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Abstract Manipulative experiments and observations along environmental gradients, the two

most common approaches to evaluate the impacts of climate change on nutrient cycling, are

generally assumed to produce similar results, but this assumption has rarely been tested. We did

so by conducting a meta-analysis and found that soil nutrients responded differentially to drivers of

climate change depending on the approach considered. Soil carbon, nitrogen, and phosphorus

concentrations generally decreased with water addition in manipulative experiments but increased

with annual precipitation along environmental gradients. Different patterns were also observed

between warming experiments and temperature gradients. Our findings provide evidence of

inconsistent results and suggest that manipulative experiments may be better predictors of the

causal impacts of short-term (months to years) climate change on soil nutrients but environmental

gradients may provide better information for long-term correlations (centuries to millennia)

between these nutrients and climatic features. Ecosystem models should consequently incorporate

both experimental and observational data to properly assess the impacts of climate change on

nutrient cycling.

DOI: 10.7554/eLife.23255.001

Introduction
Shifts in patterns of precipitation and increases in temperature are two major components of ongo-

ing climate change (IPCC, 2014). Manipulative experiments (e.g. field/mesocosm) and observational

studies constitute the main empirical approaches typically used to forecast ecological responses to

climate change (Beier et al., 2012; Kreyling and Beier, 2013; Michelsen et al., 2012). Both can

have replication and randomization, but they are clearly distinct (Baldi and Moore, 2014;

Snecdecor and Cochran, 1989). The major difference between these approaches is likely the issue

of association versus causation; observational studies randomly select a sample of subjects and may

find correlations between variables (Rosenbaum, 2010; Yuan et al., 2016). In comparison,
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experimental studies can identify and confirm the potential mechanisms underlying observed

responses by controlling any variable (Montgomery, 2008) and can assess cause-effect relationships

based on the direct effects of climate change on small-scale, rapid, and short-term ecological pro-

cesses (Chapin and Shaver, 1996; Tilman, 1989). If an experimental study is well-controlled, the fac-

tor that causes the difference can be reliably identified. In contrast, all confounding factors cannot

be ruled out in observational studies.

Experimental responses are generally assumed to mimic long-term responses to climate change

(Luo and Hui, 2009). This assumption may be due to the similar positive responses of biomass pro-

duction to both experimental and spatial gradients of increasing temperature and water availability

(Lin et al., 2010; Lu et al., 2013; Rustad et al., 2001; Wu et al., 2011). Recent studies, however,

challenge this critical but largely unexplored assumption (Blume-Werry et al., 2016; Metz and Tiel-

boerger, 2016; Primack et al., 2015; Wolkovich et al., 2012). Indeed, the direction and magnitude

of observed impacts of climate change on ecosystems largely depend on whether the data are

observational or experimental (Metz and Tielboerger, 2016; Osmond et al., 2004;

Sternberg et al., 2011; Wolkovich et al., 2012), and these discrepancies have led to debates on

the relevance of results of manipulative experiments for natural communities (Hewitt et al., 2007;

Sagarin and Pauchard, 2012). Understanding the mechanisms behind the contrasting findings of

observational and experimental approaches is thus essential to accurately forecast the impacts of cli-

mate change on the structure and functioning of ecosystems from local to global scales.

Soils are intricately linked to the atmospheric climate system through biogeochemical and hydro-

logical cycles (Chapin et al., 2011; Jarvie et al., 2012; Williams, 1987), hence any change in climate

is expected to influence soil characteristics and vice versa. Research in the last two decades has sug-

gested various ways in which climate change will impact soil processes and properties, with critical

consequences for the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P)

(Field et al., 2007; Hungate et al., 2003; Thornton et al., 2009; van Groenigen et al., 2006). The

direction and magnitude of these impacts largely depend on changes in precipitation and tempera-

ture, which are key drivers of biogeochemical cycles. The results from these studies, however, may

vary greatly depending on whether the data are from observational or experimental studies

(Metz and Tielboerger, 2016; Osmond et al., 2004; Sternberg et al., 2011; Wolkovich et al.,

2012). Determining the nature of the responses of nutrient cycling to drivers of climate change iden-

tified by the two approaches is essential to accurately forecast the impacts of climate change on the

availability of soil C, N, and P from local to global scales, and thus their potential impacts on ecosys-

tem structure and functioning.

Temporal or spatial observations along environmental gradients at regional or global scales can

provide important insights into the relationships between ecosystem processes and climate

(Dunne et al., 2004; Sagarin and Pauchard, 2012; Sternberg and Yakir, 2015). Little information

from long-term historical observations of soil nutrients is available, but spatial data across natural

gradients of precipitation or temperature are abundant, offering an invaluable source for under-

standing the impacts of climate change on natural ecosystems at long-term scales. Results from both

experiments and natural observations indicate that climate change largely influences key ecosystem

processes, including those involving soil nutrients (Elmendorf et al., 2015; Sternberg and Yakir,

2015; Wolkovich et al., 2012; Yuan and Chen, 2015a). Much less is known, however, about the

agreement between experimental and observational approaches for the direction and magnitude of

the responses of nutrient cycling to climate change. In effect, differences in approaches are often

theoretically recognized (De Boeck et al., 2015; Dunne et al., 2004; Jiang et al., 2009) but have

rarely been empirically evaluated and quantified.

Biodiversity–productivity relationships contain an apparent paradox: experiments that directly

manipulate species diversity often report a positive effect of diversity on productivity, whereas

observations of natural communities identify various productivity–diversity relationships (Jiang et al.,

2009; Wardle and Jonsson, 2010). Short-term experiments of N fertilization reported nearly ubiqui-

tous negative productivity–diversity relationships (Suding et al., 2005). Contrasting patterns may be

found for the diversity–invasibility relationship: experiments usually detect negative relationships,

and field surveys find positive relationships (Clark et al., 2013; Fridley et al., 2007). The paradox

has led to debates on the relevance of the results of manipulative experiments for natural communi-

ties, and understanding the mechanisms behind the apparent conflicts is therefore a major step

toward developing general theories of community processes, including those for soil nutrients.
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Nutrient cycling plays a fundamental role in ecosystem services such as food and fiber production, C

sequestration, and climate regulation, so this knowledge gap may hamper our ability to accurately

predict ecosystem functioning under climate change. Fortunately, compared with the lack of data

for other ecosystem response variables (e.g. species diversity, gas exchange, and microbial attrib-

utes), a wealth of data for soil nutrients is available for testing the consistency between experimental

and observational approaches.

No study, to the best of our knowledge, has directly tested the congruence of soil nutrient

responses to changing regimes of precipitation or temperature obtained from experimental vs.

observational approaches, despite the importance of soil for ecosystem functioning. We thus con-

ducted a meta-analysis of 1421 data points from 182 experimental studies and of a total of 1346

sites from 141 studies of natural gradients around the world (see Figure 1 and Supplementary Refer-

ences). We evaluated the similarity of the predictions from experimental and observational

approaches by assessing the direction of the responses of soil nutrients to changing precipitation/

temperature. Further analyses were conducted to compare the response ratios from experimental

studies to changes in precipitation or temperature at the various study sites with the overall

response across all observational studies as a function of precipitation, aridity and temperature. We

used total nutrient concentrations because they represent long-term nutrient reservoirs in terrestrial

ecosystems and are more stable than extractable nutrients in soils. Total C, N, and P concentrations

generally indicate overall nutrient availability and are positively correlated with each other

(Bertiller et al., 2006; Jacoby, 2005; Silver, 1994). Given that temperature varies across precipita-

tion gradients we also used aridity, which incorporates both potential evapotranspiration and

precipitation.

We hypothesized that short-term local manipulative experiments and large-scale observational

studies identify different responses of soil nutrients to changes in climatic conditions. These differen-

ces may be due to the manner in which the entire ecosystem responds to rapid (i.e. days to months,

e.g. drought) vs. slow (i.e. centuries to thousands of years, e.g. changes in aridity) climatic changes.

The properties of ecosystems thus often respond in a simultaneous and predictive manner to slow

changes in climate (e.g. plant cover, diversity, soil properties and nutrient pools), but rapid climatic

Figure 1. Map of the experimental and observational sites used in our analyses.

DOI: 10.7554/eLife.23255.002
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changes will likely disrupt the simultaneous responses of these slowly changing processes to climate

change. For example, a change in water supply in manipulative precipitation experiments in local

environments (e.g. similar plant species, plant cover, or soil type) could directly influence the balance

between nutrient uptake/leaching vs. mineralization/decomposition, particularly in arid ecosystems

(Ansley et al., 2014; Davidson et al., 2004). In contrast, and in addition to precipitation, abiotic fac-

tors (such as temperature and soil age and taxonomy) and vegetation co-vary simultaneously along a

precipitation gradient. For example, increases in aridity across a gradient often lead to reductions in

the diversity and cover of vascular plants, rates of litter decomposition, and availability of C and N

(Delgado-Baquerizo et al., 2013; Jiao et al., 2016), all of which co-evolve over millennia

(Ehrenfeld et al., 2005; Lambers et al., 2009). All these co-varying factors likely affect the pro-

cesses involved in the cycling and storage of soil C, N, and P. We thus posit that short-term local

manipulative experiments could provide useful information for predicting shifts in soil processes in

response to rapid changes in climate (from years to decades, e.g. drought), such as those we are fac-

ing today. In contrast, observational studies might provide unique information for understanding the

response of soil processes to long-term changes in climate (from centuries to thousands of years,

e.g. increases in aridity [Huang et al., 2015]).

As stated above, the contrasting findings between manipulative experiments and observational

studies may be due to the timescale, because the former have typically been performed at short

temporal scales in relatively homogeneous environments to maximize experimental control, whereas

the latter have usually been established over largely spatial gradients that reflect long-term adjust-

ments of ecosystems to local climate (Kueppers and Harte, 2005). Given that the availabilities of

soil nutrients reflect both short- and long-term changes in climate, soil and ecosystem development

(Vitousek et al., 2010), we hypothesized, therefore, that experimental and observational studies

would not produce similar results for soil nutrients in response to climate change.

Results
Contrasting responses of soil total C, N, and P concentrations were found between experimental

and observational studies. The responses of soil total C, N, and P concentrations generally differed

between paired manipulative experiments and environmental gradients (Figures 2–4, Figure 2—fig-

ure supplement 1). Overall, adding water in experiments decreased soil N, P, and C concentrations

by 5.4, 9.3, and 2.7%, respectively (non-significantly for C). In contrast, N concentration increased

with precipitation across environmental gradients. The enhanced effects of increasing precipitation

on C and P concentrations were not significant (Figure 2). Experimental drought treatments signifi-

cantly increased the concentrations of C, N, and P by 6.1, 17.9, and 6.8%, respectively. Soil N and P

concentrations decreased with increasing aridity and C concentration did not change significantly

when precipitation was replaced by aridity. The aridity-related patterns were opposite to those

observed in manipulative drought experiments (Figure 3).

Responses to changes in temperature also differed between experimental and observational

studies. Experimental warming generally increased the concentrations of C, N, and P, especially that

of N (Figure 4). In contrast, these concentrations tended to decrease along gradients of increasing

mean annual temperature (Figure 4). Similar results were found for temperature-related changes in

C, N, and P concentrations across different types of ecosystems or soils: patterns were inconsistent

between manipulative experiments and environmental gradient observations for the same climate-

change factor of precipitation or temperature (Figures 2–4).

Cross-study analyses found that response ratios varied between experimental studies along cli-

matic gradients. The response ratio of soil C concentration increased quadratically with mean annual

precipitation in water-addition experiments, but decreased non-significantly with precipitation in

drought experiments (Figure 5). The response ratios of N and P concentrations in manipulative pre-

cipitation experiments were not significantly correlated with mean annual precipitation. The

response ratio of P concentration in drought experiments decreased with precipitation (Figure 5).

This relationship, however, was mainly dependent on two data points (Figure 5) and disappeared

when they were removed (R2 = 0.01, p=0.84). The response ratio of C concentration in warming

experiments was linearly correlated with mean annual temperature. Unimodal curves best described

the relationships between the response ratio of N and P concentrations in warming experiments and
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mean annual temperature. At low to moderate levels, mean annual temperature increased the

response ratio of P concentrations.

In the cross-study analyses of all observational studies, climatic data (temperature and precipita-

tion) collectively explained ~30% of the variation in soil total C, N, and P concentrations. Soil and

ecosystem types were also strong drivers of total C, N, and P concentrations. When all data were

included, the variables of climate, aridity, and type of ecosystem and soil accounted for ~63–77% of

the variation observed in the C, N, and P concentrations (Table 1). Soil C, N and P concentrations,

based on all observations from the observational studies, changed quadratically with mean annual

precipitation and temperature (Figure 6). Both C and N concentration were significantly and

Figure 2. Responses of soil (a) C, (b) N, and (c) P concentrations to wetting by using response ratios in manipulative experiments and slopes in

precipitation gradient observations. Symbols with error bars show the mean response ratios or slopes with 95% confidence intervals. Plus (+) and minus

(–) signs represent positive and negative means, respectively. Green symbols are positive and red symbols are negative means whose confidence

intervals do not include zero. ‘Multiple’ indicates results from studies conducted across an environmental gradient for multiple types of ecosystems or

soils. Manipulative experiments are on the left and gradient observations are on the right of each panel. Numbers indicate the number of studies used

in each case.

DOI: 10.7554/eLife.23255.003

The following figure supplement is available for figure 2:

Figure supplement 2. Response of soil C:N, C:P and N:P to precipitation, temperature and aridity in manipulative experiments (a) and gradient

observations (b).

DOI: 10.7554/eLife.23255.004
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positively correlated with mean annual precipitation but negatively correlated to aridity. Soil P was

negatively correlated with precipitation but was not significantly correlated with the aridity. Soil C, N

and P were quadratically correlated to with temperature. Similar but clearer patterns were found

between soil nutrients and climate variables when only considering the controls from all experiments

(Figure 7). Soil P concentrations increased at low level of precipitation but decreased at high level

of precipitation. Neither C nor N were significantly correlated with precipitation. In contrast, soil C,

especially N and P, significantly decreased with aridity. Soil C and N were negatively correlated with

temperature but soil P was positively correlated with temperature.

Discussion
Our findings provide evidence that manipulative experiments and observational studies conducted

along environmental gradients identify contrasting correlations of soil C, N, and P concentrations

with changes in precipitation and temperature. Data from short-term manipulative experiments may

therefore not always agree with long-term gradient data. The contrasting results observed may be

the consequence of the timescale that applies to local and large scales in terrestrial ecosystems. Our

Figure 3. Responses of soil (a) C, (b) N, and (c) P concentrations to drying by using response ratios in manipulative drought experiments and slopes in

aridity gradient observations. Aridity is defined as [maximum AI in the data set – AI], where AI is the aridity index, the ratio of precipitation to potential

evapotranspiration. Same symbols and explanations as in Figure 2.

DOI: 10.7554/eLife.23255.005
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analyses suggest that soil nutrients should respond differently to experimental short-term warming

and drought, but if climatic conditions continue to change, the responses might progressively

become more similar to those derived from environmental gradients due to ecosystem adaptation

to climate change and to the co-evolution of multiple soil properties and plant features (Neil Adger

et al., 2005). Our analyses highlight the need to further explore the underlying mechanisms of the

inconsistent patterns in the two approaches and to determine the scenarios under which each is

more likely to provide relevant insights when assessing the responses of ecosystems to climate

change.

It is increasingly clear that precipitation provoked by climate change will alter nutrient cycles,

although these responses induced by rainfall may vary among ecosystems and soils (Knapp et al.,

2008; Sardans and Penuelas, 2007; Yuan and Chen, 2015b). The increased water availability with

higher rainfall boosts microbial activity and plant-nutrient uptake, and hence nutrient cycling. In con-

trast, a drier climate reduces microbial nutrient uptake but increases the availability of soil nutrient,

leading to an accumulation of nutrients. This higher nutrient pool in soil, however, may increase the

Figure 4. Responses of soil (a) C, (b) N, and (c) P concentrations to warming by using response ratios in manipulative temperature experiments and

slopes in temperature gradient observations. Same symbols and explanations as in Figure 2.

DOI: 10.7554/eLife.23255.006
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risk of nutrient loss by leaching or erosion, leading to a short- to middle-term nutrient impoverish-

ment (Matias et al., 2011; Ramos and Martı�nez-Casasnovas, 2004). The decrease in soil N and P

concentrations we found in manipulative precipitation experiments can thus be attributed to

changes in the balance between nutrient inputs (e.g. litter decomposition) and outputs (e.g. leaching

and emission of gases to the atmosphere) (Austin et al., 2004; Carrillo et al., 2012;

Cleveland et al., 2010; Yahdjian et al., 2006). For example, experimentally elevated precipitation

significantly increased N2O fluxes by volatilization and denitrification in an annual grassland

(Niboyet et al., 2011), especially in combination with N addition and warming (Brown et al., 2012).

Moreover, adding water can stimulate plant growth, particularly in drylands, and can thereby lead to

increased sequestration of nutrients in plant biomass, which could be another mechanism for the

decrease in soil N and P concentrations observed in water-addition experiments.

In contrast, gradients of increasing precipitation are associated with an increase in soil total N.

Accumulation/decomposition of organic matter, hence the import/export of ‘new/old’ organic mat-

ter, are controlled by many climatic factors, soil physical and chemical conditions, and vegetation

type and productivity. All these factors vary simultaneously across precipitation gradients, and prob-

ably contribute to the observed inconsistent pattern when compared to experimental observations.

Increasing aridity often leads to a strong reduction in plant cover (Vicente-Serrano et al., 2013),

leading to reduced inputs of plant litter and rates of decomposition, so less N is released. Moreover,

increases in aridity often lead to strong increases in sandy fractions, reducing the capacity of soil to

Figure 5. Results of regression analysis for the response ratio (lnRR) in relation to mean annual precipitation and temperature in manipulative

experiments of study sites. Details of the fitted models are given within each panel.

DOI: 10.7554/eLife.23255.007
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retain organic matter. N losses can thus be important both in wet (mainly by leaching) and dry

(mainly hydrologic losses and atmospheric emission, especially fire-induced N losses by denitrifica-

tion) sites (Austin and Sala, 2002; Galloway et al., 2003; McCulley et al., 2009), leading to lower

levels of soil C and N and to a lesser extent of P in drier systems (Delgado-Baquerizo et al., 2013).

Dry sites often fix substantial amounts of N (cyanobacteria are actually promoted by these condi-

tions), but total N decreases with aridity because of the strong reduction in plant cover (hence in lit-

ter production and decomposition) and the common increase in coarse textured fractions (together

with fewer plants and more sand, leading to higher N leaching in response to extreme events).

Interestingly, P concentrations responded less than N concentrations to changes in precipitation

and temperature. Many reasons may account for this disconnection between climate and soil P

Table 1. R2 values of multiple regression analyses of soil carbon, nitrogen, and phosphorus concen-

trations for the observational studies. Abbreviations: T, mean annual temperature; P, mean annual

precipitation; A, aridity; S, FAO soil classification; E, type of ecosystem. Letter combinations indicate

which explanatory terms are included in a model. Values in bold indicate significant effects (p<0.05).

[C] [N] [P]

T 0.051 0.012 0.018

P 0.222 0.061 0.007

A 0.319 0.181 0.001

S 0.334 0.179 0.107

E 0.420 0.215 0.158

TP 0.342 0.190 0.035

TA 0.331 0.201 0.070

TS 0.494 0.252 0.248

TE 0.509 0.288 0.285

PA 0.386 0.213 0.018

PS 0.562 0.230 0.166

PE 0.510 0.270 0.156

AS 0.492 0.349 0.212

AE 0.514 0.340 0.261

SE 0.700 0.350 0.359

TPA 0.424 0.285 0.115

TPS 0.685 0.349 0.322

TPE 0.583 0.358 0.322

TAS 0.569 0.450 0.361

TAE 0.566 0.446 0.374

TSE 0.758 0.411 0.484

PAS 0.564 0.418 0.256

PAE 0.577 0.432 0.307

PSE 0.743 0.409 0.418

ASE 0.671 0.554 0.479

TPAS 0.621 0.511 0.469

TPAE 0.617 0.542 0.434

TPSE 0.799 0.493 0.562

TASE 0.730 0.668 0.582

PASE 0.726 0.632 0.542

TPASE 0.771 0.727 0.629

DOI: 10.7554/eLife.23255.010
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across environmental gradients. For example, soil P is strongly linked to soil type and bedrock avail-

ability. Two sites with a similar climate may thus have a naturally different amount of soil total P. Soil

P is also highly influenced by soil age. P is thus highly limited in ancient soils, primarily caused by P

depletion due to prolonged weathering over millennia, even though soil P is often bound in com-

plexes with Al, Ca, Fe, or allophane clay in young soils that contain an abundance of total P but

where P is poorly available (Vitousek et al., 2010; Walker and Syers, 1976). We did not control for

soil age in our study, which may also account for the noisy relationship between soil P and climatic

gradients. In addition, vegetation type may strongly influence the availability of P in soils. For exam-

ple, in P-limited ecosystems, whether ancient, P-impoverished soils or young, potentially fertile soils

(rich in total P, but with low P availability), plant species (e.g. Proteaceae family in Australan soils)

with cluster roots, cluster-like roots, or dauciform roots that exude large amounts of P-mobilizing

carboxylates (organic anions) may promote P mobilization and thus act as engineers and/or facilita-

tors in ecosystems by converting poorly available P to more readily available forms and by enhancing

P uptake of neighboring plants (Lambers et al., 2012; Plaxton and Lambers, 2015). The lack of

explicit control of the identity of plant species in our analyses may explain part of the noise in the

soil P–climate relationship. The finding that the concentration of soil P was less affected by climate

than those of C and N that are strongly controlled by the activity of organisms, and hence by cli-

mate, was not surprising, for the reasons presented above.

Differences between observational and experimental studies evaluating biodiversity–productivity

relationships could be understandable because the artificial selection of component species in short-

Figure 6. Results of regression analysis for the soil carbon, nitrogen, and phosphorus concentrations in relation to gradients of mean annual

precipitation, aridity and temperature in observational studies. Details of the fitted models are given within each panel. Aridity is defined as [maximum

AI in the data set – AI], where AI is the aridity index, the ratio of precipitation to potential evapotranspiration.

DOI: 10.7554/eLife.23255.008
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term manipulative experiments can lead to a ‘sampling’ or ‘positive selection’ effect, whereby ran-

domly selecting a more productive species is more likely in more diverse treatments (Tilman et al.,

1996). Similarly, the contrasting patterns we found between observational and experimental studies

might be because climate change tends to have a direct and simple effect on soil nutrients in the rel-

atively homogenous environments that characterize small-scale manipulative experiments conducted

at a single field site, but the direct and simple effect tends to be overwhelmed by the environmental

heterogeneity (e.g. spatial variation in soil nutrient concentration) that characterizes large-scale

observational studies. The hypothesis of environmental heterogeneity proposed in conceptual mod-

els for biodiversity–productivity relationships (Hector et al., 2007) and the differences in spatial

scale driving the invasion paradox (Fridley et al., 2007) could also possibly explain the contrasting

patterns observed in our study.

The responses of nutrient cycling to temperature, as with precipitation, differed between experi-

mental and observational approaches. The increased soil N concentration but non-significant

response of P concentration observed in warming experiments may be due to sustained increases in

net N mineralization and nitrification (Butler et al., 2012; Melillo et al., 2011) with warming

observed in diverse ecosystems. Our meta-analysis of soil nutrients indicated that experimental

warming increased the N:P ratio by 8.6% (Yuan and Chen, 2015a), again suggesting different

responses of N and P concentrations to climate change. Biological activity in an ecosystem, espe-

cially in temperate areas, increases under warming, which can increase soil N stocks (due to more N

fixation) and uptake by microbes. Similar responses are more difficult for P, because its concentra-

tion in soil is less regulated by biological processes. Increases in temperature in drylands, however,

Figure 7. Results of regressionanalyses for the soil carbon, nitrogen, and phosphorus concentrations with gradients of mean annual precipitation,

aridity and temperature using the controls from experiments. Details of the fitted models are given within each panel. Aridity is defined as [maximum AI

in the data set – AI], where AI is the aridity index, the ratio of precipitation to potential evapotranspiration.

DOI: 10.7554/eLife.23255.009
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are often associated with reductions in water availability, which can promote N limitation due to

impaired microbial N cycling in soil (Hooper and Johnson, 1999).

Timescale is likely a key reason for the differences between observational and experimental stud-

ies. Experiments essentially measure the initial stages of the effect of a sudden change in climate on

ecosystems (e.g. +3.5˚C of temperature) so that slowly changing properties of ecosystems (e.g. plant

cover and soil properties) do not have enough time to co-evolve with this climatic change. In con-

trast, observational field studies measure ecosystems with a history over an unknown period, per-

haps decades, centuries, or even millennia or more. Field experiments suddenly submit one

community to conditions different than those to which it is adapted, whereas observations compare

different communities that have evolved in different conditions. The community is stressed by

experiments but is on its optimal environment along gradients. We cannot therefore expect equal

responses. Experimental studies thus provide information about the extent to which the vegetation

can support a sudden change, whereas observational gradient studies provide information about

evolutionary responses.

The difference between observational and experimental studies may diminish if manipulative

experiments are allowed to run for a sufficiently long time, because long-term interactions within

communities may likely adjust soil nutrients towards those seen in natural communities. The time,

however, should be of a magnitude that allows species substitutions in treatment plots to reach

results similar to those along a comparable gradient, which would be impossible on human time-

scales. For example, if we apply a drought experiment to a beech forest in northern Germany and

compare it with a level of drought equivalent to that of a semi-Mediterranean Quercus ilex forest in

southern France, we must give sufficient time to the experimental drought plots to reach results sim-

ilar to those of an observational gradient study to allow a Q. ilex community to replace the beech

forest, which would not occur within a reasonable time for experimental studies. Most manipulative

experiments are typically short-term, generally no more than a few growing seasons, so we do not

know whether experimental studies of much longer duration would lead to response patterns that

are more similar to those from observational studies. Harte et al. (2015) found that soil organic C in

a 23 year warming experiment in montane grassland of Colorado Rockies declined by 25% during

the first six years and increased thereafter until it reached approximately its preheating level in the

23th year of warming. Furthermore, observational studies may often not have been designed as cli-

mate change studies, allowing potential confounding effects to influence the results. Perhaps the

most striking result would be the change of the vegetation composition along gradients (e.g. coloni-

zation by legumes could affect soil N irrespective of precipitation, drought or temperature). The

effect on soil nutrients observed in manipulative experiments may thus represent the ‘true’ effect of

rapid climate change, so experimental studies clearly produce more consistent results than observa-

tional studies. Notably, the responses of soil nutrients in short-term manipulative experiments within

a single field may not necessarily apply to long-term manipulative experiments possibly due to an

adjustment of the plant species to the altered environmental conditions that decrease the effect size

in the long-term. Our findings thus highlight the importance of comparing short- and long-term

effects side by side when forecasting the responses of an ecosystem to climate change.

In summary, our analyses suggest that experimental and observational approaches identify con-

trasting responses of soil nutrients to climate change. Manipulative experiments, likely indicating

short-term responses (months to years) prior to coincidental shifts in plant and microbial composi-

tions that could counteract short-term responses, may be better predictors of the near-term impacts

of climate change on soil nutrients. Observations along spatial gradients may thus be more indica-

tive of changes over longer timescales (centuries to millions of years) when multiple aspects of the

ecosystem have had a chance to adjust. The responses of soil nutrients found in experimental studies

may reflect a ‘true’ short-term and rapid effect of climate change, whereas spatial variation in envi-

ronmental factors in large-scale gradient observations is likely to heterogeneously influence climate-

nutrient relationships, thus supporting the hypothesis of environmental heterogeneity (Dufour et al.,

2006; Hector et al., 2007) in explaining the discrepancy in climate–nutrient patterns between

experimental and observational studies. These differences clearly alert us to the risk of misinterpret-

ing short-term experimental results and long-term observations due to the different timescales

involved in each of them, especially at broad geographical scales that are structured by multiple

internal and external drivers. Manipulative experiments and environmental gradient observations are

both valuable, but we still need to recognize the inferential limitations of these two commonly used
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approaches and interpret their results cautiously. Experimental studies reproduce the conditions

expected in the coming decades, thus simulating very fast rates of change that do not permit a shift

in the distribution of vegetation, so experimental studies clearly produce more consistent results

than observational studies. Experimental studies give us information about the extent to which the

vegetation can support a sudden change whereas gradient observational studies give us information

about the evolutionary responses of ecosystems to different conditions. Our study fills a critical

knowledge gap and further suggests that both experimental and observational data are necessary

to properly assess the responses of nutrient cycling to climate change.

Materials and methods
The studies included in our meta-analysis were identified by searching the databases of the Institute

for Scientific Information’s Web of Science, PubMed, Google Scholar, and JSTOR for 1945–2015

using combinations of the following keywords: ‘manipulative experiment’, ‘soil carbon/nitrogen/

phosphorus’, ‘climate change’, and ‘gradient’ (a list of the selected studies is presented in the Sup-

plementary References). Criteria for inclusion in our meta-analysis for manipulative experiments

included (1) a report of at least one variable of soil C/N/P concentration in both manipulated and

control groups, (2) the ability to calculate, the mean, standard deviation and sample size of reported

C/N/P concentrations, and (3) the study was conducted in natural or semi-natural ecosystems (i.e.

only non-agricultural ecosystems). The criteria for the gradient studies included (1) a report of differ-

ences in C/N/P concentration, and (2) data derived from field investigations, excluding data from

studies in which environmental factors were manipulated or controlled. Only studies that reported

total C, N, or P concentration using similar techniques of chemical analyses were included in our

meta-analysis. We chose the data for which C concentration was determined by dichromate-acid

digestion, N concentration was measured by the Kjeldahl method, and P concentration was deter-

mined colorimetrically (Carter, 2007).

In addition to collecting published data for the meta-analysis of observational studies, we col-

lected and analyzed soil samples from a field observational study conducted at 65 sites along a 3500

km precipitation gradient in temperate grasslands of Inner Mongolia, China. These sites were in

arid, semi-arid, and dry sub-humid areas covering a wide climatic spectrum. The average Mean

Annual Temperature (MAT) across the 65 sites was 2.1˚C, with a tendency for higher temperatures in

the southwest. Mean Annual Precipitation (MAP) decreased from 457 to 154 mm y�1, suggesting a

transition from a humid to an arid climate. The corresponding summer rainfall (May to September)

during the growing season varied from 404 to 133 mm y�1. This precipitation gradient can also be

viewed as an aridity or temperature gradient due to the close relationship among aridity, precipita-

tion, and temperature in this region. We collected 15 soil samples from the 0–30 cm layer at each

site with a soil corer (5 cm in diameter). The samples were taken to the laboratory, air-dried, and

sieved for the analyses of C, N, and P concentrations. Organic-C concentration was determined col-

orimetrically following dichromate oxidation by boiling a mixture of potassium dichromate and sulfu-

ric acid. Total N concentration was measured using Kjeldahl acid digestion. Total P concentration

was determined by hydrolysis with sulfuric acid (Carter, 2007). We also used published and unpub-

lished data from 259 dryland sites from all continents except Antarctica provided by two of our co-

authors (Delgado-Baquerizo and Maestre). These included the 224 sites that were used in

Maestre et al., 2012 plus additional sites from Australia, Kenya, Botswana, Ghana, and Burkina

Faso. Soil samples at these sites were collected as described by Maestre et al. (2012). These origi-

nal observational data were used in the same way as the meta-data collected from the literature.

Our data thus covered a range of types of terrestrial ecosystems, including arctic tundra, forests,

and grasslands. Forests were subdivided into boreal, temperate/subtropical, and tropical forests.

Boreal forests included forests between 46 and 66˚N, tropical forests included forests between

23.5˚S and 23.5˚N, and temperate/subtropical forests included forests between the tropical and

boreal latitudes. Grasslands were also subdivided into temperate and tropical grasslands/savannas

based on a latitudinal threshold of 23.5˚N or S.

All meta-data were extracted from the text, tables, figures, and appendices of the original publi-

cations. When data were presented graphically, numerical data were extracted with Image-Pro Plus

7.0 (Media Cybernetics, Inc., Rockville, MD, USA). Measurements from different ecosystem types

and treatment levels within a study were considered as independent observations. Different sites
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within the same study have the same climate, so the results from different sites within each study are

not independent. We deal with the lack of independence following the approach of Vilà et al.

(2011) who compared the results of the analysis of the complete database with those from the anal-

yses of a reduced database formed by one randomly selected data point per experimental study, or

geographic location in the case of multisite studies. All data can be confidently included in the analy-

sis if mean effect sizes are similar and the bias-corrected 95% bootstrap confidence interval (CI) over-

laps between the complete and reduced databases. This approach has been successfully applied in

many ecological meta-analyses (e.g. Eldridge et al., 2011; Garcı́a-Palacios et al., 2013).

The data set included 182 experimental precipitation/warming studies and 141 studies (including

the two own studies mentioned above) of natural precipitation/temperature gradients from around

the world (Supplementary References). We used WorldClim (http://www.worldclim.org)

(Hijmans et al., 2005) to get temperature/precipitation data for 1950–2000 using the R package

‘raster’ based on the latitude and longitude of the sites. We used MAT and MAP in our analyses

because they could be both derived from WorldClim, whereas climate data for individual growing

seasons of various regions were not available. We also used aridity for our modeling, because aridity

across large temperature gradients incorporates both potential evapotranspiration and precipitation

and is thus more meaningful than precipitation alone. The aridity index (AI) is the ratio of MAP to

mean annual potential evapotranspiration (MAE). MAP values were obtained from WorldClim.

Potential evapotranspiration (PET) layers were estimated based on monthly averages from Global-

PET (http://www.cgiar-csi.org) (Zomer et al., 2008) and were aggregated to obtain MAE. The AI

decreases as aridity increases and is generally correlated with climatic characters such as rainfall and

temperature. To facilitate the interpretation of our results, we substituted the AI by aridity, esti-

mated as [maximum AI in the data set – AI], which increases with decreasing MAP (R2 = 0.68,

p<0.001). Aridity, as a negative substitute for AI, had an opposite relationship, i.e. AI was positively

correlated with MAP, with the same R2 and P value. Aridity might be more appropriate than precipi-

tation for the observational gradients in which temperature also varies. This index, however, is not

suitable for manipulative experiments in which it does not vary accordingly. Given that the purpose

of our analyses was to identify the similarities and differences of responses to precipitation and tem-

perature between observational gradients and manipulative experiments, we chose precipitation

over aridity for the comparison of experimental studies. Soil types, classified using the FAO-

UNESCO classification system, were derived from the Harmonized World Soil Database version 1.21

released in 2012 by the FAO (Batjes, 2009).

In the case of manipulative experimental studies, we examined the effects of treatments of cli-

mate change on soil elements by calculating response ratios for each study as described by

Hedges et al. (1999). All nutrient ratios were log-transformed to achieve normality before conduct-

ing these analyses. The natural-log response ratio (lnRR) was calculated as ln(Xe/Xc) = lnXe� lnXc,

where Xe and Xc are the responses of each observation in the experimental treatment and the con-

trol, respectively. The corresponding sampling variance for each lnRR was calculated as ln[(1/ne) �

(Se/Xe)
2 + (1/nc) � (Sc/Xc)

2] using the R package ‘metafor’ 1.9–8 (Viechtbauer, 2010), where ne, nc,

Se, Sc, Xe, and Xc are sample sizes, standard deviations, and mean responses in the treatment and

control, respectively. lnRR for individual and combined treatments was determined by specifying

studies as random-effects factor using the rma model in ‘metafor’. The effects of increased/

decreased precipitation and warming treatments on soil minerals were considered significant if the

95% CI of lnRR did not overlap zero. We evaluated the relationships between lnRR and precipitation

and temperature at the different experimental sites (not precipitation and temperature in the experi-

mental treatments at each particular site) using linear, quadratic, and non-linear (logarithmic, power,

and exponential) functions. When two or more functions were significant (p<0.05), we selected the

function that maximized R2. Regression analyses were conducted with SigmaPlot 12.5 (Systat Soft-

ware Inc., San Jose, CA, USA). P values were not adjusted for multiple testing, because this

approach can be overly conservative (Gotelli and Ellison, 2004).

For the observational studies, we calculated the response of the soil C, N, and P concentrations

across precipitation or temperature gradients by estimating the changes in C, N, and P concentra-

tions for each study based on the slopes of the regression lines for the C, N, and P concentrations

and precipitation or temperature from a simple linear model. The slopes were then analyzed using a

mixed-effects model, with region as a random effect to account for geographic clustering of the

study sites. The CI of the resulting grand-mean slope was calculated by parametric bootstrapping
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using the bootMer function in the ‘lme4’ package for R (Bates et al., 2015) with 1000 simulations

and the default parametric bootstrap over both random effects and residual errors for an uncondi-

tional CI. We could predict the direction and magnitude of an effect with 95% CI error bars based

on the parametric bootstrap. The effects of increased/decreased precipitation and temperature on

soil minerals could be considered significant if the 95% CI did not overlap zero.

Parametric bootstrapping across data sets (observational vs. experimental studies) was not feasi-

ble, so effect size between manipulative experiments and gradient observations could not be for-

mally compared using statistical tests (Bates et al., 2015; Elmendorf et al., 2015; Nagy and

Grabherr, 2009). However, even though magnitudes of effects could not be compared statistically,

the directions of effects between the two approaches could be compared.

In addition to the meta-analysis explained above, a single multiple regression analysis with a

backward stepwise procedure was used to examine the overall patterns of responses of C, N, and P

concentrations to multiple climatic (MAT and MAP) and soil variables simultaneously across all the

different observational gradients combined. Regression models were developed with increasing

numbers of independent variables. The models labelled ‘TPASE’ included climatic variables (MAT,

MAP and aridity), soil classification, and ecosystem as explanatory variables. Overall model signifi-

cance and goodness-of-fit were judged using the likelihood ratio statistic and assessing changes in

Akaike’s information criterion scores. Two models were considered different when the change in

Akaike’s information criterion was >2 for the descriptive ability of the final model over the alterna-

tives (Chatterjee and Hadi, 2015). All statistical analyses were performed in R 3.2.4 (R Foundation

for Statistical Computing, Vienna, Austria; http://www.R-project.org/, RRID: SCR_001905).
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