CANINE CUTANEOUS MAST CELL TUMOR

The importance of prognostic factors in the determination of surgical margins

Aina Murcia Barba *Faculty of Veterinary Medicine UAB, June 2017*

INTRODUCTION

UAB

Universitat Autònoma

de Barcelona

The mast cell tumor (MCT) is the most common cutaneous neoplasia in dogs and presents a widely variable biological behavior. Historically 3 cm surgical margins have been recommended to achieve a correct excision, although the original source of the recommendation is unknown. The problem appears when the tumor is located in difficult areas where no large margins can be performed without aggressive surgery.

OBJECTIVES

The main objective of this research is to analyze the actual method used to determinate and evaluate the surgical margins and do a bibliographical research of other tools, as clinical or histological prognostic factors, that can help in the determination of surgical margins.

KEY DATA

INCIDENCE AND RISK FACTORS

Incidence: 7-21% to 16-21% of cutaneous tumors.

Age: 8-9 years old.

Gender: no predilection.

Breed: bulldog's descendants, labrador and golden retriever, cocker spaniels, schnauzers and shar-peis.

ETIOLOGY

Unknown. C-kit mutation allows the activation of the KIT receptor without SFC (*Stem Cell Factor*) inducing cell proliferation.

DIAGNOSTIC APPROACH

CLINICAL PRESENTATION

Solitary tumor but 10-15% of dogs present multiple nodules.
Localization: 50% trunk and perineal zone, 40% limbs and 10% head or neck.
Darier's sign: changes in size in short periods + development of erythema and papules.
Paraneoplasic signs: gastrointestinal ulcers or even an anaphylactic shock.

DIAGNOSTIC TOOLS

Cytology: FNA (*Fine needle aspirate*) is diagnostic for 92-96% of MCTs. **Incisional biopsy:** tru-cut or punch is preferred to a large incisional biopsy.

Figure 1: MCT with erythematous surface. Source: Courtesy of Dr. Félix García, HCV-UAB.

Figure 2: MCT on the upper lip. Source: Courtesy of Dr. Félix García, HCV-UAB.

ACTUAL DETERMINATION OF SURGICAL MARGINS

Determination based on histological grade

The histological grade is considered to be the **best prognostic factor**, but it doesn't predict every tumor's behavior and requires a biopsy. There are two main histological grading systems (see Table 1).

TABLE 1 COMPARISON BETWEEN THE MAIN HISTOLOGICAL GRADING SYSTEMS

System	Grades	Selection criteria	AH	UM		
Patnaik	I, II and II	From well to poorly differentiated : Extension of the affected tissue, cellularity, cellular morphology, mitotic index and stromal reaction	64% (I/II) & 75% (II)	l (5.8%) , ll (16.5%)		
Kiupel	LG and HG	HG: \geq 7 mitosis; \geq 3 aberrant nucleus; \geq 3 multinucleate cells or cariomegaly presence in 10 hpf	96%	LG (14.9%)		
AH: Agreement between histopathologists; UM: Unexpected metastasis; LG: Low grade; HG: High Grade; hpf: high power field						
Several studies have been analyzed in order to evaluate the efficiency of the histological grade to determine the margins (see Table 2). Although the results are disparate, it has been accepted that lateral						

TABLE 2 RESULTS OF THE PRINCIPALS STUDIES ABOUT CUTANEOUS MCT IN DOGS

Study	Method	M	ICT	CHM Criteria	Surgical margins	Histological	margins	Recu	rrence
	Patnaik	40 II	>1 mm	2-3 cm	Clean	90%	2%		
Séguin et					Close	5%	33%		
al. 2001	system	00 11			Incomplete	2%	0%		
						N/A	3%	5	0%
Michels et	Patnaik				Clean	65%	5%		
al. 2002	system		31		3 cm	Incomplete	35%	1	8%
Simpson	Patnaik		3 1	. 1	1 cm	Clean	100% I 75% II		20/
et al. 2004	system	20 II		>1 mm	2 cm	Clean	100% I/II	0%	
					3 cm	Clean	100% I/II		
	Patnaik system	87 I 199 II 54 III		>5 mm	3 cm	Clean	42%	3%	1 1 0/
Murphy et						Close	19%	5%	
al. 2004						Incomplete	39%	17%	II: 6%
						N/A	37%	N/A	111.1770
	Patnaik system	4 19		>1 mm	1 cm	Clean	100 %	0%	
Fulcher et							68% I		
al. 2006					2 cm	Clean	90% II	Ĺ) /0
						Incomplete	10% II		
Schulthoiss	Patnaik system	25 I k 85 II n 5 III		>10 mm	≤2 cm	Clean	96% T		
et al. 2011						Close	3% II	0%	
							20% II		
Pratschke	Tumor	21 I	37 I G		Maximum	Clean	85%		
et al. 2013	diameter	18 II 4 HG	> 1mm	diameter	Incomplete	15%	2	2%	
Donnelly	Histological	55 II	51 LG		0.0	Clean	70% LG	LG	: 4%
et al. 2015	grade	35 III	39 HG	> 3mm	2-3 cm	Incomplete	30% LG	HG	: 36%
CLIMA: Class	Liste Le sie al se		AL/A.		TILLO			1	

margins of **1 cm for grade I and 2 cm for grade II** would be sufficient, while for **grade III >3 cm** margins are still the recommended due to the lack of a general agreement.

Determination based on tumor size

Surgical lateral margins equivalent to the **maximum diameter** of the tumor have been proved to achieve clean margins in **85%** of cases and this option allows avoiding the pre-surgical biopsy.

Histological evaluation of surgical margins

- The **efficiency** is around **76%** due to the difficulty of differentiating neoplastic mast cells from inflammatory ones.
- There is no established **histological safety margin (HSM)** since it was not possible to find a relation between the histological margins and the recurrence.
- · The **recurrence ratio** depends more on the **histological grade** than on the state of the margins.

CHM: Clean histological margins; **N/A:** Unknown; **T**: total; **LG:** Low grade; **HG:** High Grade.

USE OF OTHER PROGNOSTIC FACTORS IN THE DETERMINATION OF SURGICAL MARGINS

TABLE 3	USEFUL PROGNOSTIC FACTORS
Factor	Comentary
Localization,	Oral cavity, muzzle, nail bed, and preputial or inguinal zones are correlated with an aggressive behavior.
appearance, size	LG: hairless solitary lesions growing slowly for months; HG: rapidly growing, ulcerated and pruritic
and growth	lesions sometimes with small "satellite lesions". Size may be associated with a poorer surgical prognosis.
Breed, age and	Boxers and pugs tend to have well differentiated MCT unlike shar-peis and labradors. Old age and male
sex	sex correlate with ineffectiveness in radiotherapy and chemotherapy respectively.

Citological grade	The cytological grade can reach a concordance of up to 94% with the histological grade.	
Clinical stage	The presence of regional lymph node or visceral metastasis is usually indicative of high grade MCT.	
Proliferation markers	A mitotic index >5 with a Ki-67 x AgNORs score> 54 is predictive of MCT with aggressive behavior.	
C-kit and KIT mutation	It appears to be present in 25-30% of high grade MCTs.	Figure 3. Cytological grade criteria : Arrows ind (A), trinucleated cell (B), bizarre nucleus (C) and ka

AH: Agreement between histopathologists; **LG**: Low grade; **HG**: High Grade; **AgNORs:** Argyophilic Nucleolar Organizer Regions.

Figure 3. Cytological grade criteria : Arrows indicate mitoses (A), trinucleated cell (B), bizarre nucleus (C) and karyomegaly (D). Source: Scarpa F, Sabattini S, Bettini G. 2014. Cytological grading of canine cutaneous mast cell tumours. Vet. Comp. Oncol. 14(3):245-251.

CONCLUSIONS

- The Patnaik system is not enough to fully predict the biological behavior, neither the probability of complete excision nor the risk of recurrence and involves a pre-surgical biopsy, with the implied risk, so many surgeons choose to perform 3 cm margins regardless the tumor's grade.
- 2 The determination based on tumor size supposes a risk for high grade but small dimension MCTs. However, the use of other independent histopathology factors, especially the cytologic grade, could be an <u>alternative</u> to the pre-surgical biopsy.

