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Abstract 
In recent years,  the study of Newton–Okounkov bodies on normal  varieties has become a central 

subject in the  asymptotic theory of linear  series, after  its introduction by Lazarsfeld–Mustaţă and 
Kaveh–Khovanskii. One reason  for this is that they  encode all numerical equivalence information of 
divisor  classes (by  work of Jow).  At the  same time,  they  can be seen as local positivity invariants, 
and  Küronya-Lozovanu have  studied them  in depth from this  point of view. 

We determine what  information is encoded  by the  set of all Newton–Okounkov bodies  of a big 
divisor  with  respect  to  flags centered at a fixed point  of a surface,  by showing  that it  determines 
and  is determined by the  numerical equivalence class of the  divisor  up to negative components in 
the  Zariski  decomposition that  do not  go through the  fixed point. 

 

 

1    Introduction 
 
Newton–Okounkov bodies   Inspired  by the work of A. Okounkov  [12], R. Lazarsfeld and M. Mus- 
taţă [11] and  independently K. Kaveh  and  A. Khovanskii  [5] introduced Newton–Okounkov bodies as 
a tool  in the  asymptotic theory  of linear  series on normal  varieties,  a tool  which  proved  to  be very 
powerful and in recent developments of the theory  has gained a central  role.  An excellent introduction 
to  the  subject  —not  exhaustive due  to  the  rapid  development of the  theory—  can  be found  in the 
review [1] by S. Boucksom. 

Newton–Okounkov bodies are defined as follows. Let X be a normal projective  variety  of dimension 
n.  A flag of irreducible  subvarieties 

 

Y•  = {X = Y0  ⊃ Y1  ⊃ · · · ⊃ Yn  = {p}} 
 

is called full and admissible  if Yi  has codimension  i in X  and is smooth  at  the point p. p is called the 
center  of the flag. For every non-zero rational function  φ ∈ K (X ), write φ0  = φ, and for i = 1, . . . , n 

 
def def φi−1  

 
νi (φ)  = ordYi (φi−1 ) ,        φi   = 

  
gνi (φ)   ,                                               (∗)
i    

 
Yi  

where gi  is a local equation  of Yi  in Yi−1  around  p (this  makes  sense because  the  flag is admissible).
The sequence ν • 

at p [16]. 
= (ν1 , ν2 , . . . , νn ) determines a rank n discrete  valuation K (X )∗  −→ Zn

 with center

 

Definition 1.  If X  is a normal  projective  variety,  D a big Cartier divisor on it, and Y•  an admissible 
flag, the Newton–Okounkov body of D with respect  to Y•  is 

 

def  
  
νY   (φ) 

 

∆Y   (D)  =    •  
 
φ ∈ H 0 (X, OX (kD)), k ∈ N ⊂ Rn ,•                    k 
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where {·} denotes  the  closure with  respect  to  the  usual  topology  of R2 .  Although  not  obvious  from 
this  definition,  ∆  (D)  is convex and  compact,  with  nonempty interior,  i.e., a body (see [5], [11], [1]). • 

A. Küronya, V. Lozovanu  and  C. Maclean  [10] have shown that it is a polygon if X  is a surface,  and 
that in higher  dimensions  it can be non-polyhedral, even if X  is a Mori dream  space.  The  definition 
can be carried  over to the  more general setting  of graded  linear  series, and  also to Q or R-divisors;  in 
the absence of some bigness condition,  ∆  (D)  may fail to have top dimension. • 

By [11, Proposition 4.1], ∆  (D)  only depends  on the numerical  equivalence  class of D.  S. Y. Jow 
• 

proved in [6] that the set of all Newton–Okounkov bodies works as a complete set of numerical  invariants 
of D,  in the  sense that, if D0  is another  big Cartier divisor with  ∆Y   (D)  = ∆Y   (D0 ) for all flags Y• , 

•                 • 

then  D and D0  are numerically  equivalent. 
 
Flags on  proper  models of  K (X )    It  is most  natural to  define Newton–Okounkov  bodies  with 
respect  to any valuation ν with value group equal to Zdim X , and not only those coming from flags on 
X (see [5], [1]). Thus we consider admissible flags on arbitrary birational models of X , noting that even 
to express the  results  for flags lying on X  (theorem 2 below) we need to consider clusters  of infinitely 
near points. 

Definition 2.  We call admissible flag for X any admissible flag Y• on X̃ where π : X̃ → X is a proper 
birational morphism.  Whenever  we need to specify the map we will use the notation 

n     
π                                                             

o
Y•  = X ←− X̃  = Y0  ⊃ Y1  ⊃ · · · ⊃ Yn  = {p}

 

but mostly we omit an explicit mention  of the model X̃  on which p and Yi  lie. The point π(p) = O ∈ X 
will be called the center  of the flag on X ; if π contracts the whole flag, i.e., π(Y1 ) = π(p) = O then  we 
say that Y•  is an infinitesimal flag, and if codim π(Yi ) = i then  it is a proper  flag. If X̃  = X, π = idX , 
we say that the  flag is smooth  at  O.  The  corresponding  Newton–Okounkov bodies will be also called 
infinitesimal,  proper  or smooth  accordingly. 

 

Already  Lazarsfeld–Mustaţă [11]  considered  Newton–Okounkov  bodies  of D  defined  by  flags on 
varieties  birational to  X  —more  precisely,  flags contained in the  exceptional  divisor  of a blowup  of 
X , with  the  goal of making  a canonical  choice of “generic infinitesimal”  flag and  getting  rid  of the 
arbitrariness of the  choice  of a  flag—.   A.  Küronya   and  V.  Lozovanu  [9]  have  pushed  forward  the 
study  of infinitesimal  flags, with the philosophical  viewpoint that the “local positivity”  (see [8, Chapter 
5] of D  at  a  smooth  point  O  should  be  governed  by  the  set  of Newton–Okounkov  bodies  ∆  (D) • 

where  the  flag Y•  is centered  at  O.   This  raises  the  question  of what  information on L is contained 
in the  set of Newton–Okounkov bodies ∆  (D)  with  fixed center,  analogously  to Jow’s result  for the 

• 

set of all Newton–Okounkov bodies.  In the  case when X  is a surface,  we provide  a complete  answer 
which supports the “local positivity”  viewpoint, and we prove that Newton–Okounkov bodies given by 
infinitesimal  flags suffice to determine all Newton–Okounkov bodies given by flags centered  at O. 

 
Clusters of infinitely near points   Fix X a projective  surface, and O ∈ X a smooth point. A point 
infinitely  near to O is a smooth  point p ∈ X̃ , where π : X̃  → X  is a proper  birational morphism,  such 
that π(p) = O. 

A finite or infinite set K of points equal or infinitely near to O, such that for each p ∈ K , K contains 
all points  to which p is infinitely  near, is called a cluster  of points  infinitely  near to O.  We now review 
a few facts on clusters  that we need, referring to E. Casas-Alvero’s  book [2] for details  and proofs.  The 
simplest  example  of a cluster  is the  sequence of images of a point p ∈ X̃  infinitely  near  to O:  πp   can 
be factored  as a sequence of k point blowups π = blO ◦ blp1   ◦ · · · ◦ blpk−1 ,

 
blO

 
 
blp1

 
 
blpk−1X = X0  ←− X1  ←− . . . ←−   Xk  = X̃  = Xp
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−→

 
and then  

K (p) = {O, blp1   ◦ · · · ◦ blpk−1 (p), . . . , blpk−1 (p), p}

is a cluster.   A priori,  infinitely  near  points  belong  to  different  surfaces,  but  we consider  the  points 
πp                                               πp0 

p ∈ Xp   −→  X  and  p0  ∈ Xp0    −→  X  to be the  same point when there  is a birational map  defined in a 
neighborhood  of p, Xp  ⊃ Up → Xp0 , which commutes  with πp , πp0 , maps p to p0  and is an isomorphism 
in a (possibly  smaller)  neighborhood  of p.   Then  we can  safely assume  that the  sequence  of points 
blown  up  to  get  the  surface  where  p lies is formed  exactly  by  the  points  in  K (p)  except  p itself: 
K (p) = {O, p1 , . . . , pk−1 , p}.  In this sense, every infinitely  near point p has a well defined predecessor, 
namely  the last blown up point pk−1 . 

Points  infinitely  near  to  O are  classified as satellite  if p ∈ Sing(π−1 (O))  and  free  otherwise.   We 
shall call a cluster  K  free  if every  p ∈ K  is free.  A relevant  fact  when dealing  with  smooth  flags is 
that there  is a smooth  curve through O whose birational transform in X̃  contains  the  infinitely  near 
point p ∈ X̃  if and only if the cluster  K (p) is free. It is customary to say that a curve goes through an 
infinitely  near  point p (or has multiplicity m there)  if its birational transform does so; we will follow 
this convention  without further  notice. 

A weighted cluster  is a pair K = (K, m) where K is a cluster and m is a map m : K −→ Z. A typical
example is, given a proper birational morphism  X̃ π   X (factored  as above) and a curve C through O,
the set of all points  infinitely  near to O in 

Sk
 X i that belong to C , weighted  with m(p) = multp (C̃).

Let C ⊂ X  be a curve through O which has no smooth  branch  through O.  There  exists a minimal 
model π : X̃  −→ X such that, denoting  C̃ the strict  transform of C , all of the (finitely many)  points  of 
C̃  infinitely  near to O (i.e., π−1 (O) ∩ C̃) are satellite. For any factorization of such a π as a sequence 
of point blowups,  the  centers  of the  blowups  form  a  free cluster.    This  cluster,  weighted  with  the 
multiplicities of C at  its points,  will be called the  cluster  of initial  free points  of C and  denoted  FC . 
Remark  that an equality  FC = FC 0   means  that the  minimal  model such that the  strict  transform of 
C has no free point infinitely  near to O is also the minimal  model such that the strict  transform of C 0 

has no free point infinitely near to O, and moreover the multiplicities of the strict  transforms of C and 
C 0   at each blown up point coincide. 

 
Local numerical  equivalence  on surfaces   Let  still  X  be  a  normal  projective  surface.    Every 
pseudoeffective  Q-divisor  D  admits  a unique  Zariski  decomposition   D  = P + N,  where  P, N  are  Q- 
divisors with P nef, N effective, the components  Ni of N have negative definite intersection matrix, and 
P · Ni = 0. Zariski showed in [15] that a unique such decomposition  exists for any effective divisor D on 
a smooth  surface —in what  can be considered  a foundational work of the  asymptotic theory  of linear 
systems.  The  generalization to pseudoeffective  Q-divisors  is due to Fujita [4].  The  result  then  carries 
over to normal  surfaces using the intersection theory  developed by Sakai in [14], see [13, Theorem  2.2]. 
One  should  bear  in mind  that in this  case P  and  N  are  in general  Weil divisors  only,  even if D  is 
Cartier. 

 

Definition 3.  Fix O ∈ X , and  let D be a divisor on X , with  Zariski decomposition  D = P + N. We 
decompose the negative  part  as 

N = NO  + N c 

where the support of NO   are exactly  the divisors in N  which go through O.  We say that 
 

D = P + NO  + N c 
 
is the refined Zariski  decomposition  at O. 

 

Definition 4.  Given two divisors D, D0  on X  with refined Zariski decompositions  at O 
 

cD = P + NO  + N c ,        D0  = P 0  + N 0 + N 0O                                              O              O
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we say that D and D0  are numerically  equivalent  near  O if 

 

P ≡ P 0   and NO  = N 0  .                                                                (†) 

 
The main results of this  paper  show  that the  information contained  in  the  set  of all  Newton– 
Okounkov  bodies of a big Cartier divisor D with center  at a smooth  point O of a surface is exactly  the 
numerical  equivalence  class near O of D in the sense above. 

 

Theorem 1.  Let  D, D0   be big Cartier divisors  on a normal  projective  surface  X ,  and  let O ∈ X  a 
smooth point.  The following are  equivalent: 

 

1.  D and D0  are  numerically  equivalent  near  O, i.e.,  their  Zariski  decompositions satisfy  (†). 
 

2.  For  all admissible flags with center  O, ∆Y   (D) = ∆Y   (D0 ). •                • 
 

3.  For  all infinitesimal admissible flags with center  O, ∆Y   (D) = ∆Y   (D0 ). •                • 
 

4.  For  all proper  admissible flags with center  O, ∆Y   (D) = ∆Y   (D0 ). •                • 
 

It is obvious that (2) is equivalent to [(3) and (4)].  The skeleton  of our proof is as follows: 

(1) ⇒ (2),     (3) ⇒ (4) ⇒ (1). 

Each  implication follows from one or two of the lemmas in section 2; some of the lemmas are actually 
stronger  than  is required  and may be interesting for themselves. 

Remark  that it is not enough to know the Newton–Okounkov bodies of D with respect  to all flags 
lying on X with center  at O (smooth  flags) in order to recover the numerical  equivalence  class near O. 
The information contained in this smaller collection of Newton–Okounkov bodies is determined in the 
next  theorem,  after  which it will be easy to give examples.  Assume D is a divisor with refined Zariski 
decomposition 

D = P + NO  + N c , 

and decompose further  NO   = N sing + N sm where N sm is formed by all components  with at  least  one 
O                  O                           O 

smooth  branch  through O.   Then  the  result  can  be expressed  in terms  of the  clusters  of initial  free 
points  FN sing  and FN 0 sing : 

O                           O 

Theorem 2.  Fix O ∈ X  a smooth point.  Let D, D0  be big Cartier divisors  on X , with refined Zariski 
decompositions 

 

D = P + N sing + N sm + N c ,    D0  = P 0  + N 0 sing + N 0 sm + N 0 cO                  O               O 
 
The following are  equivalent: 

O                    O                 O

 

1.  P ≡ P 0 , N sm = N 0 sm and F 
 

sing  = F 
 
sing .O                  O                    NO N 0 
O

2.  For  almost  all infinitesimal admissible  flags {X̃  ⊃ E ⊃ {p}} with center  O such that  the cluster 
K (p) is free, ∆Y   (D) = ∆Y   (D0 ). •                • 

 

3.  For  all smooth admissible flags with center  O, ∆Y   (D) = ∆Y   (D0 ). •                • 
 

The easiest example in which the set of all smooth Newton–Okounkov bodies with center at O does 
not determine the numerical  equivalence  class near O is given by two big Cartier divisors D, D0 whose 
negative  parts  N, N 0   are distinct irreducible  curves with ordinary  cusps at the same point O and with 
the same tangent direction  (it is not difficult to construct such divisors on suitable  blowups of P2 ).  In



6  

O

0

 
 
that case FN sing  = FN 0 sing  consists of two points:  O and the point infinitely near to it in the direction 

O                      O 

tangent to the  cusps, with  multiplicities 2 and  1 respectively.   Therefore  all Newton–Okounkov bodies 
with respect  to smooth  flags centered  at O coincide, but  NO  = N = N 0  = N 0  . 

The  proof, contained in the  lemmas  of section  2 follows the  same structure as for theorem  1.  The 
main  ingredient in  both  cases  is the  computation of Newton–Okounkov  bodies  in  terms  of Zariski 
decompositions  which can be found as Theorem  6.4 in [11].  Although  Lazarsfeld  and  Mustaţa proved 
this fact for smooth  surfaces, the result  applies on a normal  surface X as long as the flag is centered  at 
a smooth  point O of X . Indeed, using a resolution  of singularities  π : X̃  → X which is an isomorphism 
in a neighbourhood of O, one may apply [11, Theorem  6.4] to the pullback  divisor π∗ D with respect  to 
the pulled back flag, because Zariski decompositions  agree via pull-backs  (see [13, 2.3]) and intersection 
numbers  agree by the projection  formula. 

 
Higher dimension   Our results  depend on the existence of a Zariski decomposition. Decompositions 
with  similar  properties  exist  on some higher  dimensional  varieties  as well (for instance,  on toric  vari- 
eties) and in that case one can expect  the behaviour  of Newton–Okounkov bodies to be related  to the 
decomposition  similarly  to what  happens  for surfaces. 

Given a Cartier R-divisor D on X , a Zariski decomposition of D in the sense of Cutkosky-Kawamata- 
Moriwaki (or simply a CKM-Zariski  decomposition) is an equality 

 

π∗ D = P + N 
 

on a smooth  birational modification  π : X̃  → X  such that 
 

1.  P  is nef, 
 

2.  N  is effective, 
 

3.  all sections of multiples  of D are carried  by P , i.e., the natural maps 
 

H 0 (X̃ , O ˜ (bkP c)) −→ H 0 (X̃ , O ˜ (bkπ∗ Dc)) = H 0 (X, OX (bkDc)) X                                          X 
 

are bijective  for all k ≥ 0. 
 
See Y. Prokhorov’s  survey  [13] for more  on CKM-Zariski  decompositions  and  other  generalizations. 
Such decompositions  don’t  always  exist  [3] and  when they  do, P  and  N  may  be irrational even if D 
is an integral  divisor.  But  if they  do exist,  for instance  if X  is a toric  variety  [7], Newton–Okounkov 
bodies centered  at a given point O will be governed  by the Zariski decomposition: 

 

Proposition 5.  Let D, D0  be big Cartier divisors on a variety  X , admitting  a CKM-Zariski  decompo- 
sition  and let O ∈ X  a point.  If D and D0  are  numerically  equivalent  near  O, i.e.,  their  CKM-Zariski 
decompositions satisfy  (†).  Then  for all admissible flags with center  O, ∆Y• (D) = ∆Y• (D ). 

 
It should be expected  that a converse statement similar to what holds for surfaces be valid in higher 

dimension.  In fact, the proof of lemma 11 below can be easily adapted to the higher dimensional setting, 
so NO   is indeed determined by the Newton–Okounkov bodies centered  at O. The methods  of this note 
are however not sufficient to show that the positive  part  is also determined by the Newton–Okounkov 
bodies centered  at O. 

We work over an algebraically  closed field. 

 
Acknowledgement   The  author greatly  benefited  from conversations with  A. Küronya  on the  con- 
tents  of this work.
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2    Proofs 
 
Local numerical  equivalence  implies equal  Newton–Okounkov  bodies   Let  us  first  prove 
(1) ⇒ (2)  in theorems  1 and  2, and  at  the  same  time  proposition  5.  So assume  that D  and  D0  are 
big Cartier divisors  on  a  variety  X ,  numerically  equivalent  near  O,  i.e.,  with  refined  CKM-Zariski 
decompositions  satisfying  (†): 

 

π∗ D = P + NO  + N c ,        π∗ D0  = P 0  + NO  + N 0 O 
 

with P ≡ P 0 . By Lazarsfeld–Mustaţă [11, Theorem  4.1], all Newton-Okounkov bodies of D0  and 
 

D00  = D0 + (P − P 0 ) = P + N   + N 0 c 
 

coincide,  because  D00   and  D0   are  numerically  equivalent.   Thus  for the  proof  of proposition  5 and 
(1) ⇒ (2) in theorem  1 it is not restrictive to assume that P = P 0 . Then  there  is a sequence of divisors 

 

D = D0 , D1 , . . . , Dk  = D0
 

 
whose CKM-Zariski  decompositions  π∗ Di = P + Ni have  the  same positive  part  and  Ni  differs from 
Ni+1 in a multiple  of a base divisor Ei with O 6∈ π(Ei  ).  Thus  the desired implication follows from 
the following: 

 

Lemma 6.  Let D, D0  be two big Cartier divisors with respective refined Zariski  decompositions 
 

π∗ D = P + N,     π∗ D0  = P + (N + λE) 

with λ ∈ R, and O any point O 6∈ π(E). Then for all admissible flags with center O, ∆Y• (D) = ∆Y• (D 

). Proof.  An equation  of E  is invertible  in a neighborhood  of O, and  therefore  also in a  

neighborhood 
of every  point  p infinitely  near  to  O.  So for every  flag Y•  centered  at  O, νY• (E)  = 0.  Since global
sections  of bkDc  and  bkD0 c differ exactly  in bkλEc,  their  values  under  νY 

Newton–Okounkov bodies are the same. 
agree,  and  therefore  the

 

Now the following lemma is enough to finish the proof of (1) ⇒ (2) in theorem  2: 
 

Lemma 7.  Let D, D0  be two big Cartier divisors on a normal  surface  X  with respective refined Zariski 
decompositions 

D = P + (N + λC ),     D0  = P + (N + λ0 C 0 ) 
 

with λ, λ0  ∈ R,  and  C, C 0   irreducible  curves with no smooth  branch  through  O, and  satisfying  λFC = 
λ0 F   Then  for all infinitesimal  admissible flags {X    π   X ⊃ E ⊃ {p}} with center  at a given smooth 
point O such that  the cluster  K (p) is free and p 6∈ FC , ∆Y• (D) = ∆Y• (D ). 

 

Note that the  cluster  FC = FC 0   is finite,  and  its weights  are the  multiplicities of C (equivalently, 
C 0 ) at  each p ∈ FC .  The  equality  λFC = λ0 FC 0   means  that both  clusters  consist  of the  same points, 
and their  respective  weights m, m0  satisfy the proportionality λm(p)  = λ0 m0 (p) for all p ∈ FC . 

 
πProof.  Let  {X ←−  X̃ ⊃ E  ⊃ {p}}  be an  infinitesimal  admissible  flag with  center  O such  that the

cluster  K (p) = {O = p0 , p1 , . . . , pk−1 , pk  = p} is free and  p 6∈ FC .  Let E0  be the  birational 
transform 
of E  in the blowup Xp :

blO blp1
 blpk−1X = X0  ←− X1  ←− . . . ←−   Xk  = Xp .

Since p ∈ E0 , E0  is an irreducible  curve (is not contracted in Xp ), and since E0  contracts to the smooth
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1point O, it must be one of the exceptional  components;  in fact it must be the last, E0  = Epk , which is −



9  

i=0

0

Y (k)
 

Y

Y

i=k0

1

1

∈

1−

1−

i

•

−

 
 

the only one containing  p. Thus  it is not restrictive to assume that X̃  = Xp , π = blO ◦ blp1  ◦ · · · ◦ blpk        , 
and E = Epk      . 

The order of vanishing  of π∗ C along E  is 
k−1 

ordE (π
∗ C ) = 

X 
multp 

i=0 

k−1 

C̃ = 
X 

m(pi ) 
i=0

 

(where m(pi ) = 0 if pi  6∈ FC ) because the pi  are free; similarly,  ordE (π∗ C 0 ) = 
Pk−1 m0 (pi ).  Moreover,

C and  C
 

do not  pass through p.  So λνY   (C ) = λ νY  (C ).  Therefore  we conclude  as in the  previous0                                                                                                                                                            0                       0 
•                  • 

lemma:  since global sections of bkDc and bkD0 c differ exactly  in bkλ(C − C 0 )c, their  values under  νY 

agree, and therefore  the Newton–Okounkov bodies are the same. 
 
Equality of  infinitesimal bodies implies equality of  proper bodies   Now we prove (3) ⇒ (4) 
in theorem  1 and  (2)  ⇒  (3)  in theorem  2, namely  we need  to  show that if ∆Y• (D)  = ∆Y• (D ) for 
all infinitesimal  admissible  flags Y•  with  center  O (resp.   for almost  all infinitesimal  admissible  flags 
{X̃  ⊃ E ⊃ {p}} with  center  O such that the  cluster  K (p) is free) then  the  same equality  holds for all 
proper  admissible  flags Y•  with center  O, (resp.  for all smooth  admissible  flags Y•  with center  O). 

Given a curve C through O, an infinite cluster  K = {p0  = O, p1 , . . . , pk , . . . } will be called a branch 
cluster  for C if each pi  is infinitely  near  to pi−1  and  all of them  belong to C .  Note that in a branch 
cluster,  at  most  finitely  many  points  are satellite, and  C  has a smooth  branch  at  O if and  only if it 
admits  a branch  cluster  which is free. 

Associated  to each branch  cluster  there  is a sequence of flags 
 

•    = {Xk  ⊃ Epk−1   ⊃ {pk }},                                                          (‡) 

and a corresponding  sequence of valuations ν (k) = ν (k) . 
•

 

Lemma 8.  Let (ν (k) )k 

 

∈N  be the valuations  associated  to a branch  cluster  for the irreducible  curve  C
through O.  Let k0  be such that  the birational transform of C at pk0   is smooth,  and let Y•  = {X̃  ⊃ C̃ ⊃ 
{pk }} be the corresponding proper  admissible flag.  Then  for every φ ∈ K (X ) and every k     0 there  is 
an equality

 

ν (k) (φ) = 
 

k − k0      1
 

 
1        0 

 

ν   (φ). •

 

Proof.  Assume without loss of generali ty that φ is a regular function  on a neighbourhood of pk0 . Recall 
the  definition  of νY  (φ):   ν1 (φ)  = ordC (φ),  φ1   = φ/gν1 (φ) , where  g is a local equation  of C̃  at  pk  , •                                                                                                                                     0 

and  ν2 (φ) = ordpk0 
(φ1 |C ).  φ1  is the  local equation  of some effective divisor D which does not contain 

C , and  hence, by Noether’s  formula  for intersection multiplicities, [2, Theorem  3.3.1], there  is k1  such
that D  does not  go through any  point  pk , k ≥ k1  and  ν2 (φ) = 

Pk1
 multpi  D  = ordE  

pk−1 
φ1  for all

k  ≥  k1 .   On  the  other  hand,  it  is immediate   that ordEpk 

ν (k) 
g = k − k0   for all k  ≥  max{k0 , 1},  so 

(k)
1    (φ) = ordEp 

 
k−1 

(φ) = (k − k0 )ν1 (φ) + ν2 (φ) for all k ≥ max{k1 , 1}.  Similarly,  ν1    (φ1 ) = 0 for k ≥ k1

and ν (k) (g) = 1, and the claim follows. 
 
Corollary 9.  Let  D, D  be arbitrary Cartier divisors  on  a  surface  X ,  and  O      X  a  smooth  point. 

π

Given  a  proper  admissible  flag Y•   = {X ←−  X̃ 
(k) 

⊃ C  ⊃ {p}}  centered  at  O,  and  a  branch  cluster
K  = {p0 , . . . , pk , . . . } for  π(C ),  denote  Y•       the  sequence  of flags  (‡).    If the  set  of indices  k  with 
∆

Y (k) (D) = ∆
Y (k) (D0 ) is infinite,  then ∆Y   (D) = ∆Y   (D0 ). 

•                   •                                           
•                •



1
0 

 

0

•

Y

•

 
 

The proof of the corollary  is straightforward and is left to the reader. 
Now the  desired  implications  in theorem  1 and  2 follow, because  every curve  C through O (resp. 

smooth  at  O) admits  a branch  cluster  (resp.   a free branch  cluster),  and  statement (3) in theorem  1 
(resp.  (2) in theorem  2) imply the infiniteness  needed in corollary  9. 

 
Equality of  proper  bodies implies local numerical equivalence   Finally  we prove  (4)  ⇒ (1) 
in theorem  1 and  (3) ⇒ (1)  in theorem  2.  We deal separately with  the  positive  and  negative  parts, 
because for the positive  part  it is enough to consider smooth  proper  flags: 

Lemma 10.  Let D and D0  be big Cartier divisors  with Zariski  decompositions 
 

D = P + N,     D0  = P 0  + N 0 . 
 

Assume  that,  for  all curves  C  ⊂ X  smooth  at  O,  the  bodies ∆Y• (D)  = ∆Y• (D )  agree  for  the  flag
O}}. Then  P ≡ P 0 .

 

Proof.  Choose ample divisor classes L1 , . . . , Lρ   whose Q-span  is all of the  rational Néron-Severi  space 
N 1 (X )Q . Replacing  each L i by a suitable  multiple,  we can assume that it is the class of an irreducible 
curve  Ci  smooth  at  O,  whose tangent direction  there  is different from  every  tangent direction  to  a 
component of the  augmented base locus which may pass through O.  (This  is well known,  and  can be 
proved  as follows: by Serre vanishing  there  exist  k such that H 1 (X, I 2 (L⊗k )) = 0 where IO   denotes O       i 
the ideal sheaf of the point O in X . Then  the exact  sequence in cohomology determined by 

 

0 −→ I 2  ⊗ L⊗k  −→ OX (L⊗k ) −→ (OX /I 2 )(L⊗k ) −→ 0 
O           i                      i                         O         i 

shows that H 0 (X, OX (L
⊗k ))  surjects  onto  H 0 (X, OX /I 2 ) and  in particular it  is possible  to  find a 
i                                                           O 

⊗k section in H 0 (X, OX (L i    )) which vanishes at O to order exactly 1 and has preassigned  image=tangent 
direction). 

So for each i = 1, . . . , ρ, we can compute  Newton–Okounkov bodies of D  and  D0  with  respect  to 
(i)the flag Y• = {X ⊃ Ci  ⊃ {O}}, and by [11, Theorem  6.4], the height of the intersection of ∆Y  (i) (D)

with  the  second coordinate  axis equals P · L i ; since by hypothesis  the  bodies ∆Y  (i) (D)  = ∆Y  (i) (D
0 ) 

•                    • 

coincide, it follows that P · L i = P 0  · L i for all i.  Therefore  P ≡ P 0 . 
 

Lemma 11.  Let D and D0  be big Cartier divisors  with refined Zariski  decompositions 
 

cD = P + NO  + N c ,    D0  = P 0  + N 0 + N 0      ,O                                        O              O 

and assume  that  for all proper  admissible flags with center  O, ∆Y   (D) = ∆Y   (D0 ).  Then  NO  = N 0  . •                •                                  O 

Proof.  Let C be a component of NO , and let π : X̃  −→ X be a proper birational morphism such that the
strict  transform C̃ of C is nonsingular at π−1 (O); let p be a point in C̃ ∩ π−1 (O), and Y = p ∈ C̃ ⊂ X̃ ,
which is a proper admissible flag with center at O. The first coordinate  of the leftmost  point in ∆  (D) • 

is the  coefficient  of C  in NO   by the  proof of [11, Theorem  6.4], so this  is also the  coefficient  of C  in 
N 0                                                                                                                                                                                                           0

 

O . Doing this for each component, we obtain  NO  = NO   as claimed. 

This finishes the proof of (4) ⇒ (1) in theorem  1; to conclude with (3) ⇒ (1) in theorem  2 we need 
another  lemma: 

Lemma 12.  Fix O ∈ X  a smooth point.  Let D, D0  be big Cartier divisors  on X , with refined Zariski 
decompositions 

 

D = P + N sing + N sm + N c ,    D0  = P 0  + N 0 sing + N 0 sm + N 0 c  ,O                  O               O O                    O                 O

and assume that for all smooth admissible flags with center  O, ∆Y   (D) = ∆Y   (D0 ).  Then N sm = N 0 sm

and FN sing  = FN 0 sing . 
•                •                       O                  O

O                      O



1
1 

 

O

O

O

O

p

 
 

Proof.  The equality  N sm = N 0 sm follows with the same proof of the previous lemma.  Let us now show 
O                  O 

sm         0 sm 
that FN sing  = FN 0 sing . Without loss of generality  we may assume that NO      = N O     = 0. 

O                      O 

For  each  point  p ∈ FN sing , let  Cp   be a smooth  curve  going through p and  missing  all points  in 
FN sing ∪ FN 0 sing  infinitely  near  to p, and  let Y•  = {X  ⊃ C ⊃ {O}.  By [11, Theorem  6.4], the  least  α 

O                     O 
sing 

such that (0, α) ∈ ∆Y•   is ordO (NO    |Cp . So the hypothesis  tells us that 
singordO (N sing |C = ordO (N 0 
O |Cp (§)

If p = O, then  the  two sides of the  preceding  inequality equal the  weights of O in FN sing  and  FN 0 sing 
O                            O 

respectively. 
If p = O, let q be the point preceding p and Cq  the corresponding  curve.  The weights of p in FN sing 

and FN 0 sing  now equal the differences 
 

m(p) = ordO (N sing |C   ) − ordO (N sing |C   ),O           p 

sing 
O           q 

singm0 (p) = ordO (N 0 
O      |Cp ) − ordO (N 0 

O      |Cq ) 

respectively  so they  also coincide. 
We have proved that every point of the cluster  FN sing  appears  in FN 0 sing  with the same weight; by 

O                                           O 

symmetry, we conclude that both  weighted  clusters  are in fact equal. 
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