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Abstract

Today remote sensing is essential for many applications addressed to Earth Observation. The poten-
tial capability of remote sensing in providing valuable information enables a better understanding
of Earth characteristics and human activities. Recent advances in satellite sensors allow recovering
large areas, producing images with unprecedented spatial, spectral and temporal resolution. This
amount of data implies a need for efficient compression techniques to improve the capabilities of
storage and transmissions. Most of these techniques are dominated by transforms or prediction
methods. This thesis aims at deeply analyzing the state-of-the-art techniques and at providing

efficient solutions that improve the compression of remote sensing data.

In order to understand the non-linear independence and data compaction of hyperspectral im-
ages, we investigate the improvement of Principal Component Analysis (PCA) that provides optimal
independence for Gaussian sources. We analyse the lossless coding efficiency of Principal Polynomial
Analysis (PPA), which generalizes PCA by removing non-linear relations among components using
polynomial regression. Analytically, this approach has proven to provide better performance than
PCA. We propose some modifications to the prediction model, using multiple regression in order to
increase the prediction accuracy and to reduce the impact of rounding error. We show that prin-
cipal components are not able to predict each other through polynomial regression, resulting in no
improvement of PCA at the cost of higher complexity and larger amount of side information.

This analysis allows us to understand better the concept of prediction in the transform domain
for compression purposes. Therefore, rather than using expensive sophisticated transforms like PCA,
we focus on theoretically suboptimal but simpler transforms like Discrete Wavelet Transform (DWT).
Meanwhile, we adopt predictive techniques to exploit any remaining statistical dependence. Thus,
we introduce a novel scheme, called Regression Wavelet Analysis (RWA), to increase the coefficient
independence in remote sensing images. The algorithm employs multivariate regression to exploit
the relationships among wavelet-transformed components. Specifically, RWA performs a pyramidal
prediction based on least squares method in the wavelet domain thus reducing the relations in the
residuals and the variance of the representation. We propose several regression models to address
different issues concerning compression requirements, although any suitable model can be applied.
Moreover, the invertibility of RWA allows reversible integer implementation for lossless coding.
Other important advantages are provided, like the low complexity and no dynamic range expansion.

Nevertheless, the most important advantage consists of its performance for lossless coding. Extensive
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experimental results over a wide range of sensors, such as AVIRIS, TAST and Hyperion, indicate that
RWA outperforms the most prominent transforms like PCA and wavelets, and also the best recent
coding standard, CCSDS-123.

We extend the benefits of RWA to progressive lossy-to-lossless. We show that RWA can attain a
rate-distortion performance superior to those obtained with the state-of-the-art techniques. To this
end, we propose a Prediction Weighting Scheme that captures the prediction significance of each
transformed components. The reason of using a weighting strategy is that coefficients with similar
magnitude can have extremely different impact on the reconstruction quality.

For a deeper analysis, we also investigate the bias in the least squares parameters, when coding
with low bitrates. We show that the RWA parameters are unbiased for lossy coding, where the
regression models are used not with the original transformed components, but with the recovered
ones, which lack some information due to the lossy reconstruction. Also, we show that RWA can use
fixed trained parameters, learned over only one image, to accurately encode any other image from
the same sensor. Thus, we show that hyperspectral images with large size in the spectral dimension
can be coded via RWA without side information and at a lower computational cost.

Finally, we introduce a very low-complexity version of RWA algorithm. Here, the prediction is
based on only some few components, while the performance is maintained. When the complexity of
RWA is taken to an extremely low level, a careful model selection is necessary. Contrary to expensive
selection procedures, we propose a simple and efficient strategy called neighbor selection for using
small regression models. On a set of well-known and representative hyperspectral images, these
small models maintain the excellent coding performance of RWA, while reducing the computational
cost by about 90%.

In summary, we have proposed a new efficient algorithm that meets the requirements of re-
mote sensing compression. On-board encoding is highly demanding and asks for efficient and low-
complexity approaches. Our proposal provides an excellent performance for both lossy and lossless
coding. Moreover, it provides a a wide range of variants that feature a very low-complexity and no
need for side information in addition to scalability and no dynamic range expansion.
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Chapter 1

Introduction

1.1 Remote Sensing Data

Remote sensing can be defined as the obtention of information or the measurement
of objects, areas and phenomenon related to Earth surface, using sensors from a large
distance. In particular, optical sensors provide a large and repetitive perception of the
Earth surface that significantly contribute to the understanding and study of changes,
perhaps due to human activities. Many important applications rely on remote sensing

technology, including:

e environment.

e agriculture.

e meteorology.

e water-cycle studies.

e ccology and geology.

1.2 Motivation for compression

In recent years, remote sensing technology has developed considerably to meet the dif-

ferent needs of data users and practical applications. As a consequence, recent optical
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sensors, deployed on satellites and on airbones, can provide a repetitive and consistent
coverage of large geographical areas, producing images with unprecedented spatial,
spectral and temporal resolution. For instance, the NASA’s instrument Airborne
Visible Infrared Imaging Spectrometer (AVIRIS) [1] delivers images of the upwelling
spectral radiance in 224 contiguous spectral channels with wavelengths from 400 to
2500 nanometers (nm). On the other hand, the IASI instrument on-board the MetOp
satellite captures 8359 spectral channels with a 60 degree field of view, about 1530
lines per orbit, 14 orbits per day, and at an acquisition bit-depth of 16 bits per pixel,
producing close to 20 GB daily.

This wealth of data provided by the remote sensing sensors is likely to increase
in the future, and that poses a continuing challenge facing modern data storage
and transmission. Hence, the need for efficient coding techniques for remote-sensing
data becomes more and more imperative to improve the capabilities of storage and
transmission.

In general, exploiting the data dependencies along the spectral dimension has
proven to play a key role for coding remote sensing images. Thus, the methods that
apply efficient spectral models are the ones that yield higher coding performance.
This purpose is, in most of the state-of-the-art coding, conducted through either a
transform or a prediction approach.

Transform-based methods rely on applying a decorrelation transform that captures
most of the image energy in few coefficients. Hence, the data coefficients can be coded
independently, while discarding coefficients does not lead to a large error.

Among the popular transforms, the Discrete Wavelete Transform (DWT) belongs
to the data-independent family. DWT is widely used as a spectral decorrelator due
to its simplicity, component scalability and (very) low complexity, (integrated with
JPEG 2000). However, its coding efficiency is fairly limited.

On the other hand, the optimal transform in decorrelating Gaussian sources [2], i.e,
principal component analysis (PCA), also known as the Karhunen-Loeve Transform
(KLT), is also widely applied to multicomponent images. The strength of PCA relies
on its excellent coding performance. However, PCA is a data-dependent transform,

entailing the need to compute it for each individual image before its application. Fur-
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thermore, its computational complexity is substantial due to the covariance matrix
calculation, the extraction of eigenvectors, and the matrix factorization/integer map-
ping (when integer implementation is needed for lossless coding [3]). Also, the PCA is
not a component-scalable transform, i.e., the recovery of any single image component
depends on every transformed component. In scenarios where the input data consists
of a small number of spectral components, such as multispectral images, PCA and
its integer implementation can be acceptable. Nevertheless, in scenarios where the
input data has a significant size in the spectral dimension, such as TASI images (8359

or 8461 components), PCA and its integer implementation are not feasible.

In light of this fact, a number of approaches have been proposed to reduce the
computational complexity of PCA while trying to minimize the degradation in coding
performance. One approach is based on sub-sampling the dataset and estimating the
covariance matrix using a reduced subset of coefficients spatially and/or spectrally
[4, 5, 6]. In this way, the complexity of computing the covariance matrix can be
alleviated. However, other complexity sources, such as the eigenvector extraction,
the matrix multiplication and the integer mapping for lossless coding remain. A
second approach suggests divide-and-conquer strategies to approximate the PCA,
while providing reduced computational complexity and some amount of component
scalability. These strategies are based mainly on clustered PCA [7, 8] or on multiple
pairwise PCA [9]. In most cases, the lossless coding performance of these strategies
falls somewhat below that of the full-complexity PCA. Yet a third approach consists
in learning the transform on a set of images of one particular sensor in order to obtain

an efficient transform that can be applied to new images from the same sensor [10,
11, 12, 13].

Beyond computational issues, a major conceptual limitation of PCA is related
to its focus on producing decorrelated (rather than independent) components. In
particular, PCA focuses on the covariance matrix (2nd order relations) and neglects
higher order moments, which may be relevant in non-Gaussian signals. Remote sens-
ing hyperspectral images have been shown to be non-Gaussian both in the spatial
and the spectral dimensions [14, 15, 16]. Since the efficiency of transform coding is

attached to the degree of statistical independence achieved [17], approaches focused
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on decorrelation may lead to inefficient representations due to higher order statistical

relations still being present after decorrelation.

Another drawback of PCA and other transform-based methods is the dynamic
range expansion, which is a direct consequence of energy compaction. In some appli-
cations, large dynamic range expansion can lead to serious problems, particularly for

existing devices or systems that support only a limited bit depth.

Inevitably for transform coding, there is a trade-off between efficiency and com-
plexity. Efficient transforms are expensive, while low complexity transform have a

limited performance.

In its turn, the predictive methods usually compute mathematical models to pre-
dict data coefficients and only the residual error is encoded [18]. These models can
employ spatial, spectral or temporal predictors to decorrelate data. The model pa-
rameters can be computed either on-line by using existing data or off-line by a train-
ing phase in order to reduce the complexity and the memory requirement. Early
hyperspectral coding techniques were based on Differential Pulse Code Modulation
(DPCM) [19], which uses pixels in the current and previous bands for prediction,
then the residual error is entropy-encoded. In [20] the concept of clustered differen-
tial DPCM was introduced. In [21] a coder called Context-based Adaptive Lossless
Image Coding (CALIC) was presented. The coding consists of prediction, context
modelling, quantization and a conditional entropy coder. A 3D version of CALIC
that incorporates interband prediction was proposed in [22] for lossless coding. This
extension consists of a simple spectral predictor that employs one reference band to
predict the current one. In [23] Magli extended 3D-CALIC to M-CALIC for lossless
and near-lossless coding of hyperspectral images. This extension consists of a multi-
band spectral predictor, along with optimized model parameters and optimization
threshold. The proposed M-CALIC outperforms 3D-CALIC for lossless and near-
lossless with a limited amount of on-board memory and computational complexity.
The Consultative Committee for Space Data Systems (CCSDS) has developed the
standard CCSDS-123 [24] for lossless coding of multispectral and hyperspectral im-
ages. CCSDS-123 adopts a fast predictive method for lossless coding [25], which relies

on a low-complexity adaptive filtering technique.
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Summarizing, transform and predictive techniques are the most important and
successful approaches for encoding remote sensing images. While transforms allow
performing lossless and lossy compression with an efficient quantization of the trans-
formed coefficients, predictive methods usually provide better coding performance for
lossless and near-lossless compression [23]. This thesis aims at deeply understanding
and exploring the strength and weakness of transform and predictive methods and
the potential of their combination, and to introduce novel coding schemes to meet

the requirement of remote sensing image compression.

1.3 Contributions and Thesis Organization

The contributions of this thesis consist of a compendium of publications addressed to
the compression of remote sensing images and published in the relevant journals and

conferences on this area:

e N. Amrani, V. Laparra, G. Camps-Valls, J. Serra-Sagrista, and J. Malo, “Loss-
less coding of hyperspectral images with principal polynomial analy-
sis,” in ICIP 2014. Proceedings. International Conference on Image Processing
(ICIP), 2014, Oct 2014, pp. 4023-4026 [2].

e N. Amrani, J. Serra-Sagrista, V. Laparra, M. Marcellin, and J. Malo, “Regres-
sion wavelet analysis for lossless coding of remote-sensing data,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 54, no. 9, pp. 5616-5627,
September 2016. [26]

e N. Amrani, J. Serra-Sagrista, M. Hernandez-Cabronero, and M. Marcellin, “Re-
gression wavelet analysis for progressive-lossy-to-lossless coding of

remote-sensing data,” in Data Compression Conference, March 2016. [27]

e N. Amrani, J. Serra-Sagrista, and M. Marcellin, “Unbiasedness of regres-
sion wavelet analysis for progressive lossy-to-lossless coding”, in Pic-

ture Coding Symposium, December 2016. [28]
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e N. Amrani, J. Serra-Sagrista, and M. Marcellin, “Low Complexity Predic-
tion Model for Coding Remote-Sensing Data with Regression Wavelet
Analysis” in Data Compression Conference, April 2017. [29]

In the first publication [2] discussed in Chapter 2, the idea of predicting trans-
formed coefficients is analyzed through a dimensionality reduction approach called
Principal Polynomial Analysis (PPA) [30], which computes polynomial curves in the
PCA domain to remove some non-linear dependencies among the principal compo-
nents. We explore the algorithm for lossless coding of hyperspectral images by apply-
ing a reversible implementation with some generalizations to handle the side informa-
tion and to reduce the impact of the integer mapping. We show that although PPA
achieves in theory better higher statistical independence than PCA, in practical hy-
perspectral coding, exploiting polynomial dependencies among principal components
does not necessarily provide a significant improvement for the coding performance.
Furthermore, the impact of the integer mapping and the sequential error introduced
may penalize the coding gain.

In Chapter 3, the second publication [26] builds upon the previous analysis, con-
sisting of estimating transformed coefficients. However, rather than using sophis-
ticated and expensive data-dependent transforms, we focus on the simpler wavelet
transform while adopting regression analysis to exploit the remaining dependencies in
the wavelet domain. We introduce Regression Wavelet Analysis (RWA), a predictive
scheme that performs a pyramidal prediction based on multiple regression analysis
after DWT has been performed. RWA shares the principal DWT properties such as
low complexity and spectral scalability while yielding excellent performance for loss-
less coding. Specifically, RWA yields superior performance to PCA and outperforms
the most prominent predictive scheme CCSDS-123.

In Chapter 4, the third publication [27] extends the benefits of RWA to Progres-
sive Lossy-to-Lossless and shows that RWA can attain a rate-distortion performance
superior to those obtained by state of the art schemes. For this purpose, a prediction
weighting scheme is proposed to capture the prediction significance of each spectral
component. The RWA algorithm without component weighting is heavily affected by

the error propagation at all bitrates (low, intermediate and high bit-rates), which pro-
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duces multiple plateaus in the Rate-Distortion performance. The proposed weighting
scheme assigns a weight to each spectral component depending on its contribution
to the prediction process. In this regard, it is worth noting that weighting strategies
are useful to improve the quality of the recovered data by allocating more bits to the
significant coefficients for an algorithm design [31].

In Chapter 5, the fourth publication [28] addresses the problem of bias for lossy
coding, when the least squares parameters are used not to the original RWA coeffi-
cients, but to the recovered ones, which contain some lack of information due to the
lossy reconstruction. This change in the data implies that the regression parameters
are suboptimal, but not necessarily biased. To assess the extend of this bias, we
adjust the RWA parameters for each bitrate, since the introduced loss is known at
the encoder. Based on that, we compare the coding performance before and after
adjusting the RWA parameters. We show that the performance sacrifice is negligible
(less than 0.2 dB), indicating that the RWA parameters are nearly unbiased for lossy
coding.

In Chapter 6, the fifth publication [29] addresses the problem of selecting small
prediction models for the RWA scheme to meet the complexity restrictions of on-board
satellite compression. Models that include few components as regressors lead to a
prediction with low complexity and memory requirement, but usually with a sacrifice
in the prediction accuracy. Hence, a strategy to select the best model from a set of
candidates ones is needed. However, efficient and sophisticated selection strategies
in the state-of-the-art are computationally expensive. We introduce a simple and
efficient strategy called neighbor strategy that includes some few adjacent spectral
components to predict each detail component.

Chapter 7 explains the system coding pipeline, describes the dataset of images and
summarizes the coding results. Finally, Chapter 8 closes this thesis with conclusions

and provides some insights of the future work.
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LOSSLESS CODING OF HYPERSPECTRAL IMAGES
WITH PRINCIPAL POLYNOMIAL ANALYSIS

N. Amrani®, V. Laparrai, G. Camps—Vallsi, J. Serra—Sagristc‘zT and J. Malo*

 Dept. Information and Communications Engineering, Universitat Autdonoma de Barcelona
! Image Processing Laboratory, Universitat de Valéncia

ABSTRACT

The transform in image coding aims to remove redundancy among
data coefficients so that they can be independently coded, and to
capture most of the image information in few coefficients. While the
second goal ensures that discarding coefficients will not lead to large
errors, the first goal ensures that simple (point-wise) coding schemes
can be applied to the retained coefficients with optimal results. Prin-
cipal Component Analysis (PCA) provides the best independence
and data compaction for Gaussian sources. Yet, non-linear general-
izations of PCA may provide better performance for more realistic
non-Gaussian sources. Principal Polynomial Analysis (PPA) gener-
alizes PCA by removing the non-linear relations among components
using regression, and was analytically proved to perform better than
PCA in dimensionality reduction. We explore here the suitability
of reversible PPA for lossless compression of hyperspectral images.
We found that reversible PPA performs worse than PCA due to the
high impact of the rounding operation errors and to the amount of
side information. We then propose two generalizations: Backwards
PPA, where polynomial estimations are performed in reverse order,
and Double-Sided PPA, where more than a single dimension is used
in the predictions. Both yield better coding performance than canon-
ical PPA and are comparable to PCA.

Index Terms— Principal Component Analysis, Principal Poly-
nomial Analysis, hyperspectral image coding, decorrelation, entropy

1. INTRODUCTION

In the last years, a number of techniques have been proposed to ex-
ploit spectral and spatial redundancy to encode hyperspectral im-
ages. The popular approaches usually combine a 1-D spectral trans-
form followed by a 2-D spatial transform. The spectral decorrelation
for multicomponent images has proven to be crucial for compression
due to the large amount of inter-component correlation/redundancy,
with PCA/KLT [1] transform and its extensions [2] being widely ap-
plied due to its high coding efficiency and matrix invertibility.
Recently, several non-linear generalizations of PCA have been
proposed [3-5]. These generalizations go beyond linearity and ex-
ploit both linear and non-linear correlation between data. Also, their
kernel versions [6] have become a powerful tool to extract non-linear
features. However, the reconstruction problem has so far restrained
their application in compression schemes [7]. Invertibility of the
transform is requested for lossless compression, as it leads to perfect
reconstruction and provides better understanding of the transform.

This work has been partially funded by the Spanish Government
(MINECO), FEDER, the Catalan Government and Universitat Autonoma de
Barcelona under grants TIN2012-38102-C03, SGR2009-1224 and 472-03-
1/12, respectively.

For lossless coding applications, it is therefore necessary to consider
non-linear generalizations of PCA that still satisfy: (1) invertibil-
ity to achieve perfect reconstruction, and (2) variance minimization
along the considered directions to yield competitive coding perfor-
mance.

In this paper, we analyze the lossless coding efficiency of an in-
vertible non-linear generalization of PCA, the Principal Polynomial
Analysis (PPA) [8,9], originally proposed for dimensionality reduc-
tion. PPA is a deflationary algorithm based on drawing a sequence
of Principal Curves that address one dimension at a time [10]. These
Principal Curves are analytic and each step in the sequence consists
of two basic operations. The first operation is based on PCA, i.e., it
is a projection onto the orthogonal direction that maximizes the vari-
ance. The second operation estimates and removes the conditional
mean of the data in the orthogonal subspace. The estimation is car-
ried out by using a polynomial regression. This provides a better
estimation of the conditional mean than the straight line, given the
eventual non-linear relation between features.

As opposed to lossy compression, direct application of PPA to
lossless compression may be hampered by the impact of the side in-
formation and the necessary lifting scheme applied in each step for
integer mapping. In this paper, we specifically analyze these issues:
how to handle PPA side information required for the reconstruction,
how to reduce the impact of integer mapping error and how to ex-
ploit the energy compaction property. Two generalizations of PPA
are proposed. The first one, Backwards PPA, works as the original
algorithm but in reverse order, i.e., starting from the last components
of a PCA, so that the Principal Component, highly responsible for
the bitrate budget, is better handled. The second one, Double-Sided
PPA, can be seen as a further generalization, a sequential algorithm
that simultaneously considers the first and last components of a PCA,
uses more dimensions in the prediction, proceeds inwards, and per-
forms less iterations to alleviate the integer mapping penalization.

The paper is organized as follows. Section 2 reviews the ele-
ments of PPA transform. Section 3 addresses fundamental issues for
the use of PPA in coding: its inverse, the side information, and the
proposed generalizations for lossless coding. Section 4 illustrates the
application of PPA to hyperspectral images and draws the integer
reversible implementation. In section 5 we show the experimental
settings and results. Finally, section 6 concludes.

2. PRINCIPAL POLYNOMIAL ANALYSIS

Let X € RY*™ be the input data matrix, where rows represent com-
ponents/dimensions and columns different realizations (or samples).
Note that PCA can be seen as a deflationary method (or a sequence of
d—1 elementary transforms R ) that maps X to a response domain
R C R¥*™ . Each elementary transform describes a single curvilin-



ear dimension of the input by computing one single component of
the response:

[e 5] a1
a2
(s 5] a2
R R. Rg—
Xo | = = it
Xy X oy
Xa-1
In each step p of the sequence, two basic operations are applied:
T
a, = e, X, 1 (1)
PCA T
X, = E, X1 )

where (1) is the projection of the data coming from the previous
step, X,—1, onto the unit norm vector e, € R4P*1 that maximizes
the variance of the projected data and (2) is the projection onto the
orthonormal subspace E,, € R(¢~PH+1)x(d=p),

PPA follows the same deflationary scheme but it improves the
second operation by predicting and removing the conditional mean
m,:

e;prl 3
E, X, 1 — 1, “

o, =
PPA
X, =

The conditional mean is estimated by using polynomial regres-
sion to fit the non-linear relationship between the first component
o, and the remaining components X, of the projected data coming
from the first operation (PCA). In matrix notation, the model can be
written as m, = W,V ,:

wzlol w,l,('ﬁl) 1
ﬁlp = . . .
w;dfp)l ,wz()d*p)(’wl) aj
where V,, is the Vandermonde matrix of order v and W, is the
matrix of polynomial coefficients. The least squares solution for
the coefficients is W, = E; prlV‘L, where V;‘; stands for the
pseudo-inverse of V.

3. SIDE INFORMATION AND CODING-ORIENTED
GENERALIZATIONS

3.1. Inverse and side information

The PPA transform is invertible, thus leading to perfect reconstruc-
tion. The inverse transform is, like the forward transform, also a
sequence of two elementary inverse operations. The original data
Xo is obtained by applying the following transform recursively on
the given transformed data:

Qp
ey|Ep s
Xp+ W,V

Xp,1: p:d—l,...,l

In practice, the polynomial coefficients, W, and the vector e, are
necessary side information since they are required at each step of the
inversion. On the contrary, there is no need to store V, and E;,. On
the one hand, V, is generated from the data. On the other hand,
any method to compute an orthogonal complement from e,, is fine
to obtain E,, since the reconstruction error does not depend on the
selected basis [8,9].

According to this, the number of elements in the side informa-
tion corresponding to each elementary transform R, is: (v + 1) x

(d — p) (from the W,’s) plus d—p (from the e,’s). Taking into ac-
count that the size of side information for PCA is d22+ 4 PPA side
information is 2d*—d—1 when using order 2 for the polynomial re-

gression.

3.2. Backwards and Double-sided generalizations of PPA

When using dimensionality reduction techniques, the compo-
nents/coefficients that retain most of the signal energy may have
a wide dynamic range. Each PPA step is designed to reduce the dy-
namic range of the residual signal (prediction error after nonlinear
regression). The particular choice of which dimensions are visited
in the deflationary scheme will determine the resulting dynamic
ranges. While the canonical formulation of PPA follows the largest-
variance-first criterion (as in PCA), this particular choice may not
be appropriate for signal coding.

In order to obtain coefficients with smaller dynamic range, here
we propose two variations of the canonical PPA: Backwards PPA
and Double-Sided PPA.

In Backwards PPA, the e, vector at each step is the one that
minimizes the variance of the projected data. This implies retaining
the lowest dynamic range projections to reduce the variance of the
highest dynamic range ones. The sequence of the Backwards PPA is
as follows:

Xd-1
X, X, a2
X, | B EEN Jaen | as
[ %) ad—1
Qg aq

The side information for the Backwards generalization is essentially
the same as in the canonical PPA.

The Double-Sided variation of PPA uses more than one compo-
nent in each prediction. At each step it uses the largest variance com-
ponent as in the canonical PPA plus k components from the lowest
dynamic range end. This scheme reduces both complexity and side
information, since the number of steps needed is N= [%J instead
of N=(d — 1). The sequence of the Double-Sided PPA is:

a
aq a2
R X1 R
Xo | = — :
0 Od—k+1 X1
Qq—1 Qg1

The side information for the Double-Sided generalization is (v(k +
D+1) 2N (d—i(k + 1)) due to Wps, and k(XN o' (d —i(k +
1)) because of (e} s), where N = LfLJ is the number of steps.

4. PPA FOR HYPERSPECTRAL IMAGE CODING

Hyperspectral imaging leads to 3D spectral-spatial arrays. Even
though the d-dimensional input to PPA may come from arbitrary
arrangements of the hyperspectral arrays, here we will illustrate the
use of this transform in a spectral-first pipeline (Fig. 1). Current
coding standards include PCA in the spectral stage [1,2]. In our
experiments we will stick to this standard scheme and will replace
PCA by PPA.



4.1. Reversible integer PPA transform

For lossless compression, it is mandatory to consider reversible im-
plementations of the redundancy reduction transforms that produce
integer outputs as close as possible to the real coefficients. Hao and
Shi [11] proposed a reversible integer KLT that maps integers to in-
tegers based on a PLUS factorization of the transform matrix A.
PLUS is a product of unit Triangular Elementary Reversible Ma-
trices (TERMs), where P is a permutation matrix, L and S are lower
TERMs and U is upper TERM. This factorization is possible, if and
only if, |[det(A)| =1 [12].

Galli and Salzo [13] improved this factorization by proposing
a quasi-complete pivoting. This improvement minimizes the ele-
ments’ magnitudes of the matrices L and U, therefore, it reduces
the error between the integer implementation and the original trans-
form, which could affect the energy compaction capability.

Going back to the PPA transform and given that it is based
on two main operations (PCA projection and conditional mean re-
moval), we propose an integer reversible PPA transform for lossless
compression based on two integer reversible operations:

1. Integer reversible PCA/KLT (RPCA/RKLT) based on PLUS
factorization using quasi-complete pivoting.

2. Removal of the quantized conditional mean:
Xp=Xp-1— Q(Iﬁp)

The needed conditional mean quantization is performed through a
simple rounding operation, Q(+), although any other quantization
operation could be applied.

5. EXPERIMENTAL SETTINGS AND RESULTS

In this section, we evaluate the proposed reversible integer trans-
forms (PPA, Backwards PPA and Double-Sided PPA) on a set of
5 radiance AVIRIS images: Yellowstone scene 0, Cuprite scene
1, Jasper Ridge scene 2, Moffet Field scene 1 and Low Altitude
scene 1, available at http.://aviris.jpl.nasa.gov/data/index.html. All
the images were cropped to 512x512 spatial resolution and 224
components and have a bit-depth of 16 bits per pixel per component
(bpppo).

To account for reproducibility, basic Matlab source code for PPA
is available online [14], and the proposed generalizations can be
found at [15]. The coding system pipeline is shown in Fig. 1 and
explains the compression process, where the proposed transforms
based on PPA are applied in the spectral domain followed by a DWT
2-D transform 5/3 (5 levels) in the spatial domain and finally a loss-
less compression using the standard JPEG2000 with the KAKADU
software v6.0.

Tables 1-5 provide the lossless coding performance for the pro-
posed transforms as well as for PCA. We report the needed bitrate
to encode the images and the size of the requested side information
(SI), also measured in bpppc. For Double-Sided PPA with k=80,
the full matrix (e, E,) has been used as side information, while for
k < 80 only the unit norm vector e, was used. Coefficients for

Reversible Integer
Transform

Lossless Compression:

JPEG2000, DWT 5/3 | =% Bitstream

Image | —p

Fig. 1: Coding pipeline: 1D transform in the wavelength domain
followed by JPEG2000 standard.

the side information have used a precision of 32 bits and have been
compressed with LZMA. Order 2 has been used for the polynomial
regression.

Table 1: Lossless coding results for Yellowstone scene 00 (bpppc).

Method Image | SIW,’s | Sle,’s | Total
PCA 3.99 0 0.025 | 4.02
PPA 5.01 0.038 0.012 | 5.06
Backwards 4.66 0.037 0.012 | 4.71
D-Sided k = 1 4.57 0.032 0.006 | 4.61
D-Sided &k =7 4.33 0.026 0.001 | 4.42
D-Sided k =80 | 3.97 0.017 0.036 | 4.02

Table 2: Lossless coding results for Cuprite scene 01 (bpppc).

Method Image | SIW,’s | Sle,’s | Total
PCA 4.99 0 0.025 | 5.02
PPA 5.61 0.038 0.012 | 5.66
Backwards 5.17 0.03 0.012 | 5.22
D-Sided k =1 5.19 0.032 0.006 | 5.23
D-Sided k =7 5.09 0.026 0.001 | 5.12
D-Sided k =80 | 4.93 0.017 0.035 | 4.98

Table 3: Lossless coding results for Jasper Ridge scene 02 (bpppc).

Method Image | SIW,’s | Sle,’s | Total
PCA 4.99 0 0.025 | 5.02
PPA 5.61 0.038 0.012 | 5.66
Backwards 5.17 0.037 0.012 | 5.22
D-Sided k = 1 5.19 0.032 0.006 | 5.23
D-Sided &k =7 5.11 0.028 0.003 | 5.14
D-Sided £ =80 | 4.91 0.017 0.035 | 4.96

Table 4: Lossless coding results for Moffet Field scene 01 (bpppc).

Method Image | SIW,’s | Sle,’s | Total
PCA 5.01 0 0.025 | 5.03
PPA 5.72 0.038 0.012 | 5.77
Backwards 5.27 0.038 0.012 5.77
D-Sided £k =1 5.36 0.031 0.006 | 5.32
D-Sided k =7 5.25 0.029 0.001 | 5.28
D-Sided £k =80 | 5.01 0.017 0.036 | 5.07

Table 5: Lossless coding results for Low Altitude scene 01 (bpppc).

Method (bpppc) | Image | SIW,’s | Sle,’s | Total
PCA 5.33 0 0.025 | 5.35
PPA 591 0.038 0.012 | 5.96
Backwards 5.47 0.037 0.012 | 5.52
D-Sidedk=1 5.58 0.031 0.006 | 5.62
D-Sidedk=7 5.51 0.029 0.001 5.54
D-Sidedk=80 5.31 0.017 0.035 | 5.36

The reported results indicate that a reversible implementation
of PPA does not yield better coding performance than PCA, with a
bitrate penalization of at most 0.7 bpppc. This suggests that the se-
quential rounding error due to the integer mapping on the one hand,



and the conditional mean quantization on the other hand penalize the
compression performance. In addition, PPA asks for a larger side in-
formation than PCA. Our two PPA-based alternatives are aimed at
alleviating these issues.

On the one hand, note that the Backwards PPA is subject to the
same rounding process and conditional mean quantization as PPA,
and it has the same complexity and side information too; however,
it is usually able to improve the results of PPA by about 0.4 bpppc,
since in this case the first principal component also has its condi-
tional mean subtracted, decreasing its dynamic range and benefiting
the final performance. On the other hand, the Double-Sided PPA
outperforms both canonical PPA and Backwards PPA, especially for
higher values of parameter k (the number of components from the
right-most end that are transformed together with the first compo-
nent in each iteration). First, the impact of rounding is reduced due
to the lower number of iterations. Besides, the predictive power is
higher since it uses more than one component (k- 1), giving rise to a
better estimation of the conditional mean. In addition, the computa-
tional complexity and side information are smaller in Double-Sided
PPA (cf. Section 3.2). According to the reported results, the coding
performance of Double-Sided PPA with £k = 80 is comparable to
that of PCA.

6. CONCLUSIONS

Lossless compression of hyperspectral images is largely benefited
from a 1D spectral transform, which is traditionally performed
through a wavelet or a PCA transform, the latter yielding increased
performance. PPA is a non-linear generalization of PCA originally
proposed in the framework of dimensionality reduction. Here we
investigated the suitability of PPA for spectral redundancy reduction
in hyperspectral image compression. Coding performance of inte-
ger reversible PPA is worse than that of PCA due to the rounding
operations error and to the increased size of the side information.
For a better adaptation of PPA to the signal at hand, we proposed
two generalizations. Backwards PPA reverses the order in which the
transform is applied, proceeding from the lower dynamic range hand
to the higher dynamic range components. Double-Sided PPA ex-
tends canonical PPA by using several components in the regressions
and performing less iterations than canonical PPA, thus reducing the
penalization of the rounding error. Double-Sided PPA improves PPA
performance and reaches PCA performance for lossless compres-
sion. These proposals improved the results, and could eventually
be used in other nonlinear invertible schemes in the future, not
necessarily based on PPA.

Several questions are now open for further research. From a the-
oretical point of view, it is worth analyzing Double-Sided PPA gen-
eralization and investigate whether there is any bound on the number
of iterations that still provide some gain. Also, the regression used in
PPA to remove the non-linear relations among components has been

herein carried out with a simple second-order polynomial regression;
other approaches can be devised to improve the estimation and, ad-
ditionally, to decrease the size of the side information they entail.
One such approach could be to apply dedicated polynomial regres-
sion in tiles or clustered data, while other sparse regression schemes
could be explored. It does not escape our notice that PPA could be
beneficial compared to PCA in lossy schemes, given that PPA bet-
ter captures and preserves the relevant image features, and the good
results observed previously in dimensionality reduction problems.
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Abstract—A novel wavelet-based scheme to increase coefficient
independence in hyperspectral images is introduced for lossless
coding. The proposed Regression Wavelet Analysis (RWA)
uses multivariate regression to exploit the relationships among
wavelet-transformed components. It builds on our previous
nonlinear schemes that estimate each coefficient from neighbor
coefficients [1]-[3]. Specifically, RWA performs a pyramidal
estimation in the wavelet domain thus reducing the statistical
relations in the residuals and the energy of the representation
compared to existing wavelet-based schemes. We propose three
regression models to address the issues concerning estimation
accuracy, component scalability and computational complex-
ity. Other suitable regression models could be devised for
other goals. RWA is invertible, it allows a reversible integer
implementation, and it does not expand the dynamic range.
Experimental results over a wide range of sensors, such as
AVIRIS, Hyperion and IASI, suggest that RWA outperforms
not only Principal Component Analysis (PCA) and Wavelets,
but also the best and most recent coding standard in remote
sensing, CCSDS-123.

Index Terms—Transform coding via regression, wavelet-based
transform coding, remote sensing data compression, redun-
dancy in hyperspectral images.

I. INTRODUCTION

EMOTE-SENSING data has become enormously im-

portant for a myriad of applications addressed to the
Earth’s observation. Recent sensors can cover large geo-
graphical areas, producing images of unprecedented spectral
and spatial resolution. For instance, the IASI instrument on-
board the MetOp satellite captures 8359 spectral channels
with a 60 degree field of view, about 1530 lines per orbit, 14
orbits per day, and at an acquisition bit-depth of 16 bits per
pixel, producing close to 20 GB daily. Hence, the need for
efficient coding techniques for remote-sensing data becomes
more and more imperative to improve the capabilities of
storage and transmission.
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Most efficient coding techniques for remote-sensing data are
based on a redundancy reduction transform that exploits the
relations in the spectral and in the spatial dimensions. The
problem of appropriate signal representation for transform
coding is equivalent to the feature extraction problem in sta-
tistical learning [4]. Some hyperspectral coding techniques
apply a a discrete wavelet transform in all three dimensions
(2 spatial, 1 spectral) [5], [6]. Other techniques apply a 2-D
discrete wavelet transform (DWT) spatially, while using a
different transform in the spectral dimension [7]-[10]. The
transform in the spectral dimension is considered crucial in
coding hyperspectral images due to its significant impact
on the coding performance [11]. Generally, transforms that
provide better exploitation of correlation, resulting in better
energy compaction, are the ones that yield larger coding
gain [12].

In particular, Principal Components Analysis (PCA), also
known as the Karhunen-Loeve Transform (KLT), is the opti-
mal decorrelating transform for Gaussian sources [13]-[15].
It is widely applied to multicomponent images because of its
excellent performance as a spectral decorrelator. However,
PCA is a data-dependent transform, entailing the need to
compute it for each individual image before its application.
Additionally, its computational complexity is substantial due
to the covariance matrix calculation, the extraction of eigen-
vectors, and the matrix factorization/integer mapping (when
integer implementation is needed for lossless coding [16]).
Also, the PCA is not a component-scalable transform, i.e.,
the recovery of any single image component depends on
every transformed component. In scenarios where the input
data consists of a small number of spectral components, such
as multispectral images, PCA and its integer implementation
can be acceptable. Nevertheless, in scenarios where the input
data has a significant size in the spectral dimension, such as
IASI images, PCA and its integer implementation are not
feasible.

In light of this fact, a number of approaches have been pro-
posed to reduce the computational complexity of PCA while
trying to minimize the degradation in coding performance.
One approach is based on sub-sampling the dataset and
estimating the covariance matrix using a reduced subset of
coefficients spatially and/or spectrally [7], [11], [17]. In this
way, the complexity of computing the covariance matrix can
be alleviated. However, other complexity sources, such as the
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eigenvector extraction, the matrix multiplication and the inte-
ger mapping for lossless coding remain. A second approach
suggests divide-and-conquer strategies to approximate the
PCA, while providing reduced computational complexity
and some amount of component scalability. These strategies
are based mainly on clustered PCA [18], [19] or on multiple
pairwise PCA [20]. In most cases, the lossless coding
performance of these strategies falls somewhat below that
of the full-complexity PCA. Yet a third approach consists in
learning the transform on a set of images of one particular
sensor in order to obtain an efficient transform that can be
applied to new images from the same sensor [21]-[24].

Beyond computational issues, a major conceptual limitation
of PCA is related to its focus on producing decorrelated
(rather than independent) components. In particular, PCA
focuses on the covariance matrix (2nd order relations) and
neglects higher order moments, which may be relevant in
non-Gaussian signals. Remote sensing hyperspectral images
have been shown to be non-Gaussian both in the spatial
and the spectral dimensions [25]-[27]. Since the efficiency
of transform coding is attached to the degree of statis-
tical independence achieved [28], approaches focused on
decorrelation may lead to inefficient representations due
to higher order statistical relations still being present after
decorrelation.

The (theoretical) consideration of higher order moments
in Independent Component Analysis (ICA) [29], and the
(experimental) fact that ICA filters are qualitatively similar
to wavelet functions in hyperspectral imagery [25], may be
the fundamental reasons for the widespread use of wavelets
in transform coding of hyperspectral images [5], [6], [30].

Another limitation of classical PCA (and also classical
ICA) is its linear nature. Linear PCA and linear ICA (and
their fixed basis approximations, DCT and wavelets) do not
completely achieve statistical independence in hyperspectral
images. Similar to the case of photographic images [31]—
[35], residual dependencies have been reported for hyper-
spectral imagery in these representations [26], [27]. Thus,
despite the simplicity and efficiency that linearity provides,
in principle, non-linear methods could provide performance
improvements by better exploiting dependencies present in
the data.

The discussion above suggests the pursuit of nonlinear
generalizations of PCA, ICA and their fixed-basis versions,
DCT and wavelets, respectively. In [1], [3], the following
families of nonlinear generalizations of feature extraction
transforms were reviewed: (i) kernel and spectral techniques
such as kernel-PCA, kernel-ICA or Local Linear Embed-
ding (LLE) [36]-[38], (ii) neural networks and autoen-
coders [39]-[42], and (iii) techniques based on curvilinear
features [1], [3], [13], [34], [43]-[45]. In the adaptation of
these feature extraction ideas to image coding, there are

two major considerations of importance: first, the transform
must be invertible; and second, the computational com-
plexity and the memory consumption should be reasonable.
These requirements eliminate a large number of candidate
approaches. For example, many non-linear generalizations of
ICA are not invertible (for instance [34], [43], [46]). With
this in mind, the most promising approaches seem to lie
within the invertible techniques of families (ii) and (iii).

In [2] we explored lossless hyperspectral image coding
using curvilinear techniques (family iii) based on Principal
Polynomial Analysis (PPA) [1]. PPA exploits regression
to remove non-linear dependencies that remain after linear
feature extraction (e.g., after classical PCA). In [1] it was
shown that PPA achieves higher energy compaction and
statistical independence than PCA. However, in practical
hyperspectral coding, appropriate handling of side infor-
mation and the sequential error introduced by the integer
mapping dramatically penalize the coding gain. Additionally,
the computational complexity and memory requirements of
these non-linear transforms are even larger than those of the
original PCA, which is already demanding [13].

As a result, rather than using sophisticated non-linear data
dependent feature extraction, we focus on theoretically sub-
optimal but simpler traditional transforms (such as the
Discrete Wavelet Transform) while adopting predictive tech-
niques [47], [48] to exploit any remaining post transform
statistical dependence. This idea has been applied to en-
code residual errors in the spatial domain after exploiting
smoothness [49] in photographic images. In work more
closely related to that proposed here, predictive schemes
have been employed in the wavelet domain based on the
known relations of image coefficients [32], [50].

Building upon this, this paper introduces the Regression
Wavelet Analysis (RWA). This transform can be seen as
a predictive scheme to reduce redundancy after wavelet
analysis has been performed in the spectral dimension of
hyperspectral images. RWA shares the principal properties of
the DWT such as component scalability and low complexity,
while yielding excellent performance for lossless coding.
Specifically, RWA yields superior performance to that of
the best comparable spectral decorrelation techniques like
PCA. Significantly, RWA also overperforms the most recent
and most competitive prediction-based hyperspectral coding
technique, CCSDS-123 [51].

The paper is organized as follows. Section II describes
and formalizes the proposed RWA scheme and selection
of the regression model. Section III investigates several
relevant features of RWA, including its redundancy reduction
ability and computational complexity. In Section IV we
assess the coding performance achieved by RWA for images
corresponding to a wide range of remote sensing scenarios.
Finally, Section V puts forward our conclusions.
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II. REGRESSION WAVELET ANALYSIS

To establish the necessary notation, this section begins with
a review of the DWT. The discussion then proceeds to an
analytical description of the RWA and the corresponding
regression model. The section concludes by suggesting a
fast implementation for RWA.

A. Discrete Wavelet Transform

The discrete wavelet transform (DWT) provides a multi-
resolution decomposition of signals into approximation, V,
and details, W. In what follows, we consider the 1D DWT
in the component (spectral) direction of a multicomponent
image. The DWT can be computed with a pyramidal algo-
rithm based on convolution [52]. The algorithm is illustrated
in Fig. 1. We begin by considering a general formulation for
the DWT that maps real numbers to real numbers. We later
consider transforms that map integers to integers.

Scale J
\A
w

Scale 2
V2.
w2

Scale 1

V!

Ve w!
Figure 1. DWT decomposition with J levels.

Suppose that an original multicomponent image V° has
2z=2¢ components with each component having m spatial
samples. Then we write VOER™** and

VO=[Vo(1),...,V°(2)], V°(i)=VIeR™ "

Then the wavelet representation of VO with J levels for
1 < J <logy(z) is given by:

DWT(VO, J) = (VJa (Wj)lngJ) ’ (D

where the one level DWT decomposition of each VI~1 is
given by:

DWT(V/~1 1) = (V/, W/) 2
with
Vi(n) = h(2n—k)V/ (k) 3)
k
and
W (n) =Y g(2n —k)V/ ' (k). €5
k

In these expressions, h(n) and g(n) are the impulse re-
sponses of low pass and high pass analysis filters H

and G, respectively. At each scale or level j the sig-
nal Vi—1eRm™*(=277™") ig decomposed into the approx-
imation signal VJeR™*(>277) and the details signal
W cR™*(2277) at half resolution each. The approximation
signal V7 usually contains most of the information of
the previous signal VJ/—1, whereas the details signal W7
contains the information difference between V7~1 and V7.
The decomposition is usually repeated in cascade form on
the approximation signal V7 as shown in Fig. 1 and the
maximum number of iterations that can be performed is
d =log,y(2).

To reconstruct the original data, the DWT components are
passed through low and high-pass synthesis filters to obtain:

Vi~l(n) = DWT " ((V/,W7),1) =
S h(n—2k) VI (k)+ 3 g(n—2k)WJ (k). ®)
k k

If the original signal V° has z=2¢ components, then the
representations V7 and W7 have z-277 components each
and the DWT representation (V7/,(WJ)!SJ<7) has the
same total number of components as the original signal V.
With proper boundary handling procedures, the number of
components z need not be a power of two. In this case
2-277 is rounded up or down so that the total number of
components at each level is always the same.

Rather than the convolution implementation described
above, the DWT decomposition can be performed using
a lifting scheme [53], [54]. This implementation facilitates
the inclusion of rounding steps to obtain invertible trans-
forms that map integers to integers. Such transforms are
often called “reversible.” In the wavelet literature, it has
been demonstrated that the DWT approximately decorrelates
some stochastic and non stochastic processes [55]. This
means that any two distinct within-scale or between-scale
coefficients are approximately decorrelated, with the corre-
lation decaying as the separation between scales increases.

B. Regression Wavelet Analysis

The proposed Regression Wavelet Analysis (RWA) scheme
generalizes the discrete wavelet transform (DWT) by ap-
plying regression to tackle the redundancy that still re-
mains in the DWT domain. At each scale j, each details
component Wi(i) = W € R™*! is predicted from
the information contained in the approximation components
Y\jE R™*(277) ithin the same scale j. This prediction
W/ = fi(V7) is then removed to obtain:

R/ = W/ — WY, (©6)

A regression model f;(V7) is used to estimate the condi-
tional mean of each Wf €R™*1 (dependent variable) from
some or all the approximation components V7 eR™*(>277)
(independent variables). Later in this paper, we will propose
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three different models that address the issues concerning
estimation accuracy, computational complexity and spectral
scalability. Note that the prediction functions f might be
linear or nonlinear, and they might use a small or a large set
of neighbor coefficients. These possibilities for prediction
through regression lead to a range of particular implemen-
tations of RWA.

As illustrated in Fig. 2, the resulting RWA affects only
the details components at each level of the transform. The
approximation components are unchanged from those of the
DWT.

Scale J
Scale 2

55w
Scale 1 V2., w/ - R/

\& W2 > R?
VO w! - R!

Figure 2. RWA decomposition with J levels.

Following the notation of (Eq. 2) and (Eq. 1), the one level
RWA and the J level RWA become:

RWA (V771 1) = (VI R/) )
and
RWA(V’,J) = (V7 (R7)'=/=7) (8)

respectively.

The RWA transform is easily inverted. At each scale j the
estimate W7 is computed from V7. The approximation at
level j — 1 is then obtained by computing:

W/ =RI + Wi 9)
VIiTl=DWT ' (V/,W),1). (10)

By repeating in cascade for j = J,J-1,...,1, the re-
construction V© is achieved from its RWA representation
(VJ’(Rj)lgng) _

C. Regression Model

To find the estimate W7 of the details components W
based on the approximation components V7, three different
estimation models are discussed in this subsection. The first
model, called the Maximum model, is the most general. It
employs all of the approximation components from V7 in
the computation of the prediction of each details component
W. The second model is called the Restricted model.
For a given details component to be predicted, this model
determines a subset of components from V7 to include in
the prediction in order to preserve the component scalability
of the original DWT. The third and final model is called

the Exogenous model. This model has a low computational
cost, and is similar to the Exogenous model proposed for the
PCA [56] or for the orthogonal optimal spectral transform
(OST) [21], [22].

1) Maximum model

The Maximum model involves all k=z-277components of
the approximation V7€ R™* (27" in order to estimate each
details component W7 €R™ 1 iel={1,...,k=2-277}. The
form of each estimator is given by:

W/ =Bl + B, Vi+-+ B, V], VierR™ (1

Since all components of the approximation are included, this
form provides the most general linear estimator possible in
this formulation. In this model, the estimator parameters
(regression coefficients) Bj are found for each individual
image using the least-squares method [57] that minimizes
the sum of squares of the distances between the original
components and the estimated ones:

min: |[W7 — W ||,.

2) Restricted model

The Restricted model employs only a small number of
approximation components, with the goal of preserving as
much as possible the component scalability of the original
DWT. In other words, the number of transformed compo-
nents that need to be accessed to reconstruct an image com-
ponent should be as small as possible. In the DWT context,
the number of needed transformed components depends on
the width of the synthesis filters. As an example, consider the
Haar DWT. For this simple transform, only two transformed
components from level j are required to reconstruct one
approximation component at level 7 — 1, one approximation
component and one details component. More generally, for
a given DWT, a number |/,| of approximation components
Vier, and a number |I,| of details components Wy,
from level j are required to reconstruct an approximation
component VZ~1 at level j — 1. We denote this by:

Reconst.

(Vier, Wiy ot vyt

i€l
From the opposite point of view, a given single details com-
ponent W7 is involved in the reconstruction of ¢ components
at level j — 1. Let us then associate W? with these ¢ com-

ponents (Vﬁl_l, .. ,Vﬁt_ 1), and for each single component
Vfl_l we associate it with the set of the approximation
components (V7c; ) needed for its reconstruction:

3

j—1 Reconst. 7
Vrl } Vie[u
i Reconst.
J \
j—1 Reconst. j
VTt } Vi€I7't :
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For Haar filter this association is simple:
j—1 Reconst. j
V2i—1} — Vi

W] Reconst. : :
7 Vél_l} Reconst. Vf

Now, if in the regression model to predict W{ we in-
volve the approximation components V7 5, where J =
U(Lp1,...,1Ir¢) is the union of these ¢ sets of indices of
approximation components in the scale j, then this model
will largely preserve the scalability of the original DWT.
Note that the intersection N(l.1,..., ;) could be empty
depending on the wavelet filter used. It is beyond the scope
of this work to discuss the model that exactly preserves the
component scalability for any arbitrary filter. Nevertheless,
we propose a model that perfectly preserves the scalability
for Haar filter, with J={:}. It is given by:

W = fi[VI].

In this work we propose the following model for Haar,
involving V7 and its second and third-order terms:

Wi = 3,04‘/32,1\[5+,3572(V5)2+55,3(Vg)3-
The Restricted model preserves the component scalability
requirement of the original DWT by involving a restricted
number of components in the prediction model. An added
benefit due to the restricted number of components is a
reductionnof computational complexity. Higher-order terms
of V{ can be added to improve the predictive power.
Additional improvements may be had by adding more com-
ponents V7, 2> at the cost of a decrease in scalability and an

increase in complexity and side information corresponding
to the additional regression coefficients.

(12)

3) Exogenous model

The Maximum model employs a large number of components
in each estimator, and accurate estimation is expected. How-
ever, this large model can result in large computational cost
when computing the least squares solution for each image.
This method may also result in excessive side information
needed to be transmitted in order to inform the decoder of
the model parameters. Since each hyperspectral image from
the same sensor may have similar statistical relationships
among its components, the Exogenous model computes the
regression coefficients B] over a set of training images, and
then uses these coefficients for all new images that come
from the same sensor. As a consequence, the computational
cost of RWA is reduced considerably to roughly the same
as that of the DWT. Additionally, no side information needs
to be stored for each individual image. The model is given
by

Wi=f, [VI] =Bl o+ B, Vi+...+8 V], Vierm<.

4) Side information

Table I reports the side information for the three proposed
models of RWA in comparison with the side information
required for PCA, consisting of the 22 transform coefficients
and the z means used to center the data prior to transforma-
tion. At each level j, the prediction of each component W
requires 1+ z- 277 regression coefficients (ﬁfv) when using
the Maximum model (Eq. 11) and 4 coefficients when using
the Restricted model (Eq. 12).

Table I
SIZE OF THE SIDE INFORMATION. z IS THE NUMBER OF COMPONENTS
AND [ IS THE NUMBER OF WAVELET DECOMPOSITION LEVELS.

Model Number of z= 224
coefficients =8
RWA (Maximum) | % (1—5h)+2(1-%) | 16947
RWA (Restricted) 2z(1— ) 446
RWA (Exogenous) - -
PCA 2242z 50400

These three regression models are suggested to be used for
different —possibly overlapping— situations. The Maximum
model is suggested in most of the cases since it is expected
to give the most accurate estimation, though the regression
coefficients 3 are needed as side information. For situations
where the computation cost or the size of the side infor-
mation matter, the Exogenous model is suggested. Finally,
the Restricted model is suggested for those cases where
the computational cost matters or the spectral component
scalability is required.

D. Fast RWA

The ordinary least squares (OLS) method estimates the re-
gression coefficients with a complexity cost of O(mk?) [58],
[59], where k is the number of components used to form the
prediction and m is the number of spatial samples. In the
Maximum model k = z-277 at level J, where z is the number
of spectral components in the original image.The Restricted
model uses less input components to the predictors leading
to a reduced complexity O(mk?) (k’<k) depending on
the wavelet filter. For example, for the Haar DWT, £'=3
(Eq. 12). However, assuming that m>>z, the number of
spatial samples m will dominate the complexity. The fast
RWA proposed here addresses this problem by randomly
selecting a subset of m’=p-m samples (m’'<m). The least-
squares optimization is then carried out only on this small
dataset to obtain the regression coefficients. For images
with a large spatial dimension (m > z), the subsampling



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. Y, MONTH Z 2016 6

employed in the fast RWA has minimal impact on the
results. However, for images with small spatial dimension,
the Exogenous model may be a better choice, especially
when side information is considered.

III. RELEVANT PROPERTIES OF RWA

On the one hand, the redundancy reduction ability of RWA
for remote sensing imagery is a major advantage from the
fundamental point of view. On the other hand, from the ap-
plied perspective, component scalability and the possibility
of efficient integer representations are also major advantages
of RWA.

A. Reduction of Correlation and Mutual Information

Hyperspectral images usually exhibit significant redundancy
along the spectral dimension. The spectral transform aims at
exploiting this redundancy among components, so that they
can be coded independently. In this section we analyze the
effect of the transform on mutual information and correla-
tion. Mutual information (MI) is not limited to linear rela-
tions between variables (as is the case with correlation), but
it also takes into account eventual nonlinear relations [60].
As a result, mutual information is a more general description
of statistical relations than correlation. Mutual information
includes correlation and non-Gaussianity [61]. Therefore,
changes in mutual information may come either from better
decorrelation or also from removing higher-order statistical
relations.

Here we measure correlation and mutual information be-
tween the coefficients for the three more representative trans-
formations in this work: wavelets (Haar with eight decompo-
sition levels), PCA and the proposed RWA (Maximum model
using Haar filter). We have taken the Haar and PCA trans-
formations because they provide extreme cases of previous
work from the literature. In particular, the Haar transform
has low complexity and provides fine grain scalability, but
has modest compression performance. On the other hand,
the PCA provides superior compression performance at the
cost of high complexity and no scalability.

The following analysis employed the hyperspectral image
“Hawaii” (314368 spatial samples, 224 spectral compo-
nents). The matrices depicted as images in Fig. 3 rep-
resent the statistical relations between the coefficients of
transformed versions of the image. The left column of
matrices represent correlation while the right column of
matrices represent mutual information. Each row of matrices
corresponds to one (transformed) image representation. For
a given matrix, the element My, represents the quantity of
interest (correlation or mutual information) between the k-th
and [-th components.

The degree to which these matrices appear to be diagonal
has been used to describe the suitability of a domain for
scalar (coefficient-wise) coding [33], [62], [63]. Specifically,
better representations for transform coding are those with
small off-diagonal values. To quantify this property, the
average value of the off-diagonal coefficients are depicted
in the figure. The non-diagonal nature of the matrices in the
top row shows that the original spectral domain is highly
unsuitable for scalar coding. Subsequent rows indicate that
significant improvements can be obtained via the application
of transforms.

To compare the residual correlation that exists after ap-
plication of the three transforms, we turn our attention to
the left hand side of the figure. As can be seen there,
the DWT provides significant decorrelation. However strong
correlations still exist among and between the components of
certain subbands in the transform domain. PCA achieves sig-
nificantly better decorrelation than the DWT. By definition, it
is designed to diagonalize the covariance matrix. However in
practical applications total decorrelation is hard to achieve
due to implementation constraints (e.g., reversible integer
to integer implementation) and the difference between the
sample and the actual covariance matrices. Thus, some
residual correlation is still present. It can be seen that after
applying RWA (Maximum model), almost full decorrelation
is reached in the transform domain, as evidenced by the
improved diagonal appearance and the smaller off-diagonal
average. This illustrates the clear advantage of RWA over
the usual Haar DWT and even a small advantage over PCA.
Similar comments can be made for mutual information,
as reported in bits, in the right side of the figure. These
observations serve to explain why RWA obtains superior
compression results compared to the usual DWT, as well as
comparable performance to that of PCA. These statements
are verified in the compression results presented below.

Note that mutual information can be expressed as a sum of
a correlation-dependent index, a global negentropy, and a
marginal negentropy [61]. Reducing the correlation implies
reducing the mutual information in most cases. However,
given the invariance of global negentropy to linear trans-
forms, once the correlation has been removed (through
PCA) and the marginal negentropy (or sparsity) has been
maximized (through ICA), the global negentropy can only
be reduced through nonlinear means. The results in Fig. 3
obtained using linear regression— suggest that the predic-
tion in RWA increases the sparsity of the representation.
More sophisticated (nonlinear) regression techniques could
be included in the RWA framework (functions f; in Eq.
6) to reduce the global negentropy at the cost of training,
complexity and side information.
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Correlation matrix

ORIGINAL (spectral) domain
Avg corr = 0.2735

Avg MI = 0.7698

56|

11

¥

224, BE—
1

Haar-WAVELET domain
Avg corr = 0.0996 Avg MI = 0.2595

PCA domain
Avg corr = 0.0005 Avg MI = 0.0067

RWA domain

Avg corr = 0.0001 Avg MI = 0.0011

112]

224!

2241 224 1 56

56 112 112

224

Figure 3. Correlation and mutual information matrices (left and right
columns, respectively) for the coefficients of an illustrative hyperspectral
image, "Hawaii” with 224 spectral bands. Each row of the figure corre-
sponds to a different representation domain. The blue-to-red colormap in-
dicates low-to-high dependence values. Average values are computed using
the magnitude of the off-diagonal elements. MI is given in bits. Matrices
in each column are normalized in the same way for fair comparison. For
the purpose of visualizing the small off-diagonal values, their fourth roots
are displayed.

Mutual Information matrix g ge,crsiple Integer RWA and Dynamic Range

For lossless coding, it is required that the redundancy re-
duction transform maps integer coefficients to integer coeffi-
cients. For wavelets, the integer versions can be achieved by
applying the lifting scheme [64], [65]. For instance, integer
versions of Haar filter are computed and reversed as follows:

W/ =vi v
Forward: { * 24 2i—1 (13)
Vi=Vy+ L%WfL
v =V |[1wW!]
R . 2i—1 i 2.V 14
everse { Vil =W 4+ Vi (14

Given that, we propose a reversible integer version of RWA
based on an integer DWT decomposition (VJ,W]>, and

a quantized estimation removal R© = W’ — Q(WY).
The scalar quantization is here performed through a simple
rounding operation. The reversible integer RWA representa-
tion is then given by:

RWA (V°, J) = (V", (ﬁ”)lSJ’SJ) ‘

In general, RWA can be based on any wavelet transform.
Nevertheless, as this paper focuses on lossless coding, and
for faster implementation we focus exclusively on RWA
based on the integer Haar transform (Eq. 13). This transform,
besides its simplicity, provides another advantage, which
consists of largely preserving the dynamic range of the
original domain. Note that with the integer Haar filter, the
dynamic range can be expanded by only 1 bit in the details
signal. In some applications, large dynamic range expansion
can lead to serious problems, especially for existing devices
or systems that support only a limited bitdepth [66].

C. Component Scalability and Computational Cost

Table II reports the scalability of several spectral transforms
in terms of the number of transformed components required
to reconstruct a single original component. For the Restricted
model, the dependencies for RWA are the same as for the
wavelet transform (Haar in this case).

The computational cost of RWA is dominated by the esti-
mation of regression coefficients 8 = (VTV)~'VTW and
the generation of the predictions W=8V. In the case of
the Exogenous model, estimation of 3 is performed off-
line and does not contribute to the complexity of encoding.
The computational cost of RWA is at its highest when
using the Maximum model. However, the cost of other
efficient transforms such as Principal Component Analysis
(PCA) is still significantly higher. Furthermore, integer im-
plementation of the lossless PCA is usually performed by a
factorization of the transform matrix [67], [68]. The resulting
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Table 11
COMPONENT SCALABILITY FOR DIFFERENT TRANSFORMS. THE
NUMBER OF REQUIRED TRANSFORM COMPONENTS TO RECONSTRUCT
ONE SINGLE ORIGINAL COMPONENT. z IS THE NUMBER OF
COMPONENTS AND [ IS THE NUMBER OF TRANSFORM LEVELS

Method Requirement | z= 224
components =3
RWA (Maximum model) z(1— o) 196
RWA (Restricted model) [+1 4
RWA (Exogenous model) z(1—5) 196
PCA z 224
DWT 5/3 (even component) 20+ 1 7
DWT 5/3 (odd component) 3l+2 11
Haar I+1 4

implementation is typically not computationally efficient and
does not offer a high degree of parallelization due to the
recursiveness of the associated reconstruction process.

Table III details the computational cost of RWA in Floating-
point Operations (FLOPs), Fig. 4 compares the compu-
tational cost of different transforms applied to a typical
uncalibrated image from the AVIRIS sensor.

o
@]
|
[T
Y
o
—_
()
Q
€
=]
=2
PCA RWA FastRWA RWA  RWA DWT5/3 Haar
Lossless (Max) p=0.01 (Exog) (Rest)
Figure 4. Cost comparison in FLOPs for different transforms applied to

the uncalibrated Yellowstone image with 224 spectral components and a
spatial resolution of 512 X 680. The values reported for PCA and DWT
5/3 are from [18].

IV. EXPERIMENTAL RESULTS

This section presents experimental results for the proposed
RWA applied to lossless coding of hyperspectral images.
Comparisons are provided with the most prominent methods
in the state of the art.

A. Dataset and Coding Pipeline

Experimental evaluations were conducted using a set of
images from three different sensors: AVIRIS [69], HY-
PERION [70] and IASI [71]. Table IV provides detailed
information about these images. As described in the table,
the AVIRIS images include 5 uncalibrated and 5 calibrated
images corresponding to 5 scenes in Yellowstone. These
images have a bit-depth of 16 bits per pixel per component
(bpppc). Also included are two uncalibrated AVIRIS images
(Maine and Hawaii) each having a bit depth of 12 bpppc.
All of the AVIRIS images have 224 spectral components
and 512 lines. The widths of these images vary between
614 and 680. The Hyperion sensor produces images with 242
spectral components each having a bit-depth of 12 bpppc and
a width of 256. The number of lines varies from image to
image. The Infrared Atmospheric Sounding Interferometer
(IASI) is composed of a Fourier transform spectrometer
and an Integrated Imaging Subsystem (IIS). IASI Level 0
images have 8359 spectral components, each having 1528
lines of width 60. Of Level 1 IASI images are of size
8461 x 1530 x 60.

The proposed coding system pipeline is shown in Fig. 5.
A one-dimensional transform is applied in the spectral
dimension followed by 2-D JPEG2000 compression of each
resulting transformed component. To this end, the Kakadu
software implementation of JPEG2000 is employed with five
levels of reversible 2-D DWT 5/3. When a wavelet-based
transform (including the proposed RWA) is employed in the
spectral dimension, the maximum possible number of levels
([log,(2)]) are employed. For comparison with RWA,
experimental results are provided for four other reversible
spectral transforms, including the Haar and 5/3 wavelet
transforms, as well as PCA and POT (Pairwise Orthogonal
Transform a low-complexity approximation of PCA [20]).
Also for the purpose of comparison, experimental results
are reported for the state-of-the-art predictive methods M-
CALIC [72] and CCSDS-123 [51]. Rather than performing
predictions in the transform domain as in the case of RWA,
these methods perform prediction in the original (pixel)
domain, and are of particular interest since both are deemed
appropriate for on-board hyperspectral image coding [73].

1-D Spectral JPEG2000

- ectral .

Image — Tranls)form ] 5/3 DWT + —| Bitstream
Entropy coding

Figure 5. Proposed coding pipeline: 1-D spectral transform followed by

JPEG2000 standard, which includes a 2-D spatial DWT followed by bit-
plane coding.

As noted in the paragraph above, 5 levels of spatial DWT are
applied as part of the 2-D JPEG2000 coding process applied
to the transformed components. This was found to yield good
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Table IIT
COMPUTATIONAL COMPLEXITY IN FLOPS FOR RWA. z IS THE NUMBER OF SPECTRAL COMPONENTS, m IS THE NUMBER OF SAMPLES PER
COMPONENT, AND [ IS THE NUMBER OF WAVELET DECOMPOSITION LEVELS. k; IS THE NUMBER OF DETAILS COMPONENTS EMPLOYED IN THE
PREDICTION AT LEVEL 3.

| Operation ‘

Floating-point operations (FLOP) for lossless RWA ‘

Integer Haar

8(1 — 5r)mz

B=(VV)"IVITW

Sict (2m = 1) (ki + 1) +(ki + 1)34+(5) (ks + 1) [(2m — 1)+(2k; + 1)]

W =8V

25| (2ki — hmZ

Apply and Remove

2m(z — 1)

Table IV
DATASET INFORMATION FOR AVIRIS, HYPERION AND IASI SENSORS.
2z IS THE NUMBER OF SPECTRAL COMPONENTS, y IS THE HEIGHT AND x
IS THE WIDTH.

Corpus Image
AVIRIS (Uncal) Yellowstone, sc: 0, 3, 10, 11, 18
2=224, y=512 Hawaii (z=614)
=680 Maine
AVIRIS (Cal) Yellowstone, sc: 0, 3, 10, 11, 18
2=224, y=512, x=677
Hyperion (Uncal) ErtaAle (y=3187)

2=242 Lake Monona (y=3176)

=256 Mt. St. Helens (y=3242)
Hyperion (Cal) Agriculture (y=3129)

2=242 Coral Reef (y=3127)
r=256 Urban (y=2905)

IASI LO 1: 20091007093900Z
Level 0 LO 2: 20091007143900Z
2=8359 LO 3: 20100319050300S6
y=1528 LO 4: 20120718075700Z

=060 LO 5: 20130116133300Z

LO 6: 20130916080300Z

IASI L1 1: 20130816230553Z
Level 1 L1 2: 20130817004753Z
2z=8461 L1 3: 20130817041457Z
y=1530 L1 4: 20130817055657Z

=060 L1 5: 20130817073857Z

performance for all images and all transformed techniques
with a small number of notable exceptions. For the for
AVIRIS and IASI images, the PCA and RWA (Maximum
Model) spectral transforms were found to be so efficient
that no spatial DWT was necessary. In fact, in these cases,
application of the spatial DWT resulted in slightly inferior
performance as compared to omitting the spatial DWT. For
this reason, 0 levels of spatial DWT were performed as part
of the 2-D JPEG2000 compression process in these cases.

Hyperion and IASI images are tall and narrow. That is, they
have a large number of lines compared to columns. For this
reason, experiments were performed on versions of these
images that were spatially rotated 90° prior to compression.

In the following section, results are reported for the rotation
(0° or 90°) that provided the best performance, algorithm
by algorithm. Specifically, for the uncalibrated Hyperion
images, the 90° rotation was used for all algorithms except
M-CALIC. For the calibrated Hyperion images, the 90°
rotation was used for all algorithms except M-CALIC and
CCSDS-123. For the IASI images, the 90° rotation was
only used for the POT-based algorithm. In most cases, the
differences between rotating and not rotating are minor.
On the other hand, for CCSDS-123 and the POT-based
algorithm, the differences can be significant. The POT is
a line-based transform that produces side information for
each line of the input image. Hence, the rotation results in
a small number of lines giving rise to a reduced amount of
side information.

For reproducibility of results, basic Matlab source code for
our implementations of PCA, Haar, DWT 5/3 and RWA
spectral transforms is available online at [74].

B. Results

Table V provides lossless coding results for all systems under
test in terms of the bitrate, in bits per pixel per component
(bpppc). All necessary side information is included in the
results reported in the table. The compression efficiency of
each algorithm can be appreciated by observing the degree
to which its resulting bitrate falls below the bit depth of the
original image (e.g., 12 or 16 bpppc).

It can be observed that, overall, the proposed RWA outper-
forms the state-of-the-art methods included in the compar-
ison. RWA, in one of its modalities, is the best in three
out of the six data subsets (three sensors, calibrated and
uncalibrated). When it is not the best, it yields results
within 0.1 bpppc of the best technique. The worst such
cases occur for Hyperion uncalibrated images that tend to
have streaking artifacts due to the nature of the pushbroom
sensors [70]. More detailed observations are now provided
for each specific sensor.

For both uncalibrated and calibrated (radiance) AVIRIS
images, on average, RWA (Maximum Model) outperforms
PCA and POT by, respectively, more than 0.1 and 0.5 bpppc.
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Table V
LOSSLESS BITRATE FOR HAAR, DWT 5/3, POT, PCA AND RWA SPECTRAL TRANSFORMS WITH JPEG2000; AND M-CALIC AND CCSDS-123
CODING TECHNIQUES IN TERMS OF BITS PER PIXEL PER COMPONENT (BPPPC). THE LOWER THE BITRATE, THE BETTER THE PERFORMANCE.

Image / Transform or | Haar DWT POT PCA RWA RWA Fast RWA M- CCSDS
coding technique 5/3 (Re- (Maxi- RWA (Exoge- CALIC | -123
stricted) mum) (p) nous)
AVIRIS Uncalibrated (p = 0.01)
Yellowstone 00 7.52 7.16 6.64 6.05 6.67 6.07 6.11 Train 6.34 6.40
Yellowstone 03 7.37 7.03 6.46 5.88 6.50 5.90 5.94 5.95 6.16 6.26
Yellowstone 10 6.28 6.11 5.77 5.44 5.81 5.46 552 5.55 5.54 5.66
Yellowstone 11 6.91 6.63 6.24 5.74 6.44 5.76 5.81 5.81 5.93 5.93
Yellowstone 18 7.52 7.15 6.70 5.95 6.76 597 6.01 6.05 6.35 6.50
Average 16 bpppc 7.12 6.82 6.36 5.81 6.44 5.83 5.88 5.89 6.06 6.15
Maine 3.52 3.43 3.09 3.22 3.08 2.69 2.71 Train 2.89 2.77
Hawaii 3.37 3.27 2.98 3.20 2.95 2.55 2.56 2.82 2.84 2.70
Average 12 bpppc 3.44 3.35 3.03 3.21 3.01 2.62 2.63 2.68 2.86 2.73
Global Average 6.07 5.83 541 ‘ 5.06 ‘ 5.46 ‘ 491 ‘ 4.95 ‘ 4.97 ‘ 5.14 5.17
AVIRIS Calibrated (Radiance, p = 0.01)
Yellowstone 00 5.13 4.75 4.45 3.85 4.45 3.74 3.73 Train 4.13 3.90
Yellowstone 03 5.00 4.64 4.30 3.74 4.31 3.58 3.60 3.63 3.98 3.76
Yellowstone 10 4.01 3.84 3.66 3.40 3.65 3.18 3.20 3.25 3.39 3.35
Yellowstone 11 4.55 4.25 4.08 3.67 4.06 347 3.49 3.52 3.73 3.58
Yellowstone 18 5.12 4.71 4.50 3.80 4.50 3.65 3.67 3.72 4.10 3.92
Average 16 bpppc 4.76 4.44 4.20 3.69 4.20 3.52 3.54 3.57 3.87 3.70
Hyperion Uncalibrated (Rotated 90°, p = 0.01)
Erta Ale 4.40 4.44 4.21 4.49 4.26 4.46 4.47 Train 4.76 4.24
Lake Monona 4.52 4.55 441 4.62 4.46 4.63 4.64 4.63 4.92 4.36
Mt. St. Helens 4.57 4.57 431 4.54 4.40 4.52 4.53 4.52 4.83 4.28
Average 4.54 4.56 4.31 4.55 4.38 4.54 4.55 4.54 4.83 4.29
Hyperion Calibrated (Rotated 90°, p = 0.01)
Agricultural 6.20 6.35 5.92 5.88 5.55 5.44 5.44 Train 5.44 5.73
Coral Reef 5.54 5.80 5.44 553 5.19 5.11 5.11 5.18 5.05 5.47
Urban 6.29 6.39 5.99 5.89 5.58 5.46 5.46 5.50 5.44 5.75
Average 6.01 6.18 5.78 5.76 5.44 5.34 5.34 5.37 5.31 5.65
IASI Uncalibrated (Level 0, p = 0.1)
IASILO 1 3.00 3.02 2.87 - 2.85 2.35+0.9| 2.38+0.9| Train 2.89 2.90
IASI LO 2 2.99 3.02 2.86 - 2.84 2.34+09| 2.37+09| 2.39 2.87 2.88
TAST LO 3 2.98 3.01 2.86 - 2.84 2.35+0.9| 2.38+0.9| 2.40 2.87 2.90
IASI LO 4 3.03 3.05 2.89 - 2.87 2.35+09| 2.38+09| 2.41 291 291
IASILO 5 2.96 2.99 2.86 - 2.89 2.35+0.9| 2.38+0.9| 2.40 2.86 2.90
IASI LO 6 3.06 3.08 2.90 - 2.89 2.37+09| 2.39+09| 2.41 2.92 291
Average 3.00 3.02 2.87 - 2.85 2.35+09| 2.38+0.9| 2.40 2.88 2.90
IASI Calibrated (Level 1, p = 0.1)
IASIL1 1 7.37 7.46 7.12 7.22+2.41 7.10 6.42+0.9| 6.45+0.9| Train 6.86 6.60
IASI L1 2 7.37 7.09 7.12 7.05+2.4 7.10 6.41+09| 6.44+09| 6.48 6.88 6.61
IASI L1 3 7.38 7.11 7.14 - 7.13 6.42+0.9| 6.45+0.9| 6.49 6.88 6.59
IASI L1 4 7.33 7.06 7.12 - 7.10 6.43+09| 6.46+0.9| 6,50 6.87 6.56
IASIL1 S 7.40 7.12 7.15 - 7.13 6.43+0.9| 6.46+0.9| 6.50 6.87 6.60
Average 7.37 7.16 7.13 7.13+24| 7.11 6.42+09| 6.45+09| 6.49 6.87 6.59
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RWA also outperforms the predictive methods M-CALIC
and CCSDS-123 by more than 0.2 bpppc. When compared
with the HAAR and DWT 5/3 wavelet spectral transforms,
the coding gain of RWA is larger than 1.2 and 0.9 bpppc,
respectively.

For uncalibrated Hyperion images, the coding performance
of Haar, DWT 5/3, PCA and RWA (Maximum Model) is very
similar. CCSDS-123 provides the best results, followed by
POT and RWA (Restricted Model), which benefits from the
2-D spatial transform more than PCA or RWA (Maximum
Model). In this case, RWA (Restricted Model) provides
improvement over the (usual) wavelet spectral transforms
by about 0.2 bpppc with a low computational cost. For cal-
ibrated Hyperion images, RWA (Maximum model) achieves
a coding performance similar to M-CALIC and outperforms
POT and PCA by around 0.4 bpppc. It outperforms CCSDS-
123 by 0.3 bpppc and improves over the wavelet transforms
by more than 0.7 bpppc.

For TASI images, which have more than 8000 components,
lossless PCA encounters two serious problems. First is a
huge increment in computational cost, which results in an
implausible execution time. Second is a huge increase in
the required side information. For instance, the PCA matrix
for IASI Level 1 images has a size of 8461 x 8461, while
the spatial dimension is only 1530 x 60, implying a side
information of 2.4 bpppc. For this reason, results for PCA
applied to TASI images are only reported for a couple of
examples. On the other hand, RWA (Maximum Model) does
not suffer from extreme complexity, but side information
plays a non-negligible role. This problem can be solved by
using RWA (Exogenous model). As noted in the table, the
results for this method were obtained using only one training
image per sensor to learn the regression coefficients. For
IASI Level 0 images, RWA Exogenous model outperforms
POT, M-CALIC and CCSDS-123 by about 0.4 bpppc. It is
superior to the Haar and 5/3 wavelet transforms by about 0.5
bpppc. For IASI Level 1 images, RWA Exogenous model
achieves competitive coding results compared to CCSDS-
123, while outperforming PCA, POT and wavelets by more
than 0.5 bpppc and M-CALIC by about 0.2 bpppc.

With regards to the results for calibrated vs. uncalibrated
images, we note that for the AVIRIS sensor, the calibrated
images yield better performance, while for Hyperion and
IASI, we find the opposite situation, where uncalibrated
images achieve better performance. Similar results were
observed in [20] for AVIRIS and Hyperion.

It is worth pointing out that Fast RWA is a straightforward
approach to reduce the cost of computing the regression
coefficients. For the AVIRIS and Hyperion sensors, only the
1% of pixels were used for this computation, while achieving
a performance almost identical to that obtained when using
100% of the pixels. For the IASI sensor, 10% of the pixels

had to be used in order to approximately maintain the same
performance due to the low degree of freedom (m — z — 1).
It is also worth highlighting the fact that RWA Exogenous
model eliminates the need for side information as well as
the cost of computing the regression coefficients online.

V. CONCLUSIONS

Remote sensing is becoming increasingly widespread and
finds application in a growing number of fields. At the
same time, the size of transmitted remote sensing data has
increased and is foreseen to continue increasing, which begs
for efficient ways to improve its storage and dissemina-
tion. Data compression plays a key role in this regard.
In particular, lossless data compression has seen numerous
recent advances, spanning prediction-based to transform-
based techniques. In this regards, much work has focused
on the spectral dimension of hyperspectral images. Principal
Component Analysis usually provides the best performance
among transform-based techniques, but entails some draw-
backs. Several approaches have been proposed to partially
tackle these drawbacks while, at the same time, yielding
competitive coding performance.

In this paper we introduce a novel spectral redundancy re-
duction transform that builds upon the low-complexity Haar
wavelet transform and exploits the remaining redundancy
among wavelet-transformed components through regression
analysis. The suggested Regression Wavelet Analysis (RWA)
is capable of estimating, via regression, the details com-
ponents from the approximation components resulting from
the wavelet transform. RWA allows for an integer-to-integer
implementation and perfect reconstruction, and thus, for
lossless compression.

The regression model can be devised to account for finer
estimation accuracy, for finer spectral component scalability,
or for lower computational complexity, which give rise to the
Maximum model, the Restricted model, and the Exogenous
model, respectively. The first model involves all the approx-
imation components in the regression; the second model
involves only the approximation components as required to
maintain the same component scalability as the baseline
Haar wavelet transform; while the third model computes
the regression coefficients based on training data from the
appropriate hyperspectral sensor and employs the learned
coefficients to all the other images in the same sensor.
Yet another variant is a Fast RWA implementation, which
performs a fast prediction using the least squares methods
based only on spatially subsampled data, reducing the time
to compute the regression coefficients.

Extensive experimental results for lossless compression of
images from three different popular and widely used hy-
perspectral sensors have been carried out. Specifically, both
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calibrated and uncalibrated images have been employed from
the airborne AVIRIS sensor, as well as the satellite-based
Hyperion and IASI sensors. The resulting coding perfor-
mance suggests that RWA yields, overall, the best achieve-
ment as compared to other spectral transforms such as
Haar, DWT 5/3, PCA or its low-complexity approximation
POT. RWA also provides superior performance compared to
other prominent prediction-based coding techniques like M-
CALIC and the current CCSDS-123 standard.

To summarize, RWA provides a trade-off between com-
putational complexity and coding performance that makes
it an appealing approach for remote sensing lossless data
compression. It offers additional desirable features such as
limited dynamic range increase and superior component
scalability.
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Abstract

Regression Wavelet Analysis (RWA) is a novel wavelet-based scheme for coding hyperspectral im-
ages that employs multiple regression analysis to exploit the relationships among spectral wavelet-
transformed components. The scheme is based on a pyramidal prediction, using different regression
models, to increase the statistical independence in the wavelet domain. For lossless coding, RWA
has proven to be superior to other spectral transform like PCA and to the best and most recent
coding standard in remote sensing, CCSDS-123.0. In this paper we show that RWA also allows
progressive lossy-to-lossless (PLL) coding and that it attains a rate-distortion performance superior
to those obtained with state-of-the-art schemes. To take into account the predictive significance of
the spectral components, we propose a Prediction Weighting scheme for JPEG2000 that captures
the contribution of each transformed component to the prediction process.

1 Introduction

Remote-sensing data has become enormously important for a wide range of applications
in many different fields of Earth’s observation thanks to the technological evolution of
optical sensors over the last years. As recent sensors can cover large areas of the Earth’s
surface, producing images with unprecedented spectral and spatial resolution, the need for
efficient coding techniques to improve the capabilities of storage and transmissions emerges
naturally. While there are some scenarios where only lossless coding is acceptable, there
are other applications where lossy coding is indispensable because only a limited amount of
data can be transmitted. Techniques allowing progressive lossy-to-lossless coding are thus
gaining importance in remote-sensing as they provide similar rate-distortion performance
to pure lossy methods at low bitrates, and also a competitive coding performance in the
lossless regime.

Most efficient coding schemes for remote-sensing data include decorrelating transforms
to exploit the spatial correlation between adjacent pixels within a component and the spec-
tral correlation between adjacent components. Some schemes apply 3D transforms [1, 2],
commonly based on wavelets, to handle the joint correlation in both spatial and spectral
dimensions. Other somewhat different schemes apply separately a 1D spectral transform
followed by a 2D spatial transform, using the most convenient one in each dimension. Gen-
erally, the correlation removal along the spectral dimension is considered critical in coding
hyperspectral images due to its significant impact on the coding performance [3].

In particular, Principal Component Analysis (PCA) is the optimal decorrelating trans-
form for Gaussian sources [4,5]. It is widely applied for multicomponent images as a



spectral transform since it also yields an excellent coding performance. However, PCA is a
data-dependent transform, entailing the need to compute it for each individual image before
its application. As a consequence, its computational complexity is substantial due to the
covariance matrix calculation, the extraction of eigenvectors, the matrix factorization and
the integer mapping (integer implementation is needed for lossless coding [6, 7]). Hence,
in scenarios where the data has a significant size in the spectral dimension, such as IASI
images —with more than 8000 components—, PCA and its integer implementation are not
feasible. Additionally, PCA is not a component-scalable transform, i.e., the recovery of
any single image component depends on every transformed component.

Since the complexity reduction of PCA is demanded, a number of approaches have been
proposed, including (i) approaches based on spatially and/or spectrally sub-sampling the
dataset and estimating the covariance matrix using a reduced subset of coefficients [3, 8];
(i1) approaches based on divide-and-conquer strategies to approximate the PCA with a
reduced computational complexity and some amount of component scalability [9, 10]; and
(ii1) approaches that consist in learning the transform on a set of images of one particular
sensor and apply the learned transform on new images from the same sensor [11]. The
the techniques of family (i) only alleviate the complexity of computing the covariance
matrix while other complexity sources still remain, such as the integer mapping for lossless
coding. On the other hand, the techniques of families (ii) and (iii) might produce significant
deterioration in the coding performance compared to the full-complexity PCA.

Beyond computational issues, another limitation of classical PCA is its linear nature.
Even though linear PCA yields competitive performance in a wide range of applications
because of its invertibility and energy compaction, its efficiency is hampered by data ex-
hibiting non-linear relationships. Thus, despite the simplicity and efficiency that linearity
provides, non-linear methods could provide performance improvements by better exploit-
ing data dependencies. Recently, several non-linear generalization of PCA have been pro-
posed to deal with data of non-linear nature [4, 12, 13]. In the adaptation of these non-linear
methods to image coding, there are two major considerations: first, the transform must be
invertible; and second, the computational complexity and the memory consumption should
be reasonable. These two requirements eliminate a large number of candidate approaches.

In [14] we explored lossless hyperspectral image coding using curvilinear techniques
based on Principal Polynomial Analysis (PPA) [13]. In that work, it was shown that PPA
achieves higher energy compaction and statistical independence than PCA. However, in
practical hyperspectral image coding, appropriate handling of side information and the se-
quential error introduced by the integer mapping dramatically penalize the coding gain.
Additionally, the computational complexity and memory requirements of these non-linear
transforms were even larger than those of the original PCA, which is already computation-
ally expensive [4].

Alternatively, rather than using sophisticated non-linear methods for remote-sensing
coding, we focus here on theoretically suboptimal but simpler traditional transforms (such
as the Discrete Wavelet Transform) while adopting predictive techniques [15, 16] to exploit
any remaining post transform statistical dependence.

Following this line of work, in [17] we introduced the Regression Wavelet Analysis
(RWA) transform for lossless coding. This transform can be seen as a predictive scheme to
reduce redundancy after wavelet analysis has been performed in the spectral dimension of



hyperspectral images. RWA shares the principal properties of the DWT such as component
scalability and low complexity, while yielding excellent performance for lossless coding.
Specifically, RWA yields superior performance compared to that of the best spectral decor-
relation techniques like PCA, and also compared to the most recent and most competitive
prediction-based hyperspectral coding technique, CCSDS-123.0 standard [18].

In this paper, we extend the benefits of RWA to progressive lossy-to-lossless coding
of remote-sensing data by considering the predictive significance of the transformed com-
ponents. To address this issue, we propose a weighting scheme that assigns a weight to
each spectral component depending on its contribution to the prediction process. Weight-
ing strategies are useful to improve the quality of the recovered data by allocating more
bits to the significant coefficients for an algorithm design [19]. Unlike pure lossless cod-
ing, where it is not necessary to consider these weights to achieve the aforementioned
performance when using RWA, in progressive lossy-to-lossless the loss of information at
intermediate or low bitrates may have an error propagation effect for coding schemes based
on pyramidal prediction like RWA.

This paper is organized as follows. Section 2 introduces briefly the RWA algorithm and
the regression model. Section 3 puts forward the proposed Prediction Weighting scheme.
Section 4 reports the experimental results. Finally, section 5 concludes.

2 Regression Wavelet Analysis

This section begins with a review of the DWT, providing the necessary notation. It then
goes on to describe the Regression Wavelet Analysis algorithm and the regression model.
2.1 Discrete Wavelet Transform

Let us suppose that an original multicomponent image V° has =27 spectral components
with each component having m spatial samples. Then we write V? € R™*# and

VO=[V°(1),...,V°(2)], V°4)=V]eR™"
The wavelet representation of VO with J levels, for 1 < J < log,(2), is given by
DWT(V’,J) = (V/, (W/)!sis7) | (1
where the one level DWT decomposition of each V7~ is given by
DWT (V' 1) = (V/, W) 2)

At each scale or level j the signal V’ —LeRm* (=271 §g decomposed into the approxi-
mation signal V/€R"*(*27") and the details signal W7€R™*(>2™") at half resolution each.
The approximation signal V7 usually contains most of the information of the previous sig-
nal V71, whereas the details signal W contains the information difference between V/~!
and V7. The decomposition is usually repeated in cascade form on the approximation
signal V7 as shown in Fig. 1.
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Figure 1: DWT decomposition with J levels.

2.2 Regression Wavelet Analysis

The Regression Wavelet Analysis (RWA) scheme generalizes the discrete wavelet trans-
form (DWT) by applying regression to tackle the correlation that still remains in the DWT
domain. At each scale j, each details component W/ (i) = W*Z € R™*! is predicted from
the information contained in the approximation components V7 € R™*(27) within the
same scale j. This prediction \/7\\7{ = f;(V7) is then removed to obtain a residual

R/ = W/ — W/, 3)

As illustrated in Fig. 2, the resulting RWA affects only the details components at each level
of the transform. The approximation components are unchanged from those of the DWT.

Scale J
Scale 2 VJ
Scale 1 V2 WJ4>RJ
W2 —f(v7)
_ V2)
\'4 w! R! I
—f(v"

Figure 2: RWA representation with J levels.

Following the same notation as in (Eq. 2) and (Eq. 1), the one level and the J level
RWA transform are denoted, respectively, as

RWA (V/71,1) = (VI RY) 4)
RWA (V. J) = (V7 (R/)"=7=7). (5)

The RWA transform is easily inverted. At each scale j the estimate Wi is computed from
V. The approximation at level j — 1 is then obtained by computing

W/ =R/ + Wi 6)
VTt =DWT™' ((V/,W/),1). (7)



In general, RWA can be based on any wavelet filter, nevertheless, as we focus on pro-
gressive lossy-to-lossless (PLL) coding, and for faster implementation, hereafter, we will
refer to RWA as the one based on integer Haar filter (S-transform) [20], which produces
integer coefficients (V7, W) with a quantized estimation removal R/ = W/ — Q(WY),
where the quantization is applied through a simple rounding operation.

2.3 Regression Model

Different prediction models have been proposed for RWA. The most general model is called
the Maximum model. It employs all of the approximation components from V7 for the
computation of the prediction of each details component WY. It is given by

Wi = fi[V] =Bl +BL VI +---+ B, V], VierR™. 8)

For the Maximum model, the regression coefficients ,@j are found for each individual
image using the least-squares method [21] that minimizes the sum of squares of the dis-
tances between the original components and the estimated ones, i.e.,

min: |[W? — WY||,.

Since Maximum model has a non-negligible computational complexity, to alleviate its
cost we resort to the application of an approach in line with those of family (iii) (see Sect. 1).

The proposed Exogenous model computes the regression coefficients BJ over a set of train-
ing images, and then uses these coefficients for all new images that come from the same
sensor. As a consequence, the computational cost of RWA for Exogenous model is reduced
considerably to roughly the same as that of the DWT. Additionally, no side information
needs to be stored for each individual image. The model is given by

Wi =i [VI] = Blo+ B, Vi+ -+ BL Vi, VIER™ ©)
3 Prediction Weighting Scheme

According to the RWA design, the residuals R’ not only contribute to reconstruct the details
components W/ (Eq. 6), but are also used to generate the estimates Wi~ in the next
inverse steps. As a result, the distortion introduced to a given residual component R{ at
scale ;5 will affect the reconstruction in all finer scales j — 1,--- , 1.

The Prediction Weighting scheme that we propose aims at emphasizing the contribution
of each spectral residual to the prediction process by assigning weights that capture the
predictive significance. These weights will be used as input values to JPEG2000 to control
the relative significance of the spectral components [19].

Consider the RWA representation (V”, (R7)'<7<”) at scale J. To invert the transform,
we need to generate the estimates (W7)'<i<7 used in (Eq. 6) and (Eq. 7). Let us analyze
how the residuals R7 of each level j contribute to the generation of these estimates. Given



that WY = f; [V7] and using (Eq. 7)
Wit =f [VIT] = £, [DWT ! (V/, W7)]
Wil =, [DWT—1 (Vj, Wi Rj)} . (10)
Applying (Eq. 10) for j — 2
W= §, [DWT*1 (VJ‘—l,VAVf—1 v RH)] . (11)
If we substitute (Eq. 10) in (Eq. 11)
iﬁfazzﬁ[DVVT*l(VT4,ﬁ[DVVT*1<VQ€Vj+IU)}+Iv—ﬂ}. (12)
By induction,
W! =/, [DWT ! (V2 f,[DWT ! (V...
-~fﬂDW@H%VﬂijﬂDWT*(V%ﬁﬂ+$vﬂ-nRﬁ}+Rﬂ}.am

From (Eq. 13) it can be seen that the generation of each estimate Wf at scale j requires
H1<k<J . j
THERSS T other words, each residual R} at

1<k<j—1

all the residuals of the coarser scales (R’“)
scale 7>1 is involved in the prediction of all the estimates (\/7\\7’“) in the finer scales
j —1,---,1. Additionally, the estimates WEeR™* (27" in each scale k are formed by
z - 27% components (Eq. 2).

Given that, let us consider a function N (-) that relates the residuals R’ with the number

of predictions in which it is involved, i.e., the number of components of WheRm*(27")

withl1 <k<j—1
} SV i > 1
N(R) = {7 2 (7)) it =1 (14)
0 Jf g =1

Then the relative proportion with respect to the overall number of components z will be

- N(R ot ifj>1
PN(R/) = L = =1 ’% j > . (15)
z 0 Jf g =1
We now define the weights for R/ as
. 1 .
WRY) = =t (16)

~ PN(RJ) — PN(Ri—1)

Finally, the approximation V”/ of RWA (in the case of applying the maximum possi-
ble number of levels J=1log,(z)) consists of only one component V’/€R™ ! which is
weighted by

W(V?) = 27, (17)

1<5<J

In this way, W(-) weights the transformed components <VJ , (RY) > by different

quantities, taking into account the predictive significance of each component and the com-
ponents of the previous scale. These prediction weights play a role similar to that of the
subband weighting factors in spatial or temporal wavelet transforms [19].



4 Experimental results

In this section we evaluate the RWA transform with the proposed Prediction Weighting
scheme (Weighted RWA) on a set of hyperspectral images from two different sensors: AVI-
RIS [22] and IASI [23]. For comparison purposes, we provide results for other reversible
spectral transforms including RWA without weighting, PCA and DWT 5/3.

The coding system pipeline is shown in Fig. 3 and illustrates the compression process.
The compared spectral transforms are first applied in the spectral dimension followed by
a 2D JPEG2000 compression, which may include a reversible 2D DWT 5/3 transform
with 5 levels in the spatial dimension and a bitplane-based entropy coding. The spatial
transform is not applied for PCA and RWA. In these cases, the spatial transform provides
no improvement, as most of the transformed components already have low energy. The
Kakadu software implementation of JPEG2000 has been used. For Weighted RWA, the
weights were introduced using the option Cweight.

Image —— 1D Spectral Transform }—»’ JPEG2000: 5/3 DWT + Entropy coding }—» Bitstream

Figure 3: 1D spectral transform followed by JPEG2000 standard.
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Figure 4: PLL Rate-Distortion for AVIRIS (radiance) with 224 spectral components, 512x677
spatial resolution and 16 bpppc bitdepth.

Figures 4, 5 and 6 provide the Rate-Distortion performance for the compared spectral
transforms. These figures provide the relation between the target bitrate, measured in bits
per pixel per component (bpppc) (including all required side information), and the recon-
struction quality, reported as Peak Signal-to-Noise Ratio (PSNR), measured in dB5.

As a general trend, Weighted RWA performs significantly better than RWA without
weighting for progressive lossy-to-lossless coding. Additionally, RWA without weighting
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Figure 5: PLL Rate-Distortion for AVIRIS (uncalibrated) with 224 spectral components and
512680 spatial resolution (512x614 for Hawaii). Bitdepth: 16 bpppc for Yellowstone and 12
bpppc for Maine and Hawaii.

is heavily affected by the error propagation at all bitrates (low, intermediate and high bi-
trates), which produces multiple plateaus in the Rate-Distortion performance. Weighted
RWA is also superior to the DWT 5/3 spectral transform, which has a performance similar
to that of the RWA without weighting. In comparison to PCA, the performance of Weighted
RWA for 16 bpppc AVIRIS calibrated (resp. uncalibrated) images is somewhat worse up
to a bitrate of 0.7 (resp. 2.8) bpppc; from then onwards, PCA falls clearly behind, with a
difference of over 8 dB at 3 (resp. 5) bpppc. For 12 bpppc AVIRIS uncalibrated images,
Weighted RWA is the most competitive spectral transform.

With regard to IASI images, as they have a large size in the spectral dimension (more
than 8000 components), reversible PCA results in a prohibitive computational cost due to
the recursiveness of the integer mapping [24]. For this reason, coding results for PCA on
IASI images are not reported. The results of Weighted RWA and classical RWA (without
weighting) are provided using the Exogenous model due to the non-negligible role of the

side information (coefficients 3). It is worth noting that the Exogenous coefficients Efk
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Figure 6: PLL Rate-Distortion for IASI images. IASI LO and L1 have 8359 and 8561 spectral
components, 1528 and 1530 lines respectively. The width for both is 60 columns.

were computed using only one training image from IASI Level 0 and another one from
IASI Level 1. The analysis of the coding performance of the Exogenous model for PLL
coding is similar to that reported before: Weighted RWA is clearly superior to RWA without
weighting and to DWT 5/3.

5 Conclusions

We proposed a Prediction Weighting scheme for progressive lossy-to-lossless coding of hy-
perspectral images with Regression Wavelet Analysis algorithm. The suggested weights are
able to capture the relative significance of the transformed spectral components in the pre-
diction process, minimizing the effect of error propagation and providing a steady quality
evolution. At a much lower computational complexity than reversible PCA, our proposal
yields the most competitive rate-distortion coding performance published to date.
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Abstract—The recently proposed Regression Wavelet Analysis
(RWA) scheme holds a great promise as a spectral transform
for compressing hyperspectral images due to its low complexity,
reversibility, and demonstrated superior coding performance.
The scheme is based on a pyramidal prediction, using multiple
regression analysis, to exploit statistical dependence in the wavelet
domain. For lossless coding, RWA has proven to offer better
performance than other spectral transforms like reversible PCA
and also better than the best and most recent lossless coding
standard in remote sensing, CCSDS-123.0. For progressive lossy-
to-lossless coding, RWA also yields improved performance as
compared to PCA. In this paper, we show that the RWA
parameters are unbiased for lossy coding, where the regression
models are used not with the original transformed components,
but with the recovered ones, which lack some information due to
the lossy reconstruction. As a byproduct, we also report that the
Exogenous RWA model, a variant of RWA where the employed
regression parameters have been trained using other images from
the same sensor, still provides almost identical performance to
that obtained by applying regression on the same image, thus
showing that hyperspectral images with large sizes in the spectral
dimension can be coded via RWA without side information and
at a lower computational cost.

I. INTRODUCTION

Regression Wavelet Analysis (RWA) is a novel predictive
scheme that we introduced in [1] to encode hyperspectral
images. The method exploits the residual dependence among
the data coefficients after wavelet analysis has been performed
along the spectral dimension. Specifically, RWA generalizes
the Discrete Wavelet Transform (DWT) by employing multiple
regression analysis within a pyramidal scheme to tackle the
dependency that still remains in the DWT domain. In the
RWA scheme, any wavelet filter and any regression model
might be used, with the reversible Haar (S-transform) and the
Maximum Model being the proposed choices for the general
RWA due to the reversibility and simplicity of the S-transform
and due to the prediction accuracy provided by the Maximum
Model. Other variants for the regression model have been
proposed: Fast RWA reduces the computational complexity of
the prediction by using a small percentage of the data to learn
the regression parameters, and Exogenous RWA eliminates
the need for side information by using regression parameters
previously learned on trained data.

RWA and its variants share the principal properties of
the DWT: low computational complexity, high component
scalability, and competitive performance for lossless and
progressive lossy-to-lossless coding. Moreover, for lossless
coding, RWA outperforms the best comparable decorrelation

Michael Marcellin
University of Arizona

techniques like PCA and the most competitive prediction-
based hyperspectral coding technique, such as CCSDS-123.0.
For progressive lossy-to-lossless (PLL), RWA also yields su-
perior performance thanks to the Predictive Weighting Scheme
(PWS) that we proposed in [2], which captures the predictive
significance of the RWA coefficients. In contrast to other
predictive methods [3], the Weighting Scheme allows RWA
to provide improved performance not only at high bit-rates
but also at intermediate and low bit-rates.

RWA uses the least squares method to compute the optimal
regression parameters (3 that minimize the sum of squared
differences between the response component and its prediction
provided by the regression model. In lossy coding, these
parameters might be suboptimal, since the model components
(regressors) are recovered with lack of some information
(reconstruction error), which typically leads to a bias in the
least squares parameters. By bias, we mean the difference
between the regression parameters 3 computed having the
original transformed components and the regression param-
eters 3° computed by regressing the response component on
the available recovered components. In this case, the regression
parameters 3 are those that minimize the distance between
the response component and its prediction, leading to a smaller
error. The extent of the bias depends on the regression model
and the reconstruction error distribution. This bias can be
measured by comparing the reconstruction quality in the cases
of using 3 and 3" to check whether 3 are unbiased estimates
of B or not. This issue can be considered as a special case
of measurement error problems in statistics studies [4], [5].

In this paper, we show that the regression parameters
of RWA are unbiased when encoding at low bit-rate (high
compression ratio) due to the low variance of the RWA com-
ponents; hence, parameter adjustment has a negligible impact
on coding performance. Following the same line, we illustrate
the unbiasedness of Exogenous RWA for progressive lossy-to-
lossless coding. We show that the trained parameters of only
one image applied to many others from the same sensor yield
almost identical compression performance to that of the model
using the true parameters, while the computational complexity
is significantly reduced and the need of side information is
removed.

This paper is organized as follows. Section II introduces
briefly the RWA algorithm, the regression model and the
Predictive Weighting Scheme. Section III argues the unbiased-
ness of RWA. Section IV provides the experiment results and



Section V concludes the paper.

II. REGRESSION WAVELET ANALYSIS

To provide the necessary notation, we begin with a review
of the DWT, then we go on to describe RWA, the regression
model and finally the Predictive Weighting Scheme.

A. Discrete Wavelet Transform

Let us suppose that an original multicomponent image V°
has z=2? spectral components with each component having
m spatial samples. Then we write VO € R™*# and

Vo= Vi, VY], VI eRrmL

The wavelet representation of VO with J levels, for
1<J<log,y(z), is given by

DWT(V?, J) = (V' (W/)!sis/y (1)

where the one level DWT decomposition of each V7~ is
given by

DWT(V/I7' 1) = (VI,W7) . )

At each scale or level j, the signal V/—1 € Rm* (=277 jg
decomposed into the approximation signal V7 € R™*(:277)
and the details signal W7 € R™*(277) at half resolution
each. The decomposition is usually repeated in cascade form
on the approximation signal V7.

B. Regression Wavelet Analysis

The RWA scheme generalizes the DWT by applying regres-
sion to tackle the correlation that still remains in the DWT do-
main. At each scale j, each details component W7 € R™*! is
predicted from the information contained in the approximation
components Vi € R™*(=277) within the same scale j. This
prediction W] f:(V7) is then removed to obtain a residual

R/ = Wi — W/, 3)

As illustrated in Fig. 1, the resulting RWA affects only
the details components at each level of the transform. The
approximation components are unchanged from those of the
DWT.

Scale J
Scale 2 VJ
Scale 1 V2 WJ*RJ

Vo wW! - R!

Fig. 1: RWA decomposition with .J levels.

Following the same notation as in (1) and (2), the one level
and the J level RWA transform are denoted, respectively, as

RWA(V/™' 1) = (V/,R/), 4)
RWA(V?,J) = (V7 (R/)'==7). (5)

The RWA transform is easily inverted. At each scale j the
estimate W7 is computed from V7 through VV7 = fi(V9).
The approximation at level j—1 is then obtained by computing

=R’ + Wi, (6)
VITl=DWT! ((VI,W9),1). (7

RWA can be based on any wavelet filter. One choice is
the S-Transform [6], which operates with integer coefficients
(V7, W), requiring that a quantized estimation W7 = RJ +
Q(\/R\/'j ) be employed in (3) and (6). Here, the quantization is
applied through a simple rounding operation.

C. Regression Model

Different prediction models have been proposed for RWA.
The most general model is called the Maximum model. It
employs all the approximation components from V7 for the
computation of the prediction of each details component W?.
It is defined as

Wi =pBl+ 8, Vi+ -+ V], VIieR™L ()
For the Maximum model, the regression coefficients ,Bj are
found for each individual image using the least-squares
method [7] that minimizes the distances between the or1g1na1
components and the estimated ones, i.e., min |[W/ — WJ |2

The Exogenous model computes the regression coefﬁments
,8 over a set of training images, and then uses these coef-
ficients for all new images that come from the same sensor.
As a consequence, the computational cost of RWA for the
Exogenous model is considerably reduced. Additionally, no
side information (the regression parameters) needs to be stored
for each individual image. The model is defined as

= Bio+ BiaVi+ -+ B, Vi,
D. Predictive Weighting Scheme

VI e R™*1 (9)

The Predictive Weighting Scheme assigns weights w(.) to
each component from the RWA in order to capture its signifi-
cance for the rate-distortion optimization in lossy coding. The
weights are defined as follows:

wRH) =271 and w(VI) =27, (10)

ITI. UNBIASEDNESS OF RWA PARAMETERS IN LOSSY
CODING

The regression goal in the RWA scheme is to maximize
prediction accuracy. The ordinary least squares (OLS) pro-
vides unbiased and consistent parameters that minimize the
Euclidean distance between a response component WJ and
its prediction W] In lossless coding, the RWA parameters
have shown a strong unbiasedness for a given sensor via the
Exogenous model, since the regression parameters BJ of only
one training image applied to many other images from the
same sensor yield almost the same coding performance as the
true parameters 5j [11, [2].

In this section we analyze the unbiasedness of the RWA
parameters for lossy coding, where the regression model is
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Fig. 2: Yellowstone sc 00 (radiance), j=1 and =84.

used with the recovered components V*7 instead of the true
ones V7 due to error introduced by the lossy reconstruction.
Specifically, we analyze if the loss of information in the RWA
components requires any adjustment of parameters in order
to provide the best prediction accuracy using the available
recovered components V*J. To illustrate this point, let us
consider an example of simple linear regression with two
variables. Fig. 2a depicts the relation between one details
component W and one approximation component V7 with
the regression lme computed using the least squares method
that finds B=(5o, 81). Fig. 2b depicts the relationship between
the same details component W and the recovered approxima-
tion component V7 after a lossy compression with a bit-rate
of 0.1 bpp. Also included in the figure are two regression
hnes The first (in blue) corresponds to the conditional mean
W *J as computed by regressing W7 on V7 resulting in the
parameters 3" =(8g, 7). The second regression line (in red)
is plotted using the parameters 3, and is denoted by W*J The
second plot differs from the regression line in part (a) of the
figure only in that it is “sampled” due to the quantization of
V7. As can be seen, the 3 parameters yield biased estimates
compared to those of the 3* _parameters. Therefore W**]
leads to a smaller error than W *J_ Note that correlation is
significantly reduced by quantization. In particular, the squared
correlation coefficient 72 changes from 0.93 between V7 and
W to 0.44 between V7 and W7.

Consider  the J level RWA  representation
(V7,(R7)!=i<7), where J=log,z. For this value of

J, the approximation and the residual at level .J consist
of exactly one component each, V/ R/ € R™*! Let
(V/,(R*7)!=i<7) be the recovered RWA representation
after encoding with a low bit-rate using the Predictive
Weighting Scheme [2]. Here, R7=R* + UJ, where U’ is
error introduced in R’ via lossy compression. We assume
that the single component V' is preserved losslessly. In what
follows, we describe the RWA inverse.

A. Inverse at scale J

In the first level of the inverse transform, we deal with
two components, V/, R*/ € R™*! and we perform two
operations.

1) Estimates Generation: The first operation consists of
generating W via:

W7 =8/ +8/V’ (11)

Since we assume that the single approximation component
V7 is decompressed without error, there is no need to ad-
just the regression parameters at this level. We then recover
W*/=W7+R*/ instead of W/=W’+R".

2) Wavelet Inverse: In the second operation, we invert the
S-transform to obtain the two approximation components:

e W*.] B UJ
VlJ 1 :VJ _ T — Vi] 1+7
g — wJ _, u’
V2J 1 :'VJ 'V2] 1_7

The expressions here and below are approximate, since we
ignore the effect of rounding in the lifting steps for the sake
of simplicity.

B. Inverse at scale J — 1

In the second level of the inverse transform, we deal
with four components of scale J—1: the two approximation
components from the previous level, V*/—1 e R™*2 and two
residual components, R*/~1 € R™*2,

1) Estimates Generation: First, we generate the details
estimates W**/—1 ag:

W**I 1_6*1 1+6*] 1 *I 1+5*] 1 *I 1 (12)

We then recover W*/ 1 instead of W1, where:
W*J_lzw**‘]_l +R*J—1

2) Wavelet Inverse: We apply the inverse S-transform to
the four components described above to obtain V*/=2 ¢
R™*4, 1t is interesting to study the relationship between the
parameters B*/~1 and 877", which are computed based on
the available components V*/~1 and the original ones V/~1,
respectively. In what follows, we denote by Var and Cov
the variance and covariance, respectively. We can assume that
Cov(V*/=1 R*/=1)=0, since Cov(V/~!,R/~1)=0 is sat-
isfied by the least squares estimation in the forward transform.
Under this assumption, the parameters B*7~1 can be derived
as a function of the parameters 3771 as described next.



First, let us assume that losses are introduced in only one
component. Then the model that we want to fit is as follows:
W;:k**J—l — B**J 1 + ﬁ**J IV*J 1 + 5:;J_1Vé]_1' (13)

“*J=1 will be different

is not changed, since correla-

It is worth noting that the parameter Bis
from 51.72 , even though Vy ~*
tion between V1J71 and V2J ~! exists in most cases [4], [5].

Then, the least squares estimation of the parameters, computed
as in [4], [5], will be:

Var(Vl\Vz)

sk J—1 _

Bi1 =\ , A= Kﬁﬁfiiﬂi7;5 (14)
Byt =813+ BTN = A (15)

where Var(V1|Vy) is the residual variance of Vi ~! estimated
from V3~ and 7, is the coefficient of V! in the regression
of V{=! on VJ71.

Now, when introducing loss in both components of the
approximation, (14) and (15) can be used in another step to
yield:

,8 _51]11>\1+ (/8 +B1]11(1 ) (1=A2)y2 (16)

/81,2 = (BB T T = M) Ao 17
where \p = % and 1 is the coefficient of V}‘J’1 in
the regression of Vi ~' on V3771,

The attenuation factors A; depend on the variance of the er-
ror introduced by lossy compression, which can be represented
as the variance of U”, for instance:

VaI‘(Vl‘Vz) _ Var(V1|V2)

A= - :
! Var(Vi|Va)  Var(V4|Va) + Var(UTJ)

(18)

Hence, if Var(UTJ)zo, then \;=Xy=1, and 3/ '=07"1, as
expected. This leads to an interesting conclusion for any resid-
ual subband that has a very low variance. Lossy compression
systems typically result in such subbands being quantized to
0, ie, R* = 0, or U/ = R”. This in turn implies that
Var(UEJ) is very small so that Ay, Ao~1 and B8/ ~1~B7 7!,

C. The General case: Adjusted RWA

In general, for lossy coding the bias in the regression
parameters of RWA is highly related with the variance of its
components R7. Small variances of R/ will lead to a small
bias in the regression parameters. Fig. 3 shows the variances,
sorted in descending order, of the RWA components compared
to those of PCA, Haar and the original image for an AVIRIS
image with 224 spectral components. It can be seen that almost
all the RWA components have a low variance close to zero.
From these variance values, we can expect a small bias in
the regression parameters. The parameters bias is not easily
described when dealing with multiple regressors (predictor
components). Nevertheless, in lossy coding, the introduced
loss is known at the encoder. Hence, at each compression with
a given target bit-rate, the regression parameters of RWA 3’
can be adjusted via equations (14) to (18) to give ,B*j in order
to use the regression model with the least squares parameters

— RWA (8)
«+ PCA
S e DWT 5/3
Original
[}
v
S 1oesos
‘=
©
>
| S
1 56 112 168 224

Components

Fig. 3: Components variance for different spectral transform.

that minimize the sum of the squared distances between
W/ and the prediction W**i. We refer to this adjustment
as Adjusted RWA, which can be performed pyramidally by
applying the two basic inverse operations (6) and (7) beginning
at scale J.

IV. RESULTS

In this section we evaluate the unbiasedness of the RWA
parameters for progressive lossy-to-lossless coding over a
set of hyperspectral images from different sensors: cali-
brated AVIRIS [8] (224 spectral components) and uncalibrated
TASI [9] (8359 spectral components). We provide the Rate-
Distortion (R-D) performances of Adjusted RWA (3"), general
RWA (8) and Exogenous RWA (3). For comparison purposes,
we also provide the results for other reversible transforms,
including PCA and DWT 5/3. The coding system pipeline is

JPEG 2000
5/3DWT +
Entropy coding

1-D Spectral

Image Transform

—> Bitstream

Fig. 4: Coding pipeline.

shown in Fig. 4. First, the spectral transform is applied, then
a JPEG 2000 compression is carried out, which may include a
reversible 2D DWT 5/3 transform with 5 levels in the spatial
dimension. The spatial transform is not applied for RWA and
PCA, since it does not provide any improvement due to the
low energy of the components in these cases. The Kakadu
software implementation has been used for JPEG 2000.

Fig. 5, 6 and 7 provide the Rate-Distortion perfor-
mance for the compared spectral transforms. The Rate-
Distortion provides the relation between the bit-rate in bits
per pixel per component (bpppc) and the Signal-to-Noise
Ratio (SNR), expressed in dB and computed as follows:
SN R=10log;( MSE) where o2 is the variance of the origi-
nal image and M SE is the mean square error. As training
images for Exogenous RWA, Yellowstone sc 00 has been
used for AVIRIS and TASI L0-20091007093900Z for the IASI
Sensor.

Theoretically, Adjusted RWA gives the best prediction, since
for each target bit-rate, the parameters 3 are adjusted to give
the optimal parameters 3". We observe that general RWA does
yield diminished performance for progressive lossy-to-lossless
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coding compared to Adjusted RWA. However, the performance
sacrifice is small (less than about 0.2 dB) which can be seen
by zooming in on the rate-distortion curves for low bit-rates
(see Fig. 5b).

As a side result, Exogenous RWA yields diminished per-
formance (less than about 2.0 dB) compared to Adjusted
and general RWA. It is worth noting that Exogenous RWA
does not require any side information and is computationally
cheaper. This advantage is more relevant for images with
large size in the spectral dimension, like IASI images with
8359 components, since the side information has a non-
negligible role (about 0.9 bpppc). Side information has not
been included in Fig. 7 for Adjusted or general RWA to
facilitate a comparison with Exogenous RWA. Another major
advantage is that Exogenous parameters (3, known by the
decoder, were computed using only one image from each
sensor. For brevity, we only report results for three images.
Finally, the superiority of RWA over the spectral transforms
PCA and DWT 5/3 is maintained by Exogenous RWA.

V. CONCLUSIONS

In this paper we have shown that the regression parameters
of RWA for progressive lossy-to-lossless coding are nearly
unbiased. We show that correcting for the small existing bias
can result in small performance increases. Additionally, we
explain why Exogenous RWA provides a very competitive
coding performance for large hyperspectral images at a lower
computational cost and without side information.
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Fig. 7: TASI LO 20091007143900Z. The side information
(about 0.9 bpppc) is not included for RWA and Adjusted RWA.
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Abstract

Fast and efficient coding techniques are being increasingly required to meet the complexity restric-
tions of on-board satellite compression. The recently proposed Regression Wavelet Analysis (RWA)
has proven to be highly effective as a spectral transform for coding remote sensing images. The al-
gorithm is based on a pyramidal prediction, using multiple regression analysis, to tackle residual
data dependencies in the wavelet domain. RWA combines low complexity and reversibility and has
demonstrated competitive performance for lossless and progressive lossy-to-lossless compression
superior to the state-of-the-art predictive-based CCSDS-123.0 and the widely used transform-based
principal component analysis (PCA). In this paper we introduce a very low-complexity RWA ap-
proach, where prediction is based on only a few components, while the performance is maintained.
When RWA computational complexity is taken to an extremely low level, careful model selection
is necessary. Contrary to expensive selection procedures, we propose a simple and efficient strategy
called neighbor selection for using small regression models. On a set of well-known and representa-
tive hyperspectral images, these small models maintain the excellent coding performance of RWA,
while reducing the computational cost by about 90%.

1 Introduction

Recent optical remote sensing satellites provide a wealth of data, containing useful infor-
mation that significantly contributes to a wide range of Earth Observation applications.
Compression techniques aim at reducing large amounts of data to meet limited satellite
storage and downlink capabilities, and also the speed/complexity requirements of some on-
board applications. This gives rise to the need for low complexity, fast and efficient lossless
and lossy compression techniques for remote sensing data.

In general, exploiting the data dependencies along the spectral dimension plays a key
role for coding remote sensing data. This is, in most of the state-of-the-art coding tech-
niques, conducted through either a transform or a prediction. For transform-based tech-
niques, principal component analysis (PCA) is widely used due to its efficiency, as it is
optimal in decorrelating Gaussian sources [1]. However, its computational complexity is
substantial and it entails storing and transmitting a non-negligible amount of side infor-
mation. Meanwhile, other transforms like the discrete wavelet transform (DWT) feature
low complexity, but their decorrelation capabilities are suboptimal. On the other hand, for
lossless or near lossless coding, predictive methods can yield a coding performance better
than that provided by transform-based methods [2].

Recently, we proposed Regression Wavelet Analysis (RWA), a novel predictive scheme
to encode hyperspectral images [3—5]. The method exploits, through regression analysis,



the residual dependence among the data coefficients after wavelet analysis has been per-
formed along the spectral dimension. Any wavelet filter and any regression model might
be used in a RWA scheme, with reversible Haar (S-transform) and the so-called Maximum
Model being the proposed choices for the general RWA scheme. The Maximum Model
includes all image components in the prediction and yields high accuracy.

At a much lower computational cost than PCA, the RWA algorithm yields the most
competitive performance published to date (see, e.g., [3] and [4]) for for both lossless
and progressive lossy-to-lossless compression. Nevertheless, the computational cost of
RWA can be further reduced. The computational cost of a spectral decorrelation method is
associated with the number of spectral components. In particular, the computational cost
of RWA is dominated by the size of the regression model, i.e., the number of components
used in the prediction. With that in mind, small models might be more convenient than, for
instance, the Maximum Model.

On a related note, multicollinearity is usually present among the predictor components,
i.e., the regressors are usually highly correlated. In general, determining the model struc-
ture is crucial in any practical data modelling problem, and a fundamental principle is that
the model should be no more complex than what is required to capture the underlying data
generating mechanisms. This concept, known as the parsimonious principle, is particularly
relevant in nonlinear data modelling because the size of a nonlinear model can easily be-
come explosively large [6]. However, as the goal of the regression in our algorithm is the
prediction accuracy, this multicollinearity is not a harmful problem, since it does not affect
the ability of the model to predict [7]. That said, multicollinearity strongly argues for using
a small model that only includes a few important components and which still provides an
accurate prediction as close as possible to that of the Maximum Model.

In this paper we address the problem of selecting small models with few components
for RWA algorithm. Rather than using expensive selection strategies, we focus on simpler
but efficient ones, based on divide and conquer strategies. We propose a neighbor selection
approach, a regression model that uses a few adjacent spectral components to predict a
given detail component.

This paper is organized as follows. Section 2 briefly reviews the RWA algorithm. Sec-
tion 3 discusses the model selection and introduces our neighbor selection strategy. Section
4 provides experimental results and Section 5 concludes the paper.

2 Regression Wavelet Analysis

This section reviews Regression Wavelet Analysis.

2.1 Discrete Wavelet Transform

Let an original multicomponent image V° have z=2¢ spectral components, with each com-
ponent having m spatial samples. Then V° € R™*# and

Vo= [VO . VY], VO e R



The wavelet representation of V© with J levels, for 1 < J < d = log,(2), is given by

DWT(V’, J) = (V/, (W/)I==7) (1)
where the one level DWT decomposition of each V7~ is given by
DWT(Vi 1) = (Vj,Wj) . (2)

At each scale or level j, signal Vi-leRmx (=271 is decomposed into approximation sig-
nal VZeR™*(#27") and details signal W7 €R™*(>27") at half resolution each.

2.2 Regression Wavelet Analysis

The Regression Wavelet Analysis (RWA) scheme generalizes the discrete wavelet trans-
form (DWT) by applying regression to tackle any dependency that still remains in the
wavelet domain. At each scale j, each details component W‘Z € R™*! is predicted from
the information contained in the approximation components V/ € R™*(=277) within the
same scale j. This prediction \/7\\75 = f:(V7) is then removed to obtain a residual

R/ = W/ — W/, 3)
As illustrated in Fig. 1, the resulting RWA affects only the details components at each level
of the transform. The approximation components are unchanged from those of the DWT.

Scale J
Scale 2 \V&4
Seale 1 i Hee V2L [cHetw/ —— R
W2 —-f(v7)
AVAU Ww! —-f(V?)

Rl
—f(v?h)
Figure 1: RWA representation with J levels.

Following the same notation as in (Eq. 1) and (Eq. 2), the one level and the J level
RWA transform are denoted, respectively, as

RWA (V771 1) = (V/,R/) (4)
RWA(V°,J) = (V7 (R/)'¥=7). (5)

The RWA transform is easily inverted. At each scale j the estimate Wi is computed from
V. The approximation at level j — 1 is then obtained by computing

W/ =R/ + Wi 6)
VL =DWT™' ((V/,W/),1). (7)

RWA can be based on any wavelet filter. Our choice is the S-transform [8], which op-
erates with integer coefficients (V7 W), requiring that a quantized estimation R/ =

WJ—Q(\/R\/'j) be employed. Here, the quantization is applied through a rounding opera-
tion.



2.3 Regression Model

Different prediction models can be applied to RWA. The most general model is called
the Maximum Model. It employs all of the approximation components from V’ for the
computation of the prediction of each details component W7. It is given by

W) =f; [V =8ly+ B, Vi+ - +8, Vi, VieR™. (8)
The regression coefficients 3’ are found for each individual component and for each par-
ticular image using the least-squares method [9] that minimizes the sum of squares of the

distances between the original components and the estimated ones, i.e.,
argmin|W7 — g7V7|,. 9

i

The Exogenous RWA variant [3] uses fixed regression parameters Bj obtained for a single
image, then applies these parameters to all new images that come from the same sensor. As
a consequence, the computational cost of RWA is considerably reduced. Additionally, no

side information (the parameters 3°) needs to be stored for each individual image. Exoge-
nous RWA is given by

Wi = (i [VI] =B+ B, Vi+-+B, Vi VieR™ (10)

2.4 Predictive Weighting Scheme

The Predictive Weighting Scheme [4] assigns weights w(.) to each component from RWA
in order to capture its significance for the rate-distortion optimization in lossy coding. The
weights are defined as follows:

wRI) =271 and w(V?) =2 (11)

2.5 Computational Cost

The computational cost of RWA is dominated by the estimation of regression coefficients
B = (VTV)"'VTW and the generation of the predictions W=8V as detailed in Table 1.

‘ Operation ‘ Floating-point operations (FLOPs) for RWA
S-transform 8(1— 3)mz
B=(VIV)'VIW Yoies (2m = D)k + 1)+ (ks + 1)*+(5) (ki + D) [(2m — D+(2k; + 1)]
W-pv 23 (2ki — DmZ
W W 2m(z — 1)

Table 1: Computational complexity in FLOPs for RWA [3]. z is the number of spectral components,
m is the number of samples per component, and [ is the number of wavelet decomposition levels.
k; is the number of predictor components employed at level :.



3 Model Selection

The general problem to be analyzed in this section is as follows: from the & candidate
approximation components (V{, cee Vi) that can be included in the regression model for
estimating a given detail component WZ , we seek to determine a small and efficient subset
of k' < k components, able to provide an accurate prediction as close as possible to that of
the Maximum Model.

Traditionally, selection strategies in regression analysis focus on deciding whether a
component should be added or not to the model, given a specific criterion. Such criterion
is usually based on the residual variance when the regression goal is to predict. Common
selection strategies are stepwise regression procedures, including forward selection, back-
ward elimination and other generalizations [7]. Nonetheless, in an on-board scenario, these
strategies are not feasible because of their high computational complexity when the number
k of candidate components is large.

Hence, there is a need for a simple selection method that can be easily carried out yet
produces a reliable small model. Under this requirement, we propose a neighbor selection
approach, which selects some adjacent components for the prediction of each detail com-
ponent. Before describing our proposal in detail and to put in context the different selection
strategies, we describe two other possible approaches.

3.1 Random Selection

This approach randomly selects some approximation components to predict a given de-
tail component. The performance, in terms of prediction accuracy, provided by such an
approach helps us determine whether there is in fact any need for a selection strategy.

3.2 Forward Selection

This approach starts with an empty set of approximation components. Then, the most
correlated component with the dependent response is appended. Afterwards, and through
an iterative process, the component that best improves the model following a specified
criterion —usually based on the error variance— is appended. The iterative process stops
after a determined number of iterations or when the prediction error is small enough. If the
size of the restricted model does not exceed k' < k components, the complexity of forward
selection is less than or equal to O(k'mk), where m is the number of training samples [10].
This method is not guaranteed to find the best model, although it can glean essentially the
necessary information from the data to choose a reliable model [7].

3.3 Neighbor Selection

Our proposed neighbor selection is, in principle, a divide-and-conquer strategy obtained by
dividing the original image (spectrally) into multiple sub-images, each having the original
spatial size but only a subset of the components. The one level RWA scheme with the
Maximum Model is then applied independently to each sub-image with a complexity of
O(mk'), where k' < 3.



In practice, the divide and conquer strategy discussed above can be seen to be essen-
tially equivalent to applying the one level RWA to the whole image, but including only
a small set of adjacent components in the regression model. The slight difference in the
two strategies is due to the symmetric extension applied by the DWT at the boundaries
between sub-images in the divide and conquer strategy. In what follows, we consider only
the modified strategy that applies the RWA to the entire image, but with a restricted model
that includes only a few components selected using the neighbor selection strategy. Specif-
ically, for predicting a given detail component Wf , the restricted model has as its inputs
approximation components with index ¢ ranging over some number %" of adjacent compo-
nents:

W) = fi[VI] = By + BV, + 4 By Vi, K =24 1<k. (12)
The size of the restricted model (the value of p) can be determined using a specified cri-

terion. For instance, a reasonable criterion can be a threshold based on the number of
floating-point operations.

4 Experimental Results

In this section we evaluate the performance of the RWA scheme with restricted model using
the proposed neighbor selection strategy for progressive lossy-to-lossless coding (which
includes the lossless regime). First, we compare the performance of RWA with restricted
model using different selection strategies. Then we evaluate the coding performance of
RWA and Exogenous RWA with restricted model determined by the neighbor selection
strategy for different sizes. For comparison purposes, we also report the results of two
other popular spectral decorrelation transforms, reversible PCA and DWT 5/3.

Coding performance is reported in terms of rate-distortion, showing the relation be-
tween the bit-rate in bits per pixel per component (bpppc) and the Signal-to-Noise Ratio

(SNR), expressed in dB and computed as follows, SNR = 10log;, (M"—;E> , where o2 is

the variance of the original image and M SE' is the mean squared error.

The coding system pipeline is as follows: first, a spectral transform is applied, then
a JPEG 2000 compression is carried out, which may include a reversible 2D DWT 5/3
transform with 5 levels in the spatial dimension. The spatial transform is not applied for
RWA and PCA, since it does not provide any improvement. The Kakadu software v7.7
implementation has been used for JPEG 2000. Performance evaluation is conducted on a
set of 12 images from two different sensors: 5 calibrated and 5 uncalibrated Yellowstone
scenes from AVIRIS [11] (224 components) and 2 uncalibrated images, 20091007093900Z
and 20091007143900Z, from IASI Level 0 [12] (8359 components).

4.1 Influence of the Selection Strategy

Fig. 2 reports the performance of RWA with restricted model with k' = 11 predictor com-
ponents when using different selection strategies: random selection, forward selection and
the proposed neighbor selection. Also included for comparison is the performance of RWA
with the maximum model. As can be seen, random selection yields the worst performance,
indicating that a careful selection of the predictor components is needed. On the other hand,
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Figure 2: Comparison among different selection strategies for RWA with restricted model using
k' = 11 components in the prediction. The average results are shown for the 5 uncalibrated scenes
of the Yellowstone image with 224 components. The red curve is the same in each sub-figure.

our proposed low-complexity neighbor selection can perform with equivalent or even better
performance than the sophisticated and expensive forward selection method.

4.2 Rate Distortion

Figures 3, 4 and 5 provide the rate-distortion performance for RWA using our proposed
restricted model as selected with our neighbor selection strategy. The results for several
choices of £’ are included. Also included for comparison are results for RWA with the
Maximum Model and for the reversible 5/3 DWT. Results for the reversible KLT (PCA)
are included for the AVIRIS images (224 components), but not for the IASI images (8359
components). The computational complexity of PCA is prohibitive for these latter images.

Results show that extreme reduction in the model size (k' <3 for AVIRIS and k&' <40
for IASI) yields diminished coding performance compared to that obtained by the Max-
imum Model. However, the performance of the Maximum Model can be attained by the
restricted model using modest values of £’. For instance, the restricted model with only
k'=11 for AVIRIS (Fig. 3 (d), 4 (d)) or k’=81 for IASI (Fig. 5 (b)) yields a performance
roughly equivalent to that of the Maximum Model. These choices still result in a signifi-
cant reduction compared to the number of components employed by the maximum model,
which includes k=112 components for AVIRIS and £=4180 for IASI in the first level. An
additional consideration favoring the restricted model, is that the side information required
for the parameters 37 tends be negligible for small values of &’. For instance, use of the
Maximum Model for IASI leads to a side information of about 0.9 bpppc. In this case, the
Exogenous version of the Maximum Model leads to comparable compression performance
due to not needing any side information. In contrast, by using the proposed small model of
size k'=81, side information is reduced to only 0.03 bpppc.

Finally, for the sake of completeness, Fig. 6 provides a comparison between RWA and
Exogenous RWA with the same restricted model. Not surprisingly, the performance of the
two systems is nearly identical. The same behavior was mentioned above (and reported
previously [5]) in conjunction with the Maximum Model.
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4.3  Computational Cost

Fig. 7 compares the computational cost in floating-point operations for different spectral
transforms, including RWA with different models. As can be seen, the difference be-
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tween Maximum Model and restricted model is substantial. In particular, using £’ = 11
for AVIRIS and &’ = 81 for IASI, results in the computational cost being reduced by 86%
and 97%, respectively, compared to that of the Maximum Model. This is achieved with
negligible loss in coding performance.

5 Conclusions

The encoding of imagery on-board remote sensing satellites asks for efficient, fast and low
complexity approaches. We recently introduced RWA and reported its competitive per-
formance. Here we proposed an extremely low complexity variant that yields the coding
performance of the best performing PCA but with the computational cost of the affordable
DWT 5/3. In fact, our proposal can be understood as a means to provide a reliable parsi-
monious model for the regression estimation at no cost. Additional benefits consist of a
significant reduction of side information and scalability to any model size.
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Chapter 7
Results summary

In this chapter, we summarize the coding results of our Regression Wavelet Analysis
(RWA) algorithm. First, we explain the system coding pipeline and the dataset of
images. Then, we provide the results for pure lossless and progressive lossy-to-lossless
respectively. We focus on three variants of RWA that represent its strength: (1)
general RWA with Maximum Model, (2) Exogenous RWA with Mazximum
Model and (3) RWA with restricted model based on our neighbor selection
strategy. We compare RWA performance to the reversible transforms: DWT 5/3 and
PCA, and to the predictive methods: M-CALIC [23] and CCSDS-123 [24].

7.1 Pipeline Coding and Dataset

The coding system pipeline is shown in Fig. 7.1. First, a one-dimensional transform
is applied in the spectral dimension, then a JPEG 2000 compression is carried out,
which may include a 2-D DWT 5/3 transform with 5 levels in the spatial dimension.
The spatial transform is not applied for PCA and RWA. In these cases, the spatial
transform provides no improvement, as most of the transformed components already
have low energy. The Kakadu software implementation (v7.7) of JPEG 2000 has been
used.

The experimental evaluations rely on a set of images from three different sensors:

AVIRIS [1], HYPERION [32] and IASI [33]. Table 7.1 provides detailed information
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Figure 7.1: 1D spectral transform followed by JPEG 2000 compression.

Table 7.1: Dataset information for AVIRIS, Hyperion and IASI sensors. z is the number of
spectral components.

Image \ Scene \ Year \ Width \ Height \ Bitdepth \ Datatype Variance
AVIRIS z =224
Yellowstone 0, 3, 10, 11, 18 2006 680 512 16 uncalibrated average=3962160
Yellowstone 0, 3, 10, 11, 18 2006 677 512 16 calibrated average=2.8214e+05
Hawaii 1 2001 614 512 12 uncalibrated 1.2481e+04
Maine 10 2006 680 512 12 uncalibrated 7.5558e+04
Hyperion z = 242
Lake Monona — 2009 256 3176 12 uncalibrated 7.7836e+04
Mt. St. Helens - 2009 256 3242 12 uncalibrated 4.2316e+04
Erta Ale - 2010 256 3187 12 uncalibrated 4.2982e+04
Agricultural - 2002 256 3129 12 calibrated 1.4017e+06
Coral Reef - 2003 256 3127 12 calibrated 7.5267e+05
Urban - 2002 256 2905 12 calibrated 1.8807e+06
IASI Level 0 z = 8359
20091007093900Z - 2009 60 1528 12 uncalibrated 1.2395e+04
20091007143900Z - 2009 60 1528 12 uncalibrated 1.1263e+04
201003190503005 — 2010 60 1528 12 uncalibrated 1.1839e+04
20120718075700Z - 2012 60 1528 12 uncalibrated 1.3169e+04
201301161333002 - 2013 60 1528 12 uncalibrated 1.1531e+04
20130916080300 — 2013 60 1528 12 uncalibrated 1.2123e+04
IASI Level 1 z = 8461

20130816230553Z — 2013 60 1530 12 calibrated 7.1551e4-06
20130817004753Z — 2013 60 1530 12 calibrated 6.6356e+06
20130817041457Z — 2013 60 1530 12 calibrated 7.2839¢+06
201308170556572 - 2013 60 1530 12 calibrated 8.8519e+06
20130817073857Z - 2013 60 1530 12 calibrated 8.0731e+06

about these images. As described in the table, the AVIRIS images include 5 un-

calibrated and 5 calibrated images corresponding to 5 scenes in Yellowstone. These

images have a bit-depth of 16 bits per pixel per component (bpppc). Also included
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are two uncalibrated AVIRIS images (Maine and Hawaii), each having a bit depth
of 12 bpppc. All of the AVIRIS images have 224 spectral components and 512 lines.
The Hyperion sensor produces images with 242 spectral components, each having a
bit-depth of 12 bpppc and a width of 256. The number of lines varies from image
to image. The Infrared Atmospheric Sounding Interferometer (IASI) is composed of
a Fourier transform spectrometer and an Integrated Imaging Subsystem (IIS). TASI
Level 0 and TASI Level 1 images have 8359 and 8461 spectral components respec-
tively.

7.2 Lossless Coding

Table 7.2 provides the lossless coding results for all systems under test in terms of
the bit rate, in bpppc. The figures 7.2, 7.3 and 7.4 show the average results for
each sensor. All necessary side information is included in the results reported. The
compression efficiency of each algorithm can be appreciated by observing the degree
to which its resulting bit rate falls below the bit depth of the original image (e.g., 12
or 16 bpppc).

The summarized results show that, on average, RWA performs better than the
state-of-the-art methods included in the comparison. RWA is either the best —in three
out of the six datasets— or it yields results within 0.1 bpppc of the best technique. The
worst such cases occur for Hyperion uncalibrated images that tend to have streaking
artifacts due to the nature of the pushbroom sensors [32].

In comparison to transform-based techniques, the three RWA variants perform
considerably better than DWT 5/3 by up to 1.2 bpppc and also in many cases can beat
PCA by more than 0.2 bpppc. Ezogenous RWA provides almost the same performance
as RWA with a reduced complexity and without side information. This allows to apply
Mazximum model even to images with large size in the spectral dimension, such as TASI
images. On the other hand, RWA with restricted model selected using our neighbor
selection demonstrates that small regression models can give rise to a performance
similar to that of RWA with Mazimum model at a much lower complexity and memory

requirement.
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Table 7.2: Lossless bitrate for RWA in comparison to spectral transforms DWT 5/3 and
PCA with JPEG 2000; and to predictive techniques M-CALIC and CCSDS-123. The results

are in terms of bits per pixel per component (bpppc). Lower is better.

Technique
DWT PCA RWA RWA Exo. RWA | M-CALIC CCSDS
Image 5/3 Restricted (k') Mazimum Mazimum -123
AVIRIS Uncalibrated k&’ = 11
Yellowstone 00 7.16 6.05 6.13 6.07 Train 6.34 6.40
Yellowstone 03 7.03 5.88 5.95 5.90 5.95 6.16 6.26
Yellowstone 10 6.11 5.44 5.50 5.46 5.55 5.54 5.66
Yellowstone 11 6.63 5.74 5.82 5.76 5.81 5.93 5.93
Yellowstone 18 7.15 5.95 6.02 5.97 6.05 6.35 6.50
Average 16 bpppc 6.82 5.81 5.89 5.83 5.89 6.06 6.15
Maine 3.43 3.22 3.08 2.69 Train 2.89 2.77
Hawaii 3.27 3.20 2.58 2.55 2.82 2.84 2.70
Average 12 bpppc 3.35 3.21 2.65 2.62 2.68 2.86 2.73
[ Global Average 5.83 5.06 | 5.01 [ 4.91 [ 4.97 5.14 5.17
AVIRIS Calibrated (Radiance) k" = 11
Yellowstone 00 4.75 3.85 3.81 3.74 Train 4.13 3.90
Yellowstone 03 4.64 3.74 3.65 3.58 3.63 3.98 3.76
Yellowstone 10 3.84 3.40 3.22 3.18 3.25 3.39 3.35
Yellowstone 11 4.25 3.67 3.52 3.47 3.52 3.73 3.58
Yellowstone 18 4.71 3.72 3.72 3.65 3.72 4.10 3.92
Average 16 bpppc 4.44 3.69 3.58 3.52 3.57 3.87 3.70
Hyperion Uncalibrated k' = 11
Erta Ale 4.44 4.49 4.65 4.46 Train 4.76 4.24
Lake Monona 4.55 4.62 4.85 4.63 4.63 4.92 4.36
Mt. St. Helens 4.57 4.54 4.70 4.52 4.52 4.83 4.28
Average 4.56 4.55 4.38 4.54 4.54 4.83 4.29
Hyperion Calibrated k' = 11
Agricultural 6.35 5.88 5.58 5.44 Train 5.44 5.73
Coral Reef 5.80 5.53 5.20 5.11 5.18 5.05 5.47
Urban 6.39 5.89 5.59 5.46 5.50 5.44 5.75
Average 6.18 5.76 5.46 5.34 5.37 5.31 5.65
TASI Uncalibrated (Level 0) k' = 81
TASILO 1 3.02 - 2.52 2.3540.9 Train 2.89 2.90
TAST LO 2 3.02 - 2.51 2.34+40.9 2.39 2.87 2.88
TASI LO 3 3.01 — 2.52 2.35+0.9 2.40 2.87 2.90
TASILO 4 3.05 - 2.52 2.3540.9 2.41 291 291
TASILO 5 2.99 — 2.51 2.35+0.9 2.40 2.86 2.90
TASILO 6 3.08 - 2.53 2.37+0.9 2.41 2.92 2.91
Average 3.02 - 2.52 2.3540.9 2.40 2.88 2.90
TASI Calibrated (Level 1) k& = 81
TASTL11 7.46 7.2242.4 6.53 6.42+0.9 Train 6.86 6.60
TASI L1 2 7.09 7.05+2.4 6.53 6.41+0.9 6.48 6.88 6.61
TASI L1 3 7.11 - 6.54 6.42+0.9 6.49 6.88 6.59
TASI L1 4 7.06 - 6.55 6.43+0.9 6,50 6.87 6.56
TIASI L1 5 7.12 - 6.55 6.43+0.9 6.50 6.87 6.60
Average 7.16 7.1342.4 7.11 6.42+0.9 6.49 6.87 6.59
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Figure 7.2: Lossless coding performance for AVIRIS in bpppc (lower is better)
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In relation to predictive methods, RWA performs with equivalent or better ac-
curacy than M-CALIC and CCSDS-123. The difference in coding gain is higher for

IASI images in favor of RWA, since RWA can benefit from a large number of available

predictors.

7.3 Progressive Lossy-to-Lossless Coding

Figures 7.5, 7.6 and 7.7 summarize the Progressive lossy-to-lossless results in terms

of the rate-distortion curves for RWA and the compared spectral transforms. The

rate-distortion provides the relation between the bit-rate in bpppc and the Signal-to-
Noise Ratio (SNR), expressed in dB and computed as follows: SNR = log,, (M"—g,E),

where o2 is the variance of the original image and M SFE is the mean square error.
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Figure 7.5: Average rate-distortion curves for AVIRIS Radiance (224 spectral components).

The results indicate that RWA offers a significant coding gain over DWT 5/3 and
PCA. Even though RWA and PCA provide a comparable performance for lossless
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Figure 7.6: Average rate-distortion curves for AVIRIS Uncalibrated (224 spectral compo-
nents).
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Figure 7.7: Rate-distortion curves for IASI L0 (8359 spectral components).
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coding, the coding gain of RWA for low and intermediate bitrates is significantly
higher over reversible PCA. On the other hand, RWA using restricted model with
a small size is able to provide a similar performance to that obtained by Mazimum
model. Finally, Ezogenous RWA, using only the regression parameters computed on

one image, also provides almost identical performance to that obtained by general

RWA.

7.4 Computational Complexity

Complexity and efficiency have motivated research into compression techniques that
meet the restrictions of on-board satellite systems. To this end, a number of compres-
sion approaches aim at reducing the complexity while minimizing the performance
sacrifice [9, 8, 13, 34, 7, 25]. In particular, RWA has the benefit of both advantages. In
this section, we provide the computational complexity of RWA, when using different
models and variants. In general, the complexity of RWA is dominated by the compu-
tation of the least squares parameters 8 and the estimates generation W. In the case
of Frogenous RWA, estimation of 8 is performed off-line and does not contribute to
the complexity of encoding. Meanwhile, the complexity of the estimates generation
A\ depends on the size of the regression model, and is at its highest when using the
Maximum model. However, the cost of other efficient transforms such as Principal
Component Analysis (PCA) is still significantly higher. Table 7.3 details the com-
putational cost of RWA in Floating-point operations (FLOP), while figures 7.8, 7.9
and 7.10 compare the computational cost of different transforms applied to different

images from the AVIRIS, Hyperion and IASI sensors.
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Operation Floating-point operations (FLOP) for RWA ‘
S-transform 8(1— 5)mz
B=(VIV)'VIW Sy (2m = 1) (ki + 1)% (ki + 1°+(Z) (ki + 1) [(2m — 1)+(2k; + 1)]
W=pv 25, (2k; — 1)ymZ
Wi+ W 2m(z — 1)

Table 7.3: Computational complexity in FLOPs for RWA [26]. z is the number of spectral
components, m is the number of samples per component, and [ is the number of wavelet
decomposition levels. k; is the number of predictor components employed at level 1.

PCA RWA Exo. RWA RWA Exo. RWA DWT 5/3
reversible Maximum Maximum Restricted Restricted. reversible
k =112 k =112 k =11 k' =11

Figure 7.8: Cost comparison in FLOP for different transforms applied to the uncalibrated
Yellowstone image from AVIRIS with 224 spectral components and a spatial resolution of
512 x 680. The values reported for PCA and DWT 5/3 are from [7] .
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FLOP

PCA RWA Exo. RWA RWA DWT 5/3

reversible Maximum Maximum Restricted reversible
k=112 k=112 K =11

Figure 7.9: Cost comparison in FLOP for different transforms applied to the uncalibrated
Mt. St. Helens image from Hyperion with 242 spectral components and a spatial resolution
of 3242 x 256. The values reported for PCA and DWT 5/3 are from [7] .
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PCA RWA Exo. RWA RWA Exo. RWA DWT 5/3
reversible Maximum Maximum Restricted Restricted. reversible
k=4180 k=4180 k =181 k' =81

Figure 7.10: Cost comparison in FLOP for different transforms applied to a IASI L0 image
with 8359 spectral components and a spatial resolution of 1528 x 60. The values reported
for PCA and DWT 5/3 are from [7] .



Chapter 8

Conclusions

8.1 Summary

Remote sensing imagery has become extremely essential for today’s applications. The
development of the optical sensors is still increasing, leading to an unprecedented
size of produced data, which challenges the capacity of storage and transmission.
This calls for adopting more efficient and robust compression techniques than the
existing ones. Traditionally, the research activities have focused on transforms and
predictive techniques. Principal Component Analysis (PCA), which is optimal for
decorrelating Gaussian sources, provides an excellent coding performance, but entails
several drawbacks related with its expensive complexity. Meanwhile, the performance
of other simple data-independent transforms such as DWT is not convincing. On the
other hand, the predictive methods are mostly addressed for lossless or near-lossless
coding, where they can outperform transform-based techniques.

At the beginning of this thesis, we have targeted to analyze transforms and predic-
tive techniques, and the potential of their combination. First, we focused on PCA as a
powerful transform that produces linearly uncorrelated components, while combining
polynomial regression of higher orders to exploit the remaining non-linear dependen-
cies among components. Even though this idea makes sense for some specific artificial
data that truly feature polynomial relations, for practical hyperspectral data, it does

not provide useful improvement due to the scarcity of polynomial dependencies. Our

5
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analysis in Chapter 2 suggests that, over hyperspectral images, the principal compo-
nents are not able to predict each other through polynomial regression, not even by
using different models with multiple regressors. Furthermore, this results in a higher
computational complexity and memory requirements, and also produces some cod-
ing penalizations due to the increase of side information and the sequential rounding

error.

On the basis of the aforementioned analysis, it is concluded that the best com-
bination of transform and prediction techniques for compression purposes does not
necessarily rely on using the optimal transform for Gaussian sources, i.e., PCA. This
conducted us to seek for simpler transforms that do not entail severe drawbacks, even
if their coding performance is limited. Meanwhile, we adopt prediction techniques to
improve the independence property, which usually results in an improvement in the
coding performance. Based on that, in Chapter 3 we introduced Regression Wavelet
Analysis (RWA) for lossless coding of remote sensing images. RWA is a pyramidal
scheme that employs multiple regression analysis to exploit the dependencies among
wavelet components. For lossless coding, RWA provides superior performance to PCA
at much lower computational complexity, and also superior performance to the most
prominent predictive techniques like M-CALIC and CCSDS-123. We proposed sev-
eral variants of RWA to reduce its complexity and preserve the component scalability
of the wavelet transform. The strongest and the most important variant is Fxogenous
RWA which uses fixed parameters, previously computed, to each new image from the

salne sensor.

In our algorithm, the primary goal of regression is the prediction accuracy, thus,
we only encode a small residual. Nevertheless, Erogenous RWA demonstrates that our
regression scheme is also able to reliably describe the relationships among transformed
components. This reliability is confirmed by the excellent performance obtained when
applying fixed parameters, computed over only one image, to all new images coming
from the same sensor. The resulting performance is almost identical to that obtained
when using the optimal least squares parameters computed for each individual image.
As a consequence, the complexity is significantly reduced at the cost of a negligible

sacrifice in performance, and no side information is needed to be transmitted, since
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the parameters are known at the encoder. This latter property is crucial for images
with large size in the spectral dimension, such as IASI (8461 components), since the
amount of the side information becomes unreasonable, gravely penalizing the coding
gain.

The success of RWA for lossless coding motivated us to explore its benefits for
lossy coding. In Chapter 4 we extend RWA to progressive lossy-to-lossless. Initially,
we have seen that the loss of information in the RWA coefficients without weights
leads to a poor performance with an unsteady rate-distortion curve. The reason of
this problem is that RWA coefficients with similar magnitude may have extremely
different impact on the reconstruction quality. Hence, the encoder needs to know
the significance of these coefficients in order to appropriately allocate the bitrate. To
this end, we proposed a Predictive Weighting Scheme that captures the prediction
significance of each spectral components. With that, we showed that RWA can attain,
also for progressive lossy-to-lossless, a rate-distortion performance superior to that
provided by other state-of-the-art methods. As a conclusion, the predictive capability
of RWA has demonstrated to be highly robust to the loss of information, providing a

stable and competitive reconstruction quality.

On the basis of this satisfactory attainment for lossy coding, the impact of the
data change on the prediction accuracy due to lossy coding has emerged naturally.
Specifically, the bias in the regression parameters of RWA when coding with low
bitrates has spurred our interest. In Chapter 5, we investigate the attenuation of the
RWA parameters, when recovering components with loss of information. First, we
explain the attenuation for the simple linear regression, which is the case of the first
scale in the inverse RWA. Then, we proceed with the attenuation equations in the case
of multiple regression with two regressors, where it is also illustrated the influence
of the correlation among regressors. Finally, we illustrate the high relation between
the bias in the regression parameters and the variance of the RWA components for
the general case. We close this analysis by assessing the bias of RWA parameters for
coding performance over a set of remote sensing images. For each lossy compression at
a given ratio, the encoder adjusts the parameters according to the loss of information

introduced. Then, the decoder inverts the RWA algorithm using old and new optimal
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parameters to provide a performance comparison. The results show that at very
low compression ratios, the introduced bias is very small, therefore, there is no need
for parameters adjustment due to very small improvement that can be achieved in
the reconstruction quality. This unbiasedness of RWA parameters for lossy coding
allows us to conclude that our predictive scheme is well specified and accurately
estimated, yielding unbiased predictions of the response when the loss of information
is introduced in the data. The same conclusion is drawn for Fxogenous RWA, where
fixed parameters, computed over only one image, give unbiased predictions for all
images coming from the same sensor. This attainment indicates that the predictive
scheme of RWA accurately captures the relations among data components. Rarely
a predictive method allows the luxury of using fixed parameters obtained through a
straightforward training phase and giving a nearly unbiased coding performance to
that obtained by computing the optimal parameters. Add to this the fact that no side
information is needed to be stored or transmitted, resulting in a data-independent

algorithm with a reduced complexity.

As a final stage of this thesis, we address in Chapter 6 the problem of select-
ing parsimonious models for the RWA scheme to meet the restricted limitation and
requirements of on-board compression. Rather than using expensive selection strate-
gies, we focus on simpler but efficient ones, based on divide and conquer strategies.
We propose a neighbor selection approach, a regression model that uses a few adja-
cent spectral components to predict a given detail component. Our strategy selects
at no cost reliable parsimonious models that provide similar coding performance to
that obtained by Maximum model. Parsimonious models in the RWA scheme drive
their complexity and memory requirements to the low extend, almost identical to the
extend of the affordable DWT 5/3, while the coding performance is still superior to
the reversible PCA and to the most sophisticated approaches in the state-of-the-art.

As a general conclusion, along this thesis, we have deeply analyzed the compres-
sion of remote sensing images and the state-of-the-art techniques. This allowed us to
introduce Regression Wavelet Analysis, a novel algorithm that covers most aspects
of the remote sensing compression. The first aspect is coding efficiency. For lossless

coding, RWA outperforms the best comparable decorrelation transforms like PCA
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and the most competitive prediction methods, such as CCSDS-123. For progressive
lossy-to-lossless (PLL), RWA also yields superior performance as compared to PCA.
The next aspect is data independence. RWA vastly reduces the correlation and the
mutual information among components. It achieves almost full linear decorrelation
and attains a small advantage over PCA in reducing mutual information. Another
important aspect is the low complexity and memory requirements. The computa-
tional cost of RWA is significantly lower to other efficient transforms like PCA and
close to affordable DWT 5/3. Unbiasedness for lossy coding is another important
central point. RWA has proven to be robust to the data change due to lossy cod-
ing. Last but not least, straightforwardness and effectiveness of parameters learning:
Exogenous RWA learns the least squares parameters on only one image, while their
application to all new images coming from the same sensor is highly effective, as
evidenced by the negligible sacrifice in the coding performance compared to the true

optimal parameters.

8.2 Future work

Even though the provided solutions in this thesis for remote sensing compression
were broad and diverse, some new important ideas arise for further contribution and
research in relation to theoretical and practical topics.

First of all, data classification and dimensionality reduction are almost natural
extensions of RWA application. So far, the quality assessment for lossy coding has
been carried out by metrics based on Mean Squared Error (MSE). Some other appli-
cations may focus on classification accuracy as a quality metric. Therefore, it seems
interesting to investigate models that optimize the classification accuracy rather than
minimizing the sum of squared distances between the prediction and the response
component. On the other hand, many other applications have as an objective to
reduce the dimensionality of the data instead of reducing the size in memory. Thus,
other approaches like supervised classification are learned and applied on a reduced
number of features. As a future work, we aim at exploiting RWA for dimensionality

reduction.
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Regarding practical on-board compression, a number of satellite instruments are
push broom sensors that obtain images by capturing separately spectral lines. Hence,
a compression system on-board is constrained to encode each single or group of cap-
tured spectral lines. So far, our RWA algorithm only has considered the whole image
with all the spatial samples. For the least squares estimation, the degree of freedom
(m — z — 1) plays an important role and may change the results. Although Fast
RWA learns the least squares parameters on a sub-sampled set of spatial pixels, this
sub-sampling has only been performed through a grid selection over the whole image.
Therefore, it is worth analyzing the parameters learning when only a few number of

spectral lines is available.

On the other hand, our RWA approach is successful for coding remote sensing
images, but it can also be analyzed for other 3D images. For instance, video coding
is one of the most interesting fields that rely on prediction techniques. However,

extensions of RWA to motion data have not yet been investigated.

Beyond extensions to other fields, there are still some gaps and lacks in the re-
search. Along this thesis, our work was based on spectral prediction and decorrela-
tion, resulting in a one-dimensional approach. Nevertheless, remote sensing and other
3D images also feature reasonable redundancy along the spatial dimension. In our
RWA algorithm we neglect the 2D decorrelation and we apply entropy coding without
involving any other decorrelation step. We have seen that a spatial 2D wavelet trans-
form does not provide any additional improvement to the RWA residuals due to their
sparsity and low energy. However, the prediction step can use not only the spectral
bands, but also the spatial pixels to predict the current ones. This idea is common
in the state-of-the-art and may capture more correlation, leading to an improvement

of the performance.

In a similar way, the temporal correlation could be a beneficial information to
exploit. Some satellites on-board perform orbits in a repeated cycles, providing images
of the same area for different period times.

Finally, and from a theoretical perspective, the prediction methods for lossy cod-
ing are an attractive research line that needs further investigation. We successfully

extended our RWA scheme to lossy coding with an exhaustive analysis of the bias
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in the least squares parameters when having loss of information. However, imputa-
tion is one of the attractive techniques that is still unexplored for prediction-based
compression. Imputation is one of the most popular approaches to deal with loss of
information that adopts the idea of replacing missing information with substituted
values. This family of techniques is common and widely used in statistics to deal with

missing data for prediction purposes.
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