \ldots, S_k \mid V_1, \ldots, V_{k-1} \rangle,
$$

such that $\varphi(S_i) = 1$ for all $1 \leq i \leq k$.

Proof: Every presentation of Γ, obtained from a cell decomposition of $X = \overline{M^3 \backslash V(K)}$, has deficiency one [[15](#page-30-13), Chapter V], i.e. we have a presentation $\Gamma \cong \langle T_1, \ldots, T_l \mid W_1, \ldots, W_{l-1} \rangle$. We put $a_i = \varphi(T_i)$. Then the $gcd{a_i | 1 \leq i \leq k} = 1$ since φ is surjective. Therefore we obtain $b_i \in \mathbf{Z}$ such that $1 = \sum_{i=1}^l a_i b_i$, and $S = T_1^{b_1} T_2^{b_2} \cdots T_l^{b_l}$ maps under φ to 1. We define $S_i = T_i S^{1-a_i}$. We obtain a presentation

$$
\Gamma \cong \langle S, S_1, \ldots, S_l, T_1, \ldots, T_l | S^{-1} T_1^{b_1} \cdots T_l^{b_l}, S_i S^{a_i-1} T_i^{-1}, W_1, \ldots, W_{l-1} \rangle,
$$

and by Tietze transformations $\Gamma \cong \langle S, S_1, \ldots, S_l | V_1, \ldots, V_l \rangle$. Now, the deficiency of the latter presentation is one, and each generator maps to 1 under φ . □

Proof of the last part of Theorem [1.1:](#page-1-0) To prove that the component $R_{\varrho_{\lambda}}$ contains irreducible non-metabelian representations, we will generalize the argument given in [[3](#page-30-0)] for $n = 3$.

By Lemma [5.1,](#page-25-0) we obtain a presentation of the knot group $\Gamma =$ $\langle S_1, \ldots, S_k \mid V_1, \ldots, V_{k-1} \rangle$ such that $h(S_i) = 1$. This condition assures that each principal derivation $d: \Gamma \to \mathbf{C}_{\alpha}$ satisfies $d(S_i) = d(S_j)$ for all $1 \leq i, j \leq k$. Modulo conjugation of the representation ρ_{λ} , we can assume that $z_1(S_1) = \cdots = z_{n-1}(S_1) = 0$. This conjugation corresponds to adding a principal derivation to the cochains z_i , $1 \leq i \leq n-1$. We will also assume that the second generator S_2 verifies $z_1(S_2) = b_1 \neq 0 = z_1(S_1)$. This is always possible since z_1 is non-principal derivation. Hence

$$
\varrho_{\lambda}(S_1) = \alpha^{-1/n} \left(\begin{array}{c|c} \alpha & 0 \\ \hline 0 & J_{n-1} \end{array} \right)
$$
 and $\varrho_{\lambda}(S_2) = \alpha^{-1/n} \left(\begin{array}{c|c} \alpha & b \\ \hline 0 & J_{n-1} \end{array} \right)$,

where $b = (b_1, \ldots, b_{n-1})$ with $b_1 \in \mathbb{C}^*$ and $b_i = z_i(S_2) \in \mathbb{C}$ for $2 \leq i \leq$ $n-1$.

Let $v_{n-1} \in Z^1(\Gamma; \mathfrak{sl}(n))$ be a cocycle such that:

$$
v_{n-1} = z_1^- E_n^1 + z_2^- E_{n-1}^1 + \dots + z_{n-1}^- E_2^1 + g_{n-1} E_1^1 + x_{n-1}
$$

given by Corollary [4.11.](#page-23-1) Up to adding a principal derivation to the cocycle z_1^- we assume that $z_1^-(S_1) = 0$. Notice that, the proof of Lemma 5.5 of [[3](#page-30-0)] generalizes to our situation, and hence $z_1^-(S_2) \neq 0$.

Let ρ_t be a deformation of ρ_λ with leading term v_{n-1} :

$$
\rho_t = \left(I_n + t v_{n-1} + o(t)\right) \varrho_\lambda, \text{ where } \lim_{t \to 0} \frac{o(t)}{t} = 0.
$$

We may apply the following lemma (whose proof is completely analogous to that of Lemma 5.[3](#page-30-0) in [3]) to this deformation for $A(t) = \rho_t(S_1)$.

Lemma 5.2. Let $\rho_t: \Gamma \to SL(n)$ be a curve in $R_n(\Gamma)$ with $\rho_0 = \varrho_\lambda$. Then there exists a curve C_t in $SL(n)$ such that $C_0 = I_n$ and

$$
\mathrm{Ad}_{C_t} \circ \rho_t(S_1) = \begin{pmatrix} a_{11}(t) & 0 & \dots & 0 \\ 0 & a_{22}(t) & \dots & a_{2n}(t) \\ \vdots & \vdots & & \vdots \\ 0 & a_{n2}(t) & \dots & a_{nn}(t) \end{pmatrix}
$$

for all sufficiently small t.

Therefore, we may suppose that $a_{n1}(t) = 0$, and since

$$
a_{n1}(t) = t\lambda^{n-1}(z_1^-(S_1) + \delta c(S_1)) + o(t), \text{ for } c \in \mathbf{C},
$$

it follows that

$$
a'_{n1}(0) = \lambda^{n-1}(z_1^-(S_1) + (\alpha^{-1} - 1)c) = 0
$$

and hence $c = 0$. For $B(t) = \rho_t(S_2)$, we obtain $b'_{n_1}(0) = \lambda^{n-1} z_1^-(S_2) \neq 0$. Hence, we can apply the following technical lemma (whose proof will be postponed to the end of this section).

Lemma 5.3. Let $A(t) = (a_{ij}(t))_{1 \le i,j \le n}$ and $B(t) = (b_{ij}(t))_{1 \le i,j \le n}$ be matrices depending analytically on t such that

$$
A(t) = \left(\begin{array}{c|c} a_{11}(t) & 0 \\ \hline 0 & A_{11}(t) \end{array}\right), \quad A(0) = \varrho_{\lambda}(S_1) = \alpha^{-1/n} \left(\begin{array}{c|c} \alpha & 0 \\ \hline 0 & J_{n-1} \end{array}\right),
$$

and

$$
B(0) = \varrho_{\lambda}(S_2) = \alpha^{-1/n} \left(\begin{array}{c|c} \alpha & b \\ \hline 0 & J_{n-1} \end{array} \right)
$$

.

If the first derivative $b'_{n1}(0) \neq 0$ then for sufficiently small $t, t \neq 0$, the matrices $A(t)$ and $B(t)$ generate the full matrix algebra $M(n, \mathbf{C})$.

Hence for sufficiently small $t \neq 0$ we obtain that $A(t) = \rho_t(S_1)$ and $B(t) = \rho_t(S_2)$ generate $M(n, \mathbf{C})$. By Burnside's matrix theorem, such a representation ρ_t is irreducible.

To conclude the proof of Theorem [1.1,](#page-1-0) we will prove that all irreducible representations sufficiently close to ρ_{λ} are non-metabelian. In order to do so, we will make use of the following result of H. U. Boden and S. Friedl [[5](#page-30-11), Theorem 1.2]: for every irreducible metabelian representation $\rho: \Gamma \to SL(n)$ we have $tr \rho(S_1) = 0$. Now, we have tr $\varrho_\lambda(S_1) = \lambda^{-1}(\lambda^n + n - 1)$ and we claim that $\lambda^n + n - 1 \neq 0$. Notice that $\alpha = \lambda^n$ is a root of the normalized Alexander polynomial Δ_K and $\lambda^{n} + n - 1 = 0$ would imply that $1 - n$ is a root of Δ_{K} . This in turn would imply that $t+n-1$ divides $\Delta_K(t)$ and hence n divides $\Delta_K(1) = 1$ which is impossible since $n \geq 2$. Therefore, $tr(\rho(S_1)) \neq 0$ for all irreducible representations sufficiently close to ρ_{λ} . This proves Theorem [1.1.](#page-1-0) \Box

Remark 5.4. Let $\rho_{\lambda} : \Gamma \to SL(n)$ be the diagonal representation given by $\rho_{\lambda}(\mu) = \text{diag}(\lambda^{n-1}, \lambda^{-1}I_{n-1})$ where μ is a meridian of K. The orbit $\mathcal{O}(\rho_{\lambda})$ of ρ_{λ} under the action of conjugation of $SL(n)$ is contained in the closure $\mathcal{O}(\rho_{\lambda})$. Hence ρ_{λ} and ρ_{λ} project to the same point χ_{λ} of the variety of characters $X_n(\Gamma) = R_n(\Gamma) / \operatorname{SL}(n)$.

It would be natural to study the local picture of the variety of characters $X_n(\Gamma) = R_n(\Gamma) / \sum_{n=1}^{\infty}$ at χ_{λ} as done in [[13](#page-30-4), §8]. Unfortunately, there are much more technical difficulties since in this case the quadratic cone $Q(\rho_{\lambda})$ coincides with the Zariski tangent space $Z^1(\Gamma; \mathfrak{sl}(n)_{\rho_{\lambda}})$. Therefore the third obstruction has to be considered.

Proof of Lemma [5.3:](#page-26-0) The proof follows exactly the proof of Proposi-tion 5.4 in [[3](#page-30-0)]. We denote by $A_t \subset \mathfrak{gl}(n)$ the algebra generated by $A(t)$ and $B(t)$. For any matrix A we let $P_A(X)$ denote its characteristic polynomial. We have $P_{A_{11}(0)} = (\lambda^{-1} - X)^{n-1}$ and $a_{11}(0) = \lambda^{n-1}$. Since $\alpha = \lambda^n \neq 1$ we obtain $P_{A_{11}(0)}(a_{11}(0)) \neq 0$. It follows that $P_{A_{11}(t)}(a_{11}(t)) \neq 0$ for small t and hence

$$
\frac{1}{P_{A_{11}(t)}(a_{11}(t))}P_{A_{11}(t)}(A(t)) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

$$
= \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \otimes (1,0,\ldots,0) \in \mathbf{C}[A(t)] \subset \mathcal{A}_t.
$$

In the next step we will prove that

$$
\mathcal{A}_t \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \mathbf{C}^n \text{ and } (1,0,\ldots,0)\mathcal{A}_t = \mathbf{C}^n, \text{ for small } t \in \mathbf{C}.
$$

It follows from this that A_t contains all rank one matrices since a rank one matrix can be written as $v \otimes w$ where v is a column vector and w is a row vector. Note also that $A(v \otimes w) = (Av) \otimes w$ and $(v \otimes w)A = v \otimes (wA)$. Since each matrix is the sum of rank one matrices the proposition follows.

Now consider the vectors

$$
(1,0,\ldots,0)A(0), (1,0,\ldots,0)B(0),\ldots, (1,0,\ldots,0)B(0)^{n-1}.
$$

Then for $1 \leq k \leq n-1$:

$$
(1,0,\ldots,0)B(0)^k = \lambda^{-k} \left(\alpha^k, b \sum_{j=0}^{k-1} \alpha^{k-1-j} J^j \right)
$$

and the dimension D of the vector space

$$
\langle (1,0,\ldots,0)A(0), (1,0,\ldots,0)B(0), \ldots (1,0,\ldots,0)B(0)^{n-1} \rangle
$$

is equal to

$$
D = \dim \left\langle (\alpha, 0), (\alpha, b), (\alpha^2, \alpha b + bJ), \dots, \left(\alpha^{n-1}, b \sum_{j=0}^{k-1} \alpha^{k-1-j} J^j \right) \right\rangle
$$

= $\dim \langle (\alpha, 0), (0, b), (0, bJ), \dots, (0, bJ^{n-2}) \rangle$.

Here, $J = J_{n-1} = I_{n-1} + N_{n-1}$ where $N_{n-1} \in GL(n-1, \mathbb{C})$ is the upper triangular Jordan normal form of a nilpotent matrix of degree $n-1$. Then a direct calculation gives that

$$
\dim \langle b, bJ, \dots, bJ^{n-2} \rangle = \dim \langle b, bN, \dots, bN^{n-2} \rangle = n-1, \text{ as } b_1 \neq 0.
$$

Thus dim $\langle (1,0,\ldots,0)A(0), (1,0,\ldots,0)B(0), \ldots (1,0,\ldots,0)B(0)^{n-1} \rangle =$ n and the vectors

$$
(1,0,\ldots,0)A(0), (1,0,\ldots,0)B(0),\ldots, (1,0,\ldots,0)B(0)^{n-1}
$$

form a basis of the space of row vectors. This proves that $(1, 0, \ldots, 0)\mathcal{A}_t$ is the space of row vectors for sufficiently small t .

In the final step consider the n column vectors

$$
a_1(t) = A(t) \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \ a_{i+2}(t) = A^{i}(t)B(t) \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \ 0 \leq i \leq n-2
$$

and write $B(t)$ $\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ $\boldsymbol{0}$ \setminus $=\begin{pmatrix} b_{11}(t) \\ b(t) \end{pmatrix}$ for the first column of $B(t)$; then

$$
a_1(t) = \begin{pmatrix} a_{11}(t) \\ \mathbf{0} \end{pmatrix}, \, a_{i+2}(t) = A^i(t) \begin{pmatrix} b_{11}(t) \\ \mathbf{b}(t) \end{pmatrix}, \, 0 \le i \le n-2.
$$

Define the function $f(t) := \det(a_1(t), \ldots, a_n(t))$ and $g(t)$ by:

$$
f(t) = a_{11}(t)g(t)
$$
, where $g(t) = \det\left(\mathbf{b}(t), A_{11}(t)\mathbf{b}(t), \dots, A_{11}^{n-2}(t)\mathbf{b}(t)\right)$.

Now, for $k \geq 0$ the k-th derivative $g^{(k)}(t)$ of $g(t)$ is given by:

$$
\sum_{s_1,\ldots,s_{n-1}\geq 0}c_{s_1,\ldots,s_{n-1}}\det\Big(\mathbf{b}^{(s_1)}(t),(A_{11}(t)\mathbf{b}(t))^{(s_2)},\ldots,(A_{11}^{n-2}(t)\mathbf{b}(t))^{(s_{n-1})}\Big),
$$

where

$$
c_{s_1,\ldots,s_{n-1}} = \begin{cases} {k \choose s_1,\ldots,s_{n-1}} = \frac{k!}{s_1!\cdots s_{n-1}!} & \text{if } s_1 + \cdots + s_{n-1} = k; \\ 0 & \text{otherwise.} \end{cases}
$$

As $\mathbf{b}(0) = 0$ we obtain, for $0 \leq k \leq n-2$, $g^{(k)}(0) = 0$ and consequently $f^{(k)}(0) = 0$ for all $0 \le k \le n-2$.

Now, for $k = n - 1$, we have

$$
\frac{g^{(n-1)}(0)}{(n-1)!} = \det \left(\mathbf{b}'(0), (A_{11}(t)\mathbf{b}(t))'(0), \dots, (A_{11}^{n-2}(t)\mathbf{b}(t))'(0) \right)
$$

\n
$$
= \det \left(\mathbf{b}'(0), A_{11}(0)\mathbf{b}'(0), \dots, A_{11}^{n-2}(0)\mathbf{b}'(0) \right)
$$

\n
$$
= \det \left(\mathbf{b}'(0), (\lambda^{-1}J)\mathbf{b}'(0), \dots, (\lambda^{-1}J)^{n-2}\mathbf{b}'(0) \right)
$$

\n
$$
= \det \left(\mathbf{b}'(0), \lambda^{-1}N\mathbf{b}'(0), \dots, \lambda^{-(n-2)}N^{n-2}\mathbf{b}'(0) \right)
$$

\n
$$
\neq 0 \text{ since } b'_{n1} \neq 0.
$$

Thus, $f^{(n-1)}(0) = a_{11}(0)g^{(n-1)}(0) \neq 0$ and $f(t) \neq 0$ for sufficiently small $t, t \neq 0$. \Box

References

- [1] L. BEN ABDELGHANI, Espace des représentations du groupe d'un nœd classique dans un groupe de Lie, Ann. Inst. Fourier (Grenoble) 50(4) (2000), 1297–1321.
- [2] L. Ben Abdelghani, Tangent cones and local geometry of the representation and character varieties of knot groups, Algebr. Geom. Topol. $10(1)$ (2010) , $433-463$. [DOI: 10.2140/agt.2010.10.433](http://dx.doi.org/10.2140/agt.2010.10.433).

- [3] L. Ben Abdelghani, M. Heusener, and H. Jebali, Deformations of metabelian representations of knot groups into $SL(3, \mathbb{C})$, J. *Knot Theory Ramifications* 19(3) (2010), 385-404. [DOI: 10.1142/](http://dx.doi.org/10.1142/S0218216510007887) [S0218216510007887](http://dx.doi.org/10.1142/S0218216510007887).
- [4] L. Ben Abdelghani and D. Lines, Involutions on knot groups and varieties of representations in a Lie group, J. Knot Theory Ram $ifications$ $11(1)$ (2002) , $81-104$. [DOI: 10.1142/S0218216502001482](http://dx.doi.org/10.1142/S0218216502001482).
- [5] H. U. BODEN AND S. FRIEDL, Metabelian $SL(n, \mathbb{C})$ representations of knot groups, Pacific J. Math. 238(1) (2008), 7–25. [DOI:](http://dx.doi.org/10.2140/pjm.2008.238.7) [10.2140/pjm.2008.238.7](http://dx.doi.org/10.2140/pjm.2008.238.7).
- [6] K. S. Brown, "Cohomology of Groups", Graduate Texts in Mathematics 87, Springer-Verlag, New York-Berlin, 1982.
- [7] G. BURDE, Darstellungen von Knotengruppen, *Math. Ann.* **173(1)** (1967), 24–33. [DOI: 10.1007/BF01351516](http://dx.doi.org/10.1007/BF01351516).
- [8] G. Burde, Z. Heiner, and M. Heusener, "Knots", 3rd fully revised and extented edition, Walter de Gruyter, Berlin, 2013.
- [9] J. F. Davis and P. Kirk, "Lecture Notes in Algebraic Topology", Graduate Studies in Mathematics 35, American Mathematical Society, Providence, RI, 2001. [DOI: 10.1090/gsm/035](http://dx.doi.org/10.1090/gsm/035).
- [10] G. DE RHAM, Introduction aux polynômes d'un nœud, Enseignement Math. (2) **13** (1967), 187-194 (1968).
- [11] C. McA. GORDON, Some aspects of classical knot theory, in: "Knot Theory" (Proc. Sem., Plans-sur-Bex, 1977), Lecture Notes in Math. 685, Springer, Berlin, 1978, pp. 1–60.
- [12] M. HEUSENER AND O. MEDJERAB, Deformations of reducible representations of knot groups into $SL(n, \mathbb{C})$, Math. Slovaca 66(5) (2017), 1337–2211. [DOI: 10.1515/ms-2016-0206](http://dx.doi.org/10.1515/ms-2016-0206).
- [13] M. HEUSENER AND J. PORTI, Deformations of reducible representations of 3-manifold groups into $PSL_2(\mathbb{C})$, Algebr. Geom. Topol. 5 (2005), 965–997. [DOI: 10.2140/agt.2005.5.965](http://dx.doi.org/10.2140/agt.2005.5.965).
- [14] M. HEUSENER, J. PORTI, AND E. SUÁREZ PEIRÓ, Deformations of reducible representations of 3-manifold groups into $SL_2(\mathbb{C})$, J. Reine Angew. Math. 530 (2001) , 191-227. [DOI: 10.1515/crll.2001.003](http://dx.doi.org/10.1515/crll.2001.003).
- [15] W. Jaco, "Lectures on Three-Manifold Topology", CBMS Regional Conference Series in Mathematics 43, American Mathematical Society, Providence, R.I., 1980.
- [16] H. JEBALI, Module d'Alexander et représentations métabéliennes, Ann. Fac. Sci. Toulouse Math. (6) 17(4) (2008), 751–764. [DOI:](http://dx.doi.org/10.5802/afst.1201) [10.5802/afst.1201](http://dx.doi.org/10.5802/afst.1201).
- [17] A. LUBOTZKY AND A. R. MAGID, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58(336) (1985), 117 pp. [DOI: 10.1090/memo/0336](http://dx.doi.org/10.1090/memo/0336).
- [18] W. A. STEIN ET AL., Sage Mathematics Software (Version 6.9), The Sage Development Team (2015). <http://www.sagemath.org>.
- [19] A. Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80(1) (1964), 149-157. [DOI: 10.2307/1970495](http://dx.doi.org/10.2307/1970495).

Leila Ben Abdelghani: Faculté des Sciences de Monastir Boulevard de l'environnement 5019 Monastir Tunisie E-mail address: leila.benabdelghani@gmail.com Michael Heusener: Université Clermont Auvergne CNRS Laboratoire de Mathématiques Blaise Pascal

F-63000 Clermont-Ferrand

France

 $E-mail$ $address:$ michael.heusener@uca.fr

Primera versió rebuda el 24 d'agost de 2015, darrera versió rebuda el 13 d'abril de 2016.