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Abstract 18 

Root zone heating systems offer increasing crops quality and productivity. However, these 19 

systems are based on the use of nonrenewable fuels. This paper reports on a study of different 20 

design solutions for a root zone heating system, based on thermal energy storage with PCM. 21 

The objective of the study was to define, through multiple experiments, the most efficient 22 

PCM melting/freezing temperature and location with respect to the substrate (i.e., under the 23 

substrate) for the application under study; as well as, to determine the system's environmental 24 

and economic feasibility, with life cycle assessment and life cycle cost methodologies. Results 25 

show that the best melting temperature for the application under study is 15⁰C. To increase 26 

the efficiency of the system, PCMs may be macro encapsulated and wrap the entire perlite 27 

bag. Moreover, it seems that PCMs are far to substitute conventional root zone heating 28 

systems because it does not provided enough heat during nights. Nevertheless, PCMs can help 29 

to reduce the operation time of conventional systems. Based on one night results it seem that 30 

PCM could provide annual saving of between 22-30 kg of eq. CO2/ha·day. However, it does not 31 

seem to be feasible if PCM prices (8€/kg) do not decrease significantly. 32 

Keywords 33 
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 36 

Highlights 37 

 The thermal behavior of a perlite bag from a Mediterranean soilless protected crop is 38 

described.  39 

 A TES system with PCM to heat plants roots in soilless crops is studied with multiple 40 

experiments.   41 

 The best PCM phase change temperature for the application seems to be 15⁰C.  42 

 The most effective PCM location consists of wrapping the perlite bag.  43 

 20-30 Kg of eq. CO2 emissions could be saved per hectare and night. 44 

  45 
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Abbreviations & nomenclature    

PCM phase change material 𝑄15°𝐶  heat required to maintain the 

conventional perlite bag at 15⁰C TES thermal energy storage systems 

LDPE low density polyethylene 𝑄𝑃𝐶𝑀  heat provided by the PCM to the 

perlite bag 𝐶𝑝 perlite specific heat (0,387 kJ/kg·°C) 

𝐶𝐻2𝑂 water specific heat (4.18 kJ/kg·°C) 𝑇15°𝐶  constant 15⁰C temperature 

𝐸𝑠 energy savings 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑏𝑎𝑔 control’s bag temperature 

𝑚𝑝 perlite mass 𝑇𝑃𝐶𝑀 𝑏𝑎𝑔  bag with PCM’s temperature 

𝑚𝐻2𝑂 water mass   

𝑣𝑝𝑐𝑚 PCM volume 𝑃𝑅𝐻  Power of root heating 

𝜆𝑝𝑐𝑚 PCM enthalpy 𝐿𝑏𝑎𝑔 Length of the perlite bag (1m) 

𝜌𝑝𝑐𝑚 PCM density in solid state 𝑡 Time 

 46 

 47 

1. Introduction 48 
1.1. Greenhouse heating systems based on TES  systems with PCM  49 

Thermal energy storage (TES) systems allow the storage of large amounts of cold or heat for 50 

long periods of time (hours, days or month) and recover the heat when required. Phase 51 

change materials (PCM) have been used to create different TES applications, e.g., for buildings 52 

[1–3], waste heat collectors [4] or storage and transportation cooling systems [5]. PCM are 53 

substances with a high heat of fusion and specific melting and solidifying temperatures and 54 

can be used for storing and releasing large amounts of thermal energy. PCM can be used to 55 

store solar energy during the day and release it at night.  56 

PCM applications are of great interest due to the capacity of PCM to increase systems’ energy 57 

efficiency and reduce their dependence on nonrenewable resources. Few PCM applications 58 

have been designed to improve greenhouse heating systems [6–11]. These applications aim to 59 

reduce greenhouse heating system energy consumption by (1) using solar collectors inside [6] 60 

or outside [9] the greenhouse based on PCM use, (2) installing a ground-source heat pump-61 

phase change material for latent heat storage system in greenhouses [7], (3) increasing the 62 

energy efficiency of heat pumps with new PCM applications [8], (4) using PCM to reduce daily 63 

temperatures without the use of cooling systems [10], or (5) installing a north wall made of 64 

PCM inside the greenhouse as a TES [11].  65 

1.2. PCM application for root zone temperature control 66 

Providing proper temperatures to the root of crops stimulates plants development and flowers 67 

production, which results in an increase of productivity [12]. Yasushi et al. [13] compared the 68 

production yield of a tomato crop without a root zone temperature control system and a crop 69 

during which nigh root temperatures were maintained over 15°C by using a root heating 70 

system (no air heating was used). The yield of the heated crop was 20% higher and its fruits 71 

were 30.5% heavier. Another study [14] detected for tomato crops a decrease of flower 72 

production and a reduction of fruit weight when ambient temperatures increase above 25°C or 73 

decrease under 15°C. Therefore, it seems that tomato plants ideal root and ambient 74 

temperatures to enhance productivity may be maintained between 15°C and 25°C. Root zone 75 

heating can be combined with air heating [15]; nevertheless, heating specifically the root zone 76 

can reduce fuel consumption rather than heating the air of the greenhouse [16].  77 
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Some authors have looked for the ideal root temperatures for other crops. For example, has 78 

already been reported that a proper root temperatures for lettuces production could be 79 

between 17 and 24°C [17]. For the case of maize production no significant effects were 80 

detected in plants and productivity if root temperatures are maintained between 13°C and 81 

28°C [18]. For other crops such as tobacco, cotton, corn or pea ideal root temperatures may be 82 

32°C, 25°C, 20°C and 10°C, respectively [19]. Therefore, ideal root temperatures are different 83 

for each plan.  84 

Root zone temperature control has been conventionally achieved with expensive and 85 

unsustainable gas and oil heating systems. Some PCM systems to control root zone 86 

temperature have been studied as a means to improve the environmental performance of 87 

crop production systems while ensuring the increase of crop production. An actual experience 88 

with PCM for root zone temperature control was found in the literature [20]. The study testes, 89 

with positive results, two PCM with a similar phase change temperature of 12⁰C in soilless 90 

protected crops in Turkey. In this case, PCM were located next to the perlite bags. The 91 

manuscript concludes that further research is required to investigate PCMs with other thermal 92 

properties and different encapsulation shapes. In addition, they suggest that most of the 93 

thermal energy stored by the PCM was lost by convection to the air at night, fact that reduced 94 

the efficiency of the system.  95 

Another study analyses the environmental and economic feasibility of a theoretical application 96 

of PCM, in a greenhouse with 19.4ha from southern Spain, as a substitute to conventional root 97 

zone heating systems which use oil, gas or biomass boilers [21]. This study concludes that PCM 98 

seem to be a potential technology to substitute conventional heating systems and provide 99 

environmental and economic benefits. Nevertheless, it is based on detailed calculations and 100 

not real data. For this reason the manuscript concludes that there is the need generate and 101 

use real data to reduce the uncertainty of its results.  102 

1.3. Soilless culture and substrates.  103 

Some studies have concluded that soilless culture is the most intensive and effective 104 

production system in the agricultural industry [22,23]. Soilless culture is based on systems 105 

which allow plant growth without the use of soil as growing medium. Plants can be grown in 106 

porous substrates or directly in contact with water without the use of substrates. In soilless 107 

crops the exact nutrients required by plants are mixed supplied through the irrigation water 108 

[24], making these crops efficient in terms of water and nutrients per kg of production.  109 

Substrates used in soilless culture can be divided in two groups: organic (i.e. coconut fibers, 110 

wood residues, bark, rice hulls) or inorganics (roockwool, sand, perlite, pumice). Inorganics 111 

have the advantage of being free of potential diseases, pests and weed seeds. Moreover, they 112 

drain better than organics, fact that allow a better control of soil conditions (i.e. nutrients 113 

content, available water for plants) [25].  114 

In Spain and the Mediterranean area, it is common the use of perlite as a substrate in soilless 115 

crops. In fact, in Southern Spain, where is concentrated nearly all greenhouse tomato 116 

production in Spain (Spain produced 3.68t of tomato in 2013 [26]), perlite is a common 117 

substrate used. Despite the importance of its use and the relevance of root zone temperatures 118 

on yield production [12,13], the thermal behavior of such substrate in protected crops has not 119 

been properly defined.  120 
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Root heating systems combined for soilless crops with perlite substrates can increase 121 

significantly production yield with an efficient use of water and fertilizers. However, it is still 122 

required further research to determine the thermal behavior of perlite bags and how root 123 

zone heating systems can be environmentally improved with the use of PCM. For these 124 

reasons, this essay seeks to (1) describe the thermal behavior of a conventional perlite bag 125 

which has not been sufficiently described in the literature; (2) select the most effective 126 

position for the PCM in relation to the cropping bag (i.e., under, next to, wrapping the bag) to 127 

minimize root zone temperature decrease at night; (3) determine the best PCM 128 

melting/freezing temperature for its application in Mediterranean greenhouses; and (4) 129 

quantify the carbon footprint and economic savings that PCM could provide over conventional 130 

gas, oil or biomass root zone heating systems.  131 

2. Methodology 132 
2.1. Experimental area and crop 133 

The study was completed in a greenhouse situated in Cabrils, north Barcelona (Latitude: 41⁰ 134 

31’ 2.6’’N, Longitude: 2⁰ 22’ 39.3’’E) under a Mediterranean climate. The greenhouse was 135 

19.2 m wide and 12 m long, with a 3 m high gutter and a 5.5 m high ridge, covered with a 136 

single PE layer opaque to far infrared radiation. Average, minimum and maximum 137 

temperatures for each season during 2014 in Cabrils are provided in Table 1 [27]. In this 138 

region, average and minimum temperatures between November and March (Figure 1) can be 139 

low enough to compromise crop continuity. Moreover, the use of root zone heating systems is 140 

not commonly used in the region, due to economic infeasibility. Consequently, crop 141 

production is finished when temperatures drop during November. PCM root zone applications 142 

could help ensure crop production continuity during cold periods or extend crop production 143 

during November and allow earlier crop initiation in March. The present study was developed 144 

with a tomato crop (solanum lycopersicum Arawak) for which the ideal root zone 145 

temperatures to maximize production were considered to be between 15°C and 25°C. 146 

 147 

¡Error! No se encuentra el origen de la referencia.Table 1. Average, maximum and minimum 148 

temperatures for each season in Cabrils (Barcelona, Spain) during 2014 [27] 149 

 
Cabrils (2014) 

 

Winter Spring Summer Autumn 

Avg. Temperature (⁰C) 11.0 17.0 23.4 16.3 

Max. Temperature (⁰C) 23.1 32.9 30.3 26.4 

Min. Temperature (⁰C) 1.6 4.6 15.4 4.2 

 150 

  151 
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 152 

 153 

Figure 1. Daily average and minimum temperatures between November 2013 and March 154 

2014 [27] 155 

2.2. Thermal behavior of a conventional perlite bag 156 

The cropping bag used for the experiment was made of low-density polyethylene (LDPE) film 157 

and contained perlite B12, with a thermal conductivity of 0.035-0.045 W/Km. The total volume 158 

of the bag was approximately of 47 L (100x28x17 cm). Inner temperatures of the bag were 159 

measured during one sunny week with 5 Campbell Scientific 107 temperature probe 160 

thermistors with an accuracy of +/-0.1⁰C, to define the thermal behavior of this perlite bag. 161 

Thermistors were distributed in axis “X” and “Y” as Figure 2 shows. 162 

 163 

 164 

Figure 2. Schematic diagram of T-type thermocouple distribution for temperature measurements in a 165 
perlite bag. 166 
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Table 2. Description of the experiments used for the study 167 
Experiment 

Nº 
Data Description 

Measurement 
devices 

Scheme 

1 
9/03/2014 

-  
19/03/2014 

Perlite bags analyzed 
1. Control perlite bag 
2. With RTH18 (melting/freezing point at 18°C)  
 

Encapsulation Method 
Macro encapsulation with 2 PVC tubes (1 m x ø𝑖𝑛𝑡.56 
mm). 1 tube per side along the perlite bag.  
 

Location 
Under the perlite bag 

T-Type 
Thermocouple 

+ 
Campbell CR3000 

data logger 
 

2 
1/12/2014 

- 
10/12/2014 

Perlite bags analyzed* 
1. Control perlite bag 
2. With RTH18 (melting/freezing point at 18°C)  
3. With water for increasing thermal inertia** 
 

Encapsulation Method 
Macro encapsulation in 0.33 L bottles 
 

Location 
Under the perlite bag 

T-Type 
Thermocouple 

+ 
Campbell CR3000 

data logger 
 

3 
24/02/2015 

- 
07/03/2015 

Perlite bags analyzed* 
1. Control perlite bag 
2. With RT15 (melting/freezing point at 15°C)  
3. With RT12 (melting/freezing point at 12°C)  
4. With water for increasing thermal inertia 
 

Encapsulation Method 
Macro encapsulation in LDPE film 
 

Location 
On the sides of the perlite bag 

T-Type 
Thermocouple 

+ 
Campbell CR3000 

data logger 
 

4 

09/03/2015 

- 

19/03/2015 

Perlite bags analyzed* 

1. Control perlite bag 

2. With RT15 (melting/freezing point at 15°C)  

3. With RT12 (melting/freezing point at 12°C)  

4. With water for increasing thermal inertia 
 

Encapsulation Method 

Macro encapsulation in LDPE film 
 

Location 

Wrapping the perlite bag 

T-Type 

Thermocouple 

+ 

Campbell CR3000 data 

logger  

*Each number refers to a perlite bag. Each perlite bag was studied exclusively with one PCM or with water. Different PCMs or water were not mixed. 

**Water bottles were not combined or alternated with PCM.  
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2.3. Selecting the best PCM location in relation to the perlite bag and determining the ideal 168 

PCM melting/freezing temperature.  169 

Four experiments were completed for this part of the study (Table 2): 170 

 171 

-Experiment 1: PCM inside PVC tubes under the perlite bag 172 

-Experiment 2: PCM in 0.33 L polyethylene bottles under the perlite bag 173 

-Experiment 3: PCM macro encapsulated in LDPE bags wrapping the bottom of the perlite bag.  174 

-Experiment 4: PCM macro encapsulated in LDPE bags wrapping the whole perlite bag. 175 

 176 

All experiments were conducted during cooler periods in the Mediterranean (between 177 

November and March 2014-2015, which is when substrate heating is required). The results and 178 

conclusions obtained from one experiment were used to define the next experiment. For each 179 

experiment the temperature was measured in the center of the perlite bags, where the axis x 180 

and y in Figure 2 cross. Additionally, temperature measurements in a control perlite bag were 181 

collected in all experiments. The measurements were made with Campbell Scientific 107 182 

temperature probe thermistors. Average values were collected every 10 minutes with a 183 

CR3000 data logger. The period of each experiment, the PCM used and the location of the 184 

PCM in relation to the perlite bag are specified in Table 2. In all case studies, the volume of 185 

PCM used per each perlite bag was 6 liters.  186 

 187 

The volume of the PCM required for the experiment was determined by the following formula: 188 

𝑣𝑝𝑐𝑚 =

𝑃𝑅𝐻
𝜆𝑝𝑐𝑚

·𝐿𝑏𝑎𝑔·𝑡

𝜌𝑝𝑐𝑚
   [1] 189 

 190 

where 𝑣𝑝𝑐𝑚, 𝜆𝑝𝑐𝑚 and 𝜌𝑝𝑐𝑚are the volume, enthalpy and density in solid state of the PCM, 191 

respectively. 𝑃𝑅𝐻 refers to the power that the heating system, that is to say the PCM, may 192 

provide to the perlite bag. It was assumed that this value should be of 20W/m as in 193 

conventional root zone hating systems [28]. 𝐿𝑏𝑎𝑔 is the length of the perlite bag and 𝑡 is the 194 

equivalent time that a conventional heating system may operate in cool periods in the 195 

greenhouse were experiments were developed. In this greenhouse temperatures usually get 196 

lower than 15°C between 0:00 and 10:00. For this reason was assumed that PCM may provide 197 

the equivalent energy to a system that was operating during 10 h. The calculation was first 198 

elaborated for the PCMs with the lower enthalpies RT12 (150kJ/kg) [29] RT15 (140kJ/kg) [30] 199 

(table 3). Volumes calculated were 5.5 and 5.8 liters, respectively. We decided to use 6 liters to 200 

oversize the design and ensure that PCM had the potential to provide enough energy to the 201 

perlite bag.  202 

 203 

For the case of PCM RT18HC [31], with an enthalpy of 250kJ/kg the mass that should be used 204 

according to the formula was 3.3 litters. It was not enough volume to distribute the PCM 205 

through the whole perlite bag length. Then, we decided to use 6 liters of RT18HC PCM as for 206 

the other PCMs. The use of 6 liters of PCM instead of the 3.3 liters calculated increases the 207 

heat storage capacity of the system. Therefore, it should be taken into account that if thermal 208 

benefits when using this PCM are higher than when RT12 and RT15 are used is because the 209 

highest enthalpy of the PCM RT18HC. 210 

 211 

The use of water (macro encapsulated in the same way as PCM) to increase the thermal inertia 212 

of the perlite bags as a potential solution to control root zone temperatures was also tested 213 

during experiments 2, 3 and 4. For these tests, 12 liters of water were used per each perlite 214 
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bag. The sensible heat of water at 20°C (4.18kJ/Kg·°C) is very low in comparison with the latent 215 

heat of PCM. For this reason the volume of water used was maximized as much as possible 216 

according to the maximum volume that the encapsulation method allowed. Despite it could 217 

has been interesting to use a higher volume of water, which could provide the same energy 218 

storage capacity than the PCM, the encapsulation method limited this volume up to 12 liters. 219 

Water was respectively encapsulated in the same way that PCMs were encapsulated in each 220 

experiment. Water was never mixed with PCMs, just as the PCMs were never mixed between 221 

them. It should be noted that large-scale purchases price per kg of PCM used in this study was 222 

8€/kg. Considering this, the use of water as a TES system could present important economic 223 

advantages. 224 

 225 

For the first experiment, the location of the PCM in relation to the perlite bag was selected 226 

according to the discussion presented by Beyza Beyhan et al. [20]. This paper mentioned that 227 

“40-80% of stored heat was lost to the surrounding and not transferred to the substrate”. The 228 

authors consider that this loss was likely the result of insufficient surface contact between the 229 

substrate and the PCM. Therefore, we elected to situate the PCM under the perlite bag. PVC 230 

tubes were used as an encapsulation method due to their low cost and ease of installation 231 

under the substrate. We decided to use two  PVC  tubes (under the perlite bag one on the right 232 

side and one on the left side) because they allow a proper drain of the perlite bag as can be 233 

seen experiment 1 picture from table 2. 234 

 235 

Beyza Beyhan et al. [20] selected the melting/freezing PCM temperature based on the 236 

minimum temperature levels required to avoid stress in plants: 10-15°C [20,32]. However, to 237 

avoid achieving 15°C, the PCM melting/freezing temperature was set higher than the 238 

mentioned temperature. Consequently, a PCM with a melting temperature of 18°C was 239 

selected for the first experiment (Table 2). For experiments 2, 3 and 4, PCMs were selected 240 

according to the results obtained from experiment 1. Table 3 shows the properties of the PCM 241 

used for the study. These PCM were selected based on the following: 242 

 Rubitherm products, specifically RT18HC, were considered as potential PCM for root zone 243 

temperature control based on theoretical environmental and economic assessments 244 

previously completed [21].  245 

 Organic PCM were used due to their recycling potential due to the environmental 246 

approach of the study. 247 

 Phase change temperature was the main requirement for selecting PCMs, with enthalpies 248 

being considered less relevant according to the objectives of the study. The aim of the 249 

study was to determine whether PCMs were melting or not during cold periods in a 250 

Mediterranean greenhouse.  251 

 Rubitherm PCMs were used due to the availability of the products for the research.  252 

 253 

Table 3.PCM RT12 [29], RT15 [30] and RT18HC [31] thermal properties according to 254 

Rubitherm data sheets . 255 

 
PCM Properties 

 

RT12 RT15 RT18HC Units 

Main peaks congealing/melting area 12 15 18 ⁰C 

Melting area 7-13 10-17 17-19 ⁰C 
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Congealing area 13-6 17-10 19-17 ⁰C 

Enthalpy  150 140 250 kJ/kg 

Heat conductivity (both phases) 0.2 0.2 0.2 W/(m·K) 

Volume expansion 12.5 12.5 12.5 % 

Max. Operation temperature 55 50 40 ⁰C 

Density (sloid state) 0.88 0.88 0.88 Kg/l 

 256 

2.4. Potential energy, environmental and economic savings 257 

This part of the study aimed to estimate the potential energy, environmental and economic 258 

savings that the application under study could provide to soilless crops for a single night. For 259 

this calculation, the specific PCM phase change temperature and location were selected from 260 

Table 2 to provide the highest thermal energy benefits to the perlite bag. Then, the following 261 

data were calculated: (1) the energy required to maintain the control perlite bag at 15⁰C 262 

(temperature required to avoid stress on plants [32]); (2) the thermal energy that the selected 263 

experiment (with specific phase change temperature and location) provided to the perlite bag; 264 

and (3) the potential energy, environmental and economic savings that PCM could provide to a 265 

system that uses root zone heating to maintain perlite bag temperature at 15°C . 266 

The following formula was used for the first calculation:  267 

𝑄15°𝐶 = (𝑚𝑝 · 𝐶𝑝 + 𝑚𝐻2𝑂 · 𝐶𝐻2𝑂) · (𝑇15°𝐶 − 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑏𝑎𝑔)  
[2] 268 

 269 

For the second calculation, an adaptation of the same formula was used: 270 

 271 

𝑄𝑃𝐶𝑀 = (𝑚𝑝 · 𝐶𝑝 + 𝑚𝐻2𝑂 · 𝐶𝐻2𝑂) · (𝑇𝑃𝐶𝑀 𝑏𝑎𝑔 − 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑏𝑎𝑔)  
[3]

 272 

 273 

where 𝑚𝑝 is the mass of the perlite of the bag (3.58 kg) and 𝑚𝐻2𝑂 𝑖𝑠 the mass of water. 274 

According to Orozco et al. [33], for a perlite B12, which is the type of perlite used for the 275 

experiment, a water management program (intended for tomato production) was selected so 276 

the perlite bag contained at least 45% water. The perlite bag had a volume of 47 L; therefore, 277 

the content of water in the perlite bag was assumed to be 21.2 L (21.2 kg). C is the specific 278 

heat of both perlite (0,387 kJ/kg·°C) and water (4.18 kJ/kg·°C). 𝑇𝑃𝐶𝑀  is the temperature of the 279 

perlite bag with PCM; and 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the temperature of the control bag. 𝑇15°𝐶 represents the 280 

constant temperature value of 15⁰C. 281 

 282 

To estimate the potential energy savings (𝐸𝑠) that PCM could provide to a root zone heating 283 

system, the following ratio was calculated: 𝐸𝑠 = 𝑄𝑃𝐶𝑀/𝑄15⁰𝐶   
[3]. 284 

 285 

Finally, the operation equivalent CO2 emissions and fuel costs to maintain the control bag at 286 

15°C using a root zone heating system with gas, oil and biomass boilers with efficiencies of 287 

90%, 91% and 87%, respectively, were calculated, according to the previously completed 288 

environmental assessment [21]. Additionally, the equivalent CO2 emissions and costs that 289 

could be avoided if PCM were used as a solution to increase conventional root zone heating 290 

systems efficiency were accounted for.  291 

 292 

The calculation of the mentioned equivalent CO2 emissions were based on the Life Cycle 293 

Assessment methodology, according to ISO 14040 [34]. Only emissions from operation phase 294 

were considered, avoiding emissions from infrastructure (i.e., the boiler; HDPE tubes for the 295 
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heating system). Data for the calculation were obtained from the Ecoinvent 2 database, using 296 

Simapro7 as the support program. The calculation method used was Recipe (H) and the impact 297 

category analyzed was Climate Change (kg CO2 eq.). The gas prices were based on a local 298 

provider [35], oil prices were obtained from the “Spanish Institute for Diversification and 299 

Energy Saving” [36] and the price for biomass was obtained from the “Spanish Association of 300 

Energy Recovery” [37]. 301 

 302 

Energy, environmental and economic savings showed in results must be understood as 303 

potential savings. Results are based on one night thermal benefits of PCMS. Therefor there is 304 

some uncertainty that should be assumed. Nevertheless, these give a first idea of the possible 305 

benefits of the technology which can be useful to determine how this technology should 306 

evolve in the future.  307 

 308 
3. Interpretation of results and discussion 309 

3.1. Thermal behavior of a conventional perlite bag 310 

The results are shown in two separate graphs (Figure 3) by grouping results from thermistors 311 

situated in axis x (T-1; T-2; T3) and y (T-2; T-4; T-5) according to locations defined in Figure 2. In 312 

addition, Figure 4 shows a scheme of the daily temperature pattern based on the experimental 313 

measurements.  314 

315 

 316 

Figure 3. Top: one week (14/11/2015-20/11/2015) temperatures for axis “Y” thermistors T-1, 317 

T-2 and T-3. Bottom: one-week temperatures for axis “X” thermocouples T-2, T-4 and T-5. 318 
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 319 

 320 
 321 

Figure 4. Scheme of a perlite bag’s temperature pattern during a sunny day during 322 

the early cold period (color scale is a relative temperature scale and is different for 323 

each period). This figure summarizes results from figure 3. 324 

 325 

As shown in Figures 3 and 4, the temperatures in the perlite bag before sunrise were similar at 326 

the bottom and the center but slightly higher at the bottom (0.5⁰C). The external parts of the 327 

bag (top, right and left) were 1.5⁰C lower than those at the center. Greenhouse and perlite bag 328 

temperatures increased at noon due to solar radiation. At this time, the outer zone of the bag 329 

was hotter (almost 2⁰C) than the inner zone, which was still cold due to the low temperatures 330 

achieved throughout the night. At noon and during midday, the perlite bag accumulated 331 

sensible heat. By late afternoon, after sunset, the perlite bag registered the heat absorbed 332 

during the day. Consequently, the inner zone of the perlite bag was hotter (1-1.5⁰C) than the 333 

outer zone. At night, temperatures in the perlite bag tend to stabilize. However, the bottom of 334 

the bag was hotter than the rest of the bag (2⁰C). This situation may have occurred for two 335 

reasons: (1) the bottom of the perlite bag was not in direct contact with greenhouse air, and 336 

consequently there was no convection in this part of the bag; and (2) the expanded 337 

polystyrene base used to collect the leachates helped increase the thermal isolation of the 338 

substrate. At the end of the night, before the sunrise, temperatures at the bottom were still 339 

significantly higher (1.5⁰C). The delay of T1 in figure 3 in axis Y in relation with T2 is explained 340 

by the fact that T1 (bottom of the perlite) bag is less influenced by ambient temperature than 341 

the center of the bag (T2). It can be explained by the fact that the bottom of the bag is isolated 342 

by the polystyrene base and influenced by the thermal inertia of the ground. Then T1 requires 343 

more time to get warmer and later it keeps heat better than the rest of the perlite bag.  344 

 345 

3.2. Selecting the best PCM location in relation to the perlite bag and determining the ideal 346 

PCM melting/freezing temperature.  347 

In this section, the results for each experiment are presented separately. However, the 348 

relations between experiments, which describe the iterative process used, are addressed. A 349 

representative day is shown for each experiment to facilitate comparisons between 350 

experiments.   351 

  352 
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3.2.1. Experiment 1: PCM RT18HC macro encapsulated in PVC tubes 353 

 354 

Figure 5. Diurnal temperature measurements of a root zone passive heating system with 355 

PCM RT18HC macro encapsulated in PVC tubes, a control perlite bag and inner greenhouse 356 

temperatures. Perlite temperatures were measured at the center of the bags.  357 

Experiment 1 (Table 2) tested a root zone passive heating system with PCM RT18HC (Table 3) 358 

macro encapsulated in PVC tubes located under the perlite bag. Few thermal benefits were 359 

observed during the experiment. For the best day, a 0.7°C difference between the 360 

temperatures of the RT18HC bag and the control perlite bag was achieved (Figure 5). However, 361 

there was no consistent repetition or continuity in the results. For some nights with similar 362 

greenhouse temperatures, the perlite bag with added PCM had temperatures that were equal 363 

to or lower than those of the control bag. 364 

Because of the opacity of the PVC tubes used and the lack of continuity in the results, it was 365 

not evident that the PCM was melting and freezing. Moreover, the 1.8 mm thickness of the 366 

PVC and the PVC’s low thermal conductivity were limiting aspects that reduced thermal 367 

transmission between the PCM, the air and the perlite bag.  368 

 369 

3.2.2. Experiment 2: PCM RT18HC macro encapsulated in 0.33 L water bottles 370 

To visually control the PCM used (visualize liquid or solid phase) and to reduce the thickness 371 

of the encapsulation system, PVC tubes used in Experiment 1 were substituted by 0.33 L 372 

water bottles (Table 2). Moreover, in Experiment 2 and the following experiments the 373 

potential of water as a root zone heating system by increasing the storage of sensible heat of 374 

the perlite bags during the day was analyzed. Consequently, in Experiment 2 three perlite bag 375 

temperatures were controlled: (1) root zone heating system with CPM RT18HC; (2) root zone 376 

heating system with water to increase sensible heat storage; and (3) a control perlite bag.  377 
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 378 

Figure 6. Diurnal temperature measurements of a (1) control perlite bag; (2) a root zone 379 

passive heating system with PCM RT18HC macro encapsulated in 0.33 L water bottles; (3) a 380 

root zone passive heating system with water macro encapsulated in 0.33 L water bottles; 381 

and (4) inner greenhouse temperatures. Perlite temperatures were measured at the center 382 

of the bags. 383 

As Figure 6 shows, no nighttime thermal benefits were obtained in Experiment 2. Bags with 384 

added water and PCM had lower temperatures than the control bag both during the day and 385 

at night. This phenomenon has two possible explanations: (1) perlite bags were raised when 386 

bottles are introduced at the bottom; consequently the perlite bag’s ventilation was improved 387 

during the day; and (2) the PCM and water applications increased the sensible heat capacity of 388 

the perlite bag, reducing the temperature oscillations between night and day. It was visually 389 

confirmed that PCM RT18HC was not likely melting during the day. The increased perlite bag 390 

temperatures were not high enough to cause melting. Consequently, the PCM likely 391 

experienced no melting, as in Experiment 1. 392 

 393 

3.2.3. Experiment 3: Water, PCM RT15 and 12 wrapping the bottom of the perlite bag. 394 

Experiment 1 and 2 revealed that the selected melting freezing temperature of PCM RT18HC 395 

was too high for the application. Consequently, for Experiment 3 PCM with two lower melting 396 

temperatures were selected: RT12 and RT15 (Table 3). The use of water as a system to 397 

increase perlite bag sensible heat capacity was also studied in this experiment. The location of 398 

the added elements for Experiment 3, wrapping the bottom of the bag, was selected with the 399 

intention of increasing the surface contact between the PCM and the substrate and insulating 400 

the substrate from air temperatures. Handmade LDPE bags were used as the PCM 401 

encapsulation method to wrap the perlite bag because of their low cost. However, the 402 

installation of the LDPE bags was more difficult than the installation of the PVC tubes or the 403 

0.33 L bottles used in Experiments 1 and 2, respectively, which would increase installation 404 

costs if the design is not improved before its possible industrialization. 405 
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The results showed that both PCM RT12 and RT15 provided thermal benefits of 1°C compared 406 

with the control bag for the day that was selected as representative of the experiment. In the 407 

case of the passive heating system with water (Figure 7 – C), the thermal benefits were less. 408 

Specifically, an increase of only of 0.5°C was achieved at the coolest moment of the night in 409 

the early morning.   410 

Experiment 3 provided several improvements over Experiments 1 and 2. PCM RT15 was a 411 

better candidate for the application because it melted and froze correctly. However, for RT12, 412 

if 10°C was not achieved at night, it did not freeze at all; then its thermal benefits were limited.  413 

 414 

415 



15 
 

416 

417 

 418 

Figure 7. Diurnal temperature measurements of a control perlite bag and inner greenhouse 419 

temperatures in comparison with: (A) a root zone passive system with PCM RT12 wrapping 420 

the bottom of the perlite bag; (B) a root zone passive system with PCM RT15 wrapping the 421 

bottom of the perlite bag; (C) a root zone passive heating system with water wrapping the 422 

bottom of the perlite bag. Perlite temperatures were measured at the center of the bags. 423 

  424 
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3.2.4. Experiment 4: Water, PCM RT15 and 12 wrapping the perlite entire bag. 425 

Finally, based on the positive results obtained when the bottom of the perlite bag was 426 

wrapped with PCM, Experiment 4 was designed to analyze the thermal results when the perlite 427 

bag was completely wrapped (Table 2). This solution could lead to great heat loses to air as 428 

occurred in the experiments of Beyza Beyhan et al. [20]. However, this system maximizes the 429 

surface contact between the PCM and the perlite bag and insulates the perlite bag from 430 

greenhouse air temperatures. The installation of the PCM was laborious as for Experiment 3. 431 

432 

433 

 434 
Figure 8. Diurnal temperature measurements of a control perlite bag and inner greenhouse 435 

temperatures in comparison with: (A) a root zone passive system with PCM RT12 wrapping 436 

the entire perlite bag; (B) a root zone passive system with PCM RT15 wrapping the entire 437 

perlite bag; (C) a root zone passive heating system with water wrapping the entire perlite 438 

bag. Perlite temperatures were measured at the center of the bags. 439 

 440 

The results obtained during Experiment 4 (Figure 8) showed that PCM RT12 failed to freeze 441 

completely because temperatures below 10 °C were not achieved. Consequently, the 442 

temperature difference with the perlite bag was lower than in Experiment 3 (1°C). However, 443 

for the passive system with PCM RT15, the results were significantly better than in Experiment 444 

3 (Figure 8). In Experiment 3, the temperatures of the perlite bag with the PCM RT15 passive 445 
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system were between 0.5 and 1°C higher than those of the control bag. Nevertheless, in 446 

Experiment 4 this temperature difference increased to 1.5-2°C. Unlike with PCM RT12, RT15 447 

melted and froze correctly. Wrapping the perlite bag appears to be an effective solution to 448 

isolate the perlite bag from air temperatures and to increase heat exchange between the PCM 449 

and the substrate. However, this solution requires laborious installation. An improvement of 450 

the design, to facilitate installation, is required. 451 

 452 

In the case of the water passive system (Figure 8-C) the daily temperatures of the substrate 453 

were higher than those of the control bag. Consequently, during the early night, the 454 

temperatures of this perlite bag were slightly higher but tended to equalize with the control 455 

bag temperatures in the morning. More water may have been needed to significantly increase 456 

the sensible heat of the perlite bag.  457 

 458 

3.3.  Approximation of the potential energy and environmental savings. 459 

The experiment that provided the highest thermal benefits compared with that of the control 460 

perlite bag was the perlite bag studied in Experiment 4 (Table 2; Figure 8-B), which used RT15 461 

PCM to wrap the entire substrate. Temperature data for one night was used to estimate a first 462 

approach of the potential energy and environmental savings that PCM could provide to root 463 

zone heating systems. From results obtained in section 3.1, 3.2 and 3.3. could be concluded 464 

that PCMs seem not to be  a proper substitute for conventional root zone heating system. 465 

Nevertheless, PCM could be combined with existing heating systems to reduce their fuel 466 

consumption.  467 

For the period in figure 8-B, when temperatures from the control bag were below 15⁰C, with 468 

formula 2 was estimated that a total of 24.2 kWh are required to maintain the control perlite 469 

bag at 15⁰C for a single night. The total energy that PCM RT15 provides to the perlite bag was 470 

21 kWh as calculated using formula 2. Therefore, at night, PCM RT15 provided the perlite bag 471 

with 86.7% of the total heat required to maintain the root zone at 15⁰C.  472 

Table 4 shows the equivalent CO2 emissions and costs (€) that could be saved at night per 473 

hectare of crop if PCMs were used as a tool to reduce fuel consumption from a conventional 474 

gas, oil or biomass root zone heating system. As can be observed in Table 4, the oil heating 475 

system could realize the highest environmental and economic benefits from the PCM because 476 

oil systems have the highest CO2 emissions and the highest price per kWh produced.  477 

The CO2 savings for the biomass heating system are very low. Pellets used as fuel are 478 

considered to be a byproduct from another system. Therefore, few emissions are accounted 479 

for in the process of obtaining of the pellets. For this scenario, the use of PCM for 480 

environmental savings would not make sense as the emissions from producing PCM would be 481 

too high to allow for sufficient emissions to be saved during the operation phase to 482 

compensate for the initial environmental impact from PCM installation.  483 

  484 
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Table 4. Potential environmental and economic savings per hectare at night between 14/03/2015 and 485 

15/03/2015.  486 
 487 

 

Emissions generated to 
maintain control bag 

at 15ºC 
(kg CO2 eq.) 

Emissions saved by 
PCM 

(kg CO2 eq.) 

Fuel costs to maintain 
the control bag at 15ºC 

(€) 

Fuel costs saved by 
PCM (€) 

Gas heating system 25.4 22.0 129.70 € 112.47 € 

Oil heating system 34.7 30.1 160.34 € 139.04 € 

Biomass heating system 1.7 1.5 141.55 € 122.74 € 

 488 

According to the previous environmental and economic analysis completed [21], the annual 489 

emissions generated per hectare by a PCM root zone temperature control system similar to 490 

the ones studied in this article are approximately 962 kg of equivalent CO2. 89% of these 491 

emissions are attributable to PCM production; a 10% are attributable to production of the 492 

LDPE required to produce the LDPE bags used for the encapsulation of the PCM; the remaining 493 

1% corresponds to emissions from waste management if PCM and LDPE are recycled. No 494 

transportation emissions were accounted for in the previous study [21]. Maintenance includes 495 

substituting the LDPE bags (a manual process that does not require energy consumption) for 496 

new ones every three years, to avoid bag degradation and consequently possible PCM losses. 497 

The emissions derivatives from this process were accounted for within the 10% of emissions 498 

related to the LDPE bags. 499 

In terms of costs, the annual investment per hectare of a PCM root zone temperature control 500 

system is approximately 89,100€ [21]. 50% of the cost comes from the initial installation and 501 

substitution of the LDPE bags every 3 years;  47% of the cost comes from the purchase of 502 

PCMS; 1.5% of the cost comes from the acquisition of LDPE bags, and the remaining 1.5% 503 

comes from the daily maintenance[21].  504 

Using the values described above, the number of days the PCM must be operative annually to 505 

guarantee environmental and economic payback of the system were calculated. A lifespan of 506 

20 years for the whole system and PCM was assumed [21]. Table 5 shows these results. It must 507 

be taken into account that this table shows a first approximation of the payback based on one 508 

night temperatures (figure 8-b). Then, there is certain uncertainty in results. However, 509 

environmental results show in this section draw first environmental and economic results 510 

which could be used in the future to determine how the system under study may evolve.  511 

Table 5. Required operation days/years of a root zone temperature control system with PCM to 512 

guarantee environmental and economic payback 513 

 

Required operation for 
Environmental payback 

(days/year) 

Required operation for 
Economic payback 

(days/year) 

Gas heating system 43 days/year 792 days/year 

Oil heating system 32 days/year 641 days/year 

Biomass heating system 641 days/year 726 days/year 

 514 
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Finally, it seems that PCM could be feasibly used to increase the efficiency of conventional gas 515 

or oil root zone heating systems and to reduce the carbon footprint of such system, but such a 516 

substitution may not be made for a heating system based on a biomass boiler. As mentioned 517 

previously, emissions from biomass heating systems are so low that the CO2 emissions savings 518 

obtained with the PCM would not compensate for the emissions from the production of the 519 

PCM and LDPE bags. The use of recycled PCM and LDPE for encapsulation or an increase in the 520 

efficiency of the PCM production process could lead to a reduction in the operation days/year 521 

required to achieve environmental payback.  522 

The results shown in Table 5 reveal that the application of PCM does not seem to be 523 

economically viable until installation and PCM prices fall significantly. 524 

 525 

4. Conclusions  526 

 An appropriate melting and freezing temperature for a root zone passive heating system 527 

with PCM in Mediterranean greenhouses seems to be 15°C. A melting/freezing 528 

temperature of 12°C does not ensure the freezing of the PCM if temperatures do not fall 529 

under 10°C. 530 

 The best PCM location for the application under study may be wrapping the perlite bag 531 

with the material to insulate it from air temperatures.  532 

 PCM could be used to increase the thermal efficiency of conventional heating systems but 533 

PCM does not provide the substrate enough thermal energy to keep it above 15°C. The use 534 

of higher quantities of PCM or PCMs with higher enthalpies should be studied.  535 

 Based on one night results, PCM seem to offer potential to reduce the carbon footprint of 536 

gas and oil conventional root zone heating systems. 537 

 In economic terms, based on one night results too, PCM do not seem to be a viable solution 538 

to improve the environmental performance of root zone heating systems.  539 

 Further research should be conducted to more specifically study PCM behavior during an 540 

entire winter. Results from the study may also be used to increase the precision of the 541 

environmental and economic results from our study.  542 

 543 

  544 
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