

AIMS

- 1. Review of scientific protocols about *in vitro* fecundation (IVF) in cats and creation of one in order to do the experimental part.
- 2. IVF of cat oocytes.

REFERENCE	MADURATION	CULTURE	RESULT
	MEDIUM	CONDITIONS	
Alves et al. (2012)	Minimum	38.5ºC	52.6% follicular degeneration in oocytes
	essential	5% CO ₂	matured without IGF.
	medium (MEM)	é days	45% follicular degeneration in oocytes
		15ul MEM	matured with IGF.
		changed every	Oocvtes recollected in luteal phase have
		day for fresh.	worse results.
Alves. Kozel.	Krebs's Ringer	38.5ºC	Viable: 93-94%
Luvoni. (2012)	Bicarbonate	5% CO ₂	Meiosis resumption: 65.8-67.5%
	(mKRB)	24-48h	*fresh oocvtes data
Apparicio, Ruggeri,			8.7% germinal vesicles
Luvoni. (2013)			82.6% meiosis resumption
			8 7% degenerated
			*fresh oocytes data
luciano et al	-		20.3% germinal vesicles
(2009)			1 7% intermediate
(2003)			71.2% mature occutes
			6.8% dogoporated
Luvoni Pollizzari	_		72.2% majoris resumption
(2000)			54.4% motophace II
(2000)	_		S4.4% metaphase in
Luvoni et al. (2012)		2000	65.9% melosis resumption
Merio et al. (2005)	SOFAABSA	38≚C	67.3% melosis resumption
		5% CO ₂	
		24n	
iviurakami et al.	25MIVI HEPES-	38≚C	It is an empryo development study. There
(2002)	buttered ICIVI-	5% CO ₂	are no specific results of intermediate
	199	24n	stages like maturation, only the final ones.
Nagano et al.		39ºC	IVIAXIMUM MEIOSIS RESUMPTION IS At 30h of
(2008)		5% CO ₂	culture (75.5%). Moreover, at that time
		0-48h	also have maximum fertility (46.1%).
REFERENCE	FERTILIZATION	CULIURE	RESULI
Comizzoli, Wild,	Hepes-Ham F10	5x10 ³ sperm/mL	90% fertility.
Pukazhenthi (2006)		38.5ºC	
		5%CO ₂	
		18h	
Merlo et al. (2005)	SOFaaBSA	1.5x10 ⁶ sperm/mL	Results are not specified.
		38.5ºC	
		5%CO ₂	
		18h	
Murakami et al.	Brackett-	2x10 ⁶ sperm/mL	It is an embryo development study. There
(2002)	Oliphant (BO)	38ºC	are no specific results of intermediate
		5%CO ₂	stages like fertilization, only the final ones.
		12h	
Nagano et al.	Brackett-	1.5x10 ⁶ sperm/mL	24.8% fertility.
(2008)	Oliphant (BO)	39ºC	
		5%CO ₂	
		18h	

Figure 1: Gamete collection.

GAMETE COLLECTION:

The experiments consulted used removed testis in order to obtain sperm. On the other hand, we prefered to use medetomidine.

CRYOPRESERVATION:

Used to preserve gametes (immature or mature), embryos or ovarian/testicular tissue. Needs cryoprotectants, which have cell toxicity. Frequently used in the literature, but we had fresh sperm and oocytes.

Figure 2: temperature decrease difference between slow freezing and vitrification. From http://www.interchopen.com/books/recent-advances-in-cryopreservation/the-maining-of-cryopreservation-for-in-vitro-fertilization-patients

MADURATION:

Physiological changes in order to be fertilized. Maturation medium has to give all that cells require. We used TCM-199 with supplements at our laboratory.

RESULTS

Our maturation protocol had negative results. This kind of experimental design have complex steps. The literature, certainly defines culture mediums, but it does not specify details. Sadly, the time required to improve the protocol and obtain some results is more than the time we had, probably months. We decided to expand the bibliographic and theory part instead.

FERTILIZATION:

Combine male and female gametes and culture them together in order to become embryos. Sperm has to be selected with swim-up and centrifugation. We used supplemented Tyrode medium.

BIBLIOGRAFIA:

Albarracín et al. (2005). Theriogenology 63, 890-901.
Alves et al. (2012). Reproduction in Domestic Animals 47 (Suppl. 6), 109-112.
Alves et al. (2012). Reproduction in Domestic Animals 47, 1003-1008.
Apparicio et al. (2013). Reproduction in Domestic Animals 48, 240-244.
Comizzoli et al. (2006). Theriogenology 66, 1659-1663.
Farstad (2000). Animal Reproduction Science 60-61, 375-387.
Luciano et al. (2009). Cryobiology 59, 90-95.
Luvoni et al. (2000). Theriogenology 53, 1529-1540.

Luvoni et al. (2006). Theriogenology 66, 1471-1475.
Luvoni et al. (2006) Animal Reproduction Science 96, 66-78.
Luvoni (2006). Theriogenology 66, 101-111.
Luvoni (2012). Reproduction in Domestic Animals 47 (Suppl. 6), 566-268.
Luvoni et al. (2012). Reproduction in Domestic Animals 47, 385-391.
Merlo et al. (2005). Theriogenology 63, 2030-2039.
Murakami et al. (2002). Reproduction in Domestic Animals 37, 352-356.
Nagano et al. (2008). Theriogenology 69, 231-236.

CONCLUSIONS

There is not much information and experiments about feline reproduction than production animals. It seems that each laboratory started with a different protocol and there is no standard one. The final goal to acomplish is the reproduction of endangared wild felines. Therefore, I recomend an experimental comparation of the more used protocols in order to create an standard.