
Functional protein-based nanomaterial produced in GRAS 
microorganism: a new platform for biotechnology

Olivia Cano-Garridoa,b,c, Alejandro Sánchez-Chardid, Sílvia Parése, Irene Giróf, Witold I. 
Tatkiewiczc,f, Neus Ferrer-Mirallesa,b,c, Imma Raterac,f, Antonino Natalellog, Rafael Cubarsih, 
Jaume Vecianac,f, Àlex Bache,i, Antonio Villaverdea,b,c, Anna Aríse*, and Elena Garcia-
Fruitósa,b,c&*

a Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del 
Vallès, Spain.
b Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del 
Vallès, Spain.
c CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, 
Spain.
d Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra 08193 Barcelona, Spain
e Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 
Caldes de Montbui, Spain.
f Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de 
Barcelona (ICMAB-CSIC), Bellaterra, 08193 Barcelona (Spain)
g Department of Biotechnology and Biosciences, Università di Milano-Bicocca, 20126 Milano, Italy
h Departament de Matemàtica Aplicada IV. Universitat Politècnica de Catalunya. Jordi Girona 1-3. 08034 
Barcelona, Spain
i Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
&Present address: Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries 
(IRTA), 08140 Caldes de Montbui, Spain.

* co-corresponding author: elena.garcia@irta.cat; Telephone: +34934674040; Fax: +34934674042; 
anna.aris@irta.cat; Telephone: +34934674040; Fax: +34934674042

Olivia Cano-Garrido: olivia.cano.garrido@gmail
Alejandro Sánchez-Chardi: Alejandro.Sanchez.Chardi@uab.cat
Sílvia Parés: silvia.pares@irta.cat
Irene Giró: irene.giroparadell@gmail.com
Witold I. Tatkiewicz: witold.tatkiewicz@gmail.com
Neus Ferrer-Miralles: Neus.Ferrer@uab.cat
Imma Ratera: iratera@icmab.es
Antonino Natalello: antonino.natalello@unimib.it
Rafael Cubarsi: rcubarsi@gmail.com
Jaume Veciana: vecianaj@icmab.es
Àlex Bach: alex.bach@icrea.cat
Antonio Villaverde: antoni.villaverde@uab.cat
Anna Arís: anna.aris@irta.cat
Elena Garcia-Fruitós: elena.garcia@irta.cat

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/132089194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:elena.garcia@irta.cat
mailto:witold.tatkiewicz@gmail.com
mailto:irene.giroparadell@gmail.com
mailto:anna.aris@irta.cat


Abstract

Inclusion Bodies (IBs) are protein-based nanoparticles formed in Escherichia coli through 

stereospecific aggregation processes, during the under overexpression of recombinant 

proteins. During the last years, it has been shown that IBs can be used as nanostructured 

biomaterials to stimulate mammalian cell attachment, proliferation and differentiation. In 

addition, these nanoparticles have also been explored as natural delivery systems for cell 

protein replacement therapies. Although the production of these protein-based nanomaterials

in E. coli is economically viable, important safety concerns related to the presence of 

endotoxins in the products derived from this microorganism need to be addressed. Lactic 

acid bacteria (LAB) are a group of food-grade microorganisms that have been classified as 

safe by biologically regulatory agencies. In this context, we have demonstrated here, for the 

first time, the production of fully functional, IB-like protein nanoparticles in LAB. These 

nanoparticles have been fully characterized using a wide range of techniques, including field

emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM),

dynamic light scattering (DLS), fourier transform infrared spectroscopy (FTIR), 

zymography, cytometry, confocal microscopy, and wettability and cell coverage 

measurements. Our results allow us to conclude that theythese materials  that share the main 

physico-chemical characteristics with IBs from E. coli but, but being devoid of any harmful 

endotoxin contaminant. These findings reveal a new platform of for the production of 

protein-based safe products with high pharmaceutical interest.

Keywords: endotoxin-free, nanoparticles, functional nanomaterials, GRAS, Lactic acid 
bacteria
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1. Introduction

Over the last years, Escherichia coli has been described as a cell factory for the production 

of self-assembling nanostructured and functional protein materials known as inclusion 

bodies (IBs) [1-4], which have been studied as stimulators of cell proliferation and 

differentiation [5, 6] and as natural protein delivery systems [2, 7]. However, in terms of 

therapeutic applicability of this biomaterial, the presence of lipopolysaccharide (LPS) in the 

E. coli outer cell membrane becomes a major obstacle in terms of therapeutic applicability 

of this biomaterial. Since LPS, also known as endotoxin, can elicit undesirable immunogenic

responses [8, 9],. FDA regulations establish an endotoxin level limit of 5 EU/kg/h for 

pharmaceutical compounds and medical devices. Thus, all products from E. coli, as well as 

those from other Gram-negative microorganisms, need to be finely purified through costly 

processes with important associated costs to ensure the removal of any pyrogenic or 

inflammatory contaminant inherently present in the sample [8, 10]. Nowadays, the 

development of a universal and effective method for endotoxin removal is a stillremains for 

the time being unresolved problem [10], being particularly critical for complex structures 

such as protein-based nanostructured materials [9, 11]. This makes it necessary to seek for 

alternative cell factories, which offer the potential to produce protein biomaterials free from 

pyrogenic impurities. In this context, Gram-positive (LPS-free) a group of Gram-positive 

bacteria known as lactic acid bacteria (LAB) has been recentlyare gaining momentum as an 

alternative promising microbial cell factoriesy for both recombinant protein production 

purposes and as protein delivery live vectors purposes [12-14]16]. These microorganisms do

not have LPS and, in consequence, their derived products do not contain pyrogenic 

impurities [15, 16].  Indeed, they have been classified by regulatory agencies as generally 

recognized as safe (GRAS) organisms [17]. Consequently, Tthe development of this 

biologically-safe production platform based on LAB clearly opens a new era in terms of 

therapeutic applicability, leaving behind all the important drawbacks associated to E. coli-
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derived recombinant products. However, sSo far, the possibility to produce protein-based 

nanostructures in these bacterial cell factories has not never been explored. It is widely 

believed that LAB, Ccontrary to what occurs in E. coli, it is widely believed that 

recombinant proteins produced in LAB are only able to producefully soluble proteins, 

rendering the production of protein-based biomaterials from these GRAS microorganisms 

rather impossible. HoweverNevertheless, some recent studies, such as that published by Lu 

and collaborators  contradict this general assumption [18]. They Lu and collaborators 

describedd that under the overexpression of a fluorescent protein, the presence of highly 

fluorescent protein clusters are formed inside in Lactococcus lactis cytoplasm, under the 

overexpression of a fluorescent protein [18]. BesidesIn this line, our group also 

observedconfirmed the presence of protein deposits in L. lactis cytoplasm using a modified 

green fluorescent protein [19]. Considering all these results together, it this can be 

expectedleads us to believe that L. lactis is might also ablepotentially be used to formfor the 

generation of fully safe protein-based protein clusters particles that could be further explored

as functional nanomaterials. Because almost nothing is known about this 

nanostructures,Thus, the aim of this study is the isolation and detailed characterization of the

main morphometric and physico-chemical properties of such a new class of protein deposits.

For that, we selected L. lactis, the most used LAB in the field of recombinant protein 

production as cell factory [20, 21]. Three relevant proteins in human and veterinary 

medicine such as bovine metalloproteinase 9 (MMP-9) and 2 (MMP-2) and interferon 

gamma (IFN-) have been used here as model proteins. The obtained data, which reveals the

possibility to produce both fully functional and safe protein-based nanoparticles in LAB, 

offers an attractive opportunity for the production of a new generation of a type of 

biomaterials with a wide range of applications in biotechnology and human and animal 

medicine.

2. Materials and Methods
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2.1. Bacterial strains and plasmids

L. lactis subsp. cremoris NZ9000 [20] and NZ9000 clpP- htrA- (clpP-htrA; EmR) [22, 23] 

(kindly provided by INRA, Jouy-en-Josas, France; patent nº EP1141337B1) strains and E. 

coli MC4100 strain (StrepR) [24] were used. Three proteins from bovine (Bos taurus) origin 

were cloned in the CmR pNZ8148 plasmid (MoBiTech): the mature form of the interferon 

gamma (IFN-) (from Gln23 to Thr101 NM_173925) and the catalytic domain of 

metalloproteinase 9 (MMP-9) (from Phe107 to Pro449 NM_174744) and 2 (MMP-2) (from 

Tyr110 to Asp45 NM_174745). In addition, a fusion of MMP-9 with an aggregation-prone 

peptide (ELK16: (LELELKLK)2) was also constructed (MMP-9ELK16). All genes were C-

terminally fused to a His-tag for detection and quantification purposes in western blot 

analysis. Gene sequences were codon optimized (Geneart). In the sequence design we added a

NcoI restriction site at 5’ followed by nucleotides CA to restore the reading frame and a XbaI 

restriction site at 3’. The digestion product was ligated into the expression plasmid pNZ8148 

and ligation product were transformed by electroporation into L. lactis NZ9000 and clpP-htrA

competent cells [25]. Electroporation was performed using Gene Pulser from Bio-rad fitted 

with 2500V, 200 Ω and 25 µF in a pre-cooled 2 cm electroporation cuvette. Following, 

samples were supplemented with 900 µL M17 broth with 0.5 % glucose and incubated for 2 h

at 30 ºC. The electroporation mix was centrifuged for 10 min at 10,000 x g at 4 ºC and the 

pellet was resuspended in 100-200 µL of M17 media and plated. Besides, recombinant Green 

Fluorescent Protein (rGFP) previously described in [19, 26] were also used.

2.2. Nanoparticle production and purification

L. lactis strains containing the previously described plasmids were grown in M17 medium 

enriched with 0.5 % glucose at 30 ºC without shaking. E. coli was grown in LB rich medium 

at 37 ºC, 250 rpm. Nanoparticle production was induced by adding 12.5 ng/mL nisin (Sigma-

Aldrich) in L. lactis or 1 mM IPTG in E. coli cultures at OD550nm = 0.5. After induction, 
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cultures were grown for 3 h. Antibiotics were used for plasmid maintenance at the following 

concentrations: chloramphenicol (5 µg/mL) and erythromycin (2.5 µg/mL) for L. lactis and 

ampicillin (100 μg/mL) and streptomycin (30 μg/mL) for E. coli.

Once produced, protein nanoparticle were purified using the purification protocol described 

by [27], adding at the beginning a mechanical disruption step by French Press. The protocol 

has been done under sterile conditions and all incubations were carried out under agitation.

The amount of recombinant proteins present in nanoparticles has been quantified by 

denaturing SDS-PAGE as described in [19]. Bands were identified using a commercial 

polyclonal serum against histidine tag (#A00186-100 Genscript) and an anti-mouse secondary

antibody (#170-6516, Bio-Rad). Recombinant protein yield were estimated with a standard 

curve with known amounts of a GFP-H6 protein. Quantification was performed with the 

Quantity One software.

2.6. Field Emission Scanning Electron Microscopy (FESEM)

For nanoparticles morphometry (size and shape), microdrops of protein aggregates samples 

were deposited during 2 min in silicon wafers (Ted Pella Inc.), air-dried and observed in a 

FESEM Zeiss Merlin (Zeiss) operating at 2 kV. Micrographs of nanoparticles morphology at a

nearly native state were acquired with a high resolution in-lens secondary electron (SE) 

detector. A quantitative analysis of size particles was performed with a total number of 474 

nanoparticles using Image J software.

2.7. Transmission Electron Microscopy (TEM)

For ultrastructure, samples were fixed with aldehydes, post-fixed with osmium, dehydrated in 

acetone, embedded in Epon resin, and polymerized following conventional methods [28-30]. 

Ultrathin sections were placed on copper grids, contrasted, and observed with a TEM Jeol 

JEM-1400 (Jeol Ltd.) equipped with a CCD Gatan ES1000W Erlangshen camera. For MMP-

6



2, MMP-9 and IFN- immunolocalization, pellets of bacterial cells and protein nanoparticles 

were fixed in 4 % (w/v) paraformaldehyde and 0.1 % (v/v) glutaraldehyde in PB, 

cryoprotected in sucrose, cryofixed in propane, dehydrated in methanol, embedded in 

Lowicryl HM20 resin (Polysciences Inc.), and polymerized with UV rays. Ultrathin sections 

placed on carbon-coated gold grids were labeled for the 3 antigens of interest using polyclonal

primary antibodies (anti-MMP-2: #AV20016, Sigma-Aldrich; anti-MMP-9: #50560-RP01, 

Sino Biological Inc.; and anti-IFN- #ab9657, Abcam, at working dilution 1:5, 1:5 and 1:2 

respectively) and protein A coupled to 10 nm-gold particles (BBI Solutions), following 

standard methods [30, 31]. Grids were contrasted and examined with a TEM Jeol JEM-1400 

at same conditions than previously described.

2.8. Z-Potential

Z-Potential characterization of each kind of protein nanoparticles was carried out using 

dynamic light scattering (DLS) equipment (Malvern Nanosizer). In order to avoid the 

electrodes from getting burned, the samples were prepared in deionized (MilliQ) water, a low 

ionic strength medium. Each sample was analyzed by triplicate.

2.9. Proteinase K assay

Protein nanoparticles were resuspended in PBS with protease inhibitor and sonicated to obtain

a homogenous sample. Kinetic analysis were performed as described in [32]. In control 

suspensions MilliQ water was added instead of Proteinase K. Sample was recovered after 

every measurement to maintain constant the reaction volume. The experiment was done by 

triplicate.

2.10. Mathematical modeling

The dynamics of nanoparticle disaggregation process is described through a mixture of 

decreasing exponential functions with up to three populations according to one of the 
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following two models. If the protein of nanoparticles at time t is denoted by ym(t) , a 

mixture without a constant population is given by

ym (t )=N 0 e−c1 t
+…+N k e−c k t ;m=2 k ;k ≥1

denoted with an even subscript according to the even number of terms. Otherwise, if there 

exist a non-disaggregated population, the nanoparticle amount is given by

ym (t )=N 0+ N1e−c1 t
+…+N k e−ck t ;m=2 k+1 ;k ≥1

with an odd subscript. In both cases the fit will depend on a set of m parameters P that is 

evaluated from a least squares fit. Only positive values of Ni and ci are allowed. The parameter

Ni is the initial protein of the i-th component and ci, in the exponent, provides the expected life

T i=1/c i  (the half-life is ti=ln 2/c i ). The number of components in the mixture model 

is C=[ m+1
2 ]  (integer part). From a data array L={(x i , t i); i=1,... , n } , where xi is the 

nanoparticle amount at time ti, we minimize the χ2 of the fit [32]. Among all the possible 

fits, as increasing m we choose the one satisfying …> χ m−1
2

> χ m
2 ≤ χm+1

2 . 

In the context of the disaggregation process, not all fits are admissible. Indeed, the procedure 

can be applied in two ways: (a) As for each strain, the experiment is repeated q times, there is 

a number of q arrays by strain that we average to build a single array L̄=E(L)  (E means 

the expected value). We then determine the specific parameters P′ of the strain. (b) 

Alternatively, for each strain, each experiment may be fitted separately. This provides q  

families of parameter sets P that we average as P̄=E (P)   in order to characterize the 

strain components.  A meaningful fit must fulfill that the values P̄  and P′ match within a 

low error margin. This is a sufficient condition to accept the fitting, otherwise the strain 

average values E(L) would not represent the individual experiments. In particular, this implies

that the number of components of the strain obtained from the average E(L) and that obtained 

for each individual experiment must match. The necessary condition for comparing both 
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procedures is to determine the same number of strain components C from the average array 

and the single arrays. If both approaches provide a different number of strain components, 

other fittings to reconcile both procedures must be chosen among those with low χ2 , 

preferably among the simplest models, although they not provide the lowest value.

2.11. Metalloproteinases activity assay (zymography)

MMP enzymatic activities were determined by gel 10 % SDS-PAGE + 1 % gelatin under non-

denaturing conditions. IBs were loaded onto the gel diluted 1:1 with a sample loading buffer 

(0.125 M Tris, 0.005 % bromophenol blue, 20 % glycerol, 4 % SDS). Then, the gel was 

incubated with developing buffer (50 mM Tris, 0.2 M NaCl, 5 mM CaCl2, 0.02 % Brij 35) for 

48 h at 37 ºC. Finally, it was dyed with Coomassie and discolored until degradation bands 

become visible. Densitometry analyses of the bands were performed with the Image J 

software. Soluble MMP-9 produced in L. lactis has been used as a positive control.

2.12. Fourier transform infrared spectroscopy (FTIR)

The protein hydrated films were measured by the infrared microscope Varian 610-IR, coupled

to the Varian 670-IR spectrometer (both from Varian Australia Pty Ltd.), as reported in [33, 

34]. In particular, drops of 1-5 µL of the soluble protein and nanoparticles were deposed on a 

BaF2 window. The FTIR spectra were then collected in transmission mode after the solvent 

evaporation in order to obtain a uniform protein film on the window. Under these conditions

[33, 34] spectra with high signal-to-noise ratio without detectable scattering effects were 

obtained [35] (Suppl Fig. 1).

For hydrogen/deuterium (H/D) exchange experiments, the protein film on the BaF2 window 

was hydrate by adding 5 μL of a solution of 1/4 of glycerol/D2O ratio (w/w) around the dried 

film. The sample was then tightly closed by a second window using a flat O-ring.

2.13. Proliferation Assay
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Human skin fibroblast cells (1BR3.G) were grown at 37 ºC and 10 % CO2 on protein 

nanoparticles-decorated surfaces [36]. A total of 1 µg of rGFP based protein nanoparticles 

from L. lactis and E. coli were added to each well of an untreated Costar 3370 plate and 

incubated with 100 µL of Dulbecco’s Modified Costar Medium (DMEM) without serum at 4 

ºC overnight. After incubation, 1BR3.G cells were added (5,000 cells per well) in 100 µL 

DMEM medium with 2% fetal bovine serum (FBS). As controls, we plated cells on non-

decorated wells and we also used wells decorated with nanoparticles but without cells. Plates 

were incubated at 37 ºC for 24, 48 and 72 h, and the MTT proliferation cell assay was 

performed as described [37][35].

2.14. Nanoparticles internalization (cytometry)

HeLa cells (60,000 cells per well) were seeded in treated 12-well plates in the presence of 

Minimum Essential Medium (MEM-α) medium supplemented with 10 % FBS and 2 mM 

Glutamax (Gibco) [30]. After incubation at 37 °C and 5 % CO2 for 24 h, the medium was 

removed and the cells were washed with Dulbecco's Phosphate-Buffered Saline (DPBS). 

Then, 5 μg of rGFP based protein nanoparticles from L. lactis and E. coli were suspended in 

MEM-α containing 10 % FBS and 2 mM Glutamax and added per well. After 48 h, cell 

samples were treated for 15 min in 1 mg/mL trypsin and samples were analysed on a 

FACSCanto system (Becton Dickinson) using a 15 W air-cooled argon-ion laser at 488 nm 

excitation for GFP. Fluorescence emission was measured with a 530/30 nm band pass filter.

2.15. Nanoparticles internalization (confocal microscopy)

Hela cells (100,000 cells/mL) were seeded on MatTek culture dishes with MEM-α medium 

supplemented with 10 % FBS and 2 mM Glutamax (Gibco), and incubated at 37 °C and 5% 

CO2. 5 μg rGFP nanoparticles were added to cells in the presence of Optipro medium (Gibco) 

and incubated O/N. For confocal analysis, cell membrane and nuclei were stained and stacks 

were obtained as described elsewhere [38][36].
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2.16. Modification of gold substrates with mixed self-assembled monolayers (SAMs)

SAMs with different proportions of 1-undecenethiol (-CH3 terminated) and 11- mercapto-1-

undecanol (-OH terminated) were prepared by immersion of gold substrates in an ethanolic 

solution of the thiols with the appropriate molar ratio for 24 h as descrived elsewhere

[5].Then, the substrates were dried under a stream of N2 getting surfaces with different 

wettability properties.

2.17. Wettability

The wettability of mixed thiols SAMs on gold surfaces before and after protein nanoparticles 

deposition was determined via static contact angle (CA) measurements using a DSA100 from 

KRÜSS.

2.18. Deposition of protein nanoparticles on SAM modified substrates and surface covering 

analysis

Substrates with mixed SAMs were immersed in the protein nanoparticles suspensions for 2 h, 

and rinsed with MilliQ water. Light microscopy images were obtained using an Olympus 

Bx51 microscope and surface coverage analysis using ImageJ 1.47

2.19. Statistical analysis

Data were analyzed using a general linear model (JMP, SAS Institute Inc.). For the analysis, 

strain, protein, and the interaction between strain and protein were used as fixed effects. When

more than two means were compared, differences were established using the Tukey’s multiple

mean separation test. Data were previously transformed when necessary to achieve a normal 

distribution. Results are expressed as the means of non-transformed data ± standard error of 

mean (SEM), except otherwise stated.

3. Results

3.1. Ultrastructural analysis of L. lactis nanoparticles by electron microscopy
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TEM micrographs obtained of L. lactis cells under overproduction conditions showed the 

formation of regular  intracytoplasmic round protein deposits in practically all cells (Fig. 1A). 

Furthermore, the specific immunolocalization confirmeds that these deposits are formed by 

the recombinant protein (Fig. 1A, right images). In a second step, once the production of these

protein deposits in L. lactis was successfully provenassessed, MMP-9, MMP-2 and IFN- 

nanoparticles were isolated and quantified by Western blot (data not shown). The 

ultrastructural morphology of the nanomaterial was analyzed by FESEM and TEM (Fig. 1B 

and C) and the obtained micrographs allowed us to conclude that these protein deposits 

clearly corresponded to well structured and compact-defined particles at within the nanoscale 

range (Fig. 1B and C).

3.2. Size determination of L. lactis nanoparticles

Using By the analysis of FESEM micrographs we determined the size of the nanostructures, 

obtaining values ranging between 300 and 450 nm (Table 1). Extreme mean values were 

found in NZ9000 clpP- htrA- strain (hereafter called clpP-htrA), with lowest mean values in 

IFN- and highest mean values in MMP-9 (Table 1). The statistical analysis showeds that the 

size of the particles is was determined by the combination of the specific protein and the 

strain. MMP-9 round particles (Fig. 1B) were bigger in clpP-htrA strain than those produced 

in wild type strain NZ9000 (Table 1). In marked contrast, more elongated IFN- nanoparticles

(Fig. 1B) showed high variable size and shape and higher mean values in NZ9000 strain 

(Table 1).

3.3. Electrodensity and immunolocalization analysis of L. lactis nanoparticles

The internal ultrastructure reported by TEM (Fig. 1C) not only strengtheneds the analysis 

performed by FESEM (Fig. 1B), but also showeds that the electrodensity of protein 

aggregates is again protein- and strain-dependent. Interestingly, the electrodensity and 

compactness observed by TEM (Fig. 1C) perfectly correlateds with the solubility of each 
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protein (Table 1). The higher the solubility of a protein iswas, the less prone to form protein 

nanostructures it iswas. Among tested proteins, IFN- showeds higher solubility and its 

nanoparticles present low electrodensity and a less compact ultrastructure (Fig. 1C). 

Additionally, these particles, in marked contrast to what occuroccurreds with particles formed 

by prone to aggregate proteins (, such as MMPs, that formed highly compact, smooth surface, 

and round-shaped nanostructures), exhibited rough surface and more variable size and shape 

(Fig. 1B). To evaluate in more detail the distribution of the protein forming such nanomaterial

we performed an immunolocalization of purified nanoparticles using TEM. Ultrathin section 

of central parts of MMPs nanoparticles showed cortical electrodense parts of the 

nanostructure (heavily labeled), whereas central and less electrodense areas were less marked 

(or not marked) (Fig. 2). This finding, observed both in nanoparticles inside cells (Fig. 1C) 

and in purified ones material (Fig. 2), is was indicative of high differences in protein 

concentrations in cortical and central parts of nanoparticles. 

3.4. Study of the stability and supramolecular organization of L. lactis nanoparticles

The structure and stability of the protein forming such nanomaterials are were important 

parameters to be dissected. Z-potential measurements showed that all nanoparticles present 

negatively charged surfaces with large negative values ranging from -33 to -26 mV (Table 1), 

being an indication of stable suspensions. To get further detail of supramolecular organization 

of nanoparticles produced in L. lactis, a time-course of nanoparticle proteolytic stability was 

performed (Fig. 3). After proteinase Kk incubationtreatment, the three evaluated proteins 

evaluated showed a population susceptible to degradation (population 1), with half-life values 

in the same range for all proteins (Fig. 3). Besides, a fully resistant population (population 2), 

ranging from 33 to 40 %, was preserved. Thus, nanoparticles produced in L. lactis presented 

two differentiated populations in terms of proteolytic resistance (Fig. 3). 

3.5. Determination of L. lactis nanoparticles functionality in vitro
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At this point it was critical to determine the biological activity of the nanoparticles, produced 

and purified for the first time from L. lactis. Fig. 4A shows that nanoparticles of relevant 

proteins relevant for human and veterinary medicine produced in L. lactis are biologically 

functional. All MMPs tested have showed the ability to degrade the substrate in a strain- and 

protein-dependent manner (Fig. 4A). It is worth mentioning that it is was also possible to 

control modulate the conformational quality of the protein embedded in such nanomaterials 

(Fig. 4A). The selection of the appropriate strain would allow increasing the specific activity 

of L. lactis nanoparticles, as it occurs with MMP-9. Besides, MMP-9 improves significantly 

its specific activity, just by the presence of an aggregation tag (ELK16) fused to the protein 

(this activity correspondings to the activity of 0.,08 ng of soluble MMP-9 protein). Moreover, 

the statistical analysis indicateds that the strain, combined with the protein used, is are an 

important parameters to take into account in the production of such functional protein delivery

agents in safe production systems.

Interestingly, data obtained from the FTIR analysis confirmeds the coexistence of 

intermolecular -sheets in nanoparticles (components at around 1695 and 1627 cm-1) with the 

presence of native-like structures (Fig. 5 and Suppl Fig 21) [33, 34]. These two populations 

perfectly correlated with the model mentioned above (Fig. 2), in which resistant 

(intermolecular -sheets) and sensitive (native-like structures)-proteinase K populations are 

coexisting in the same nanostructure. As an example, the second derivative spectra of MMP-9

and MMP-9-ELK16 are were dominated by the marker bands of intermolecular -sheets in 

protein aggregates, but an important component around 1658 cm-1 was also present, indicating

the presence occurrence of native-like -helices and of random coil structures. The 

comparison of MMP-9 and MMP-9-ELK16 spectra alloweds concluding that MMP-9-ELK16

is was characterized by a lower level of aggregation, particularly in the case of clpP-htrA 
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sample. This was, which is in agreement with a higher specific activity observed with these 

nanoparticles (Fig. 4A).

The ability to stimulate cell proliferation is another interesting property of IBs from E. coli. 

Interestingly, surfaces decorated with the protein-based nanomaterial produced in L. lactis are 

were also able to stimulate the proliferation of mammalian cells at a level similar to that 

achieved by the particles produced in E. coli (Fig. 4B). Moreover, L. lactis nanoparticles are 

were able to internalize inside the cells even better more efficiently than those produce in E. 

coli (Fig. 4C and D).

3.5. Study of the hydrophilic/hydrophobic nature of L. lactis nanoparticles

Since it has been already described that the hydrophilicity of a surface influences its cell 

adhesion properties [39][37], we have determined the nanoparticles wettability. Thus, the 

wettability of mixed self-assembled monolayers (SAMs) on gold substrates before and after 

being functionalized with L. lactis nanoparticles was determined via contact angle (CA) 

measurements (Fig. 6). As expected, prior to nanoparticle deposition the CA decreased as the 

hydrophilicity of the SAM increased. An increase of 10% of the molar fraction of OH-

terminated thiols implied a decrease of 6º of the contact angle of the SAM-covered substrates.

However, after MMP-9 nanoparticle deposition, the reduction of the contact angle in response

to a 10%-increase of the hydrophilic thiols concentration relative to the hydrophobic one was 

smaller (4.0º in NZ9000 and 2.1º in clpP-htrA). Regarding MMP-2, after deposition of both 

strains, the contact angle remained rather constant around 60º, which is was an indication of 

its higher hydrofilic character. The MMP-9-ELK16 presented different wettability propertiesy

depending on the genetic variant it is was obtained from. Thus, MMP-9-ELK16 from the wild

type strain gives rendered also a constant contact angle around 60º but the one obtained from 

clpP-htrA strain gives showedplace to a reduction of 3º of the contact angle in response to a 

10%-increase of the hydrophilic thiols concentration. After IFN-γ deposition produced in both

strains, the contact angle remained rather constant at around 65°-70°. From the change of CA 
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after nanoparticle deposition, we can concluded that the deposition of nanoparticles produced 

in L. lactis buffereds the change of wettability of the substrates. On the other hand, ; or in the 

case of IFN-γ and MMP-2 nanoparticles, it keepkepts wettability it relatively constant around 

a certain value. 

Coverages of nNanoparticle surfaces coverages obtained are shown in Table 2. From these 

data, it is was possible to affirm that the affinity of protein nanostructures toward hydrophilic 

and/or hydrophobic surfaces also dependeds on the genetic background in which they have 

been produced. Thus, the interactions between these protein-based biomaterials and 

substrates, and the density of deposited nanoparticles can be tuned to a certain extent choosing

a specific L. lactis strain. With MMP-2 and MMP-9-ELK16 there is was a higher coverage 

and higher affinity of the nanoparticles towards the substrate for the NZ9000 than for the 

genetically modified clpP-htrA. Regarding the MMP-9 and the IFN- the potential difference 

between NZ9000 and the mutant strain is was not clear. The surface coverage significantly 

varieds also in response to changes of substrate wettability. For some proteins, high coverages

are were obtained for substrates of different wettability, which could be attributed to the 

presence of amphiphilic properties of the obtained nanoparticles.

4. Discussion 

E. coli IBs have been shown to be a mechanically stable nanomaterial with interesting 

properties as a drug delivery system, but also as a promising biomaterial for tissue 

engineering. However, the use of E. coli as recombinant cell factory for their production has 

an important shortcoming. Because of its their endotoxic nature due to the presence of LPS, 

even at low concentration, theyIBs can trigger a non-desired immunogenic response upon 

administration. Therefore, any E. coli-derived product have to be necessarily  further purified 

through a time-consuming, costly, and, in many cases, ineffective depyrogenation process

[14]. For this reason, and with the goal of producing protein-based biomaterials in an 
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endotoxin-free environment, we explored L. lactis as cell factory. Although L. lactis has 

already been proven to be an excellent choice for the production of other LPS-free 

biomaterials such as polyhydroxybutyrate (PHB), the main mechanical and chemical 

properties of protein-based nanostructures produced in this Gram-positive microorganism 

have never been studied. Thus, the present study show for the first time an accurate analysis 

of a novel protein-based nanomaterial produced in a safe cell factory, which allows us to set 

the basis to further explore the applicability of this platform to produce biomaterials for the 

pharmaceutical industry..

As starting point, we successfully produced and isolated such nanomaterial from L. lactis. The

obtained nanoparticles were carefully assessed by high resolution microscopy techniques, 

noticing that proteins acting as building blocks of these nanoparticles are heterogeneously 

distributed within the nanomaterial (Fig. 2). In particular, immunolocalization analysis reveals

high differences in protein concentrations in cortical and central parts of nanoparticles, being 

cortical regions much more rich in protein than particle core. This is probably a phenomenon 

closely related to the activity of cell mechanisms during nanostructure formation and growth, 

previously observed in IB formation [30]. In addition, the ultrastructure observed by FESEM 

and TEM (Fig. 1 and Table 1) also resembled that of IBs formed in E. coli [3, 30, 40][3, 30, 

38]. Interestingly, our data proved that nanoscale features such as size, compactness and shape

can be easily tailored by selecting the appropriate combination of protein and strain (Table 1, 

Fig. 1B and C). The interaction between strain and protein had also a clear effect on the 

biological activity of our nanoparticles (Fig. 4A). This finding opens a whole range of 

possibilities in the customization of this functional and safe biomaterial. This is particularly 

interesting considering that these protein-based nanomaterials can be also genetically 

engineered, being possible not only to define size, shape and electrodensity, but also the 

organization and the biological activity of the produced protein-based nanoparticles in this 

safe microorganism. Considering the enzymatic activity of MMP nanoparticles (Fig. 4A) and 
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their ability to stimulate cell proliferation (Fig. 4B), this biomaterial has a great potential for 

both drug delivery (Fig. 4A) and tissue engineering purposes (Fig. 4B).

It has also been described that E. coli IBs show a bimodal supramolecular organization of the 

embedded protein. In this case, E. coli IBs contain a fraction of protein ranging from 9 to 33%

with an amyloid-like organization, which is fully resistant to proteinase K and degradation 

acting as a nanoparticle scaffold, and two other protein populations, one of them being 

immediately degraded and another one sensitive to proteinase K digestion being associated 

with the biological activity shown by IBs [32]. The food-grade nanomaterial characterized in 

the present study exhibited a degradable population, with a half-life comparable to the 

populations described in E. coli [32], and a resistant population (Fig. 3). The coexistence of 

these two distinguished populations was further confirmed by FTIR analysis (Fig. 5). Proteins

adopting an intermolecular -sheet conformation would correspond to the proteinase-K 

resistant population, whereas proteinase-K sensitive population exhibited a native-like 

structure which contributed to its remarkable biological activity.

The determination of the chemical properties of these nanoparticles also supports that such 

nanoclusters have many characteristics in common with those obtained when using E. coli as 

cell factory. Depending on the genetic background chosen to produce the nanoparticles, the 

wettability properties of the nanostructures and thus, the wettability of surfaces modified with 

them, can be modulated [5]. Besides, the presence of a simple aggregation tag, such as ELK16

in MMP-9, clearly modifies the behavior of the nanostructure produced. However, Z potential

values of L. lactis-derived nanoparticles determined in this study are higher than those 

observed in IBs producing in LPS enriched environment [5], indicating that, although 

endotoxin-free nanostructures share many characteristics with those derived from E. coli, they

are more stable in suspension.

Considering E. coli limitations, this study opens a range of possibilities in terms of 

applications. The implementation of lactic acid bacteriaLAB as a routine cell factory for the 
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production of functional nanomaterials would allow the development of safe production 

processes, avoiding at the same time complex downstream purification steps to eliminate 

toxic components.

4. Conclusions

Data presented in this study reveal for the first time, that it is possible to produce, tune and 

isolate endotoxin-free IB-like nanoparticles from LAB through a cost-effective and fully 

scalable process. All results evidence that under overexpression conditions L. lactis is able to 

produce protein nanoparticles with the same properties that those produced in E. coli. 

Interestingly, these functional nanostructures isolated from L. lactis show even higher 

stabilities and activity that those obtained from E. coli. This finding allows making a 

qualitative step, since it opens a field of opportunities for the production of recombinant 

proteins in a cost-effective format using GRAS systems as cell factories. ThusOverall, these 

data, this makes indicates that LAB an are ideal alternatives for the synthesis of tuned protein-

based endotoxin-free nanoparticles for a wide range of applications in both human and 

veterinary medicine. In summary, this work indicates that LAB could become the workhorse 

bacteria in a near future, replacing E. coli in this role. 
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7. Figure captions

Figure 1. FESEM and TEM micrographs of L. lactis and purified nanoparticles. A) On 

the left, FESEM micrographs of L. lactis bacteria. In the middle, TEM sections of L. lactis 

with MMP-9 nanoparticles inside (light grey particles). On the right, TEM 

immunolocalization of MMP-9 nanoparticles (labeled by anti-MMP-9) in L. lactis. Scale bars:

Upper micrographs 500 nm; lower micrographs 200 nm. B) FESEM micrographs of purified 

nanoparticles. Scale bars: 200 nm. C) TEM micrographs of purified nanoparticles. Scale bars:

left inset 200 nm; right inset 100 nm; lower micrographs 500 nm.

Figure 2. TEM micrographs of purified nanoparticles labeled by specific antibodies. 

Scale bars: Left and right inset 200 nm; lower micrographs 500 nm.

Figure 3. Time-course stability of nanoparticles. MMP-9, IFN- and MMP-2 produced in 

the clpP-htrA during proteinase K digestion (dark grey diamonds). Controls without 

proteinase K (light grey squares). The standard error is represented by black lines at each time

point. The values detailed in the table indicate the distribution of protein populations in the 

nanoparticles according to their half-life under proteinase K treatment.

Figure 4. Functionality of L. lactis protein-based nanoparticles. A) Specific activity of 

metalloproteinases. Different letters depict differences between proteins (P < 0.0001) and due 

to the interaction between strain and protein (P = 0.0022). B) Biological effects of GFP 

nanoparticles on human mammalian cell cultures. i. Proliferation assay with 1BR3.G cells 

cultured on surfaces decorated with 1 µg of GFP nanoparticles at 24, 48 and 72 h. Bars with 

asterisk differ (24 h, P = 0.0433; 48 h, P = 0.0008; 72 h, P = 0.0055) from negative control. 

CB)ii. Percentage of fluorescent HeLa cells analysed by cytometry after 24 h exposure to 

GFP nanoparticles. Significant differences depicted by asterisk (P = 0.0010). DC) iii. 
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Confocal micrographs of HeLa cells after 24 h exposure to GFP nanoparticles and their 

orthogonal sections in both the x and y axis. Scale bar in micrograph represents 5 µm. In all 

cases, results are expressed as means of non-transformed data ± SE, which correspond to un-

transformed data.

Figure 5. FTIR analysis of purified nanoparticles. Second derivatives  of absorption 

spectra of A) MMP-9 and MMP-9-ELK16; the component around 1658 cm-1 can be assigned 

to -helices and random coils and the two components at around 1633 cm-1 and 1692 cm-1 to 

the native intramolecular -sheet structures of the protein. B) IFN-the components around 

1656 and 1681 cm-1 can be assigned to the native -helices and to turn structures of the 

protein, respectively. C) MMP-2; the component around 1637 cm-1, along with the peak at 

~1692 cm-1, can be assigned to native, intramolecular β-sheets. The component around 1658 

cm-1 is due to the native -helices and to the random-coil structures of the protein. In A), B) 

and C) the two components at around 1627 and 1695 cm-1 are the typical marker bands of 

intermolecular -sheet in protein aggregates.

Figure 6. Contact angle measurements. Contact angles of 6 different functionalized gold 

surfaces, containing different molar ratio of –OH terminated (XOH) alkanethiols. Surfaces 

before nanoparticle deposition (dark grey diamond) and after nanoparticle deposition (light 

grey square).
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