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AUTOMATIC INTERPRETATION OF THE BLOOD PRESSURE

CURVE

TIM MYERS, ANNA SÁEZ DE TEJADA, VICENT RIBAS RIPOLL, SARAH MITCHELL,
AND MARK J. MCGUINNESS

Abstract

A four compartment model of the cardiovascular system is developed. To allow
for easy interpretation and to minimise the number of parameters, an effort was
made to keep the model as simple as possible. A sensitivity analysis is first
carried out to determine which are the most important model parameters to
characterise the blood pressure signal. A four stage process is then described
which accurately determines all parameter values. This process is applied to
data from three patients and good agreement is shown in all cases.

1. Introduction

The human cardiovascular system conveys nutrients and oxygen to tissues and
maintains the gas and fluid exchange with tissue that is necessary for homeostasis.
The health of this system is important, and diagnosing cardiovascular problems
in a timely and non-invasive manner is a matter of significant medical interest.
A key indicator of cardiovascular health is the blood pressure and the way that
it varies with time.

The term blood pressure refers to the force per unit area that blood exerts on
the walls of blood vessels. This force changes both in time and with the effective
distance from the aortic arch. Systolic pressure is the highest pressure, observed
during ventricular contraction, whilst diastolic pressure is the lowest/baseline
pressure reached during ventricular relaxation (diastole) [12]. Currently there
exist two principal methods for measuring blood pressure:

• The sphygmomanometer – this is the standard cuff which is usually in-
flated on the upper arm, and allows the assessment of systolic and dias-
tolic blood pressures through the presence/absence of Korotkoff sounds
(pulse) or of oscillations above mean pressure (oscillometric) . In general
it is manually operated and requires a quiet environment. It is an old
technology (from the 1800s) that is prone to operator error. It also pro-
vides data only for a short period. Whilst digital cuffs exist these may be
highly inaccurate.
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• The catheter – this is inserted into an artery and provides continuous
blood pressure data that reveals more than the cuff about the state of the
cardiovascular system. However, it is an invasive technique which has a
number of associated risks and so is primarily used on critical or surgical
patients.

There is much interest in developing a reliable non-invasive, continuous monitor-
ing technique for blood pressure, and various research groups have tackled this
problem by different methods. One such approach involves the use of the pulse
oximeter [19]. This has particular appeal since the pulse oximeter is already
standard equipment in most medical practices.

The pulse oximeter is a device currently used to measure the oxygen saturation
of the blood. Typically it functions by shining two lights, of different wavelength
(but both close to infra-red) through a translucent part of the body. The dif-
ferent wavelength lights are absorbed, to differing degrees, by the oxygenated
and deoxygenated haemoglobin and so the ratio of oxygenation to deoxygenation
may be calculated. Since arterial (oxygenated) blood vessels respond to pressure
changes more than the venous (de-oxygenated) system, the obtained signal is
time-dependent and so the output of the pulse oximeter is closely related to the
peripheral arterial blood pressure, and may also be used to monitor the heart
rate. In fact this variation in the signal is essential to the functioning of the
device since, to distinguish the light absorption from the blood and surrounding
tissue, the pulse oximeter uses the varying part of the signal.

The output from the pulse oximeter is termed the photoplethysmograph
(pleth). The pleth closely resembles the blood pressure curve. Currently the main
uses of the pulse oximeter are oxygenation and heart rate monitoring. However,
the detailed features of the blood pressure curve and hence the pleth contain
a wealth of information useful for diagnostic purposes. For example the blood
pressure curve may be used for:

(1) Detection of cardiac arrhythmias;
(2) Measuring cardiac output;
(3) Measuring hypovolemia;
(4) Monitoring respiratory variation (which in turn may be related to fluid

responsiveness in ventilated patients with circulatory failure);
(5) Detecting attenuation of the peripheral pulse waveform — depending on

different base pathologies such as sepsis or severe respiratory distress,
such attenuation/damping may be considered an important measure for
the assessment of microcirculation and tissue perfusion.

More comprehensive lists of examples of clinical uses for a detailed blood pres-
sure curve may be found in [5, 18, 21, 22].

Until recently it has not been possible to accurately relate the pleth to the
blood pressure, since the scaling depends on compliance, or parameters related
to it such as age, weight (obesity), and gender, as well as other factors. This
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problem has been addressed by researchers at Sabirmedical using a random forest
algorithm [19]. Unfortunately, although physicians are able to interpret it, the
random forest approach does not provide an understanding of the physiological
mechanisms behind the pleth. At two meetings, held in the Centre de Recerca
Matemática in 2010, mathematicians were challenged to develop an accurate
physiological model of the cardiovascular system in order to better understand the
pleth and so extract further information. This would allow the pulse oximeter to
be used as an automatic diagnostic tool, so reducing operator error and allowing
less highly trained operators to perform preliminary diagnoses. The following
work results from those meetings.

The specific goal of this paper is then to produce a mathematical model capable
of accurately reproducing the dominant features of the blood pressure curve and
in particular the dicrotic notch associated with aortic valve closure, and the vari-
ation due to respiratory sinus arrhythmia (RSA). To allow for easy interpretation
and to minimise the number of parameters, an effort was made to keep the model
as simple as possible. In the following section we will describe the compartment
approach that was used to model the human cardiovascular system. Subsequent
sections deal with model refinements and parameter estimation. Finally we com-
pare our model results with data.

2. Basic compartment models

The main components of the cardiovascular system are the heart, arteries and
veins. It includes the pulmonary circulation, a closed loop through the lungs
where blood is oxygenated, and the systemic circulation. Oxygenated blood
enters the systemic system at the left heart and is then pumped into the aorta.
The aorta branches into smaller arteries, arterioles and capillaries, where oxygen
exchange takes place, and enters the systemic veins through which it flows in
vessels of progressively increasing size toward the right heart. The right heart
pumps CO2 rich blood into the lungs, closing the loop.

Differential equation models of the cardiovascular system vary from a pair of
first order ordinary differential equations [15] to systems of more than 40 coupled
differential-delay equations [24, 25, 9, 8]. Ottesen’s approach [15] is to split the
system into arterial and venous compartments, with non-pulsatile flow, and a
source term that models the effect of the left ventricle. At the other end of the
spectrum, Ursino et al and Grodins [9, 24, 25] describe the pulsatile flow of
blood through multiple compartments including the lungs, compliant arteries and
veins and driven by a heart that is regulated by a sophisticated nervous feedback
control system that responds to blood pressure and chemistry in a variety of ways.
Despite this level of complexity, in general compartment models are conceptually
quite simple. They involve dividing the cardiovascular system into a number of
compliant zones or compartments and as the blood passes through each zone,
blood should be conserved. The change in volume in each zone is simply the
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difference between the flux entering from upstream and that leaving downstream.
The heart drives this flux and the flow is resisted by the vessels through the shear
stress at vessel walls.

In the present study we have tried to take the simplest approach possible,
along the lines of Ottesen’s model. Initially we employed a three compartment
model, involving the arteries, veins and left ventricle. However, one of our main
goals was to have our model exhibit a dicrotic notch in arterial pressure. The
dicrotic notch is the name given to the pressure pulse seen when the aortic valve
closes. This closure is caused by the pressure drop across the valve becoming
negative. The size and location in time of the notch provides important informa-
tion about the health of the valve. In the three-compartment model the arterial
pressure is an average across the whole arterial system, so that using this as
a measure of when the valve closes leads to late closure in the model, and a
temporarily reversed blood flow throughout the arterial system.To improve this
behaviour, we introduced a new compartment to describe the exit region close to
the valve. Mathematically speaking, there is no problem in dividing the cardio-
vascular system into any number of compartments, as is done with finite element
computations. Nevertheless, to give a physical meaning to this new compartment
one could think of it as representing the aortic arch. Our basic model is therefore
described by the following four-compartment system

V̇e = QLV −Qe V̇a = Qe −Qa V̇v = Qa −Qv V̇LV = Qv −QLV ,(1)

where Vi represents the volume, and Qi the flux, of blood. The subscripts
e, a, v, LV represent exit, arterial, venous and left ventricle and dots indicate
the derivative with respect to time. The first equation indicates that the rate of
change of volume in the exit region depends on the difference between the rates
at which fluid flows in from the left ventricle and fluid flows out of the aortic
arch. In the arteries the volume increases due to fluid flowing in from the arch
and decreases as it flows out of the arteries into the veins, leading to the second
equation. The third equation expresses a similar material balance for the venous
system, and the fourth equation for the left ventricle.

Hence these equations express conservation of blood volume. Summing the
four we find V̇e + V̇a + V̇v + V̇LV = 0, so the total volume is constant. Note,
we assume the blood to be incompressible, see [17] — changes in pressure are
associated with the compliance of blood vessels rather than the relatively small
compressibility of blood itself, and conservation of blood volume is equivalent to
the more fundamental principle of conservation of blood mass.

In a compliant elastic vessel we may relate the pressure difference from ambient,
p, to the volume via V = V0 +Cp, where C is a constant, termed the compliance,
and V0 is a constant giving the volume at ambient pressure p = 0 (the value of
the compliance is discussed in detail later). This equation serves to define the
compliance.
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Special attention is paid to the left ventricle, where the pumping of the heart is
driven by changes in the elastance (the inverse of the compliance). Consequently,
in the left ventricle we write V = V0 +p/ELV . This equation provides a definition
of elastance E as the change in pressure divided by the change in volume — it is
analogous to the spring constant in Hooke’s law which is defined by the change
in force divided by the change in length. Differentiating the compliance and
elastance definitions, we can relate volume and pressure as

V̇e = Ceṗe V̇a = Caṗa V̇v = Cvṗv V̇LV =
d

dt

(
pLV

ELV

)
.(2)

Note, we assume that the compliance of the blood vessels is a constant whereas the
elastance, representing the contraction of the heart muscle, is a controlled variable
that varies in a prescribed manner with time [23]. We may relate the fluxes to
the pressure by considering standard, uni-directional pressure-driven laminar flow
(Poiseuille flow) in a pipe which leads to a relation of the form Q ∝ ∆p. This
may be expressed as Q = ∆p/R where R can be thought of as the effective
resistance to flow [12]. Obviously the cardiovascular system does not consist of
a single straight pipe and blood flow is often turbulent so this definition of Q is
rather approximate and the resistance R must represent the many intricacies of
the system, rather than simply the viscous resistance from the classical Poiseuille
flow model. With the fluxes written in terms of the pressure drop our initial
system of differential equations may now be expressed as

Ceṗe =
pLV − pe

Re

− pe − pa

Ra

(3)

Caṗa =
pe − pa

Ra

− pa − pv

Rc

(4)

Cvṗv =
pa − pv

Rc

− pv − pLV

Rv

(5)

d

dt

(
pLV

ELV

)
=

pv − pLV

Rv

− pLV − pe

Re

.(6)

3. Model refinements

The above system, equations (3 – 6), constitutes our basic set of equations
but still requires certain refinement: the driving mechanism for the flow is not
defined, neither is there a mechanism to describe the dicrotic notch or the aortic
valve.

The driving mechanism for the flow comes through the definition of the elas-
tance, which serves as a simple model of the pumping action of the heart muscle.
Modelling of the elastance is discussed in a number of papers. Whilst there is
some difference in the fine detail, the general form is of a sequence of roughly
Gaussian curves when contraction occurs, separated by flat regions denoting the
relaxation [6, 14, 16]. In [8] the elastance has an approximately square wave form.
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However Suga [23] points out that a more gradual rise in elastance is essential if
it is to be consistent with the Fenn effect in cardiac muscle, where the shortening
of muscle produces heat.

The elastance also commonly exhibits a longer term variation which is one of
the main causes of Respiratory Sinus Arrhythmia (RSA) [3]. RSA is a term for
observed changes in heart rate associated with respiration. Heart rate is usually
observed to increase during inspiration, and decrease during expiration. This is
primarily due to a coupling through the vagal nervous system, and to a lesser
extent is also due to the effect of breathing on the pressure in the chest cavity
near the heart and to changes in peripheral tone. Denervated (transplanted)
human hearts do still exhibit RSA but at around 7.9% of normal levels [2]. Dat
[6] models the elastance as

ELV = Ed + a(t)(Es − Ed)(7)

where the diastolic elastance Ed is constant and a(t) = sin2(ωt).
We employ the same form as Dat but with two important refinements. Firstly,

a(t) should switch off for about 2/3 of the heart cycle (e.g. [24]). If T represents
the period of one heart-beat, then we want the a(t) term to rise from zero and fall
back to zero once as t varies from a starting value t0 to t0 + φT , where φ ≈ 1/3.
So we set ω = 2π/T and define Tsys = φT , Tdia = (1− φ)T ,

a(t) =

{
sin2(3ω(t− t0)/2) , t− t0 ∈ (0, Tsys)

0 , t− t0 ∈ (Tsys, T )

2 3 4 5 6 7 8 9
t

Figure 1. Variation of elastance with time
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The period T is set to be time dependent, to model RSA with heart rate varying
with respiration, by choosing

ω = ω0 + c3 sin

(
ω0t

c2

)
.(8)

Secondly, the peak in the elastance height also varies over the longer time-scale
associated with RSA. To account for this we take the systolic elastance

Es = Es0 + c1 sin

(
ω0t

c2

)
.(9)

The constants in the above definitions c1, c2, c3 represent half the variation of
elastance height, the number of heart beats per respiration (typically around 5)
and half the variation of ω respectively. The constant ω0 is an angular frequency
ω0 = (2π/60)×HR where HR is an average heart rate in beats/minute.

A typical form for the elastance is shown in Figure 1. The minimum value
Ed = 0.06mm Hg/ml, while the maximum value varies according to equation
(9) with an average value Es0 = 3mm Hg/ml. We took a heart rate of 72
beats/minute to give ω0 ≈ 7.54. Other parameter values used to generate this
graph are given in Table 1.

Parameter Value Units Parameter Value Units

Ce 1.5 ml/mmHg Ca 1.5 ml/mmHg

Cv 50 ml/mmHg Re0 0.016 s·mmHg/ml

Ra 0.06 s·mmHg/ml Rc 1.2 s·mmHg/ml

Rv 0.016 s·mmHg/ml Tsys T/3 s

Tdia 2T/3 s T 0.9 s

Ed 0.06 mmHg/ml Es0 3.0 mmHg/ml

ε 10−5 A 0.5

ReM 10 s·mmHg/ml c1 0.1 mmHg/ml

c2 6 beats/breath c3 0.01 s−1

c4 500 c5 4 log 100

c6 7.5 ω0 7.54

Table 1. Typical parameter values.

The resistances Ra, Rc, Rv are constant while Re accounts for the aortic valve,
that closes when the pressure drop becomes negative. Consequently Re must be
time-dependent. Since closure depends on the pressure difference we write

Re = Re0 [1 + ε1(exp(−A1(pLV − pe))](10)
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where Re0 is the constant value when the valve is fully open. The factor ε1 ¿ 1
ensures that the exponential term remains small whenever pLV − pe > 0 but it
increases rapidly when pLV − pe < 0. The constant A1 is chosen such that the
product A1(pLV − pe) rises sufficiently rapidly as the valve closes. In practice
we set ε = 10−5, A = 1

2
: these values are simply chosen to provide the correct

properties. Since the exit region is significantly shorter than the arterial region
we also assume Re0 ¿ Ra. Another option would be to simply set a switch via
a Heaviside function. However, our subsequent numerical calculations showed
that this led to a poor representation of the pressure around the dicrotic notch.
Ellwein et al [7] employ a similar, but cut-off, exponential representation for all
heart valves. They do not include the factor ε1 ¿ 1 but choose A = 2 which is
greater than our value, and this has a similar effect. The typical behaviour of the
valve is shown in Figure 2.

2 3 4 5 6 7 8 9
t

Figure 2. Valve resistance against time

Note, we could equally well define a valve at the entrance to the ventricle
through

Rv = Rv0 [1 + ε2(exp(−A2(pv − pLV ))] .(11)

However, since this region is of lesser interest to avoid more parameter estima-
tion we use a Heaviside function for Rv (tests confirm this makes no noticeable
difference to the results).

The modelling of the dicrotic notch is based on the assumption that it is caused
when blood attempting to flow back through the valve, due to a negative pressure
difference and inertia, closes the valve and causes stretching and recoil in the valve
and supporting tissues, so that blood rebounds into the exit region. Details of
momentum build-up and recoil may be found, e.g., in [11]. We approximate this
impulse as a Gaussian, with a strength related to the pressure difference pe−pLV .



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

11
29

9

Since pressure is a function of time we can represent the impulse by the following
function

f(t) = c4 exp(−c5(t− tn − c6∆t)2/(∆t)2) .(12)

The constants c4, c5, c6 indicate the height of the pulse, the sharpness and the
position of the centre. The times tn, n = 1, 2, . . ., are when pe = pLV and so
indicate when the valve should begin closing. The maximum value of f occurs
when t = tn + ∆t hence ∆t denotes the delay in closure after the pressure drop
becomes negative. It therefore controls the position of the dicrotic notch and is
an important indicator of the health of the valve. In the numerical solution we
use a value of ∆t from the previous cycle, and the first value is taken as some
typical value.

The function f(t) represents an input of mass to the pe equation and so is added
to equation (3): to conserve mass it must be subtracted from the left ventricle,
equation (6). In general its maximum value is much lower than the other terms
in the equation and so it represents only a small contribution to the pressure.
The full system to model the pressure is now given by equations (4,5) and

Ceṗe =
pLV − pe

Re(t)
− pe − pa

Ra

+ f(t)(13)

d

dt

(
pLV

ELV (t)

)
=

pv − pLV

Rv

− pLV − pe

Re(t)
− f(t) ,(14)

with ELV defined by (7) and Re by (10).

4. Calculating parameter values

Key to the success of the mathematical model is the choice of parameter val-
ues. Obviously this is not a simple task given that there are twenty-one parameter
values as well as four initial conditions. A number of these values may be esti-
mated from a given pressure signal. For example rearranging the volume pressure
relation discussed in §2 we find

C =
V − V0

p
.(15)

This may be interpreted as the stroke volume (SV) to mean average pressure,
see [12]. According to [1], it may be interpreted as the ratio of stroke volume
to arterial pulse pressure. Since we have data for the arterial pressure we may
calculate

Ca =
SV

Pa,sys − Pa,dia

.(16)

We then use this to estimate Ce = Ca and Cv = 20Ca. Note that the value of 20
assumed here for the ratio of venous to arterial compliance is consistent with a
number of other studies, including [10] who cite a ratio of 8, [12] who cite a ratio
of 24, [24] who uses 33, and a range of 10–20 in [13].
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Similarly, the systemic resistance may be estimated from the arterial pressure
signal, see [1]. Typical values for other parameter values are given the literature,
see [6, 8, 15] for example. However, we require parameter values appropriate for
specific patients and the values quoted in the literature may be far from those
appropriate for a given patient. Experience informs us that if we attempt to fit a
blood pressure data set directly by varying all of the model parameter values at
the same time (using for example the built-in Matlab function fminsearch) then
the solution will not converge. Consequently we first carried out a sensitivity
analysis to determine which parameters were the most important (in the sense
of having the greatest effect on the model’s output) and then used these in a
four-stage algorithm to determine model parameter values that fit data more
accurately.

4.1. Sensitivity analysis. Our data sets involve direct measurements of the ar-
terial pressure so this is the pressure we use in the following analysis. The sensitiv-
ity analysis consisted in perturbing each parameter of the model and integrating
the system of equations to see how the resulting arterial pressure changes with
such perturbations. This approach is based on the procedure described in [4].

For each parameter θ, with nominal value θ0, and for a given perturbation q,
the system was integrated for θ = (1− q)θ0 and θ = (1 + q)θ0, while all the other
parameters were set to their respective nominal values. Let pa

(
(1 − q)θ0

)
and

pa

(
(1 + q)θ0

)
be the output arterial pressures for a perturbed parameter θ. Five

values of the perturbation q were used: 0.01, 0.05, 0.1, 0.2 and 0.5. The pertur-
bation q = 0.01 led to very small changes in the output signal, the perturbation
q = 0.5 led to chaotic behaviour for some of the parameters. In consequence, these
two values were dismissed and only the other three were used for the analysis. In
Figure 3 we present two pressure signals, pa

(
(1− q)θ0

)
and pa

(
(1 + q)θ0

)
, where

the perturbed parameter was θ = Rc and the perturbation value was q = 0.1.
From this we can see that varying the value of Rc by a small amount makes
significant differences to the pressure signal.

In the following we will measure the influence of the parameters through the
L2 distance between both signals,

(17) δ2 =

(∫ 20T

0

(
pa

(
(1 + q)θ0

)− pa

(
(1− q)θ0

))2
) 1

2

.

The measure was taken over a signal window of 20 beats, sufficiently far from
the initial condition that the signal had settled down. In Table 2 we present
the L2 distances for each parameter and the three perturbations. To reduce the
calculations we note that there are a number of parameters that are related,
Cv = 1/Ed, Ca = Ce = 1/Es0, Rv = Re0 and pe(0) = pLV (0) = pa(0) = pa0. Of
these only the parameter with the largest L2 distance is shown in the table. In
the thesis [20] two other measures are used: the integrated absolute difference of
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4 6 8 10 12 14 16 18
t

Figure 3. Signals for a perturbation 0.1 of Rc

each signal’s mean value and the integrated absolute difference of each signal’s
standard deviation. These give a very similar ordering to that found by the L2

distance.
From Table 2 and the results described in [20] we deduce the 6 most impor-

tant parameters to be: 1. Ed (and Cv); 2. Es0 (and Ca, Ce); 3. pa(0) (and
pe(0), pLV (0)); 4. A; 5. Rc; 6. ω0. The final parameter ω0 is not estimated,
since it may be calculated directly from the pressure signal. Consequently in the
following section we begin by estimating the remaining top five parameters and
subsequently make adjustments to the remaining parameter values.

4.2. Parameter estimation. The four stage method used to determine param-
eters values is described in detail in [20] so we only provide a brief outline below.

In Table 1 we present the set of parameter values used at the beginning of each
calculation. The majority of these values are taken from [6, 8, 15] although some,
such as ε are simply educated guesses. A number of parameter values are read
from the data, such as pa0, pv0, φ, ∆t0 and so these are not included in the table.

4.2.1. Stage 1: Approximate Gradient Descent method for the five significant pa-
rameters. We begin by using a Gradient Descent method to find better estimates
for the five most important parameters. If pa = pa(t) is the arterial pressure sig-
nal obtained by integration of the model with a certain set of parameters and
p̂a = p̂a(t) the arterial pressure signal recorded from a patient then we look to
minimize two objective functions involving the mean and standard deviation of
the signal:

δµ =
∣∣µ(pa)− µ(p̂a)

∣∣ δσ =
∣∣σ(pa)− σ(p̂a)

∣∣ .(18)
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q = 0.05 q = 0.1 q = 0.2

Ed 22.66 Ed 32.26 Ed 39.52

pa0 20.27 pa0 28.73 pa0 34.90

φ 19.75 φ 20.35 Es0 28.41

ω0 10.10 Es0 20.01 A 20.23

Es0 14.17 ω0 17.75 ω0 20.10

Rc 9.92 Rc 14.04 Rc 20.04

A 9.69 A 13.81 φ 19.66

Re0 7.09 Re0 9.93 Re0 14.11

c2 6.19 pv0 7.23 pv0 10.20

pv0 5.15 c6 6.51 Ra 9.16

c6 4.78 Ra 6.49 c6 8.60

Ra 4.62 c4 5.88 c4 8.35

c4 4.16 c2 5.37 c2 6.81

c3 3.18 c5 4.16 c5 5.94

ε 3.17 ε 4.13 ε 5.76

c5 2.94 c3 3.64 ReM 4.70

ReM 2.23 ReM 3.51 c3 4.32

c1 1.28 c1 1.81 c1 2.56

∆t0 0 ∆t0 0 ∆t0 0

Table 2. L2 distance between arterial pressure signals for each
parameter and perturbation. The parameters have been listed in
decreasing order of importance, for each degree of perturbation q.

The Gradient Descent method with an objective function F (x) and an initial
vector x0 involves iterating as follows:

(19) xn+1 = xn − α∇F (xn) ,

where we take the step-size α = 0.001. For the current problem there is no explicit
expression for the objective function and so we use an approximate method to
determine the gradient with respect to each unknown parameter. Taking Cv as
an example, we define Cv1 = 1.1 · 50, Cv2 = 0.9 · 50, and note that Cv = 50 is the
value quoted in Table 1. The derivative of µ with respect to Cv is approximated
by

(20)
∂µ

∂Cv

≈ µ
(
pa|Cv=Cv1

)− µ
(
pa|Cv=Cv2

)

Cv1 − Cv2

.
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Figure 4. Convergence of pressure signals using the Gradient De-
scent method

This process may be repeated for each parameter and for the corresponding σ
expression to obtain two gradient vectors ∇µ,∇σ. We choose the vector of pa-
rameters Θ = (Cv, pa0, Ca, Rc, A) with initial value Θ0 = (50, 35, 15, 1.2, 0.5) and
then iterate as follows:

• Set Θ = Θ0 and compute ω0 and c2 from the patient’s signal.
• Compute δµ and δσ and then:

– If δµ

µ(p̂a)
> δσ

σ(p̂a)
, Θn+1 = Θn − α∇µ

– else Θn+1 = Θn − α∇σ.
• Repeat until the desired tolerance is repeated.

Note, we use a normalised measure, e.g. δ(µ)/µ, in the decision process since δµ

is generally greater than δσ. This algorithm is used to improve the estimates for
the 5 most important parameters, but it also changes the values of the dependent
parameters (so in total 10 are updated). In some cases the calculation did not
converge, indicating a poor initial guess however, when convergence was achieved
it was typically within 20 iterations. The process is illustrated in Figure 4. The
four figures show the 5th, 9th, 13th and 17th iterations. Clearly as the process
proceeds the two signals converge, until by the 17th iteration it is clear that the
parameter values must be close to the actual values for the patient.
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4.2.2. Stage 2: Nelder-Mead method applied to the five significant parameters.
The Gradient Descent method was used to refine the values of the five significant
parameters from the values quoted in the literature. We now further refine their
values using the Matlab function fminsearch which employs the Nelder-Mead
method. In this case the objective function was the L2 distance between the
model’s output and the recorded arterial pressure,

(21) δ2 =
(∫

(pa − p̂a)
2
) 1

2
.

As with the previous two objective functions, this was evaluated over a time
period of three respiratory cycles. The initial vector of parameter values were
those obtained in the previous stage. The dependent parameters were also re-
calculated at each step.

4.2.3. Stage 3: Nelder-Mead method applied to all parameters. The method
adopted in the previous section was then applied to all parameter values. If
stages 1 and 2 are neglected then this approach does not converge. Now that the
signals are relatively close convergence is almost always achieved — this will be
discussed later. From now on we neglect the interdependence of some parame-
ters. For example, it makes physiological sense to think of Ed as approximately
the inverse of Cv, i.e., when the heart is relaxed it is as stiff as a vein, but this
may not even be approximately true for certain patients.

At the end of this stage the correspondence between pa and p̂a is in general
very good with the exception of the dicrotic notch. This is most likely due to
minimising the L2 distance: since the notch takes up only a very small part of
the signal the L2 distance will necessarily be small and so we cannot expect the
same level of accuracy to be achieved in modelling the notch as in other parts of
the signal.

4.2.4. Stage 4: Manual refinement. Given that the model output at this stage is
so close to the signal it was decided not to build a new set of objective functions
to focus solely on the minor parameters. To be specific the parameters adjusted
at this stage were c4, c5, c6 (which describe the notch) and c1 (which describes
the change in elastance height due to respiration). Consequently, for this final
refinement we adjusted one parameter at a time up and down by about 1%.

5. Comparison with experimental data

The model results are now compared against three arterial pressure signals
taken from the Intensive Care Unit in the Vall D’Hebron hospital, Barcelona.
All patients had mechanical ventilation. In the thesis [20] a further six cases are
analysed. The patients were categorised as follows:

Patient 1: This patient shows normal values of blood pressure (120/70
mmHg) and heart rate (79 bpm) but a very small dicrotic notch with
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no real peak. Respiratory variations are small. The patient’s pathology
was tagged under the category “transplantation”.

Patient 2: This patient’s pathology was tagged under the category “haem-
orrhagic”. The loss of blood led to low values of blood pressure (85/45
mmHg). Due to this fact they were administered norepinephrine (a vaso-
constrictor drug). The heart rate was high (100 bpm), as a natural reac-
tion to the low blood pressure. The dicrotic notch is absent and there is
little respiratory variation in systolic pressure.

Patient 3: This patient shows normal values of blood pressure (135/60
mmHg) and normal heart rate (80 bpm) with a large dicrotic notch. Res-
piratory variations are in the order of 5mmHg in systolic pressure. The
patient’s pathology was tagged under the category “neurologic”. There
was also a small dose of vasoconstrictor drugs.

Comparisons of the model output against the arterial pressure for these three
patients are displayed in Figures 5–7. The three sets of results show a wide variety
of behaviour: high and low pressures, normal and fast heart rates and almost
indiscernible to large dicrotic notches. In each case the model replicates the
pressure signal very accurately. However, in [20] one case could not be modelled,
this was a patient with extremely high blood pressure values (220/85 mmHg) and
high heart rate (104 bpm) (labelled Patient 7 in the thesis).

2 3 4 5 6 7 8 9
t

 

Figure 5. Comparison of model (dashed line) and measured (solid
line) arterial pressure for Patient 1
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Figure 6. Comparison of model (dashed line) and measured (solid
line) and measured arterial pressure for Patient 2

2 3 4 5 6 7 8 9
t

 

Figure 7. Comparison of model (dashed line) and measured (solid
line) and measured arterial pressure for Patient 3
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Parameter Value Parameter Value Parameter Value

Re0 0.0055222 pa0 55.0000 Es0 0.57000

Ra 0.020797 pv0 16.628 φ 0.33334

Rc 0.41279 pLV 0 49.714 ReM 10.009

Rv 0.0055259 ω0 8.3706 ε 0.00001

Ce 1.6946 c3 0.00049874 A 0.40341

Ca 2.0000 c2 4.0153 ∆t0 0.75786

Cv 15.0000 c1 0.01000 c4 150.00

pe0 49.896 Ed 0.065511 c5 18.445

c6 1.0000

Table 3. Parameter values for Patient 1

Tables 3–5 show the calculated parameter values. It is quite clear that the
values in these tables differ significantly from those taken from the literature and
provided in Table 1. For example in Table 1 the values Cv = 59, Es0 = 3 are
quoted, the corresponding values from Table 3 are 15 and 0.57. However, this may
not be so unusual given that the current data set is taken from patients in the ICU,
whereas the data of Table 1 presumably is not. We can also ascertain whether the
assumed relations between parameters were justified. The first relation quoted
was Cv = 1/Ed: from Patient 1 we see 1/Ed = 15.26, Cv = 15. The values of
pa(0), pe(0), pLV (0) are within 10% etc. Hence, whilst the relationships are not
exact they do seem to hold approximately true in general.

6. Conclusion

The results presented in the previous section clearly indicate that our four-
compartment model can accurately reproduce a blood pressure signal, with the
correct choice of parameter values. The model is capable of accurately repro-
ducing a wide variety of pressure signals. In fact, if the goal is simply a rough
characterisation of the blood pressure signal, then the initial stages of the anal-
ysis proved sufficient. This showed that the 5 most important parameters in our
model are Ed, Es0, pa(0), A, Rc. Provided these are determined accurately, in our
case this was achieved through the gradient descent method, then the model will
provide a relatively accurate description of the signal.

The four-stage parameter estimation method was vital to the success of the
analysis. We have made little effort to optimise this process, since our main goal
was to develop and verify the compartment model. However, this provides one
direction for future work. For example the final stage involved manual refine-
ment since the L2 error for the dicrotic notch parameters was small due to the
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Parameter Value Parameter Value Parameter Value

Re0 0.0038808 pa0 17.355 Es0 0.34

Ra 0.0154 pv0 5.7844 φ 0.33273

Rc 0.29025 pLV 0 17.355 ReM 10.116

Rv 0.0038895 ω0 10.578 ε 0.000010049

Ce 2.9196 c3 0.00010007 A 0.4515

Ca 2.9193 c2 7.003 ∆t0 0.59617

Cv 55.456 c1 0.006 c4 0.0000077731

pe0 17.355 Ed 0.0181 c5 18.436

c6 4.5053

Table 4. Parameter values for Patient 2

Parameter Value Parameter Value Parameter Value

Re0 0.0049252 pa0 21.781 Es0 0.64627

Ra 0.018469 pv0 7.2597 φ 0.33338

Rc 0.39929 pLV 0 21.761 ReM 10.004

Rv 0.0049253 ω0 8.3339 ε 0.000010007

Ce 1.54 c3 0.0001251 A 0.43995

Ca 1.0459 c2 4.0001 ∆t0 0.75182

Cv 50.000 c1 0.015 c4 400

pe0 21.783 Ed 0.029022 c5 1.000

c6 3.5000

Table 5. Parameter values for Patient 3

small width of the region. The technique of previous stages could instead be
applied to a reduced region around the notch. Employing the Conjugate Gradi-
ent method rather than simple Gradient Descent should reduce the number of
iterations required.

The motivation for the current work was to use the signal obtained from a
pleth (although the source of the signal is irrelevant) and then apply the model
to determine a set of parameter values. Based on the output we hope to be
able to interpret these parameter values in some way in order to make some
recommendation concerning the health of the patient. This will comprise the
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next stage of this investigation. In order to achieve this we note that the vascular
tree can be modelled as a Non-Linear Time-Variant Channel and there are tools
that can either linearize this system in order to do the translation from catheter to
pleth (Wiener Filters) or just live with these non-linearities and make predictions
(Kalman Filters). On the positive side we have a large amount of data both from
arterial catheters and the corresponding pleth on which to validate the method.
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