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Abstract

The hardest problem in the process of transmitting information is decoding.

One of the major areas of research in coding theory is to �nd e�cient decod-

ing algorithms. Permutation decoding is a technique that strongly depends

on the existence of a special subset, called a PD-set, of the permutation

automorphism group of a code to assist in decoding received vectors. Re-

cently, a new permutation decoding method suitable for Z4-linear codes was

introduced. This dissertation aims to provide s-PD-sets, which enable the

correction of up to s errors, for some families of Z4-linear codes to perform

permutation decoding. We give upper bounds on s for which s-PD-sets of

minimum size s + 1 for systematic Hadamard and Kerdock codes can exist.

Two di�erent criteria to �nd s-PD-sets of size s + 1 for Z4-linear codes are

provided. Explicit and recursive constructions of s-PD-sets of size s + 1 for

binary linear and Z4-linear Hadamard codes ful�lling the �rst criterion are

presented. Likewise, we show explicit constructions of s-PD-sets of size s+ 1

for Z4-linear Hadamard and Kerdock codes satisfying the second criterion.

Finally, new Magma functions to deal with permutation decoding for linear

codes over �nite �elds and Z4-linear codes, among other suitable decoding

methods for Z4-linear codes, have been developed based on the results given

in this dissertation.
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Resum

El problema més difícil en el procés de transmetre informació és la descodi�-

cació. Una de les àrees més importants d'investigació dins de la teoria de la

codi�cació és la recerca d'algoritmes e�cients de descodi�cació. La descodi-

�cació per permutacions és una tècnica que depèn totalment de l'existència

d'un subconjunt especial, anomenat PD-conjunt, del grup d'automor�smes

d'un codi per contribuir a la descodi�cació dels vectors rebuts. Recentment,

s'ha introduït un nou mètode de descodi�cació per permutacions idoni per a

codis Z4-lineals. L'objectiu principal d'aquesta tesis és proporcionar s-PD-

conjunts, els quals permeten la correcció de �ns a s errors, per a algunes

famílies de codis Z4-lineals per a l'aplicació de la descodi�cació per permuta-

cions. Es donen �tes superiors sobre els valors de s per als quals poden existir

s-PD-conjunts de mida mínima s + 1 per a codis de Hadamard sistemàtics

i codis de Kerdock. Es proporcionen dos criteris diferents per trobar s-PD-

conjunts de mida s + 1 per a codis Z4-lineals. Es presenten construccions

explícites i recursives de s-PD-conjunts de mida s + 1 per a codis binaris

lineals de Hadamard i per a codis Z4-lineals de Hadamard, que compleixen

el primer criteri. Així mateix, es mostren construccions explícites de s-PD-

conjunts de mida s + 1 per a codis Z4-lineals de Hadamard i de Kerdock

que satisfan el segon criteri. Finalment, s'han desenvolupat noves funcions

en Magma, basades en els resultats obtinguts en aquesta tesis, per trebal-

lar amb la descodi�cació per permutacions per a codis lineals sobre cossos

�nits i codis Z4-lineals. De la mateixa forma, s'han desenvolupat noves fun-

cions per treballar amb altres mètodes de descodi�cació adequats per a codis

Z4-lineals.
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Chapter 1

Introduction

Coding theory is the study of methods for the e�cient and accurate transfer

of information from one place to another. The physical medium through

which the information is transmitted is called a channel. A channel is said to

be noisy if the received information can be di�erent from the information that

was sent. Coding theory deals with the problem of detecting and correcting

transmission errors caused by the noise of the channel. Figure 1.1 provides

a rough idea of a communication channel.

According to this scheme, a message, denoted by m, generated by the

source is �rst encoded. This process results in a codeword, denoted by x,

which is sent over the channel, where noise in the form of a vector, denoted by

e, may distort the codeword producing a received vector y. The received vec-

tor y is then decoded, obtaining an estimate m̂ of the message m. Hopefully,

m̂ and the original transmitted message m agree. The process of correcting

errors and retrieving the message is called decoding. Since there is a one-to-

one correspondence between codewords and messages, decoding for us is to

obtain an estimate ŷ of the received vector y for which ŷ = x is expected.

From our perspective, the most important part of this scheme is the noise,

for without it there would be no need for the development of coding theory.

Traditionally, codewords are n-tuples over the ring Z2. Therefore, we can

consider a code as a subset of Zn2 that contains all codewords. Linear codes,

that is, codes where the sum of any two codewords is a codeword, are the most

commonly used and studied codes as they are easier to describe, encode and

decode than nonlinear codes. For any linear code there is a generator matrix

comprising a subset of codewords of the code that allows us to generate the

whole code without needing to store each of the codewords. Nevertheless, it

turns out that this approach is not enough to fully cover all �good� codes:

1



2 Chapter 1. Introduction

source encoder channel decoder receiver

m x y m̂

e

message codeword received
vector

estimated
message

error from noise

Figure 1.1: Communication channel

there exist some binary nonlinear codes with good properties. More speci�-

cally, there exist binary nonlinear codes that have more codewords than the

best linear codes with the same length and minimum distance. This is the

case, for example, of Preparata and Kerdock codes.

The in�uential paper [HKC+94] completely transformed the study of non-

linear codes since it was shown that several well-known families of nonlinear

binary codes, including Preparata and Kerdock codes, can be simply con-

structed as binary images under the Gray map of linear codes over Z4. The

term Z4-linear code is used to denote such a binary code with an algebraic

structure over Z4, whereas the term quaternary linear code denotes a linear

code over Z4.

The process of decoding, that is, �nding which codeword x (and thus

which message m) was sent when a vector y is received, is complex and usu-

ally becomes harder if the size of the code increases. One of the fundamental

problems in coding theory is to �nd e�cient decoding algorithms. Permuta-

tion decoding is a decoding method, developed by MacWilliams [Mac64] and

Prange [Pra62], which uses a subset of the automorphism group of the code,

called s-PD-set, to assist in decoding a received vector. Since the e�ciency

of the permutation decoding method depends on the size of the s-PD-set,

there has been a lot of interest in �nding s-PD-sets of small size for some

families of linear codes.

This dissertation aims to provide s-PD-sets of minimum size s + 1 for

some families of Z4-linear codes to perform partial permutation decoding
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for these codes. The s-PD-sets obtained in this work represent the �rst

given for binary nonlinear codes. Moreover, we also analyse di�erent classical

decoding techniques for these Z4-linear codes to compare their outcomes and

decide which decoding method gives better performance. The overview of

the dissertation is the following:

• Chapter 2 provides an introduction to coding theory and helps this

dissertation to be as self contained as possible. Firstly, we review basic

de�nitions and results related to binary codes and Z4-linear codes, as

well as the concept of equivalence between codes. We recall two widely

known families of binary codes, called Hadamard and Kerdock codes,

which are nonlinear in general. Nevertheless, some codes in these fam-

ilies are Z4-linear: they can be obtained as binary images under the

Gray map of linear codes over Z4. Secondly, we present an in-depth

examination of the recently proposed permutation decoding algorithm

for Z4-linear codes [BBFV15], which generalizes the original decoding

algorithm for linear codes developed in [Mac64, Pra62]. We introduce

the known concept of s-PD-set, that is, a set of permutations that en-

ables the correction of up to s errors without which it would not be

possible to perform permutation decoding. Finally, we compute explic-

itly new upper bounds, denoted by fm, on the maximum value of s for

which s-PD-sets of minimum size s + 1 may be found for systematic

Hadamard and Kerdock codes of length 2m.

• Chapter 3 is devoted to providing new s-PD-sets of minimum size

s + 1 to perform partial permutation decoding for the binary linear

Hadamard code Hm of length 2m,m ≥ 4. We present a �rst criterion

that characterizes under which conditions a set of permutations forms

an s-PD-set of size s+ 1 for Hm. An explicit construction ful�lling the

criterion is also presented, together with two di�erent recursive con-

structions of s-PD-sets for this family of codes. The upper bound fm
obtained at the end of Chapter 2 is achieved for all m ≥ 4 by using the

explicit construction.

• Chapter 4 establishes similar results for (nonlinear) Z4-linear Hadamard

codes Hγ,δ of length 2m and type 2γ4δ, where m = γ + 2δ− 1, to those

presented in Chapter 3 for binary linear Hadamard codes. Speci�cally,

we start by giving another bound, denoted by fγ,δ and generally smaller

than fm, for Hγ,δ that becomes crucial when s-PD-sets of size s+ 1 are

searched for in a certain subgroup of PAut(Hγ,δ). This subgroup will
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be further explained later in this chapter. For the Z4-linear Hadamard

codes H0,δ of length 22δ−1 with δ ≥ 3, s-PD-sets of size s+ 1 with s up

to the upper bound fm = f0,δ are constructed. Additionally, for each

Hγ,δ with γ > 0 and δ ≥ 3, s-PD-sets of size s+ 1 up to f0,δ are given.

• Chapter 5 aims to acquire s-PD-sets of minimum size s+1 for Z4-linear

codes in general. With this goal in mind we present a second criterion

that can be applied to any Z4-linear code under certain conditions,

unlike the method presented in Chapter 4, which can only be applied

to Z4-linear Hadamard codes. As a speci�c application of this new

criterion, explicit constructions of s-PD-sets of size s + 1 for Z4-linear

Hadamard and Kerdock codes are also presented. The s-PD-sets for

Z4-linear Hadamard codes acquired in this chapter are di�erent from

the ones obtained in Chapter 4. Despite the fact that these new s-

PD-sets do not achieve the upper bound introduced in Chapter 2 (and

attained for some Z4-linear Hadamard codes in Chapter 4), they are

generated by a single permutation.

• Chapter 6 presents the computational part of this dissertation. We

give an introduction to other suitable decoding methods for Z4-linear

codes: syndrome, lifted and coset decoding. We provide a compari-

son of the performance of these three methods and the permutation

decoding method when they are applied to Z4-linear Hadamard and

Kerdock codes. The s-PD-sets for these codes have been obtained by

using the techniques introduced in the previous chapters of this disser-

tation. Finally, the manual of the implemented functions in Magma

for quaternary linear codes and linear codes over �nite �elds is also

included.

• Chapter 7 presents our conclusions and proposes future lines of research

on this topic.

Finally, we must mention that part of the research included in this disser-

tation was presented at several conferences and published in their proceedings

[BV14, BV15, BV16b, BPV16]:

[BV14] R. D. Barrolleta and M. Villanueva, �Partial permutation decod-

ing for binary linear Hadamard codes,� Electron. Note Discr.

Math., vol. 46, pp. 35�42, 2014. Proc. of the IX Jornadas de

Matemática Discreta y Algorítmica, Tarragona, 7�9 July 2014.
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[BV15] R. D. Barrolleta and M. Villanueva, �PD-sets for (nonlinear)

Hadamard Z4-linear codes,� in Proc. of the 21st Conference on

Aplications of Computer Algebra (ACA 2015), Kalamata, Greece,

pp. 135�139, 20�23 July 2015.

[BPV16] R. D. Barrolleta, J. Pujol, and M. Villanueva, �Comparing decod-

ing methods for quaternary linear codes,� to appear in Electron.

Note Discr. Math., 2016. Proc. of the X Discrete Mathematics

Days, Barcelona, 6�8 July 2016.

[BV16b] R. D. Barrolleta and M. Villanueva, �PD-sets for Z4-linear codes:

Hadamard and Kerdock codes,� in Proc. of the IEEE Interna-

tional Symposium on Information Theory (ISIT 2016), Barcelona,

pp. 1317�1321, 10�15 July 2016.

Moreover, the results included at the end of Chapter 2, and in Chapters 3

and 4 have been already submitted to a journal [BV16b] (where it has been

accepted after revisions) whereas those of Chapter 5 are planned to be sub-

mitted [BV16c]:

[BV16a] R. D. Barrolleta and M. Villanueva, �Partial permutation decod-

ing for binary linear and Z4-linear Hadamard codes,� submitted

to Designs, Codes and Cryptography, 2016. arXiv:1512.01839.

[BV16c] R. D. Barrolleta and M. Villanueva, �Partial permutation decod-

ing for some families of Z4-linear codes,� 2016 (in preparation).

This work was partially supported by the Spanish MINECO under Grant

TIN2013-40524-P, and by the Catalan AGAUR under Grant 2014SGR-691.

Ultimately, I visited the Department of Mathematics at Ghent University

in Ghent, Belgium, from 1 September to 30 November 2014 with the objective

of learning the main topics of the COST Action IC1104 project titled Random

Network Coding and Designs over Fq. The reader is referred to [Lam13] for an

in-depth introduction to this topic. Recently, there has been interest in codes

whose codewords are vector subspaces of a given vector space over Fq (unlike
classical coding theory where codewords are vectors), where Fq is the �nite

�eld with q elements, due to their application in random network coding.

After getting acquainted with these new codes, we focused on obtaining new

geometric properties on constant dimension codes. A constant dimension

code is a code ful�lling that each codeword has the same dimension k. Among

all constant dimension codes, we studied those which all codewords intersect
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pairwise in a subspace of dimension k − t. We found an upper bound for

which we could �nd families of nontrivial constant dimension codes of this

type, avoiding then the so-called sun�owers. After �nding such a bound,

we characterized the di�erent families of the maximal nontrivial constant

dimension codes. We also read [BEM99, Eis02, ER14] for constructing other

nontrivial constant dimension codes intersecting in a (k − t)-dimensional

subspace, for all t ≥ 3. The work done during this stay has been presented

at several international conferences [BBS+15, BBS+16] and has been already

submitted to a journal [BSSV16], where it has also been accepted after minor

revisions:

[BBS+15] R. D. Barrolleta, M. De Boeck, L. Storme, E. Suárez Canedo, and

P. Vandendriessche, �A geometrical bound for the sun�ower prop-

erty,� in Proc. of Design and Application of Random Network

Codes (DARNEC '15), Istanbul, Turkey, pp. 39, 4�6 November

2015.

[BBS+16] R. D. Barrolleta, M. De Boeck, L. Storme, E. Suárez Canedo,

and P. Vandendriessche, �On constant distance random network

codes,� in Proc. of Network Coding and Designs, Dubrovnik,

Croatia, pp. 48�49, 4�8 April 2016.

[BSSV16] R. D. Barrolleta, L. Storme, E. Suárez Canedo, and P. Vanden-

driessche, �On primitive constant dimension codes and a geomet-

rical sun�ower bound,� submitted to Adv. in Math. of Commun.,

2016.



Chapter 2

Coding theory

This chapter provides an introduction to coding theory. De�nitions and

basic results of this theory used in the subsequent chapters are presented.

Section 2.1 reviews basic concepts related to linear and nonlinear binary

codes. Section 2.2 deals with Z4-linear codes, which are the Gray map image

of quaternary linear codes. Section 2.3 introduces a well-known family of

binary codes, called Z4-linear Hadamard codes, which will be the subject of

study during most of the chapters in this dissertation. Section 2.4 looks at

the special family of Z4-linear Kerdock codes. Section 2.5 presents a brief

introduction to the equivalence of codes. Section 2.6 explains what permuta-

tion decoding is and how it works for binary linear and (nonlinear) Z4-linear

codes. Throughout this section, the role of s-PD-sets in this decoding method

is also explained. Finally, in Section 2.7, the minimum size of an s-PD-set

for a given systematic binary code is determined. Moreover, this size for

systematic binary Hadamard and Kerdock codes is explicitly computed.

The reader is referred to [MS77, HP03] for more information on the con-

cepts given in Section 2.1; to [HKC+94, Wan97, Kro01, PRV06] on Z4-linear

codes in general, and Z4-linear Hadamard and Kerdock in particular; and

to [MS77, BBFV15] on permutation decoding for linear and Z4-linear codes.

The results given in Section 2.7 represent the �rst contributions of this dis-

sertation. They have been included in the proceedings of some conferences

[BV14, BV15, BV16b] and are planning to be published in [BV16a, BV16c].

2.1 Binary codes

Let Z2 be the ring of integers modulo 2 and let Zn2 denote the set of all binary
vectors of length n. Any nonempty subset C of Zn2 is a binary code of length

7



8 Chapter 2. Coding theory

n and a subgroup of Zn2 is called a binary linear code of length n. From now

on, the elements of a code will be called codewords. A binary linear code

of length n can also be regarded as a linear subspace of Zn2 . In this case,

the dimension k of a binary linear code C is de�ned as the dimension of the

linear subspace C over Z2.

The Hamming weight of a vector v ∈ Zn2 , denoted by wt(v), is the number

of nonzero coordinates in v. The minimum Hamming weight of a binary code

C, denoted by wt(C), is the minimum value of wt(v) for all v ∈ C\{0}, where
0 represents the all-zero vector. The Hamming distance between two vectors

u, v ∈ Zn2 , denoted by d(u, v), is the number of coordinates in which u and

v di�er, that is, d(u, v) = wt(u + v). The minimum Hamming distance of

a binary code C, denoted by d(C), is the minimum value of d(u, v), for all

u, v ∈ C satisfying u 6= v. The minimum Hamming distance of a binary code

C will be denoted by d only if the code C we are referring to is clear from

the context. It is well known that if C is a binary linear code, d(C) = wt(C).

The minimum Hamming distance d of a binary code C determines the

number of errors that the code can correct. Let y be a received vector. If

s ≤ b(d− 1)/2c, then there is only one codeword c ∈ C such that d(c, y) ≤ s.

The parameter

t = b(d− 1)/2c

is called the error-correcting capability of the code C and C is said to be a

t-error-correcting code.

Let C be a binary code of length n and size |C| = 2k. For a vector

v ∈ Zn2 and a set I ⊆ {1, . . . , n}, |I| = k, we denote the restriction of v

to the coordinates in I by vI ∈ Zk2 and the set {vI : v ∈ C} by CI . A

set I ⊆ {1, . . . , n} of k coordinate positions such that |CI | = 2k is called

an information set for C. If such a set I exists, then C is said to be a

systematic code. For each information set I of size k, the set {1, . . . , n}\I of

the remaining n− k coordinate positions is called a check set for C.

The most common ways to describe a linear code are with either a gen-

erator or a parity check matrix. A generator matrix for a linear code C of

length n and dimension k is a k× n matrix G whose rows form a basis of C.

In general, there are many generator matrices for a linear code. Any set of

k coordinate positions corresponding to k independent columns of G forms

an information set for C. A parity check matrix H for a linear code C is a

(n−k)×n matrix of rank n−k whose null space is the code C. A generator

matrix G and a parity check matrix H for the linear code C satisfy GHT = 0,

where HT denotes the transpose matrix of H. A generator matrix G is said



2.1. Binary codes 9

to be in standard form if its �rst k columns form the identity matrix of size

k, denoted by Idk. If G = (Idk |A) is a generator matrix for the linear code

C in standard form, then

H = (−AT | Idn−k), (2.1)

is a parity check matrix for C. A parity check matrix H as in (2.1) is said

to be in standard form.

It is possible to create longer codes by adding a coordinate. There are

many possible ways to extend a code, but the most common is to choose the

extension so that the sum of all coordinates is 0. Let C be a binary linear

code of length n, dimension k and minimum distance d. The extended code

of C, denoted by Ĉ, is de�ned as

Ĉ = {(x1, . . . , xn+1) ∈ Zn+1
2 : (x2, . . . , xn+1) ∈ C with

n+1∑
i=1

xi = 0}.

The extended code Ĉ of a linear code C is also linear. Moreover, Ĉ is a

binary linear code of length n + 1, dimension k and minimum distance d̂,

where d̂ = d or d+ 1. Let G and H be generator and parity check matrices,

respectively, for C. Then, a generator matrix Ĝ for Ĉ can be obtained from

G by adding an extra column to G so that the sum of the coordinates of each

row of Ĝ is 0. A parity check matrix Ĥ for Ĉ is the matrix

Ĥ =

(
1 1

0 H

)
, (2.2)

where 0 and 1 represent the all-zero and all-one vector, respectively.

The inner product of two vectors u, v ∈ Zn2 is de�ned as

〈u, v〉 =
n∑
i=1

uivi ∈ Z2.

If 〈u, v〉 = 0, then u and v are called orthogonal. Denote the set of vectors

which are orthogonal to all codewords of a binary code C by C⊥, that is,

C⊥ = {x ∈ Zn2 : 〈x, u〉 = 0, for all u ∈ C}.

When C is a linear code, then C⊥ is called the dual of the code C. If G and

H are generator and parity check matrices, respectively, for C, then H and

G are generator and parity check matrices, respectively, for C⊥.
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Two binary codes C1 and C2 of length n are said to be equivalent (or per-

mutation equivalent) if one can be obtained form the other by permuting the

coordinates. The concept of equivalent codes will be more deeply discussed

in Section 2.5.

Let m ≥ 2. The m × (2m − 1) matrix whose columns are the numbers

1, 2, . . . , 2m − 1 written as binary numerals is the parity check matrix of a

binary code of length 2m− 1, dimension 2m− 1−m and minimum Hamming

distance 3. Alternatively, the columns of this parity check matrix can be seen

as the 2m − 1 nonzero vectors in Zm2 . Any rearrangement of columns of this

matrix gives an equivalent code, and hence any one of these equivalent codes

will be called binary Hamming code of length 2m − 1. The binary simplex

code of length 2m − 1, denoted by Sm, is the dual of the binary Hamming

code of length 2m − 1.

Example 1. The matrix

H =


1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1


has as columns all the 24−1 = 15 nonzero vectors in Z4

2. Then, H is a parity

check matrix for the binary Hamming code of length 15. The matrix H is

also a generator matrix in standard form for the binary simplex code S4.

2.2 Z4-linear codes

Let Z4 be the rings of integers modulo 4 and let Zn4 be the set of all n-tuples

over the ring Z4. Henceforth, the elements of Zn4 will also be called vectors

despite the fact that Zn4 is not a vector space. Any nonempty subset C of Zn4
is a quaternary code of length n and a subgroup of Zn4 is called a quaternary

linear code of length n.

Let ei be the binary vector or tuple over Z4 with a 1 in the ith coordinate

and zeros elsewhere. Let 0,1,2 and 3 be the binary vectors or n-tuples over

Z4 having 0, 1, 2 and 3, respectively, repeated in each coordinate. It will be

clear by the context whether we refer to binary vectors or n-tuples over Z4.

The elements of Z4 have the following Lee weights: wtL(0) = 0, wtL(1) =

wtL(3) = 1 and wtL(2) = 2. Then, the Lee weight of a vector u ∈ Zn4 , denoted
by wtL(u), is the addition of the weights of its coordinates, whereas the Lee
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distance between two vectors u, v ∈ Zn4 , denoted by dL(u, v), is dL(u, v) =

wtL(u− v). The minimum Lee distance of a quaternary code C, denoted by

dL(C), is the minimum value of dL(u, v) for all u, v ∈ C satisfying u 6= v.

The minimum Lee weight of a quaternary code C, denoted by wtL(C), is the

minimum value of wtL(v), for all u ∈ C\{0}. Again, if C is a quaternary

linear code, dL(C) = wtL(C).

Quaternary codes can be viewed as binary codes under the usual Gray

map Φ : Zn4 → Z2n
2 de�ned as

Φ((y1, . . . , yn)) = (φ(y1), . . . , φ(yn)), (2.3)

where φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0), for all

y = (y1, . . . , yn) ∈ Zn4 . The Gray map is an isometry which transforms Lee

distances over Zn4 into Hamming distances over Z2n
2 . Therefore, the minimum

Lee distance of a quaternary code C coincides with the minimum Hamming

distance of C = Φ(C), that is, dL(C) = d(Φ(C)).
Two quaternary codes C1 and C2 of length n are said to be permutation

equivalent if one can be obtained form the other by permuting the coordi-

nates. The concept of equivalent codes will be more deeply discussed in

Section 2.5.

If C is a quaternary linear code, then the binary code C = Φ(C) is said to

be a Z4-linear code. Moreover, since C is a subgroup of Zn4 , it is isomorphic to

an abelian group Zγ2×Zδ4 and we say that C (or equivalently, the corresponding
Z4-linear code C = Φ(C)) is of type 2γ4δ as a group. The code C has |C| =

2γ+2δ codewords, where 2γ+δ of them have order two.

A quaternary linear code C of length n and type 2γ4δ can also be regarded

as a Z4-submodule of Zn4 . As a Z4-module, C may or may not be free.

Recall that a Z4-module M is free if there exists a subset E ⊆ M such that

every element in M is uniquely expressible as a linear combination over Z4

of the elements in E [HP03]. Then, the quaternary linear code C is free if

γ = 0. Although C is not a free module in general, every codeword is uniquely

expressible in the form
γ∑
i=1

λiui +
δ∑
j=1

µjvj,

where λi ∈ Z2 for all 1 ≤ i ≤ γ, µj ∈ Z4 for all 1 ≤ j ≤ δ and ui, vj are

codewords of C of order two and four, respectively. The matrix G that has as

rows the codewords ui and vj is a generator matrix for C. As for linear codes,
there is a standard form for the generator matrix of C. In [HKC+94], it was
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shown that any quaternary linear code of type 2γ4δ is permutation equivalent

to a quaternary linear code CS with a generator matrix of the following form

GS =

(
2T 2Idγ 0

S R Idδ

)
, (2.4)

where R, T are matrices over Z4 with entries in {0, 1} ⊆ Z4 of size δ× γ and

γ× (β−γ− δ), respectively; and S is a matrix over Z4 of size δ× (β−γ− δ).
In general, a Z4-linear code is nonlinear if it is regarded as a code over Z2.

The following lemmas are useful when dealing with the linearity of Z4-linear

codes. Let u∗v denote the component-wise product of two vectors u, v ∈ Zn4 .
Lemma 2 ([HKC+94, Wan97]). For all u, v ∈ Zn4 , we have

Φ(u+ v) = Φ(u) + Φ(v) + Φ(2u ∗ v).

Lemma 3 ([HKC+94, Wan97]). Let C be a quaternary linear code. The Z4-

linear code C = Φ(C) is a binary linear code if and only if 2u ∗ v ∈ C, for all
u, v ∈ C.

One can strengthen Lemma 3 via the generators of order four of the

quaternary linear code. Speci�cally, if G is a generator matrix of a quaternary

linear code C of type 2γ4δ and u1, . . . , uγ and v1, . . . , vδ are the rows of order

two and order four in G, respectively, then the Z4-linear code C = Φ(C) is a
binary linear code if and only if 2vi ∗ vj ∈ C, for all 1 ≤ i < j ≤ δ. It is clear

that 2ui ∗ v = 0 ∈ C for all 1 ≤ i ≤ γ and v ∈ C; and 2vj ∗ vj = 2vj ∈ C for

all 1 ≤ j ≤ δ.

Example 4. Let C be the quaternary linear code of length 16 with generator

matrix

G =

(
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

)
. (2.5)

Denote the ith row of matrix (2.5) by vi. It is straightforward to check that

2v2 ∗ v3 = (0000020200000202) /∈ C.
Thus, by Lemma 3, the Z4-linear code C = Φ(C) is a binary nonlinear code.

The quaternary linear code C is permutation equivalent, by using the permuta-

tion (1, 14, 11, 8, 5, 16, 13, 10, 7, 4, 2, 15, 12, 9, 6, 3) ∈ Sym(16), to a quaternary

linear code CS with generator matrix GS in standard form (2.4), where

GS =

(
3 2 3 2 1 3 2 1 0 2 1 0 3 1 0 0

2 3 1 2 3 0 1 2 3 0 1 2 3 0 1 0

0 0 1 1 1 2 2 2 2 3 3 3 3 0 0 1

)
. (2.6)

The code C is of type 2043, so it has 43 = 64 codewords.
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Example 5. Let C be the quaternary linear code of length 16 with generator

matrix

G =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2

0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

 =

 v1
v2
u1

u2

 (2.7)

It is easy to see that 2v1 ∗ v2 = 2v2 ∈ C, so C = Φ(C) is a binary linear

code by Lemma 3. The code C is permutation equivalent via the permuta-

tion (1, 15, 11, 7, 4, 2, 16, 12, 8, 5, 13, 9, 14, 10, 6, 3) ∈ Sym(16) to a quaternary

linear code CS with generator matrix GS in standard form (2.4), where

GS =

 0 0 2 2 2 0 0 0 2 2 2 2 2 0 0 0

0 0 0 0 0 2 2 2 2 2 2 2 0 2 0 0

3 2 0 3 2 0 3 2 1 0 3 2 1 1 1 0

2 3 1 2 3 1 2 3 0 1 2 3 0 0 0 1

 . (2.8)

The code C is of type 2242, so it has 2242 = 64 codewords.

The inner product of two vectors u, v ∈ Zn4 is de�ned as

〈u, v〉 =
n∑
i=1

uivi ∈ Z4.

Given a quaternary linear code C of length n and type 2γ4δ, the quaternary

dual code of C, denoted by C⊥, is de�ned as

C⊥ = {x ∈ Zn4 : 〈x, u〉 = 0, for all u ∈ C}.

The quaternary dual code is of length n and type 2γ4n−γ−δ [HKC+94]. The

weight enumerator polynomial of C⊥ is related to the weight enumerator

polynomial of C by the MacWilliams identity [MS77, Chapter 5]. The cor-

responding binary code Φ(C⊥) is denoted by C⊥ and called the Z4-dual code

of C. The codes C and C⊥ are not necessarily linear, so they are not dual in

the binary linear sense, but the weight enumerator of C⊥ is the MacWilliams

transform of the weight enumerator of C.

Since 1994, quaternary linear codes became signi�cant because, in some

cases, after applying the Gray map, we obtain binary nonlinear codes bet-

ter than any known binary linear code with the same parameters: length,

number of codewords and minimum distance. This is the case, for example,

of Kerdock and Preparata codes. This discovery is due to the in�uential

paper [HKC+94] where, among other things, it is shown that the Kerdock
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codes and some Preparata-like codes are Z4-linear codes and, moreover, the

Z4-dual code of the Kerdock code is a Preparata-like code. Later, several

other Z4-linear codes with the same parameters as some well known fami-

lies of binary linear codes (for example, extended Hamming, Hadamard, and

Reed-Muller codes) have been studied and classi�ed [BPR03, Kro01, PRV06,

PRS09, PPV11].

Since then, a lot of research has been done on quaternary linear codes

and linear codes over more general �nite rings. Nevertheless, the examples

of better-than-linear codes found since then are comparatively sparse. In

[KZ13], the extended dualized Kerdock codes K̂∗k+1 (k ≥ 3 odd), which are

quaternary linear codes with high minimum Lee distance, are constructed.

In [KWZ16], it is shown that the codes K̂∗4 and K̂∗6 satisfy that the minimum

Hamming distance of their Gray map images is higher than the minimum

Hamming distance of any comparable binary linear code. A table with the

current better-than-linear codes can be found in [KWZ16]. For moderate

lengths, in order to determine whether a nonlinear code is better-than-linear

or not, the online tables [Gra09, BCFS16] containing the best known linear

codes can be used. Tables with the best known Z4-linear codes and binary

nonlinear codes are also available at [AA09] and [LRS99], respectively.

Despite this dissertation is focused on obtaining s-PD-sets for Z4-linear

codes, the results presented in this work may be generalized for other non-

linear binary codes with subjacent algebraic structures di�erent from Z4.

One possible generalization of Z4-linear codes are Z2Z4-linear codes. A

code C is said to be Z2Z4-additive if the set of coordinates can be parti-

tioned into two subsets X and Y such that the punctured code of C by

deleting the coordinates outside X (respectively, Y ) is a binary linear code

(respectively, a quaternary linear code). Their corresponding binary im-

ages, via a generalized Gray map, are called Z2Z4-linear codes. The fun-

damental parameters as well as the standard forms for generator and par-

ity check matrices and the duality concepts for these codes are studied in

[BFP+10, BFP+14]. Other possible generalizations of Z4-linear codes are

Z2k-linear codes, which are de�ned as the binary image of Z2k-ary codes by

generalized Gray maps in [Car91, Kro07, DF11]. Finally, it is also worth

mentioning that in [AS13, AS14] Z2Z2s-additive and ZprZps-additive codes

are introduced, generalizing naturally both Z2Z4-additive codes and Z2k-ary

codes.
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2.3 Z4-linear Hadamard codes

A Hadamard matrix H of order n is a n × n matrix of +1′s and −1′s such

that HHT = n Id. It is well known that if a Hadamard matrix H or order

n exists, then n is 1, 2 or a multiple of 4 [MS77, AK92]. Two Hadamard

matrices are equivalent if one matrix can be obtained from the other by

permuting rows and (or) columns and multiplying rows and (or) columns by

−1. We can change the �rst row and column of H intro +1′s and we obtain

and equivalent Hadamard matrix H ′, which is called normalized. If +1′s

are replaced by 0′s and −1′s by 1′s, H ′ is changed into a binary Hadamard

matrix c(H ′). The binary code consisting of the rows of c(H ′) and their

complements is called a binary Hadamard code.

Hadamard codes have been used in real word applications. They were

used in early satellite transmissions, for example, in the 1972 Mariner mis-

sion to Mars. Modern CDMA cellphones use Hadamard matrices (Walsh cov-

ers) to modulate transmission on the uplink and minimise interference with

other transmissions to the base station. The Walsh-Hadamard Transform is

in common use as a fast discrete transform. New applications are pattern

recognition, neuroscience and optical communication, among others. In ad-

dition, they are also used in cryptography and stenography. Despite this,

there is still no uniform technique for constructing all the known Hadamard

matrices. In fact, the Hadamard conjecture, that states that for every nat-

ural number n there exists a Hadamard matrix of order 4n, remains one of

the great unsolved problems of mathematics.

A binary Hadamard code of length n is a binary code with 2n codewords

and minimum distance n/2. In a binary Hadamard code, all codewords,

except the all-one and all-zero codewords, have Hamming weight n/2. It is

well known that there is a unique binary linear Hadamard code Hm of length

n = 2m, for any m ≥ 2, which is the dual of the extended Hamming code

of length 2m [MS77, Chapter 2]. A generator matrix Gm for Hm can be

constructed as follows:

Gm =

(
1 1

0 G′

)
, (2.9)

where G′ is any matrix having as column vectors the 2m− 1 nonzero vectors

from Zm2 , with the vectors ei, i ∈ {1, . . . ,m}, in the �rst m positions. Note

that G′ can be seen as a generator matrix of the binary simplex code Sm of

length 2m − 1, as noticed in Section 2.1.

Example 6. Let H4 be the binary linear Hadamard code of length 16 with



16 Chapter 2. Coding theory

generator matrix

G4 =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

 , (2.10)

constructed as in (2.9). Note that in this construction the generator matrix

for the simplex code S4 of length 15 given in Example 1 is involved.

In general, binary Hadamard codes are nonlinear. In this case, it is de-

sirable to have a subjacent algebraic structure, like a group or a ring. From

the coding theory perspective, it is also desired that the algebraic structure

preserves the Hamming distance. This is the case, for example, of Z4-linear

codes. The quaternary linear codes that, under the Gray map, give a bi-

nary Hadamard code are called quaternary linear Hadamard codes and the

corresponding Z4-linear codes are called Z4-linear Hadamard codes.

For any m ≥ 3 and each δ ∈ {1, . . . ,
⌊
m+1
2

⌋
}, there is a unique (up to

equivalence) Z4-linear Hadamard code of length 2m which is the Gray map

image of a quaternary linear code of length β = 2m−1 and type 2γ4δ, where

m = γ + 2δ − 1. Moreover, for a �xed m, all these codes are pairwise

nonequivalent, except for δ = 1 and δ = 2, since these ones are equivalent to

the binary linear Hadamard code Hm of length 2m [Kro01]. Therefore, the

number of nonequivalent Z4-linear Hadamard codes of length 2m is
⌊
m−1
2

⌋
for all m ≥ 3. Note that when δ ≥ 3, the Z4-linear Hadamard codes are

nonlinear.

Let Hγ,δ be the quaternary linear Hadamard code of length β = 2m−1 and

type 2γ4δ, wherem = γ+2δ−1, and let Hγ,δ = Φ(Hγ,δ) be the corresponding

Z4-linear code of length 2β = 2m. A generator matrix Gγ,δ for Hγ,δ can be

constructed by using the following recursive constructions:

Gγ+1,δ =

(
Gγ,δ Gγ,δ
0 2

)
, (2.11)

Gγ,δ+1 =

(
Gγ,δ Gγ,δ Gγ,δ Gγ,δ
0 1 2 3

)
, (2.12)

starting from G0,1 = (1). First, the matrix G0,δ is obtained from G0,1 by using

recursively δ−1 times (2.12), and then Gγ,δ is constructed from G0,δ by using

γ times (2.11). Note that the rows of order four remain in the upper part of

Gγ,δ while those of order two stay in the lower part.
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Example 7. The code C introduced in Example 4 is the quaternary linear

Hadamard code H0,3 of length β = 16 and type 2043. The Z4-linear Hadamard

code H0,3 = Φ(H0,3) is a binary Hadamard code of length 32 with 64 codewords

and minimum Hamming distance 16. The code H0,3 is the smallest Z4-linear

Hadamard code which is nonlinear.

On the other hand, the code C introduced in Example 5 is the quaternary

linear Hadamard code H2,2 of length β = 16 and type 2242. The Z4-linear

Hadamard code H2,2 = Φ(H2,2) is the binary linear Hadamard code of length

32 with 64 codewords and minimum Hamming distance 16. The binary linear

Hadamard code of this length can also be obtained as the Gray map image of

H4,1. Therefore, both codes H2,2 and H4,1 are equivalent to the code H4 given

in Example 6. Finally, see that there are exactly⌊
m− 1

2

⌋
=

⌊
5− 1

2

⌋
= 2

nonequivalent Z4-linear Hadamard codes of length 25 = 32, which are either

the codes H0,3 and H2,2 or the codes H0,3 and H4,1.

The Z4-linear Hadamard codes have been studied and classi�ed in [Kro01,

PRV06]. Hadamard matrices with di�erent subjacent algebraic structures

have been extensively studied, as well as the links with other topics in al-

gebraic combinatorics [Hor07]. This is the case, for example, of Z2Z4-linear

Hadamard codes and Hadamard Z2Z4Q8-codes. The Z2Z4-additive codes

such that, under the generalized Gray map, give a binary Hadamard code

are called Z2Z4-additive Hadamard codes and the corresponding Z2Z4-linear

codes are called Z2Z4-linear Hadamard codes. These codes have been studied

in [PRV06, RSV09, KV15] and generalize the Z4-linear Hadamard codes pre-

sented in this section. On the other hand, Hadamard Z2Z4Q8-codes, which

are binary Hadamard codes after a suitable Gray map from a subgroup of

direct products of Z2, Z4, and Q8 (where Q8 is the quaternionic group of

order eight) have been studied in [RR13, MR15].

2.4 Z4-linear Kerdock codes

We now de�ne the Z4-linear Kerdock code of length 2m as the Gray map

image of the extended code of a cyclic quaternary linear code of length n =

2m−1 − 1.

Let Z4[x] and Z2[x] be the polynomial ring over Z4 and Z2, respectively.

Let µ : Z4[x]→ Z2[x] be the map that performs a modulo 2 reduction of the
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coe�cients of h(x) ∈ Z4[x]. A monic polynomial h(x) ∈ Z4[x] is said to be a

primitive basic irreducible polynomial if µ(h(x)) is primitive over Z2[x].

Let h(x) be a primitive basic irreducible polynomial of degree m− 1 over

Z4 such that h(x) divides xn − 1, and let g(x) be the reciprocal polynomial

to the polynomial (xn − 1)/((x − 1)h(x)). Note that h(x) is the Hensel

lift of the binary primitive polynomial µ(h(x)) of degree m − 1. Let K−m
be the quaternary linear cyclic code of length n = 2m−1 − 1 with generator

polynomial g(x). The quaternary Kerdock code Km is the code obtained from

K−m by adding a zero-sum check symbol at the end of each codeword of K−m.
The Z4-linear Kerdock code Km is de�ned to be the Gray map image Φ(Km)

of the quaternary Kerdock code Km, so Km is a binary code of length 2m

and size 4m. Moreover, it is known that the minimum Hamming distance of

Km is 2m−1 − 2b(m−2)/2c [HKC+94, Wan97, HP03].

Suppose that g(x) = g0+g1x+· · ·+grxr ∈ Z4[x] is a generator polynomial

of K−m, where r = 2m−1 −m− 1. Let g∞ = −(g0 + · · ·+ gr). It is clear that

the m× 2m−1 matrix
g0 g1 · · · gm g∞

g0 g1 · · · gm g∞
. . . . . .

...

g0 g1 · · · gm g∞

 (2.13)

is a generator matrix of Km.
Example 8. The polynomial h(x) = x3 + 2x2 + x− 1 ∈ Z4[x] is a primitive

basic irreducible polynomial of degree 3 since µ(h(x)) = x3 + x + 1 ∈ Z2[x]

is primitive. The polynomial g(x) is equal to h(x) since x3 + 2x2 + x − 1 is

precisely the reciprocal polynomial of (x7−1)/((x−1)h(x)) = x3−x2+2x−1.

A generator matrix of the quaternary Kerdock code K4 constructed as in

(2.13) is 
3 1 2 1 0 0 0 1

0 3 1 2 1 0 0 1

0 0 3 1 2 1 0 1

0 0 0 3 1 2 1 1

 .

The Z4-linear Kerdock code K4 = Φ(K4) is a nonlinear binary code of length

24 = 16, size 44 = 256 and minimum Hamming distance 6.

A comprehensive study of (binary) Kerdock codes can be found in [MS77,

Chapter 15], where they are de�ned as the union of the �rst-order Reed-

Muller code RM(1,m) and 2m−1− 1 cosets of RM(1,m) in RM(2,m) corre-

sponding to quadratic bent functions such that the sum of any two is again
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a quadratic bent function. In [HKC+94], it is shown that for even m ≥ 4 a

simple rearrangement of the coordinates of Km leads directly to the original

de�nition of Kerdock code given in [Ker72]. In [Nec89], a connection between

sequences over Z4 and Kerdock codes punctured in two coordinates was �rst

discovered. Kerdock codes and Kerdock-like codes have also been studied in

[Kan95, BPRZ03, Phe15].

Note that we use the term Kerdock code more broadly than other authors

in the following sense: we call the Z4-linear Kerdock code, the code we obtain

after applying the Gray map to the quaternary Kerdock code Km, regardless
of whether m is even or not. The Kerdock codes of length 2m were �rst

de�ned only for even values of m, m ≥ 4.

2.5 Equivalence of codes

In this section, we study when two codes are �essentially the same�. This

concept is termed �equivalence�. Usually, we are interested in properties of

codes, such as weight distribution, which remain unchanged when passing

from one code to another that is essentially the same.

One way to view two binary linear codes as �essentially the same� is to

regard them �the same� if they are isomorphic as vector spaces. Nevertheless,

in that case the concept of weight is lost: codewords of one weight may be

sent to codewords of a di�erent weight by the isomorphism. Furthermore, we

are interested in equivalence between codes which could be binary nonlinear

or linear over other �elds or rings. Clearly, any permutation of coordinates

that sends one code to another preserves the weight of codewords, regardless

the �eld or ring.

Let Sym(n) be the symmetric group of permutations on the set {1, . . . , n}
and let id ∈ Sym(n) be the identity permutation. Let R be a ring. Through-

out this dissertation, R will usually be Z2, Z4 or the �nite �eld with q ele-

ments Fq. The group operation in Sym(n) is the function composition, σ1σ2,

which maps any element x to σ1(σ2(x)), σ1, σ2 ∈ Sym(n). A σ ∈ Sym(n)

acts linearly on words of Rn by permuting their coordinates as follows:

σ((v1, . . . , vn)) = (vσ−1(1), . . . , vσ−1(n)).

Two codes C1 ⊆ Rn and C2 ⊆ Rn are said to be permutation equivalent

if there is a permutation of coordinates which sends C1 into C2. The permu-

tation automorphism group of a code C ⊆ Rn, denoted by PAut(C), is the

set of permutations that map C to itself. Indeed, the set of all permutations

that preserve the set of codewords is a group. If C is a code of length n, then
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PAut(C) is a subgroup of the symmetric group Sym(n).

When we are considering codes over rings other than Z2, equivalence

could take a more general form. For example, over Z4, there are other maps

that preserve the Lee weight of codewords. These maps include those which

multiply the coordinates of the codewords by units of the ring.

A monomial matrix is a square matrix with exactly one nonzero divisor

entry in each row and column. A monomial matrix M can be represented

as a product of a diagonal matrix D and a permutation matrix P . Hence,

M = DP . Let C1 and C2 be two linear codes of the same length over the

ring R, and let G1 be a generator matrix of C1. Then, C1 and C2 are said

to be monomially equivalent if there is a monomial matrix M such that

MG1 is a generator matrix of C2. Monomially equivalence and permutation

equivalence are precisely the same for binary linear codes. The monomial

automorphism group of a linear code C over a ring, denoted by MAut(C), is
the set of monomial matrices that map C into itself. Since any permutation

can be seen as a permutation matrix, PAut(C) is a subgroup of MAut(C).
In the literature, we can �nd results on the permutation automorphism

groups of the binary codes considered in this dissertation. Speci�cally, it is

well known that the permutation automorphism group of the binary linear

Hadamard code of length 2m is the general a�ne group AGL(m, 2), which has

order 2m(2m−1) · · · (2m−2m−1) [MS77, Chapter 13]. In [PPV14], the order of

the permutation automorphism group for the quaternary linear Hadamard

codes Hγ,δ is established. These groups are completely characterized by

computing the orbits of the action of PAut(Hγ,δ) on Hγ,δ and by giving

generators of the group. Since the dual of a quaternary linear Hadamard

code is an extended 1-perfect code in the quaternary sense, the permutation

automorphism group of these codes is also computed. In [KV15], the order

of the monomial automorphism group for Z2Z4-additive Hadamard codes

and the permutation automorphism group of the corresponding Z2Z4-linear

Hadamard codes are given. The permutation automorphism of the Z2Z4-

linear extended 1-perfect codes is studied in [Kro16] and the permutation

automorphism group of the span of these codes in [PR02]. For even m ≥ 6,

the permutation automorphism group of the Z4-linear Kerdock code Km is

determined in [Car91]. The order of this group is 2m(2m−1 − 1)(m − 1). A

comprehensive study of the monomial automorphism group of quaternary

linear Kerdock, Preparata, Delsarte-Goethals and Goethals-Delsarte codes,

introduced in [HKC+94], can be found in [Wan97]. Finally, the reader is

referred to [HP03] for basic properties of the permutation and monomial

automorphism groups of codes over Z2, Z4 and Fq, and examples of equivalent
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codes.

2.6 Permutation decoding

Permutation decoding is a technique introduced in [Mac64] by MacWilliams

for linear codes that involves �nding a subset of the permutation automor-

phism group of a linear code in order to assist in decoding. The idea behind

this technique is to move all the errors in a received vector out of the infor-

mation positions by using a permutation that preserves the code.

Let C be a linear t-error-correcting code with information set I. The

permutation decoding technique is suitable for linear codes with a fairly large

permutation automorphism group since it is strongly based on the existence

of a special subset of PAut(C). Speci�cally, a subset S ⊆ PAut(C) is said to

be an s-PD-set with respect to the information set I for the code C if every

s-set of coordinate positions is moved out of I by at least one element of S,

where 1 ≤ s ≤ t. When s = t, S is said to be a PD-set.

When dealing with permutation decoding we must answer two questions.

First, how can we guarantee that the information positions in a vector are

correct? And second, how do we �nd an s-PD-set for the code C, that is,

a subset of PAut(C) that moves all the nonzero entries in every possible

error vector of weight s or less out of the information positions? The �rst

question is completely solved for linear codes in the following theorem, while

the second one is only solved for some particular families of linear codes.

Theorem 9 ([MS77, Chapter 16]). Let C be a linear t-error-correcting code

with information set I and parity check matrix H in standard form (2.1).

Suppose y = x + e, where x ∈ C and wt(e) ≤ t. Then the information

coordinates of y are correct if and only if wt(HyT ) ≤ t.

With this result in mind, we can formulate the permutation decoding

algorithm. Assume we have successfully found a PD-set S with respect to

the information set I for the linear code C.

1. If wt(HyT ) ≤ t, then there is no error in the information positions of

y and we can retrieve x as yIG.

2. Else we search σ ∈ S satisfying that wt(Hσ(y)T ) ≤ t. If there is no

such σ, then more than t errors have occurred.
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3. If we �nd σ, then the information positions of σ(y) are error-free. We

take x′ as the unique codeword such that x′I = σ(y)I and the decoded

vector is x = σ−1(x′).

Regarding the second question announced above, in [FKM12], it is shown

how to �nd s-PD-sets of size s+ 1 that satisfy the Gordon-Schönheim bound

for partial permutation decoding for the binary simplex code of length 2m−1

for all m ≥ 4 and 1 < s ≤
⌊
2m−m−1

m

⌋
. In [KS16], the ideas behind the

establishment of these PD-sets for binary simplex codes are applied to the

MacDonald codes [Mac60], obtaining similar results. In [Sen09], 2-PD-sets of

size 5 and 4-PD-sets of size
(
m+1
2

)
+ 2 are found for binary linear Hadamard

codes Hm for all m > 4. In [KMM10], the method introduced in [Sen09]

is extended to �nd (m − 1)-PD-sets of size 1
2
(m2 + m + 4) for Hm for all

m ≥ 5, and (m + 1)-PD-sets of size 1
6
(m3 + 5m + 12) for Hm for all m ≥ 6.

They also obtain (m − 3)-PD-sets of size 1
6
(m3 + 5m + 12) for the second

order Reed-Muller code R(2,m), for all m ≥ 8. Small PD-sets that satisfy

the Gordon-Schönheim bound have also been found for binary Golay codes

[Gor82, Wol83] and for the binary simplex code S4 [KV08]. In [BS11], a

method for constructing information sets valid for semisimple Abelian codes

is presented. In [BS13], the geometrical properties of those information sets

are applied to obtain su�cient conditions for a t-error-correcting Abelian

code to have a s-PD-set for all s ≤ t.

The aforementioned permutation decoding algorithm does not work for

nonlinear codes in general, since the condition stated in Theorem 9 becomes

useless for these codes. An alternative permutation decoding algorithm suit-

able for Z4-linear codes is presented in [BBFV15] where Theorem 12 replaces

Theorem 9.

For each quaternary coordinate position i ∈ {1, . . . , β}, we denote by

ϕ1(i) and ϕ2(i) the corresponding pair of binary coordinate positions in

{1, . . . , 2β}, that is, ϕ1(i) = 2i − 1 and ϕ2(i) = 2i. Let I1 and I2 be the

following sets of size γ and 2δ, respectively:

I1 = {ϕ1(β − γ − δ + 1), . . . , ϕ1(β − δ)},
I2 = {ϕ1(β − δ + 1), ϕ2(β − δ + 1), . . . , ϕ1(β), ϕ2(β)}.

Theorem 10 ([BBFV15]). If C is a Z4-linear code of length 2β and type

2γ4δ, then C is a systematic code. Moreover, if the generator matrix of

C = Φ−1(C) is in standard form (2.4), then I = I1 ∪ I2 is an information set

for C.
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Given a information vector a = (a1, . . . , aγ+2δ) ∈ Zγ+2δ
2 , we consider the

representation a = (c, d), where c = (a1, . . . , aγ) and d = (aγ+1, . . . , aγ+2δ).

For a quaternary vector x = (x1, . . . , x`), de�ne Φ1(x) = (φ1(x1), . . . , φ1(x`)),

where φ1 is the �rst coordinate of the Gray map. Let σ : Zγ2 ×Zδ4 → Zγ2 ×Zδ4
be the bijection de�ned as

σ(Φ−1(a)) = σ(c,Φ−1(d)) = (c+ Φ1(Φ
−1(d)R),Φ−1(d)),

where Φ : Zn1
2 × Zn2

4 → Zn1+2n2
2 is the generalized Gray map, that is,

Φ(x, y) = (x, φ(y1), . . . , φ(yn2)),

for all x ∈ Zn1
2 and y = (y1, . . . , yn2) ∈ Zn2

4 . The parameters n1 and n2 of the

extended Gray map Φ will be treated dependently on the context.

Theorem 11 ([BBFV15]). Let C be a Z4-linear code of length 2β, type 2γ4δ

and such that the generator matrix GS of C = Φ−1(C) is in standard form

(2.4). Then the function f : Zγ+2δ
2 → Z2β

2 , de�ned as

f(a) = Φ(σ(Φ−1(a))GS),

is a systematic encoding for C and the information set I = I1 ∪ I2.

Theorem 12 ([BBFV15]). Let C be a binary systematic t-error-correcting

code of length n. Let I be an information set for C and let f be a systematic

encoding for C and I. Suppose y = x+ e, where x ∈ C and wt(e) ≤ t. Then

the information coordinates of y are correct (and thus, xI = yI) if and only

if wt(y + f(yI)) ≤ t.

Assume now we have found a PD-set S with respect to the information

set I for the Z4-linear code C. The alternative permutation decoding process

to the algorithm presented for linear codes is

1. If wt(y+ f(yI)) ≤ t, then there is no error in the information positions

of y and we can retrieve x as f(yI).

2. Else we search σ ∈ S satisfying that wt(σ(y) + f(σ(y)I)) ≤ t. If there

is no such σ, then more than t errors have happened.

3. If we �nd σ, then the information positions of σ(y) are error-free. Then,

the decoded vector is x = σ−1(f(σ(y)I)).
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Example 13. Let C (respectively, CS) be the quaternary linear code with

generator matrix G (respectively, GS) considered in Example 4. Let C (re-

spectively, CS) be the binary image under the Gray map of C (respectively,

CS). Denote the 4-PD-set of size 5 for C introduced in Example 51 by S.

Since C is permutation equivalent to CS, by using the permutation

(1, 14, 11, 8, 5, 16, 13, 10, 7, 4, 2, 15, 12, 9, 6, 3) ∈ Sym(16),

it is clear that ψ(C) = CS, where

ψ = (1, 27, 21, 15, 9, 31, 25, 19, 13, 7, 3, 29, 23, 17, 11, 5)

(2, 28, 22, 16, 10, 32, 26, 20, 14, 8, 4, 30, 24, 18, 12, 6) ∈ Sym(32).

Then, one may take SS = {ψσψ−1 : σ ∈ S} = {id, σ1, σ2, σ3, σ4}, where

σ1 = (1, 29, 23, 21, 15, 13, 7, 5)(2, 30, 24, 22, 16, 14, 8, 6)

(3, 31, 25, 27, 17, 19, 9, 11)(4, 32, 26, 28, 18, 20, 10, 12)

σ2 = (1, 23, 11, 31)(2, 24, 12, 32)(3, 5, 13, 25)(4, 6, 14, 26)

(7, 27, 19, 15)(8, 28, 20, 16)(9, 17, 21, 29)(10, 18, 22, 30),

σ3 = (1, 21, 7, 3)(2, 22, 8, 4)(5, 23, 17, 15)(6, 24, 18, 16)

(9, 31, 13, 27)(10, 32, 14, 28)(11, 25, 19, 29)(12, 26, 20, 30),

σ4 = (1, 11)(2, 12)(3, 13)(4, 14)(5, 25)(6, 26)(7, 19)(8, 20)

(9, 21)(10, 22)(15, 27)(16, 28)(17, 29)(18, 30)(23, 31)(24, 32),

as a 4-PD-set for CS. Denote the ith row of the matrix (2.6) by vi. Let

x = Φ(v3) = Φ(0011122223333001)

= (00000101011111111110101010000001).

Suppose now that the received vector is y = x+ e, where

y = (00000101010101011110101010000011),

that is, the nonzero coordinates of the error vector are placed in positions

J = {11, 13, 15, 31}. The information set given by Theorem 10 is I = I2 =

{ϕ1(14), ϕ2(14), ϕ1(15), ϕ2(15), ϕ1(16), ϕ2(16)} = {27, 28, 29, 30, 31, 32}. Then,
the information coordinates of the vector y respect to this information set I

are yI = (000011). Since γ = 0, there is no matrix R and σ = id. Then

f(yI) = Φ(σ(Φ−1(yI))GS) = Φ((002)GS) = Φ(2v3)

= (00001111110000000011111111000011),
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so wt(y+f(yI)) = 12 > 4 = s. There are errors in the information positions

of y. Nevertheless, considering the vector

z = σ1(y) = (01010101100101100011100011100000),

we obtain that zI = (100000) and

f(zI) = Φ(σ(Φ−1(zI))GS) = Φ((300)GS) = Φ(3v1)

= (01110111100111100011100001100000),

so wt(z + f(zI)) ≤ 4 = s. Thus, there is no error in the information po-

sitions of σ(y). The decoded vector is σ−1(f(σ(y)I)) = σ−1(f(zI)), that is

equal to x. Note that σ1 is the unique permutation in the set SS such that

σ1(J)∩ I 6= ∅, since id(J) = J , σ1(J) = {3, 7, 13, 25}, σ2(J) = {1, 7, 25, 31},
σ3(J) = {5, 13, 25, 27} and σ4(J) = {1, 3, 23, 27}. Then, an error pattern in

the positions J = {11, 13, 15, 31} can only be corrected by using σ1.

Example 14. Let C (respectively, CS) be the quaternary linear code with

generator matrix G (respectively, GS) considered in Example 5. Let C (re-

spectively, CS) be the binary image under the Gray map of C (respectively,

CS). Computations inMagma [BCFS16] shows that SS = {id, σ1, σ2}, where

σ1 = (1, 9, 29, 5)(2, 10, 30, 6)(3, 27)(4, 28)(7, 23)(8, 24)

(11, 17, 15, 21)(12, 18, 16, 22)(13, 31)(14, 32)(19, 25)(20, 26),

σ2 = (1, 23, 29, 19)(2, 24, 30, 20)(3, 21, 31, 17)(4, 22, 32, 18)

(5, 27, 9, 13)(6, 28, 10, 14)(7, 15, 25, 11)(8, 16, 26, 12),

is a 2-PD-set of size 3 for CS. Denote the ith row of order two of the matrix

(2.8) by ui and the ith row of order four of the same matrix by vi. Let

x = Φ(u2) = Φ(0000022222220200)

= (00000000001111111111111100110000).

Suppose now that the received vector is y = x+ e, where

y = (00000000001111111101111100111000),

that is, the nonzero coordinates of the error vector are placed in positions

J = {19, 29}. The information set given by Theorem 10 is I = I1 ∪ I2 =

{ϕ1(13), ϕ1(14)} ∪ {ϕ1(15), ϕ2(15), ϕ1(16), ϕ2(16)} = {25, 27, 29, 30, 31, 32}.
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Then, the information coordinates of the vector y respect to this information

set I are yI = (011000). In this example, σ 6= id because γ 6= 0. Since

σ(Φ−1(yI)) = σ(0130)

= ((0, 1) + Φ1

(
(3, 0)

(
1 1

0 0

))
, 3, 0)

= (1030),

we obtain that

f(yI) = Φ(σ(Φ−1(yI))GS) = Φ((1030)GS) = Φ(u1 + 3v1)

= (01111110000001110111100001101000),

so wt(y+f(yI)) = 16 > 2 = s. There are errors in the information positions

of y. Nevertheless, considering the vector

z = σ1(y) = (01111111110000000010000011001111),

we obtain that zI = (101111) and

f(zI) = Φ(σ(Φ−1(zI))GS) = Φ((0122)GS) = Φ(u2 + 2v1 + 2v2)

= (11111111110000000000000011001111),

so wt(z+f(zI)) ≤ 2 = s. Thus, there is no error in the information positions

of σ1(y). The decoded vector is σ−11 (f(σ1(y)I)) = σ−11 (f(zI)), that is equal to

x. Again σ1 is the unique permutation in the set SS such that σ1(J)∩ I 6= ∅,
since id(J) = J, σ1(J) = {5, 25}and σ2(J) = {1, 19}.

2.7 Minimum size of PD-sets

Recall that the results presented in this section are novel, hence they repre-

sent the �rst contributions of this dissertation.

There is a well-known bound on the minimum size of PD-sets for linear

codes (based on the length, dimension and minimum distance of such codes)

that can be adapted to systematic codes (not necessarily linear) easily. This

bound is given by the next result, which is quoted and proved for linear

codes in [Huf98]. In general, for systematic codes, we can follow the same

proof since the linearity of the code is only used to guarantee that the code

is systematic. We include the proof here for the convenience of the reader.
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Proposition 15. Let C be a systematic t-error-correcting code of length n

and size |C| = 2k. Let r = n − k be the redundancy of C. If S is a PD-set

for C, then

|S| ≥
⌈
n

r

⌈
n− 1

r − 1

⌈
. . .

⌈
n− t+ 1

r − t+ 1

⌉
. . .

⌉⌉⌉
. (2.14)

Proof. Let S = {σ1, . . . , σ`} be a PD-set for the systematic t-error-correcting

code C. LetR be a check set for C, that is, a set of n−k redundancy positions.
De�ne Ri as the image of R under σ−1i for i ∈ {1, . . . , `}. Since S is a PD-set,

we can guarantee that every subset of coordinates of size e ≤ t is contained

in at least one set Ri. In particular, the sets R1, . . . , R` cover all t-subsets of

the n-set Ω of coordinate positions. Let N(t, r, n) be the minimum number

of r-subsets of the n-set Ω which cover all t-subsets of Ω. It is clear that

` ≥ N(t, r, n). Let R1, . . . , RN(t,r,n) be a collection of r-subsets of Ω covering

all t-subsets. De�ne the set χ = {(Ri, ω) : 1 ≤ i ≤ N(t, r, n), ω ∈ Ri}. Note
that |χ| = rN(t, r, n) since |Ri| = r, for all i ∈ {1, . . . , `}. For each ω ∈ Ω, we

de�ne χω to be the set {(Ri, ω) ∈ χ}. Notice that |χω| ≥ N(t−1, r−1, n−1)

because the sets obtained from Ri, where (Ri, ω) ∈ χω, by deleting ω produce

a collection of (r−1)-subsets which cover all (t−1)-subsets of the (n−1)-set

Ω\{ω}. Hence, there are at least nN(t − 1, r − 1, n − 1) pairs in χ and we

obtain that

N(t, r, n) =
n

r
N(t− 1, r − 1, n− 1).

By repeated applications of this inequality together with the observation that

N(1, r, n) = dn/re, the result follows.

As we have seen in Section 2.6, in [BBFV15], it is shown that Z4-linear

codes are systematic and a systematic encoding is given for these codes.

Therefore, the result given by Proposition 15 can be applied to any Z4-linear

code, not necessarily linear.

The above inequality (2.14) is often called the Gordon-Schönheim bound.

This bound can be adapted to s-PD-sets for all s up to the error-correcting

capability of the code.

Recall that any binary Hadamard code of length n has 2n codewords

and minimum Hamming distance n/2 [MS77, Chapter 2] (see Section 2.3).

Note that the error-correcting capability of any binary linear or Z4-linear

Hadamard code of length n = 2m is

tm = b(d− 1)/2c =
⌊
(2m−1 − 1)/2

⌋
= 2m−2 − 1.
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Moreover, all these codes are systematic and have size 2n = 2m+1. Therefore,

the right-hand side of the bound given by (2.14), for binary linear and Z4-

linear Hadamard codes of length 2m and for all 1 ≤ s ≤ tm, becomes

gm(s) =

⌈
2m

2m −m− 1

⌈
2m − 1

2m −m− 2

⌈
. . .

⌈
2m − s+ 1

2m −m− s

⌉⌉
. . .

⌉⌉
.

We compute the minimum value of gm(s) in the following lemma.

Lemma 16. Let m be an integer, m ≥ 4. For 1 ≤ s ≤ tm, gm(s) ≥ s + 1,

where tm = 2m−2 − 1 is the error-correcting capability of any binary linear

and Z4-linear Hadamard code of length 2m.

Proof. We need to prove that gm(s) ≥ s + 1. This fact is clear, since the

central term d(2m − s+ 1)/(2m −m− s)e = 2, for all s ∈ {1, . . . , 2m−2 − 1},
and in each stage of the ceiling function working from inside, gm(s) increases

its value by at least 1.

The smaller the size of the PD-set is, the more e�cient permutation

decoding becomes. We start studying the simple case, when we have that

gm(s) = s+1. For each binary linear and Z4-linear Hadamard code of length

2m, m ≥ 4, we de�ne the integer

fm = max{s : 2 ≤ s, gm(s) = s+ 1},
which represents the greater s in which we can �nd s-PD-sets of size s+1. The

following result characterize this parameter from the value of m. Note that

for m = 3, since the error-correcting capability is t3 = 1, the permutation

decoding becomes unnecessary and we do not take it into account in the

results.

Lemma 17. Let m be an integer, m ≥ 4. Then, fm = b2m−m−1
1+m

c = b 2m

1+m
c−1.

Proof. The result can be proved easily by Lemma 16 and an argument similar

to the proof of Lemma 2 in [FKM12]. However, we include the detailed proof

for the convenience of the reader.

There are s stages in the computation of the above formula for gm(s) and

we have already proved in Lemma 16 that the central term of this formula is 2,

that is, d(2m − s+ 1)/(2m −m− s)e = 2, for allm ≥ 4 and 1 ≤ s ≤ 2m−2−1.

Since we require that gm(s) = s+ 1, we must ensure that at each stage, that

is, in each ceiling function, the increase is exactly 1. For the second term,

working from inside, we must guarantee that⌈
2

(
2m − (s− 1) + 1

2m −m− (s− 1)

)⌉
=

⌈
2 +

2m+ 2

2m −m− (s− 1)

⌉
= 3,
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or, equivalently,
2m+ 2

2m −m− (s− 1)
≤ 1.

Thus, the condition in the second step of the computation implies that s ≤
2m − 3m− 1. For the third term, we obtain similarly that s ≤ 2m − 4m− 1

and for the lth we get⌈
l

(
2m − (s− l + 1) + 1

2m −m− (s− l + 1)

)⌉
= l + 1

if and only if s ≤ 2m − (l + 1)m − 1. Now, taking s = l, we have that

s ≤ 2m − (s+ 1)m− 1, thus s(1 +m) ≤ 2m −m− 1 and �nally

s ≤
⌊

2m −m− 1

1 +m

⌋
.

Since s ≤ 2m − (l + 1)m − 1 ≤ 2m − lm − 1 ≤ · · · ≤ 2m − 3m − 1, for all

l,m ≥ 4, the condition s ≤ 2m− (l+ 1)m− 1 is enough to obtain the greater

s such that gm(s) = s+ 1. Thus, fm =
⌊
2m−m−1

1+m

⌋
.

The bound fm holds for any systematic binary Hadamard code of length

2m regardless of whether it is Z4-linear or not. This is the case, for example,

of Z2Z4-linear Hadamard codes [PRV06, RSV09].

Recall that the quaternary Kerdock codeKm is a quaternary linear code of

length 2m−1, type 4m and minimum Lee distance 2m−1−2b(m−1)/2c [HKC+94]

(see Section 2.4). Then Km = Φ(Km) is a binary code of length n = 2m and

size |Km| = 22m. The error-correcting capability of the binary Kerdock code

Km is

tm = b(d− 1)/2c = 2m−2 − 2b(m−1)/2c−1 − 1.

Thus, the right-hand side of the bound given by (2.14) becomes for Km

gm(s) =

⌈
2m+1

2m+1 − 2m

⌈
2m+1 − 1

2m+1 − 2m− 1

⌈
. . .

⌈
2m+1 − s+ 1

2m+1 − 2m− s+ 1

⌉⌉
. . .

⌉⌉
.

Again, we can de�ne the integer fm = max{s : 2 ≤ s, gm(s) = s + 1}
for the binary Kerdock code of length n = 2m, m ≥ 4. From now on, the

integers tm and fm will be treated depending on the context and they will

represent, respectively, the error-correcting capability and the bound for the

existence of s-PD-sets of size s+ 1 for binary Hadamard codes and Kerdock

codes of length 2m. The following lemmas state equivalent results for binary

Kerdock codes to the ones obtained from Lemmas 16 and 17 for systematic

binary Hadamard codes.
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Lemma 18. Let m be an integer, m ≥ 4. For 1 ≤ s ≤ tm, gm(s) ≥ s + 1,

where tm = 2m−2 − 2b(m−1)/2c−1 − 1 is the error-correcting capability of the

binary Kerdock code Km of length 2m.

Lemma 19. Let m be an integer, m ≥ 4. Then, fm = b2m−1

m
c − 1.

Tables 2.1 and 2.2 show the values of the bound fm for the existence of

s-PD-sets of size s + 1 and the error-correcting capability tm for systematic

binary Hadamard codes and binary Kerdock codes of length 2m with 4 ≤
m ≤ 13, respectively.

An argument similar to the one used in the proofs of Lemmas 16 and 17

can be used to show that for any systematic binary code C of length n and

size |C| = 2k, s ≤ bn
k
c − 1 if S is an s-PD-set of size s+ 1 for C.
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m fm tm

4 2 3

5 4 7

6 8 15

7 15 31

8 27 63

m fm tm

9 50 127

10 92 255

11 169 511

12 314 1023

13 584 2047

Table 2.1: Values of fm and tm for systematic binary Hadamard codes of

length 2m with 4 ≤ m ≤ 13.

m fm tm

4 1 2

5 2 5

6 4 13

7 8 27

8 15 59

m fm tm

9 27 119

10 50 247

11 92 495

12 169 1007

13 314 2015

Table 2.2: Values of fm and tm for the binary Kerdock code of length 2m

with 4 ≤ m ≤ 13.





Chapter 3

PD-sets for binary linear

Hadamard codes

This chapter aims to provide s-PD-sets of minimum size to perform partial

permutation decoding for the binary linear Hadamard code Hm of length

2m,m ≥ 4. With this aim in mind, in Section 3.1, we regard the permuta-

tion automorphism group of Hm as a certain subgroup of the general linear

group GL(m+ 1, 2), and we provide a criterion on subsets of matrices of this

subgroup to be an s-PD-set of minimum size s + 1 for Hm. In Section 3.2,

using this criterion we give explicit constructions of s-PD-sets of size s+1 for

all m ≥ 4 and 2 ≤ s ≤ fm = b2m−m−1
1+m

c for these codes. Finally, in Section

3.3, we de�ne two recursive constructions to obtain s-PD-sets of size l ≥ s+1

for Hm+1 from an s-PD-set of the same size for Hm.

As we have already mentioned in Section 2.6, in [Sen09], 2-PD-sets of

size 5 and 4-PD-sets of size
(
m+1
2

)
+ 2 are found for binary linear Hadamard

codes Hm for all m ≥ 5. In [KMM10], the method introduced in [Sen09] is

extended to �nd (m− 1)-PD-sets of size 1
2
(m2 +m+ 4) for Hm for all m ≥ 5,

and (m + 1)-PD-sets of size 1
6
(m3 + 5m + 12) for Hm for all m ≥ 6. Note

that no s-PD-set at all is provided for H4 and neither of the ones presented

for Hm, m ≥ 5, is of minimum size. In [FKM12], s-PD-sets of minimum

size s + 1 for the binary simplex code of length 2m − 1 for all m ≥ 4 and

1 < s ≤
⌊
2m−m−1

m

⌋
are given. In this chapter, we follow a similar argument

to the one introduced for simplex codes in [FKM12] to obtain s-PD-sets of

minimum size s+ 1 for Hm, m ≥ 4.

The results given in Sections 3.1 and 3.3 are already published in our

paper [BV14], although without proofs, and were presented at �IX Jornadas

de Matemática Discreta y Algorítmica� in Tarragona, Spain, 2014. All results

33
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presented in this chapter, including the proofs, are going to be published in

[BV16a] together with the results given in Chapter 4 and some results from

Section 2.7. Finally, also mention that Theorem 28 has also been proved

independently [KMM16], as it was pointed out to us by one of the referees

in the review process of [BV16a].

3.1 First criterion to �nd s-PD-sets of size s+1

For any m ≥ 2, there is a unique binary linear Hadamard code Hm of length

2m [MS77]. Recall that a generator matrix Gm for Hm can be constructed as

follows:

Gm =

(
1 1

0 G′

)
,

where G′ is any matrix having as column vectors the 2m− 1 nonzero vectors

from Zm2 , with the vectors ei, i ∈ {1, . . . ,m}, in the �rst m positions.

By construction, from (2.9), it is clear that Im = {1, . . . ,m+ 1} is an in-

formation set forHm. Let wi be the ith column vector of Gm, i ∈ {1, . . . , 2m}.
By labelling the coordinate positions with the columns of Gm, we can take as

an information set Im for Hm the �rst m+1 column vectors of Gm considered

as row vectors, that is, Im = {w1, . . . , wm+1} = {e1, e1 + e2, . . . , e1 + em+1}.
Then, depending on the context, Im will be taken as a subset of {1, . . . , 2m}
or {1} × Zm2 .

Example 20. Let H4 be the binary linear Hadamard code of length 16 with

generator matrix (2.10) given in Example 6. The set I4 = {1, 2, 3, 4, 5}, or
equivalently the set of column vectors I4 = {w1, w2, w3, w4, w5} = {e1, e1 +

e2, e1 + e3, e1 + e4, e1 + e5} of G4, is an information set for H4.

It is known that the permutation automorphism group PAut(Hm) of Hm

is isomorphic to the general a�ne group AGL(m, 2) [MS77, Chapter 13]. Let

GL(m, 2) be the general linear group over Z2. Recall that AGL(m, 2) consists

of all mappings α : Zm2 → Zm2 of the form α(x) = Ax + b for x ∈ Zm2 , where
A ∈ GL(m, 2) and b ∈ Zm2 , together with the function composition as the

group operation. The monomorphism

ϕ : AGL(m, 2) −→ GL(m+ 1, 2)

(b, A) 7−→
(

1 b

0 A

)
de�nes an isomorphism between AGL(m, 2) and the subgroup of GL(m+1, 2)

consisting of all nonsingular matrices whose �rst column is e1. Therefore,
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from now on, we also regard PAut(Hm) as this subgroup. Note that any

matrixM ∈ PAut(Hm) can be seen as a permutation of coordinate positions,

that is, as an element of Sym(2m). By multiplying each column vector wi
of Gm by M , we obtain another column vector wj = wiM , which means

that the ith coordinate position moves to the jth coordinate position, i, j ∈
{1, . . . , 2m}.

Example 21. Let M be the matrix

M =

 1 0 0

0 0 1

0 1 0

 ∈ PAut(H2).

The generator matrix of the binary linear Hadamard code H2 constructed as

in (2.9) is

G2 =

 1 1 1 1

0 1 0 1

0 0 1 1

 .

Since the columns of G2 are w1 = (1, 0, 0), w2 = (1, 1, 0), w3 = (1, 0, 1)

and w4 = (1, 1, 1), we have that w1M = w1, w2M = w3, w3M = w2 and

w4M = w4, so the permutation associated to M ∈ PAut(H2) ⊆ GL(3, 2) is

σ = (2, 3) ∈ PAut(H2) ⊆ Sym(4).

Example 22. Let M be the matrix

M =


1 1 1 1 1

0 0 0 0 1

0 0 1 0 0

0 1 0 0 1

0 0 1 1 0

 ∈ PAut(H4),

and let G4 be the generator matrix of the binary linear Hadamard code H4

introduced in Example 6. One can easily check that wiM = wσ(i), where

σ = (1, 14, 11, 9, 6, 10, 13, 3, 15, 5, 16, 2, 12, 8)(4, 7) ∈ PAut(H4) ⊆ Sym(16).

Let M ∈ PAut(Hm) and let mi be the ith row of M , i ∈ {1, . . . ,m+ 1}.
We de�ne M∗ as the matrix where the �rst row is m1 and the ith row is

m1 +mi, i ∈ {2, . . . ,m+ 1}.
An s-PD-set of size s + 1 for Hm meets the Gordon-Schönheim bound

if 2 ≤ s ≤ fm. The following theorem provides us a condition on sets of

matrices of PAut(Hm) in order to be s-PD-sets of size s+ 1 for Hm.
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Theorem 23. Let Hm be the binary linear Hadamard code of length 2m, with

m ≥ 4. Let Ps = {Mi : 0 ≤ i ≤ s} be a set of s+ 1 matrices in PAut(Hm).

Then, Ps is an s-PD-set of size s+ 1 for Hm with information set Im if and

only if no two matrices (M−1
i )∗ and (M−1

j )∗ for i 6= j have a row in common.

Moreover, any subset Pk ⊆ Ps of size k + 1 is a k-PD-set for k ∈ {1, . . . , s}.

Proof. Suppose that the set Ps = {Mi : 0 ≤ i ≤ s} satis�es that no

two matrices (M−1
i )∗ and (M−1

j )∗ for i 6= j have a row in common. Let

E = {v1, . . . , vs} ⊆ {1} × Zm2 be a set of s di�erent column vectors of the

generator matrixGm regarded as row vectors, which represents a set of s error

positions. Assume we cannot move all the error positions to the check set by

any element of Ps. Then, for each i ∈ {0, . . . , s}, there is a v ∈ E such that

vMi ∈ Im. In other words, there is at least one error position that remains

in the information set Im after applying any permutation of Ps. Note that

there are s + 1 values for i, but only s elements in E. Therefore, vMi ∈ Im
and vMj ∈ Im for some v ∈ E and i 6= j. Suppose vMi = wr and vMj = wt,

for wr, wt ∈ Im. Then, v = wrM
−1
i = wtM

−1
j . Taking into account the form

of the vectors in the information set Im = {w1, . . . , wm+1}, by multiplying

for such inverse matrices M−1
i and M−1

j , we get the �rst row or a certain

addition between the �rst row and another row of each matrix. Thus, we

obtain that (M−1
i )∗ and (M−1

j )∗ have a row in common, contradicting our

assumption. Let Pk ⊆ Ps of size k + 1. If this set satis�es the condition on

the inverse matrices and we suppose that it is not a k-PD-set, we arrive at a

contradiction in the same way as before.

Conversely, suppose that the set Ps = {Mi : 0 ≤ i ≤ s} forms an s-PD-

set for Hm, but does not satisfy the condition on the inverse matrices. Thus,

some v ∈ {w1, . . . , w2m} must be the rth row of (M−1
i )∗ and the tth row

of (M−1
j )∗ for some r, t ∈ {1, . . . ,m + 1}, i, j ∈ {0, . . . , s}. In other words,

we have that v = er(M
−1
i )∗ = et(M

−1
j )∗. Therefore, v = wrM

−1
i = wtM

−1
j ,

where wr, wt ∈ Im, and thus we obtain that vMi = wr and vMj = wt. These

equalities implies that the vector v, which represents an error position, cannot

be moved to the check set by the permutations de�ned by the matrices Mi

andMj. Let L = {l : 0 ≤ l ≤ s, l 6= i, j}. For each l ∈ L, choose a row vl of

(M−1
l )∗. It is clear that vl = et(M

−1
l )∗ = wtM

−1
l , so vlMl = wt ∈ Im. Finally,

since some of the vl may repeat, we obtain a set E = {vl : l ∈ L} ∪ {v} of
size at most s. Nevertheless, no matrix in Ps will map every member of E

into the check set, a fact that contradicts our assumption.
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Example 24. The set of matrices P2 = {Id5,M1,M2}, where

M1 =


1 1 1 1 1

0 0 0 0 1

0 0 1 0 0

0 1 0 0 1

0 0 1 1 0

 , M2 =


1 1 1 1 1

0 1 0 0 1

0 0 1 1 0

0 0 1 0 0

0 0 0 0 1


and Id5 is the 5 × 5 identity matrix, is a 2-PD-set of size 3 for the binary

linear Hadamard code H4 of length 16 with generator matrix (2.10) given

in Example 6, by Theorem 23. We now compute the matrices Id∗5, (M
−1
1 )∗

and (M−1
2 )∗ to check the condition given in Theorem 23. First, note that

P2 ⊆ PAut(H4) ⊆ GL(5, 2). The inverse matrices of M1 and M2 are

M−1
1 =


1 0 0 1 1

0 1 0 1 0

0 0 1 0 0

0 0 1 0 1

0 1 0 0 0

 and M−1
2 =


1 1 1 0 0

0 1 0 0 1

0 0 0 1 0

0 0 1 1 0

0 0 0 0 1

 ,

respectively. Then, it is straightforward to check that the matrices Id∗5,

(M−1
1 )∗ =


1 0 0 1 1

1 1 0 0 1

1 0 1 1 1

1 0 1 1 0

1 1 0 1 1

 and (M−1
2 )∗ =


1 1 1 0 0

1 0 1 0 1

1 1 1 1 0

1 1 0 1 0

1 1 1 0 1


have no rows in common.

In addition, note that no s-PD-set of size s+1 can be found for s ≥ 3 since

f4 = 2. Notice also that f4 = 2 < 3 = t4, where t4 is the error-correcting

capability of H4. Finally, also remark that the matrices of P2 can be regarded

as elements of Sym(16). In this case, we obtain {id, σ1, σ2} as a 2-PD-set,

where
σ1 = (1, 14, 11, 9, 6, 10, 13, 3, 15, 5, 16, 2, 12, 8)(4, 7),

σ2 = (1, 14, 11, 2, 7, 9, 5, 12, 3, 16, 13, 6)(4, 15, 8, 10).

Let S be an s-PD-set of size s + 1. The set S is a nested s-PD-set

if there is an ordering of the elements of S, S = {σ0, . . . , σs}, such that

Si = {σ0, . . . , σi} ⊆ S is an i-PD-set of size i+ 1, for all i ∈ {0, . . . , s}. Note
that Si ⊂ Sj if 0 ≤ i < j ≤ s and Ss = S.
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From Theorem 23, we have two important consequences. The �rst one

is related to how to obtain nested s-PD-sets and the second one provides

another proof of Lemma 17.

Corollary 25. Let m be an integer, m ≥ 4. If Ps is an s-PD-set of size s+1

for the binary linear Hadamard code Hm, then any ordering of the elements

of Ps gives nested k-PD-sets for k ∈ {1, . . . , s}.

Corollary 26. Let m be an integer, m ≥ 4. If Ps is an s-PD-set of size s+1

for the binary linear Hadamard code Hm, then s ≤ fm =
⌊
2m−m−1

1+m

⌋
.

Proof. Following the condition on sets of matrices to be s-PD-sets of size

s + 1, given by Theorem 23, we have to obtain certain s + 1 matrices with

no rows in common. Note that the number of possible vectors of length

m+ 1 over Z2 with 1 in the �rst coordinate is 2m. Thus, taking this fact into

account and counting the number of rows of each one of these s+1 matrices,

we have that (s+ 1)(m+ 1) ≤ 2m, so s+ 1 ≤ 2m

m+1
and �nally s ≤ fm.

3.2 Explicit construction of s-PD-sets of size

s + 1

In this section, by using Theorem 23, we give an explicit construction of s-

PD-sets of minimum size s + 1 for Hm, for all m ≥ 4 and 2 ≤ s ≤ fm. We

follow a similar technique to the one described for simplex codes in [FKM12].

Lemma 27. Let K = Z2[x]/(f(x)), where f(x) ∈ Z2[x] is a primitive polyno-

mial of degree m. Let α ∈ K be a root of f(x). Then αi+1−αi, . . . , αi+m−αi
are linearly independent over Z2 for all i ∈ {0, . . . , 2m − 2}.

Proof. The elements αi+1 − αi, . . . , αi+m − αi are linearly independent over

Z2 for all i ∈ {0, . . . , 2m − 2}, if and only if α − 1, . . . , αm − 1 are linearly

independent over Z2. Suppose that there are λj ∈ Z2 such that
∑m

j=1 λj(α
j−

1) = 0. Then, multiplying by αi, we obtain that
∑m

j=1 λj(α
i+j − αi) =

0, so λj = 0 for all j ∈ {1, . . . ,m}, since {αi+1 − αi, . . . , αi+m − αi} are

linearly independent. Analogously, assume that there are λj ∈ Z2 such that∑m
j=1 λj(α

i+j − αi) = αi[
∑m

j=1 λj(α
j − 1)] = 0. Since αi ∈ K\{0}, it follows

that
∑m

j=1 λj(α
j − 1) = 0, so λj = 0 for all j ∈ {1, . . . ,m}, since {α −

1, . . . , αm − 1} are linearly independent.

Note that αm − 1 =
∑m−1

j=1 µjα
j for some µj. Moreover, this summation

has an odd number of nonzero terms, since f(x) is irreducible. Let µ =
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(µ1, . . . , µm−1) ∈ Zm−12 . Note that in vectorial notation αj − 1 = e1 + ej,

j ∈ {1, . . . ,m−1}, and αm−1 =
∑m−1

j=1 µjej+1. Finally, it is easy to see that

the m×m binary matrix (
1 Idm−1
0 µ

)
,

which has as rows α− 1, . . . , αm− 1, has determinant
∑m−1

j=1 µj = 1 6= 0.

For i ∈ {1, . . . , fm}, we consider the (m+ 1)× (m+ 1) binary matrices

N0 =


1 0

0 1
...

...

0 αm−1

 and Ni =


1 α(m+1)i−1

0 α(m+1)i − α(m+1)i−1

...
...

0 α(m+1)i+m−1 − α(m+1)i−1

 .

Theorem 28. Let Ps = {Mi : 0 ≤ i ≤ s}, where Mi = N−1i . Then, Ps is

an s-PD-set of size s+ 1 for the binary linear Hadamard code Hm of length

2m with information set Im, for all m ≥ 4 and 2 ≤ s ≤ fm.

Proof. Clearly, N0 ∈ PAut(Hm), since it is the identity matrix. By Lemma 27,

Ni ∈ PAut(Hm) for all i ∈ {1, . . . , fm}. The rows of the matricesN∗0 , . . . , N
∗
fm

are the elements of the form (1, a), for all a ∈ {0, 1, α, . . . , αfm(m+1)+m−1},
which are all di�erent, since α is primitive and fm(m+ 1) +m− 1 ≤ 2m− 2.

By Theorem 23, the result follows.

Example 29. Let H4 be the binary linear Hadamard code of length 16 with

generator matrix (2.10) given in Example 6. Let K = Z2[x]/(x4 +x+ 1) and

α a root of x4 +x+1. Recall that f4 = 2. Let N0, N1 and N2 be the following

matrices:

N0 =


1 0

0 1

0 α

0 α2

0 α3

 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 ,

N1 =


1 α4

0 α5 − α4

0 α6 − α4

0 α7 − α4

0 α8 − α4

 =


1 1 1 0 0

0 1 0 1 0

0 1 1 1 1

0 0 0 0 1

0 0 1 1 0

 ,
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N2 =


1 α9

0 α10 − α9

0 α11 − α9

0 α12 − α9

0 α13 − α9

 =


1 0 1 0 1

0 1 0 1 1

0 0 0 1 0

0 1 0 1 0

0 1 1 1 0

 .

The matrices N0 = Id5, where Id5 is the 5 × 5 identity matrix, N1 and N2

are elements of PAut(H4) ⊆ GL(5, 2), thus they are the matrices M0 = N−10 ,

M1 = N−11 and M2 = N−12 . By Theorem 28, P2 = {N−10 , N−11 , N−12 } is a

2-PD-set of size 3 for H4, where N
−1
0 = Id5,

N−11 =


1 1 0 0 1

0 0 1 1 1

0 1 1 1 0

0 1 1 1 1

0 0 0 1 0

 and N−12 =


1 1 0 0 1

0 0 1 1 0

0 0 0 1 1

0 0 1 0 0

0 1 0 1 0

 .

It is straightforward to check that the matrices N∗0 = Id∗5,

N∗1 =


1 1 1 0 0

1 0 1 1 0

1 0 0 1 1

1 1 1 0 1

1 1 0 1 0

 and N∗2 =


1 0 1 0 1

1 1 1 1 0

1 0 1 1 1

1 1 1 1 1

1 1 0 1 1


have no rows in common. In case we need to consider P2 as a subset of

Sym(16), the corresponding set of permutations is {id, σ1, σ2}, where

σ1 = (1, 16, 6)(2, 12, 14, 9, 4, 7)(3, 13, 10, 5, 15, 8),

σ2 = (1, 16, 11)(2, 14, 4, 9, 7, 12)(3, 10, 15, 5, 8, 13).

Example 30. Let H5 be the binary linear Hadamard code of length 32 with

generator matrix constructed as in (2.9). Let K = Z2[x]/(x5 + x2 + 1) and

α a root of x5 + x2 + 1. In this case, the matrices Ni, 0 ≤ i ≤ f5 = 4, are

N0 = Id6,

N1 =



1 α5

0 α6 − α5

0 α7 − α5

0 α8 − α5

0 α9 − α5

0 α10 − α5

 =



1 1 0 1 0 0

0 1 1 1 1 0

0 1 0 0 0 1

0 0 0 0 1 0

0 1 1 1 1 1

0 0 0 1 0 1

 ,
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N2 =



1 α11

0 α12 − α11

0 α13 − α11

0 α14 − α11

0 α15 − α11

0 α16 − α11

 =



1 1 1 1 0 0

0 1 0 0 1 0

0 1 1 0 1 1

0 0 1 0 1 1

0 0 0 0 1 1

0 0 0 1 1 1

 ,

N3 =



1 α17

0 α18 − α17

0 α19 − α17

0 α20 − α17

0 α21 − α17

0 α22 − α17

 =



1 1 1 0 0 1

0 0 0 0 0 1

0 1 0 1 0 1

0 1 1 1 1 1

0 1 1 0 1 0

0 0 1 1 0 0

 ,

N4 =



1 α23

0 α24 − α23

0 α25 − α23

0 α26 − α23

0 α27 − α23

0 α28 − α23

 =



1 1 1 1 1 0

0 1 0 0 0 1

0 0 1 1 0 1

0 0 0 0 1 1

0 0 0 1 0 0

0 1 0 0 1 1

 .

By Theorem 28, P4 = {N−1i : 0 ≤ i ≤ 4} is a 4-PD-set of size 5 for H5. In

[Sen09, KMM10], the 4-PD-set provided for H5 has size 17.

3.3 Recursive constructions of s-PD-sets

In this section, given an s-PD-set of size l for the binary linear Hadamard

code Hm of length 2m, where l ≥ s+ 1, we show how to construct recursively

an s-PD-set of the same size for Hm′ of length 2m
′
for all m′ > m.

Given a matrix M ∈ PAut(Hm) and an integer κ ≥ 1, we de�ne the

matrix M(κ) ∈ PAut(Hm+κ) as

M(κ) =

(
M 0

0 Idκ

)
,

where Idκ denotes the κ× κ identity matrix.

Proposition 31. Let m be an integer, m ≥ 4, and let Ps = {Mi : 0 ≤
i ≤ s} be an s-PD-set of size s + 1 for Hm with information set Im. Then,

Qs = {(M−1
i (κ))−1 : 0 ≤ i ≤ s} is an s-PD-set of size s+ 1 for Hm+κ with

information set Im+κ, for any κ ≥ 1.
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Proof. Since Ps is an s-PD-set for Hm, matrices (M−1
1 )∗, . . . , (M−1

s )∗ have no

rows in common by Theorem 23. Therefore, it is straightforward to check that

matrices (M−1
1 (κ))∗, . . . , (M−1

s (κ))∗ have no rows in common either. More-

over, M−1
i (κ) ∈ PAut(Hm+κ), for all i ∈ {1, . . . , s}. Thus, applying again

Theorem 23, we have that Qs is an s-PD-set for Hm+κ.

Note that the bound fm+1 for Hm+1 cannot be achieved recursively from

an s-PD-set for Hm, since the recursive construction given by Proposition 31

works for a given �xed s, while increasing the length of the Hadamard code.

Example 32. Let P2 = {Id5,M1,M2} be the 2-PD-set of size 3 for H4, given

in Example 24. Then matrices M−1
1 (1) and M−1

2 (1) are

M−1
1 (1) =



1 0 0 1 1 0

0 1 0 1 0 0

0 0 1 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1

 and M−1
2 (1) =



1 1 1 0 0 0

0 1 0 0 1 0

0 0 0 1 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 .

It is clear that matrices Id∗6,

(M−1
1 (1))∗ =



1 0 0 1 1 0

1 1 0 0 1 0

1 0 1 1 1 0

1 0 1 1 0 0

1 1 0 1 1 0

1 0 0 1 1 1

 and

(M−1
2 (1))∗ =



1 1 1 0 0 0

1 0 1 0 1 0

1 1 1 1 0 0

1 1 0 1 0 0

1 1 1 0 1 0

1 1 1 0 0 1


have no rows in common. Therefore, by Proposition 31, we have that the set

Q2 = {Id6, (M
−1
1 (1))−1, (M−1

2 (1))−1} is a 2-PD-set of size 3 for the binary

linear Hadamard code H5 of length 32, constructed as in (2.9).

Note that f5 = 4, as shown in Table 2.1. However, we cannot obtain

an s-PD-set of size s + 1 for H5 with 3 ≤ s ≤ 4 recursively by applying

Propostion 31. Theorem 23 may be used to achieve the 4-PD-set of size 5 for

H5, as viewed in Example 30.
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The above recursive construction only holds when the size of the s-PD-set

is exactly s+ 1. Next, we show a second recursive construction which holds

when the size of the s-PD-set is any integer l, l ≥ s + 1, unlike the �rst

recursive construction. Now, the elements of PAut(Hm) will be regarded as

permutations of coordinate positions, that is, as elements of Sym(2m) instead

of matrices of GL(m+ 1, 2).

It is well known that a generator matrix Gm+1 for the binary linear

Hadamard code Hm+1 of length 2m+1 can be constructed as follows:

Gm+1 =

(
Gm Gm

0 1

)
, (3.1)

where Gm is a generator matrix for the binary linear Hadamard code Hm of

length 2m.

Given two permutations σ1 ∈ Sym(n1) and σ2 ∈ Sym(n2), we de�ne

(σ1|σ2) ∈ Sym(n1 + n2), where σ1 acts on the coordinates {1, . . . , n1} and σ2
on {n1 + 1, . . . , n1 + n2}.

Proposition 33. Let m be an integer, m ≥ 4, and S be an s-PD-set of

size l for Hm with information set I. Then, (S|S) = {(σ|σ) : σ ∈ S} is an
s-PD-set of size l for Hm+1 constructed from (3.1), with any information set

I ′ = I ∪ {i+ 2m}, i ∈ I.

Proof. Since I is an information set for Hm, we have that |(Hm)I | = 2m+1.

Since Hm+1 is constructed from (3.1), it follows that Hm+1 = {(x, x), (x, x̄) :

x ∈ Hm}, where x̄ is the complementary vector of x. A vector and its

complementary have di�erent values in each coordinate, so |(Hm+1)I∪{i})| =
2m+2, for all i ∈ {2m+1, . . . , 2m+1}. Thus, any set of the form I ′ = I∪{i+2m},
i ∈ I, is an information set for Hm+1.

If σ ∈ PAut(Hm), then σ(x) = z ∈ Hm for all x ∈ Hm. Therefore, since

(σ|σ)(x, x) = (z, z) and (σ|σ)(x, x̄) = (z, z + σ(1)) = (z, z̄), we can conclude

that (σ|σ) ∈ PAut(Hm+1).

Let e = (a, b) ∈ Z2n
2 , where a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Zn2 , and

n = 2m. Finally, we will prove that for every e ∈ Z2n
2 with wt(e) ≤ s, there

is (σ|σ) ∈ (S|S) such that (σ|σ)(e)I′ = 0. Let c = (c1, . . . , cn) be the binary

vector de�ned as follows: ci = 1 if and only if ai = 1 or bi = 1, for all

i ∈ {1, . . . , n}. Note that wt(c) ≤ s, since wt(e) ≤ s. Taking into account

that S is an s-PD-set with respect to I, there is σ ∈ S such that σ(c)I = 0.

Therefore, we also have that (σ|σ)(a, b)I∪J = 0, where J = {i + n : i ∈ I}.
The result follows trivially since I ′ ⊆ I ∪ J .
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Example 34. Let S = {id, σ1, σ2} be the 2-PD-set of size 3 for H4, given in

Example 29. By Proposition 33, the set (S|S) = {id, (σ1|σ1), (σ2|σ2)}, where

(σ1|σ1) = (1, 16, 6)(2, 12, 14, 9, 4, 7)(3, 13, 10, 5, 15, 8)

(17, 32, 22)(18, 28, 30, 25, 20, 23)(19, 29, 26, 21, 31, 24),

(σ2|σ2) = (1, 16, 11)(2, 14, 4, 9, 7, 12)(3, 10, 15, 5, 8, 13)

(17, 32, 27)(18, 30, 20, 25, 23, 28)(19, 26, 31, 21, 24, 29),

is a 2-PD-set of size 3 for the binary linear Hadamard code H5 constructed

from (3.1) by using the generator matrix (2.10), with any information set of

the form I ′ = {1, 2, 3, 4, 5, i}, i ∈ {17, . . . , 21}. Note that H5 is generated by

G5 =

(
G4 G4

0 1

)
, (3.2)

where G4 is the generator matrix (2.10) of H4.

Example 35. Let S be a 3-PD-set for the binary linear Hadamard code H4

with information set I. In fact, we can just say that such a set S is a PD-set

for H4 since t4 = 3. Moreover, since f4 = 2, the size of S must be greater

than 4. Indeed, by Propisition 15,

|S| ≥
⌈

16

11

⌈
15

10

⌈
14

10

⌉⌉⌉
= 5.

Proposition 33 can be used to produce a 3-PD-set for any Hm constructed

by using (3.1) recursively from the given 3-PD-set S for H4. Nevertheless,

Proposition 31 becomes useless in this case. A PD-set S of size 16 for the

binary linear Hadamard code H4 can be found in [BBFV15, Example 3].



Chapter 4

PD-sets for Z4-linear Hadamard

codes

This chapter establishes similar results for (nonlinear) Z4-linear Hadamard

codes Hγ,δ of length 2m and type 2γ4δ, where m = γ + 2δ − 1, to those

presented in Chapter 3 for binary linear Hadamard codes. In Section 4.1,

we regard the permutation automorphism group of Hγ,δ as a certain subset,

denoted by π(L), of the general linear group GL(γ + δ, 4) and we provide a

criterion on subsets of matrices of π(L) to obtain an s-PD-set of minimum size

s+1 forHγ,δ. In Section 4.2, using this criterion we give explicit constructions

of s-PD-sets of size s + 1 for all δ ≥ 3 and 2 ≤ s ≤ b22δ−2−δ
δ
c ≤ fm for these

codes. Finally, in Section 4.3, we de�ne two recursive constructions to acquire

s-PD-sets of size l ≥ s + 1 for Hγ+i,δ+j of length 2m+i+2j and type 2γ+i4δ+j

for all i, j ≥ 0 from a given s-PD-set of the same size for Hγ,δ.

It is worth mentioning that the s-PD-sets constructed in this chapter rep-

resent the �rst ones suitable for applying permutation decoding to nonlinear

codes. The results given in Sections 4.1 and 4.3 were presented at �21st Con-

ference on Applications of Computer Algebra� in Kalamata, Greece, 2015

[BV15]. All results presented in this chapter, including the proofs, are going

to be published in [BV16a] together with the results given in Chapter 3 and

some results from Section 2.7.

4.1 First criterion to �nd s-PD-sets of size s+1

Let Hγ,δ be the quaternary linear Hadamard code of length β = 2m−1 and

type 2γ4δ, wherem = γ+2δ−1, and let Hγ,δ = Φ(Hγ,δ) be the corresponding

Z4-linear code of length 2β = 2m. Recall that a generator matrix Gγ,δ forHγ,δ

45
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can be constructed by using the following recursive constructions, starting

from G0,1 = (1):

Gγ+1,δ =

(
Gγ,δ Gγ,δ
0 2

)
,

Gγ,δ+1 =

(
Gγ,δ Gγ,δ Gγ,δ Gγ,δ
0 1 2 3

)
,

An ordered set I = {i1, . . . , iγ+δ} ⊆ {1, . . . , β} of γ + δ coordinate posi-

tions is said to be a quaternary information set for a quaternary linear code

C of type 2γ4δ if |CI | = 2γ4δ. If the elements of I are ordered in such a way

that |C{i1,...,iδ}| = 4δ, then it is easy to see that the set Φ(I), de�ned as

Φ(I) = {ϕ1(i1), ϕ2(i1), . . . , ϕ1(iδ), ϕ2(iδ)} ∪ {ϕ1(iδ+1), . . . , ϕ1(iδ+γ)}
= {2i1 − 1, 2i1, . . . , 2iδ − 1, 2iδ, 2iδ+1 − 1, . . . , 2iδ+γ − 1},

is an information set for C = Φ(C).

Example 36. The set I = {1} is a quaternary information set for H0,1, so

Φ(I) = {1, 2} is an information set for H0,1 = Φ(H0,1).

For the quaternary linear code H2,2 generated by the matrix (2.7) given

in Example 5, the set I = {1, 2, 5, 9} is a quaternary information set and

|(H2,2){1,2}| = 42, so Φ(I) = {1, 2, 3, 4} ∪ {9, 17} is an information set for

H2,2 = Φ(H2,2).

In general, there is not a unique way to obtain a quaternary information

set for Hγ,δ. The following result provides a recursive and simple form to

obtain such a set.

Proposition 37. Let I be a quaternary information set for the quaternary

linear Hadamard code Hγ,δ of length β = 2m−1 and type 2γ4δ, where m = γ+

2δ−1. Then I ∪{β+1} is a quaternary information set for the codes Hγ+1,δ

and Hγ,δ+1, which are obtained from Hγ,δ by applying (2.11) and (2.12),

respectively.

Proof. Since |Hγ+1,δ| = 2γ+14δ and |Hγ,δ+1| = 2γ4δ+1, it is clear that a quater-

nary information set for codesHγ+1,δ andHγ,δ+1 should have γ+δ+1 = |I|+1

coordinate positions.

Taking into account that Hγ,δ+1 is constructed from (2.12), we have that

Hγ,δ+1 = {(u, u, u, u), (u, u+1, u+2, u+3), (u, u+2, u, u+2), (u, u+3, u+

2, u+ 1) : u ∈ Hγ,δ}. Vectors u, u+ 1, u+ 2, and u+ 3 have di�erent values
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in each coordinate, so |(Hγ,δ+1)I∪{i}| = 2γ4δ+1 for all i ∈ {β+ 1, . . . , 2β, 3β+

1, . . . , 4β}. In particular, I ∪ {β + 1} is a quaternary information set for

Hγ,δ+1.

A similar argument holds for Hγ+1,δ. Since Hγ+1,δ is constructed from

(2.11), we have that Hγ+1,δ = {(u, u), (u, u + 2) : u ∈ Hγ,δ}. Vectors u and

u+ 2 have di�erent values in each coordinate, so |(Hγ+1,δ)I∪{i}| = 2γ+14δ for

all i ∈ {β + 1, . . . , 2β}. Therefore, I ∪ {β + 1} is a quaternary information

set for Hγ+1,δ.

Although the quaternary information set I ∪ {β + 1}, given by Proposi-

tion 37, is the same for Hγ+1,δ and Hγ,δ+1, the information set for the corre-

sponding binary codes Hγ+1,δ and Hγ,δ+1 are di�erent, I
′ = Φ(I) ∪ {2β + 1}

and I ′′ = Φ(I) ∪ {2β + 1, 2β + 2}, respectively.
As for binary linear codes, we can label the ith coordinate position of a

quaternary linear code C, with the ith column of a generator matrix G of C.
Thus, any quaternary information set I for C can also be considered as a set

of vectors representing the positions in I. Then, by Proposition 37, we have

that the set Iγ,δ = {e1, e1 + e2, . . . , e1 + eδ, e1 + 2eδ+1, . . . , e1 + 2eγ+δ} is a
suitable quaternary information set for Hγ,δ. Depending on the context, Iγ,δ
will be considered as a subset of {1, . . . , β} or {1} × Zδ−14 × {0, 2}γ.

Example 38. Let H0,3 be the quaternary linear Hadamard code of length 16

with generator matrix

G0,3 =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

 ,

obtained by applying (2.12) two times starting from G0,1 = (1). The set

I0,3 = {1, 2, 5}, or equivalently the set of vectors I0,3 = {e1, e1+e2, e1+e3} =

{(1, 0, 0), (1, 1, 0), (1, 0, 1)}, is a quaternary information set for H0,3.

By applying (2.11) and (2.12) over G0,3, we obtain matrices G1,3 and G0,4
that generate the quaternary linear Hadamard codes H1,3 and H0,4 of length

32 and 64, respectively. By Proposition 37, it follows that I0,3 ∪ {17} =

{1, 2, 5, 17} is a quaternary information set for H1,3 and H0,4. Although the

quaternary information set is the same for both codes H1,3 and H0,4, it is

important to note that in terms of vectors representing these positions, we

have that

I1,3 = {e1, e1 + e2, e1 + e3, e1 + 2e4}
= {(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 2)}
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and
I0,4 = {e1, e1 + e2, e1 + e3, e1 + e4}

= {(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}.

Finally, I ′ = Φ(I0,3) ∪ {33} = {1, 2, 3, 4, 9, 10, 33} and I ′′ = Φ(I0,3) ∪
{33, 34} = {1, 2, 3, 4, 9, 10, 33, 34} are information sets for the Z4-linear Hada-

mard codes H1,3 and H0,4, respectively.

Let C be a quaternary linear code of length β and type 2γ4δ, and let C =

Φ(C) be the corresponding Z4-linear code of length 2β. Let Φ : Sym(β) →
Sym(2β) be the map de�ned as

Φ(τ)(i) =

{
2τ(i/2), if i is even,

2τ((i+ 1)/2)− 1 if i is odd,

for all τ ∈ Sym(β) and i ∈ {1, . . . , 2β}. Given a subset S ⊆ Sym(β), we

de�ne the set Φ(S) = {Φ(τ) : τ ∈ S} ⊆ Sym(2β). It is easy to see that if

S ⊆ PAut(C) ⊆ Sym(β), then Φ(S) ⊆ PAut(C) ⊆ Sym(2β).

Lemma 39. The map Φ : Sym(β)→ Sym(2β) is a group monomorphism.

Proof. We need to check that Φ(στ) = Φ(σ)Φ(τ) for all τ, σ ∈ PAut(C). If i
is even, it follows that (Φ(σ)Φ(τ))(i) = Φ(σ)(2τ(i/2)) = 2σ ((2τ(i/2))/2) =

2στ(i/2) = Φ(στ)(i). Otherwise, (Φ(σ)Φ(τ))(i) = Φ(σ) (2τ ((i+ 1)/2)− 1)

= 2στ((i + 1)/2) − 1 = Φ(στ)(i). Finally, it is easy to check that Φ is

injective.

Let GL(k,Z4) denote the general linear group of degree k over Z4 and let

L be the set consisting of all matrices over Z4 of the following form: 1 η 2θ

0 A 2X

0 Y B

 ,

where A ∈ GL(δ − 1,Z4), B ∈ GL(γ,Z4), X is a matrix over Z4 of size

(δ − 1)× γ, Y is a matrix over Z4 of size γ × (δ − 1), η ∈ Zδ−14 and θ ∈ Zγ4 .

Lemma 40. The set L is a subgroup of GL(γ + δ,Z4).

Proof. We �rst need to check that L ⊆ GL(γ + δ,Z4), i.e., that det(M) ∈
{1, 3} for all M ∈ L. Note that if M′ ∈ GL(k,Z4), then M = M′ +
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2R ∈ GL(k,Z4) for any R. Thus, since det(M′) ∈ {1, 3}, we have that

det(M) ∈ {1, 3}, where

M′ =

 1 η 0

0 A 0

0 Y B

 .

It is straightforward to check thatMN ∈ L for allM,N ∈ L.

Let ζ be the map from Z4 to Z4 de�ned as ζ(0) = ζ(2) = 0, ζ(1) = ζ(3) =

1. This map can be extended to matrices over Z4 by applying ζ to each one

of their entries. Let π be the map from L to L de�ned as

π(M) =

 1 η 2θ

0 A 2X

0 ζ(Y ) ζ(B)

 ,

and let π(L) = {π(M) : M ∈ L} ⊆ GL(γ + δ,Z4). By Lemma 40, it is

clear that π(L) is a group with the operation ∗ de�ned asM∗N = π(MN )

for all M,N ∈ π(L). By the proof of Theorem 2 in [KV15], it is easy to

see that the permutation automorphism group PAut(Hγ,δ) is isomorphic to

π(L). Thus, from now on, we identify PAut(Hγ,δ) with this group.

Recall that we can label the ith coordinate position of Hγ,δ with the ith

column vector wi of the generator matrix Gγ,δ constructed via (2.11) and

(2.12), i ∈ {1, . . . , β}. Therefore, again, any matrix M ∈ PAut(Hγ,δ) can

be seen as a permutation of coordinate positions τ ∈ Sym(β), such that

τ(i) = j as long as wj = wiM, i, j ∈ {1, . . . , β}. For anyM ∈ PAut(Hγ,δ),

we de�ne Φ(M) = Φ(τ) ∈ Sym(2β), and for any P ⊆ PAut(Hγ,δ), we

consider Φ(P) = {Φ(M) :M∈ P} ⊆ Sym(2β).

Proposition 41 ([PPV14, KV15]). Let Hγ,δ be the quaternary linear Hada-

mard code of length 2γ+δ−2 and type 2γ4δ. The order of its permutation

automorphism group is

|PAut(Hγ,δ)| = 2
3(δ−1)2

2
+

3(δ−1)
2

+2γ(δ−1)+ γ2

2
+ γ

2

γ∏
i=1

(2i − 1)
δ−1∏
j=1

(2j − 1). (4.1)

Proof. The formula (4.1) can be deduced from the one computed for the order

of the monomial automorphism group MAut(Hγ,δ) in [KV15]. A counting

argument in the group π(L) also reveals (4.1). The cardinality of the group

PAut(Hγ,δ) can also be computed by the recursive formula given in [PPV14].
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Lemma 42. Let Hγ,δ be the quaternary linear Hadamard code of length β

and type 2γ4δ and let P ⊆ PAut(Hγ,δ). Then, Φ(P) is an s-PD-set for Hγ,δ

with information set Φ(Iγ,δ) if and only if for every s-set E of column vectors

of Gγ,δ there isM∈ P such that {gM : g ∈ E} ∩ Iγ,δ = ∅.
Proof. If Φ(P) is an s-PD-set with respect to the information set Φ(Iγ,δ),
then for every s-set E ⊆ {1, . . . , 2β}, there is τ ∈ P ⊆ Sym(β) such that

Φ(τ)(E)∩Φ(Iγ,δ) = ∅. For every s-set E ⊆ {1, . . . , β}, let Eo = {2i− 1 : i ∈
E}. We know that there is τ ∈ P such that Φ(τ)(Eo) ∩ Φ(Iγ,δ) = ∅. By the

de�nition of Φ, we also have that τ(E) ∩ Iγ,δ = ∅, which is equivalent to the

statement.

Conversely, we assume that for every s-set E ⊆ {1, . . . , β}, there is τ ∈
P ⊆ Sym(β) such that τ(E)∩Iγ,δ = ∅. For every s-set E ⊆ {1, . . . , 2β}, let Eo
be an s-set such that {i : ϕ1(i) ∈ E or ϕ2(i) ∈ E} ⊆ Eo, where ϕ1(i) = 2i−1

and ϕ2(i) = 2i. Since there is τ ∈ P such that τ(Eo)∩Iγ,δ = ∅, we have that
Φ(τ)(E) ∩ Φ(Iγ,δ) = ∅.

A slight modi�cation of the proof of Lemma 42 leads to a more general

result that holds for any quaternary linear code, not only for the family of

quaternary linear Hadamard codes.

Proposition 43. Let C be a quaternary linear code and let I be a quaternary
information set for C. Suppose that S ⊆ PAut(C). Then S satis�es that for

each s-set E ⊆ {1, . . . , β} there is τ ∈ S such that τ(E) ∩ I = ∅ if and only

if Φ(S) ⊆ PAut(C) satis�es that for each s-set E ⊆ {1, . . . , 2β} there is

σ ∈ Φ(S) such that σ(E) ∩ Φ(I) = ∅.
LetM∈ PAut(Hγ,δ) and let mi be the ith row ofM, i ∈ {1, . . . , δ + γ}.

We de�ne M∗ as the matrix where the �rst row is m1 and the ith row is

m1 +mi for i ∈ {2, . . . , δ} and m1 + 2mi for i ∈ {δ + 1, . . . , δ + γ}.
Theorem 44. Let Hγ,δ be the quaternary linear Hadamard code of type 2γ4δ.

Let Ps = {Mi : 0 ≤ i ≤ s} be a set of s+ 1 matrices in PAut(Hγ,δ). Then,

Φ(Ps) is an s-PD-set of size s + 1 for Hγ,δ with information set Φ(Iγ,δ) if

and only if no two matrices (M−1
i )∗ and (M−1

j )∗ for i 6= j have a row in

common.

Proof. The result can be proved easily by Lemma 42 and an argument similar

to the proof of Theorem 23. However, we include the detailed proof for the

convenience of the reader.

Suppose that the set Ps = {Mi : 0 ≤ i ≤ s} satis�es that no two

matrices (M−1
i )∗ and (M−1

j )∗ for i 6= j have a row in common. Let E =
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{g1, . . . , gs} ⊆ {1} × Zδ−14 × {0, 2}γ be a set of s di�erent column vectors

of the generator matrix Gγ,δ. Assume that Φ(Ps) is not an s-PD-set for

Hγ,δ with information set Φ(Iγ,δ). By Lemma 42, it follows that for each

i ∈ {0, . . . , s}, there is a g ∈ E such that gMi ∈ Iγ,δ ⊆ {1} ×Zδ−14 × {0, 2}γ.
Note that there are s + 1 values for i, but only s elements in E . Therefore,
gMi ∈ Iγ,δ and gMj ∈ Iγ,δ for some g ∈ E and i 6= j. Suppose gMi = wr
and gMj = wt, for wr, wt ∈ Iγ,δ. Then, g = wrM−1

i = wtM−1
j . Taking into

account the form of the vectors in the information set Iγ,δ, by multiplying

for such inverse matrices M−1
i and M−1

j , we get the �rst row or a certain

addition between the �rst row and another row of each matrix. Thus, we

obtain that (M−1
i )∗ and (M−1

j )∗ have a row in common, contradicting our

assumption. Let Pk ⊆ Ps of size k + 1. If this set satis�es the condition on

the inverse matrices and we suppose that it is not a k-PD-set, we arrive to a

contradiction in the same way as before.

Conversely, suppose that Φ(Ps) is an s-PD-set for Hγ,δ with information

set Φ(Iγ,δ), but does not satisfy the condition on the inverse matrices. Thus,

some g ∈ {1}×Zδ−14 ×{0, 2}γ must be the rth row of (M−1
i )∗ and the tth row

of (M−1
j )∗ for some r, t ∈ {1, . . . , γ + δ}, i, j ∈ {0, . . . , s}. In other words,

we have that g = er(M−1
i )∗ = et(M−1

j )∗ Therefore, g = wrM−1
i = wtM−1

j ,

where wr, wt ∈ Iγ,δ. Finally, we obtain that gMi = wr and gMj = wt.

Let L = {l : 0 ≤ l ≤ s, l 6= i, j}. For each l ∈ L, choose a row

gl of the matrix (M−1
l )∗. It is clear that gl = et(M−1

l )∗ = wtM−1
l , so

glMl = wt ∈ Iγ,δ. Finally, since some of the gl may repeat, we obtain a set

E = {gl : l ∈ L} ∪ {g} of size at most s. Nevertheless, no matrix in Ps will
map every member of E out of the quaternary information set Iγ,δ, fact that
contradicts our assumption by Lemma 42.

Corollary 45. Let Ps be a set of s+ 1 matrices in PAut(Hγ,δ). If Φ(Ps) is

an s-PD-set of size s + 1 for Hγ,δ, then any ordering of elements in Φ(Ps)
provides nested k-PD-sets for k ∈ {1, . . . , s}.

Corollary 46. Let Ps be a set of s+ 1 matrices in PAut(Hγ,δ). If Φ(Ps) is

an s-PD-set of size s+ 1 for Hγ,δ, then s ≤ fγ,δ, where

fγ,δ =

⌊
2γ+2δ−2 − γ − δ

γ + δ

⌋
.

Proof. Following the condition on sets of matrices to be s-PD-sets of size

s + 1, given by Theorem 44, we have to obtain certain s + 1 matrices with

no rows in common. Since the rows of length δ + γ must have 1 in the �rst
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coordinate, and elements from {0, 2} in the last γ coordinates, the number

of possible rows is 4δ−12γ = 2γ+2δ−2. Thus, taking this fact into account and

counting the number of rows of each one of these s + 1 matrices, we have

that (s+ 1)(γ + δ) ≤ 2γ+2δ−2, and the result follows.

Table 4.1 shows the values of the upper bound fγ,δ, along with the values

of the bounds fm and tm for Z4-linear Hadamard codes Hγ,δ, with 0 ≤ γ ≤ 5

and 3 ≤ δ ≤ 6. Note that fγ,δ ≤ fm ≤ tm, where m = γ + 2δ − 1.

Example 47. Let P6 = {Id4,M1,M2,M3,M4,M5,M6} ⊆ PAut(H1,3),

where

M1 =


1 1 2 2

0 3 1 0

0 3 0 0

0 1 0 1

 , M2 =


1 1 3 0

0 2 1 2

0 1 3 0

0 0 1 1

 , M3 =


1 1 2 0

0 1 0 0

0 2 3 0

0 1 1 1

 ,

M4 =


1 1 3 0

0 3 0 0

0 2 1 0

0 1 1 1

 , M5 =


1 1 1 0

0 1 0 2

0 0 1 2

0 0 1 1

 , M6 =


1 1 2 2

0 1 1 2

0 2 3 2

0 1 1 1

 .

The inverses of the aforesaid matrices, with respect to the operation ∗ of the
group π(L) are

M−1
1 =


1 2 1 2

0 0 3 0

0 1 3 0

0 0 1 1

 , M−1
2 =


1 0 3 0

0 1 3 2

0 1 2 2

0 1 0 1

 ,

M−1
3 =


1 3 2 0

0 1 0 0

0 2 3 0

0 1 1 1

 , M−1
4 =


1 3 1 0

0 3 0 0

0 2 1 0

0 1 1 1

 ,

M−1
5 =


1 3 3 0

0 1 2 2

0 0 3 2

0 0 1 1

 , M−1
6 =


1 3 3 2

0 3 3 0

0 0 1 2

0 1 0 1

 .
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Note that these matrices in general do not work as inverse elements under

the usual product of matrices. For example,

M2M−1
2 =


1 0 0 0

0 1 0 0

0 0 1 0

0 2 2 3

 ,

whereasM2∗M−1
2 = Id4. By Theorem 44, Φ(P6) ⊆ PAut(H1,3) is a 6-PD-set

of size 7 for the Z4-linear Hadamard code H1,3 of length 64 with information

set Φ(I1,3) = {1, 2, 3, 4, 9, 10, 33} given in Example 38. Indeed, note that

matrices Id∗4,

(M−1
1 )∗ =


1 2 1 2

1 2 0 2

1 3 0 2

1 2 3 0

 , (M−1
2 )∗ =


1 0 3 0

1 1 2 2

1 1 1 2

1 2 3 2

 ,

(M−1
3 )∗ =


1 3 2 0

1 0 2 0

1 1 1 0

1 1 0 2

 , (M−1
4 )∗ =


1 3 1 0

1 2 1 0

1 1 2 0

1 1 3 2

 ,

(M−1
5 )∗ =


1 3 3 0

1 0 1 2

1 3 2 2

1 3 1 2

 , (M−1
6 )∗ =


1 3 3 2

1 2 2 2

1 3 0 0

1 1 3 0

 .

have no rows in common.

Since γ = 1 and δ = 3, we have that m = γ + 2δ − 1 = 6, which means

that H1,3 is of length 26. Note that the bound f6 = 8 is not attained. Since

f1,3 = 7, a 8-PD-set of size 9 for H1,3 cannot be obtained by using Theorem

44.

Finally, mention that matrices in the set P6 have been found by using

the new magma function PDSetHadamardCodeZ4(δ, m) with δ = 3, m = 6

and the nondeterministic method (see Section 6.4.4). Due to this, a di�erent

execution of the function may provide a di�erent set of matrices.

We know that the Z4-linear Hadamard codes Hγ,δ of length 2m with δ = 1

or δ = 2 are equivalent to the binary linear Hadamard codes Hm of length 2m

[Kro01]. However, the results given in Section 3.2 for these codes will always

be better than the ones obtained by using Theorem 44, since fγ,δ ≤ fm,

where m = γ + 2δ − 1.
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Example 48. In Example 29, a 2-PD-set of size 3 for H4 is given. The code

H4 is equivalent to both Z4-linear Hadamard codes H1,2 and H3,1. However, a

2-PD-set of size 3 is not achievable by using Theorem 44, since f1,2 = f3,1 =

1.

Example 49. A 4-PD-set of size 5 for H5 can be constructed by Theorem 28,

since f5 = 4. However, considering H5 as the Gray map image of H2,2 or

H4,1, no more than a 3-PD-set of size 4 can be found by using Theorem 44,

since f4,1 = 2 and f2,2 = 3.

4.2 Explicit construction of s-PD-sets of size

s + 1

In this section, by using Theorem 44, we give an explicit construction of s-

PD-sets of minimum size s + 1 for H0,δ, for all δ ≥ 3 and 2 ≤ s ≤ f0,δ. We

follow a similar technique to the one described for simplex codes in [FKM12]

and for binary linear Hadamard codes in Section 3.2.

Let R = GR(4δ−1) be the Galois extension of dimension δ − 1 over Z4.

It turns out that as in the case of �nite �elds, Galois rings can be con-

structed as quotients of the associated polynomial over the base ring. For

more information about some basic facts related to Galois rings, refer to

[Mac60, HP03, Wan97, Wan03].

Let Z4[x] and Z2[x] be the polynomial ring over Z4 and Z2, respectively.

Let µ : Z4[x]→ Z2[x] be the map that performs a modulo 2 reduction of the

coe�cients of h(x) ∈ Z4[x]. Recall that a monic polynomial h(x) ∈ Z4[x]

is said to be a primitive basic irreducible polynomial if µ(h(x)) is primitive

over Z2[x]. In [BHK92, Table I] and [Wan97, Table 6.1], all primitive basic

irreducible polynomials for degrees 3 to 10 are provided.

It is known that R is isomorphic to Z4[x]/(h(x)), where h(x) is a monic

basic irreducible polynomial of degree δ− 1. Let f(x) ∈ Z2[x] be a primitive

polynomial of degree δ − 1. Let ` = 2δ−1 − 1. There is a unique primitive

basic irreducible polynomial h(x) dividing x` − 1 in Z4[x] and such that

µ(h(x)) = f(x), where µ is the map that performs modulo 2 to all coe�cients

of h(x). Let α be a root of h(x).

There are two canonical forms to represent the 4δ−1 elements of R, the
so-called additive and multiplicative representations. In the �rst one, each
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element r ∈ R can be uniquely expressed as

r =
δ−2∑
i=0

biα
i,

where bi ∈ Z4. Note that in this representation, we may identify r ∈ R with

(b0, . . . , bδ−2) ∈ Zδ−14 . Next, we introduce the multiplicative representation.

The subset T = {0, 1, α, . . . , α`−1} ⊆ R is called the Teichmuller set and it

contains the elements r ∈ R satisfying that r` = 1. It is well known that any

r ∈ R can be written uniquely as r = a+ 2b, where a, b ∈ T .
We take R as the following ordered set:

R = {r1, . . . , r4δ−1}
= {0 + 2 · 0, . . . , α`−1 + 2 · 0, . . . , 0 + 2 · α`−1, . . . , α`−1 + 2 · α`−1}. (4.2)

Since |R|/δ = f0,δ + 1, we can form f0,δ + 1 disjoints sets of R of size δ. For

i ∈ {0, . . . , f0,δ}, we consider the δ × δ quaternary matrices

N ∗i =

 1 rδi+1
...

...

1 rδ(i+1)

 .

Theorem 50. Let Ps = {Mi : 0 ≤ i ≤ s}, whereMi = N−1i . Then, Φ(Ps)
is an s-PD-set of size s + 1 for the Z4-linear Hadamard code H0,δ of length

22δ−1 = 2m with information set Φ(I0,δ), for all δ ≥ 3 and 2 ≤ s ≤ f0,δ = fm.

Proof. We need to prove that rδi+2 − rδi+1, . . . , rδ(i+1) − rδi+1 are linearly

independent over Z4, for all i ∈ {0, . . . , f0,δ}, in order to guarantee that

Ni ∈ PAut(H0,δ). Note that these vectors are not zero divisors [HKC+94].

Since α` = 1, {rδi+2 − rδi+1, . . . , rδ(i+1) − rδi+1} is one of the following three

sets:

L1 = {1, . . . , αδ−2},
L2 = {αk+1 − αk, . . . , αk+δ−1 − αk}, for some k ∈ {0, . . . , `− 1},
L3 = {αk+1 − αk, . . . , α`−1 − αk,−αk + 2(bj − bi), α` − αk + 2(bj − bi), . . . ,

αk+δ−2 − αk + 2(bj − bi)}, for some bi, bj ∈ T and k ∈ {0, . . . , `− 1}.

The elements in L1 are clearly linearly independent over Z4. Now, we

prove that the same property is satis�ed in L2. Assume on the contrary that

there are some λi 6= 0, i ∈ {1, . . . , δ − 1}, such that
∑
λi(α

k+i − αk) = 0.

If λi ∈ {1, 3} for at least one i ∈ {1, . . . , δ − 1}, we get a contradiction.
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Indeed, if we take modulo 2 in the previous linear combination, we obtain

that
∑
λ̄i(ᾱ

k+i − ᾱk) = 0, where λ̄i ∈ Z2 and at least one λ̄i 6= 0. This

is a contradiction by Lemma 27. On the other hand, if λi ∈ {0, 2} for all
i ∈ {1, . . . , δ − 1} and there is at least one λi = 2, then

∑
2λ′i(α

k+i − αk) =

2[
∑
λ′i(α

k+i − αk)] = 0, where λ′i ∈ {0, 1} and at least one λ′i = 1. Hence,∑
λ′i(α

k+i−αk) = 2λ for some λ ∈ R, that is, it is a zero divisor. By taking

modulo 2, we obtain a contradiction again by Lemma 27.

We show that the elements in L3 = {v1, . . . , vδ−1} are also linearly in-

dependent over Z4 by using a slight modi�cation of the previous argument.

Suppose that there is at least one λi 6= 0, i ∈ {1, . . . , δ − 1}, such that∑
λivi = 0. By taking modulo 2, we obtain that λ̄δ−1ᾱ

k +
∑
λ̄i(ᾱ

k+i −
ᾱk) = ᾱk[λ̄δ−1 +

∑
λ̄i(ᾱ

i − 1)] = 0. Since ᾱk is a unit, it follows that

λ̄δ−1 +
∑
λ̄i(ᾱ

i−1) = 0, which gives a contradiction if λi ∈ {1, 3} for at least
one index, since 1, ᾱ − 1, . . . , ᾱδ−2 − 1 are linearly independent over Z2. If

λi ∈ {0, 2} for all i ∈ {1, . . . , δ − 1}, we get a contradiction by applying a

similar argument to the one used above.

Finally, by construction, the matrices N ∗0 , . . . ,N ∗s have no rows in com-

mon and the result follows by Theorem 44.

Note that the bound fm is always attained for H0,δ despite the elements

of the fm-PD-set belong to the subgroup Φ(PAut(H0,δ)) ≤ PAut(H0,δ), since

fm = f0,δ.

Example 51. Let H0,3 be the quaternary linear Hadamard code of length 16

and type 2043. Let R = Z4[x]/(h(x)), where h(x) = x2+x+1. Note that h(x)

is a primitive basic irreducible polynomial dividing x3 − 1 in Z4[x]. Let α be

a root of h(x). Then, T = {0, 1, α, α2} and R = {r1, . . . , r16} = {0, 1, α, 3 +

3α, 2, 3, 2 +α, 1 + 3α, 2α, 1 + 2α, 3α, 3 +α, 2 + 2α, 3 + 2α, 2 + 3α, 1 +α}. Let
P4 = {N−10 ,N−11 ,N−12 ,N−13 ,N−14 }, where N0 = Id3, and N1, N2, N3 and

N4 are the following matrices: 1 3 3

0 3 1

0 0 1

 ,

 1 2 1

0 3 2

0 2 1

 ,

 1 1 2

0 3 1

0 2 3

 , and

 1 2 2

0 1 0

0 0 1

 .

Note that P4 ⊆ PAut(H0,3). The set P4 regarded as a subset of Sym(16) is

{id, τ1, τ2, τ3, τ4}, where

τ1 = (1, 12, 13, 8, 9, 4, 5, 16)(2, 15, 14, 11, 10, 7, 6, 3),

τ2 = (1, 13, 11, 7)(2, 8, 12, 14)(3, 15, 9, 5)(4, 6, 10, 16),

τ3 = (1, 8, 5, 10)(2, 9, 16, 13)(3, 14, 7, 4)(6, 15, 12, 11),

τ4 = (1, 11)(2, 12)(3, 9)(4, 10)(5, 15)(6, 16)(7, 13)(8, 14).
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By Theorem 50, S = Φ(P4) = {id, σ1, σ2, σ3, σ4} ⊆ Sym(32), where

σ1 = (1, 23, 25, 15, 17, 7, 9, 31)(2, 24, 26, 16, 18, 8, 10, 32)

(3, 29, 27, 21, 19, 13, 11, 5)(4, 30, 28, 22, 20, 14, 12, 6),

σ2 = (1, 25, 21, 13)(2, 26, 22, 14)(3, 15, 23, 27)(4, 16, 24, 28)

(5, 29, 17, 9)(6, 30, 18, 10)(7, 11, 19, 31)(8, 12, 20, 32),

σ3 = (1, 15, 9, 19)(2, 16, 10, 20)(3, 17, 31, 25)(4, 18, 32, 26)

(5, 27, 13, 7)(6, 28, 14, 8)(11, 29, 23, 21)(12, 30, 24, 22),

σ4 = (1, 21)(2, 22)(3, 23)(4, 24)(5, 17)(6, 18)(7, 19)(8, 20)

(9, 29)(10, 30)(11, 31)(12, 32)(13, 25)(14, 26)(15, 27)(16, 28),

is a 4-PD-set of size 5 for H0,3. Note that N ∗0 = Id∗3, and the following

matrices N ∗1 , . . . ,N ∗4 1 3 3

1 2 0

1 3 0

 ,

 1 2 1

1 1 3

1 0 2

 ,

 1 1 2

1 0 3

1 3 1

 , and

 1 2 2

1 3 2

1 2 3


have no rows in common.

Finally, mention that matrices in the set P4 can also be obtained by using

the new magma function PDSetHadamardCodeZ4(δ, m) with δ = 3, m = 5

and the deterministic method (see Section 6.4.4). Unlike Example 47, the set

P4 provided in this example is the constant outcome of this function.

4.3 Recursive constructions of s-PD-sets

In this section, given an s-PD-set of size l for the Z4-linear Hadamard code

Hγ,δ of length 2m and type 2γ4δ, where m = γ + 2δ − 1 and l ≥ s + 1, we

show how to construct recursively an s-PD-set of the same size for Hγ+i,δ+j

of length 2m+i+2j and type 2γ+i4δ+j for all i, j ≥ 0.

Next, a �rst recursive construction considering the elements of PAut(Hγ,δ)

as matrices in GL(γ + δ,Z4) is provided. This construction can be seen as

a natural generalization of the technique used for binary linear Hadamard

codes in Section 3.3.

Given a matrix

M =

 1 η 2θ

0 A 2X

0 ζ(Y ) ζ(B)

 ∈ PAut(Hγ,δ)
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and an integer κ ≥ 1, we de�ne

M(κ) =


1 η 0 2θ

0 A 0 2X

0 0 Idκ 0

0 ζ(Y ) 0 ζ(B)

 .

Proposition 52. Let Ps = {M0, . . . ,Ms} ⊆ PAut(Hγ,δ) such that Φ(Ps)
is an s-PD-set of size s + 1 for Hγ,δ with information set Φ(Iγ,δ). Then,

Qs = {(M−1
0 (κ))−1, . . . ,M−1

s (κ))−1} ⊆ PAut(Hγ+i,δ+j) and Φ(Qs) is an s-

PD-set of size s + 1 for Hγ+i,δ+j with information set Φ(Iγ+i,δ+j), for any

i, j ≥ 0 such that i+ j = κ ≥ 1.

Proof. Note that ifM∈ PAut(Hγ,δ), thenM(κ) ∈ GL(γ+δ+κ,Z4). Taking

this into account, together with the fact that Idκ can split as

Idκ =

(
Idj 0

0 Idi

)
,

where i + j = κ ≥ 1, it is clear that M−1(κ) ∈ PAut(Hγ+i,δ+j) and so

its inverse. Thus, Qs ⊆ PAut(Hγ+i,δ+j). Finally, repeated rows in the ma-

trices (M−1
0 (κ))∗, . . . , (M−1

s (κ))∗ cannot occur, since this fact would imply

repeated rows in the matrices (M−1
0 )∗, . . . , (M−1

s )∗ by construction. The

result follows from Theorem 44.

Example 53. Let P4 = {M0, . . . ,M4} ⊆ PAut(H0,3) be the set, given in

Example 51, such that Φ(P4) is a 4-PD-set of size 5 for H0,3. By Proposition

52, Q4 = {M−1
i (1))−1 : 0 ≤ i ≤ 4} is contained in both PAut(H1,3) and

PAut(H0,4). Moreover, Φ(Q4) is a 4-PD-set of size 5 for H1,3 and H0,4.

Nevertheless, note that the construction of (M−1
i (1))∗ depends on the group

whereM−1
i (1) is considered. For example, the matrix

M−1
1 (1) =


1 3 3 0

0 3 1 0

0 0 1 0

0 0 0 1


considered as an element in PAut(H1,3) and PAut(H0,4) leads, respectively,

to

(M−1
1 (1))∗ =


1 3 3 0

1 2 0 0

1 3 0 0

1 3 3 2

 and (M−1
1 (1))∗ =


1 3 3 0

1 2 0 0

1 3 0 0

1 3 3 1

 .
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As for binary linear Hadamard codes, a second recursive construction con-

sidering the elements of PAut(Hγ,δ) as permutations of coordinate positions,

that is as elements of Sym(2m), can also be provided. This construction can

also be seen as a generalization of the one described in Section 3.3 for binary

linear Hadamard codes.

We de�ne (σ1|σ2|σ3|σ4) ∈ Sym(n1+n2+n3+n4), for any four permutations

σi ∈ Sym(ni), i ∈ {1, . . . , 4}, in the same way as we de�ned (σ1|σ2) ∈
Sym(n1 + n2) in Section 3.3.

Proposition 54. Let S be an s-PD-set of size l for Hγ,δ of length n and type

2γ4δ with information set I. Then, (S|S) = {(σ|σ) : σ ∈ S} is an s-PD-set

of size l for Hγ+1,δ of length 2n and type 2γ+14δ constructed from (2.11) and

the Gray map, with any information set I ′ = I ∪ {i+ n}, i ∈ I.

Proof. Since Hγ+1,δ = {(x, x), (x, x̄) : x ∈ Hγ,δ}, where x̄ is the complemen-

tary vector of x, the result follows using the same argument as in the proof of

Proposition 33. By the proof of Proposition 37, we can add any of the coor-

dinate positions of {i+n : i ∈ I} to I in order to form a suitable information

set I ′ for Hγ+1,δ.

Let 2S = 21S denote the set (S|S) and, recursively, 2iS = 2(2i−1S).

Corollary 55. Let Ps = {Mi : 0 ≤ i ≤ s}, where Mi = N−1i . Then,

2γΦ(Ps) is an s-PD-set of size s + 1 for the Z4-linear Hadamard code Hγ,δ,

for all γ ≥ 0, δ ≥ 3 and 2 ≤ s ≤ f0,δ.

Proof. By Theorem 50 and Proposition 54, we can construct f0,δ-PD-sets of

size f0,δ+1 for Hγ,δ, for all γ ≥ 0 and δ ≥ 3.

Proposition 54 cannot be generalized directly for Z4-linear Hadamard

codes Hγ,δ+1 constructed from (2.12) and the Gray map. Note that if S is

an s-PD-set for Hγ,δ, then (S|S|S|S) = {(σ|σ|σ|σ) : σ ∈ S} is not always an
s-PD-set for Hγ,δ+1, since in general (σ|σ|σ|σ) /∈ PAut(Hγ,δ). For example,

σ = (1, 5)(2, 8, 3, 6, 4, 7) ∈ PAut(H0,2) ⊆ Sym(8), but π = (σ|σ|σ|σ) /∈
PAut(H0,3) ⊆ Sym(32), since π(Φ((0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3))) =

Φ((0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 2, 2, 2, 0, 2, 0)) 6∈ H0,3.

Proposition 56. Let S ⊆ PAut(Hγ,δ) such that Φ(S) is an s-PD-set of

size l for Hγ,δ of length n and type 2γ4δ with information set I. Then,

Φ((S|S|S|S)) = {Φ((τ |τ |τ |τ)) : τ ∈ S} is an s-PD-set of size l for Hγ,δ+1 of

length 4n and type 2γ4δ+1 constructed from (2.12) and the Gray map, with

any information set I ′′ = I ∪ {i+ n, j + n}, i, j ∈ I and i 6= j.
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Proof. Since Hγ,δ+1 is constructed from (2.12), Hγ,δ+1 = {(u, u, u, u), (u, u+

1, u+ 2, u+ 3), (u, u+ 2, u, u+ 2), (u, u+ 3, u, u+ 1) : u ∈ Hγ,δ}. It is easy
to see that if τ ∈ PAut(Hγ,δ), then (τ |τ |τ |τ) ∈ PAut(Hγ,δ+1).

Let σ = Φ(τ). Finally, we need to prove that for every e ∈ Z4n
2 with

wt(e) ≤ s, there is (σ|σ|σ|σ) ∈ Φ((S|S|S|S)) such that (σ|σ|σ|σ)(e)I′′ = 0,

where I ′′ ⊆ {1, . . . , 4n} is an information set for Hγ,δ+1 with γ + 2(δ + 1)

coordinate positions. Using a similar argument to that given in the proofs

of Propositions 33 and 54, the result follows. Moreover, by the proof of

Proposition 37, any I ′′ = I∪{i+n, j+n} with i, j ∈ I and i 6= j is a suitable

information set for Hγ,δ+1.

Corollary 57. Let S ⊆ PAut(Hγ,δ) such that Φ(S) is an s-PD-set of size l

for Hγ,δ of length 2m and type 2γ4δ with information set I. Then, Φ(2i+2jS)

is an s-PD-set of size l for Hγ+i,δ+j of length 2m+i+2j and type 2γ+i4δ+j

with information set obtained by applying recursively Proposition 37, for all

i, j ≥ 0.

Proof. The result comes trivially by applying Propositions 37, 54 and 56.

4.4 Computational results

Using the functions implemented in the new Magma package (see Sec-

tion 6.4), it is possible to improve easily the result given by Corollary 55 for

Hγ,δ with γ > 0, that is, to obtain s-PD-sets of size s+1 for f0,δ < s ≤ fγ,δ by

using a nondeterministic method. Table 4.1 summarizes these computational

results for the codes Hγ,δ with 3 ≤ δ ≤ 6 and 1 ≤ γ ≤ 5. Speci�cally, for

each one of these codes, the values of f0,δ, fγ,δ, fm and tm are shown, where

m = γ + 2δ − 1, together with the maximum s for which an s-PD-set of

size s + 1 has been found. Even when the nondeterministic method fails to

quickly �nd a fγ,δ-PD-set of minimum size fγ,δ + 1, the bound fγ,δ may be

attained as shown in the following examples.

Example 58. Let the ordered set R and the matrices N ∗0 , . . . ,N ∗3 be as in

Example 51. De�ne r̄ = (1, r) ∈ {1} × Z2
4 for all r ∈ R. Let P7 = {A−1i :

0 ≤ i ≤ 7}, where A∗i are the following matrices:(
N ∗0 0

r̄13 2

)
,

(
N ∗1 0

r̄16 2

)
,

(
N ∗2 0

r̄15 2

)
,

(
N ∗3 0

r̄14 2

)
,

(
N ∗0 2

r̄13 0

)
,

(
N ∗1 2

r̄16 0

)
,

(
N ∗2 2

r̄15 0

)
,

(
N ∗3 2

r̄14 0

)
.
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By Theorem 44, one can easily check that Φ(P7) ⊆ PAut(H1,3) is a 7-PD-set

of size 8 for H1,3 of length 64 with information set Φ(I1,3) = {1, 2, 3, 4, 9, 10,

33}. Since f1,3 = 7, no better s-PD-sets of size s+ 1 can be provided for H1,3

by using Theorem 44. However, an 8-PD-set of size 9 could be theoretically

found in PAut(H1,3) since f6 = 8.

Example 59. Let H1,4 be the quaternary linear Hadamard code of length 128

and type 2144. Let
R = Z4[x]/(h(x))

= {r1, . . . , r64},
as described in (4.2), where h(x) = x3 + 2x2 + x + 3. Note that h(x) is a

primitive basic irreducible polynomial dividing x7 − 1 in Z4[x]. Let P24 =

{Mi : 0 ≤ i ≤ 24}, where (M−1
i )∗ are the following matrices:

1 r1 0

1 r2 0

1 r3 0

1 r4 0

1 r57 2

 ,


1 r5 0

1 r6 0

1 r7 0

1 r8 0

1 r61 2

 ,


1 r10 0

1 r9 0

1 r11 0

1 r12 0

1 r58 2

 ,


1 r14 0

1 r13 0

1 r15 0

1 r16 0

1 r62 2

 ,


1 r19 0

1 r18 0

1 r17 0

1 r20 0

1 r59 2

 ,


1 r23 0

1 r22 0

1 r21 0

1 r24 0

1 r63 2

 ,


1 r28 0

1 r26 0

1 r27 0

1 r25 0

1 r60 2

 ,


1 r32 0

1 r30 0

1 r31 0

1 r29 0

1 r64 2

 ,


1 r33 0

1 r34 0

1 r35 0

1 r36 0

1 r49 2

 ,


1 r37 0

1 r38 0

1 r39 0

1 r40 0

1 r53 2

 ,


1 r42 0

1 r41 0

1 r43 0

1 r44 0

1 r50 2

 ,


1 r46 0

1 r45 0

1 r47 0

1 r48 0

1 r54 2

 ,


1 r1 2

1 r2 2

1 r3 2

1 r4 2

1 r57 0

 ,


1 r5 2

1 r6 2

1 r7 2

1 r8 2

1 r61 0

 ,


1 r10 2

1 r9 2

1 r11 2

1 r12 2

1 r58 0

 ,


1 r14 2

1 r13 2

1 r15 2

1 r16 2

1 r62 0

 ,


1 r19 2

1 r18 2

1 r17 2

1 r20 2

1 r59 0

 ,


1 r23 2

1 r22 2

1 r21 2

1 r24 2

1 r63 0

 ,


1 r28 2

1 r26 2

1 r27 2

1 r25 2

1 r60 0

 ,


1 r32 2

1 r30 2

1 r31 2

1 r29 2

1 r64 0

 ,
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
1 r33 2

1 r34 2

1 r35 2

1 r36 2

1 r49 0

 ,


1 r37 2

1 r38 2

1 r39 2

1 r40 2

1 r53 0

 ,


1 r42 2

1 r41 2

1 r43 2

1 r44 2

1 r50 0

 ,


1 r46 2

1 r45 2

1 r47 2

1 r48 2

1 r54 0

 ,


1 r51 0

1 r52 0

1 r55 0

1 r56 0

1 r51 2

 .

Note that the aforementioned matrices have no rows in common; the cor-

responding matrices M−1
i are invertible in the group π(L), i ∈ {0, . . . , 24};

and Mi ∈ PAut(H1,4). By Theorem 44, the set Φ(P24) is a 24-PD-set of

size 25 for the Z4-linear Hadamard code H1,4 = Φ(H1,4) of length 256 with

information set Φ(I1,4) = {1, 2, 3, 4, 9, 10, 33, 34, 65}. Since f1,4 = 24, no

better s-PD-sets of size s+ 1 can be provided for H1,4 by using Theorem 44.

However, an 27-PD-set of size 28 could be theoretically found in PAut(H1,4)

since f8 = 27.

From Examples 58 and 59 we conjecture that fγ,δ-PD-sets of size fγ,δ + 1

can be found by using only elements in Φ(PAut(Hγ,δ)).
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δ γ f0,δ s fγ,δ fm tm

3 0 4 4 4 4 7

1 4 6 7 8 15

2 4 10 11 15 31

3 4 16 20 27 63

4 4 26 35 50 127

5 4 42 63 92 255

4 0 15 15 15 15 31

1 15 23 24 27 63

2 15 36 41 50 127

3 15 56 72 92 255

4 15 91 127 169 511

5 15 150 226 314 1023

5 0 50 50 50 50 127

1 50 72 84 92 255

2 50 116 145 169 511

3 50 187 255 314 1023

4 50 312 454 584 2047

5 50 518 818 1091 4095

6 0 169 169 169 169 511

1 169 230 291 314 1023

2 169 377 511 584 2047

3 169 630 909 1091 4095

4 169 1040 1637 2047 8191

5 169 1784 2977 3854 16383

Table 4.1: Maximum s for which s-PD-sets of size s+ 1 are found computa-

tionally for some codes Hγ,δ





Chapter 5

PD-sets for Z4-linear codes

In this chapter, we focus on �nding s-PD-sets of size s + 1 for Z4-linear

in general. In Section 5.1, we introduce a theorem that states su�cient

conditions for a permutation σ ∈ PAut(C) to generate an s-PD-set S =

{σi : 1 ≤ i ≤ s + 1} of size s + 1 for a Z4-linear code C. In Section 5.2,

by using this theorem, we obtain new s-PD-sets of size s + 1 for the Z4-

linear Hadamard code Hγ,δ for all δ ≥ 4 and 1 < s ≤ 2δ − 3. These new

sets are generated by a single permutation, unlike the s-PD-sets for Z4-linear

Hadamard codes given in Chapter 4. Finally, in Section 5.3, we obtain s-PD-

sets of size s+ 1, for all m ≥ 5 and 1 < s ≤ λ− 1, for the Z4-linear Kerdock

code of length 2m such that 2m−1 − 1 is not prime, where λ is the greatest

divisor of 2m−1 − 1 satisfying λ ≤ 2m−1/m.

The results given in this chapter were presented at �IEEE International

Symposium on Information Theory� in Barcelona, Spain, 2016 [BV16b].

They are planning to be published in [BV16c] together with some results

from Section 2.7.

5.1 Second criterion to �nd s-PD-sets of size

s + 1

Let C be a Z4-linear code. Next, we introduce the main theorem of this

section that provides su�cient conditions for a permutation σ ∈ PAut(C) to

generate an s-PD-set S = {σi : 1 ≤ i ≤ s+ 1} of size s+ 1.

In what follows, we denote the order of an element A in a �nite group G

by ord(A).

65
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Theorem 60. Let C be a quaternary linear code of length β and type 2γ4δ

with quaternary information set I and let s be a positive integer. If τ ∈
PAut(C) has at least γ + δ disjoint cycles of length s + 1 such that there is

exactly one quaternary information position per cycle of length s + 1, then

S = {Φ(τ i)}s+1
i=1 is an s-PD-set of size s+ 1 for the Z4-linear code C = Φ(C)

with information set Φ(I). Moreover, any ordering of the elements of S gives

a nested r-PD-set for any r ∈ {1, . . . , s}.

Proof. The permutation τ ∈ PAut(C) can be written as

τ = (i1, x2, . . . , x(s+1))(i2, x(s+1)+2, . . . , x2(s+1)) · · ·
(iγ+δ, x(γ+δ−1)(s+1)+2, . . . , x(γ+δ)(s+1))τ

′,
(5.1)

where I = {i1, . . . , iγ+δ} is the quaternary information set for C and τ ′ ∈
Sym(β). We consider the elements of I ordered in such a way that |C{i1,...,iδ}| =
4δ. Note that each cycle (iε, x(ε−1)(s+1)+2, . . . , xε(s+1)), ε ∈ {1, . . . , γ + δ}, of
τ ∈ PAut(C) splits into two disjoint cycles of the same length via Φ, that is,

Φ((iε, x(ε−1)(s+1)+2, . . . , xε(s+1))) =

(2iε − 1, 2x(ε−1)(s+1)+2 − 1, . . . , 2xε(s+1) − 1)

(2iε, 2x(ε−1)(s+1)+2, . . . , 2xε(s+1)).

Furthermore, the information positions of the set I = Φ(I) are also placed in

di�erent cycles of length s+1 of the permutation σ = Φ(τ). There is again one

information position per cycle of length s+1, with the exception of the cycles

of the form (2iε, 2x(ε−1)(s+1)+2 − 1, . . . , 2xε(s+1)) for all ε ∈ {δ + 1, . . . , γ + δ}.
Let S = {σi}s+1

i=1 and let P = {1, . . . , 2β} be the set of all coordinate

positions. We de�ne the set Ai = {j ∈ P : σi(j) ∈ I} for each i ∈ {1, . . . , s+

1}. Note that |Ai| = γ + 2δ and Ai ∩ Aj = ∅ for all i, j ∈ {1, . . . , s + 1},
i 6= j. We have to prove that every s-set of coordinate positions, denoted

by J = {j1, . . . , js} ⊆ P , is moved out of I by at least one element of

S. Note that a coordinate position in J cannot be in two di�erent sets Ai,

i ∈ {1, . . . , s+1}. In the worst-case scenario, for each k ∈ {1, . . . , s}, jk ∈ Alk
for some lk ∈ {1, . . . , s + 1}. However, since |J | = s and |S| = s + 1, we

can always assure that there is ϕ ∈ S such that ϕ(J) ∩ I = ∅. Thus, by

Lemma 39, S = {Φ(τ)i}s+1
i=1 = {Φ(τ i)}s+1

i=1 is an s-PD-set of size s+ 1 for the

Z4-linear code C = Φ(C) with information set I = Φ(I).

Using the same argument as before, we can prove that any subset R ⊆ S

of size r + 1 is an r-PD-set for C, r ∈ {1, . . . , s}. Let J = {j1, . . . , jr} ⊆ P

be an r-set of coordinate positions. Since |J | = r and |R| = r+ 1, again it is

clear that there is ϕ ∈ R such that ϕ(J) ∩ I = ∅.
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Corollary 61. Let S be an s-PD-set of size s + 1 for a Z4-linear code C =

Φ(C) of length 2β and type 2γ4δ as in Theorem 60. Then s + 1 divides the

order of PAut(C) and s ≤ fC, where

fC = b(β − γ − δ)/(γ + δ)c .

Proof. We know that S = {Φ(τ i)}s+1
i=1 for a certain τ ∈ PAut(C) ⊆ Sym(β)

with at least γ + δ cycles of length s + 1. A counting argument shows that

the condition (s+ 1)(γ + δ) ≤ β must be met. Then s ≤ fC.

Let τ = τ1 · · · τl be considered as a product of its disjoint cycles. Since

ord(τ) = lcm(ord(τ1), . . . , ord(τl)), it follows that ord(τj) divides ord(τ) for

all j ∈ {1, . . . , l}. On the other hand, ord(τ) must divide |PAut(C)|. Since

ord(τj) = s+ 1 for at least γ + δ cycles, the result follows.

By Corollary 46, if S = Φ(S), where S ⊆ PAut(Hγ,δ), is an s-PD-set of

size s+ 1 for Hγ,δ = Φ(Hγ,δ), then s ≤ fγ,δ, where

fγ,δ =
⌊
(2γ+2δ−2 − γ − δ)/(γ + δ)

⌋
.

Furthermore, by Lemma 17, if S ⊆ PAut(Hγ,δ) is an s-PD-set of size s + 1

for Hγ,δ, then s ≤ fm, where

fm = b(2m −m− 1)/(1 +m)c .

Note that fγ,δ ≤ fm, where m = γ + 2δ − 1. Moreover, fHγ,δ = fγ,δ despite

the fact that fHγ,δ takes into account the restrictions given by Theorem 60.

Example 62. Let H0,3 be the quaternary linear Hadamard code of length 16

and type 2043 with generator matrix G0,3 given in Example 38 and obtained

by applying (2.12) two times starting from G0,1 = (1). The matrix G0,3 is also
the matrix (2.5) given in Example 4. Let

τ = (1, 16, 11, 6)(2, 7, 12, 13)(3, 14, 9, 8)(4, 5, 10, 15) ∈ PAut(H0,3)

[PPV14]. Note that τ has four disjoint cycles of length four. By Proposi-

tion 37, I = {1, 2, 5} is a quaternary information set for H0,3. Moreover,

note that each quaternary information position in I is in a di�erent cycle of

τ . Let σ = Φ(τ) ∈ PAut(H0,3) ⊆ Sym(32), where H0,3 = Φ(H0,3). Thus,

by Lemma 39 and Theorem 60, S = {σ, σ2, σ3, σ4} ⊆ PAut(H0,3) is a 3-

PD-set of size 4 for the Z4-linear Hadamard code H0,3 with information set

Φ(I) = {1, 2, 3, 4, 9, 10}. Note that H0,3 is the smallest Z4-linear Hadamard

code which is nonlinear.
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In this case, we have that f5 = f0,3 = 4. For example, a 4-PD-set of

size 5 for H0,3 is found in Example 51. Note that it is enough to consider

permutations in the subgroup Φ(PAut(H0,3)) ≤ PAut(H0,3) to achieve f5.

However, a 4-PD-set of size 5 cannot be generated by a single permutation

σ ∈ PAut(H0,3) by using Theorem 60, since 5 does not divide |PAut(H0,3)| =
29 · 3 [PPV14] (or by Proposition 41).

Example 63. Let H1,3 be the quaternary linear Hadamard code of length 32

and type 2143 with generator matrix

G1,3 =

(
G0,3 G0,3
0 2

)
obtained by applying (2.11) over the matrix G0,3 given in Example 62. Let

τ ∈ PAut(H1,3) ⊆ Sym(32) be

τ = (1, 24, 26, 15, 3, 22, 28, 13)(2, 23, 27, 14, 4, 21, 25, 16)

(5, 11, 32, 20, 7, 9, 30, 18)(6, 10, 29, 19, 8, 12, 31, 17),

which has four disjoint cycles of length eight. By Proposition 37, I =

{1, 2, 5, 17} is a quaternary information set for H1,3. Each quaternary infor-

mation position in I is in a di�erent cycle of τ . Let σ = Φ(τ) ∈ PAut(H1,3) ⊆
Sym(64), where H1,3 = Φ(H1,3). Thus, by Lemma 39 and Theorem 60,

S = {σi}8i=1 is a 7-PD-set of size 8 for the Z4-linear Hadamard code H1,3

with information set Φ(I) = {1, 2, 3, 4, 9, 10, 33}. Note that H1,3 is a binary

nonlinear code, since δ ≥ 3 [Kro01].

Since f1,3 = 7, no better s-PD-sets of size s + 1 can be found by using

permutations in the subgroup Φ(PAut(H1,3)) ≤ PAut(H1,3). However, an

8-PD-set of size 9 could be theoretically found in PAut(H1,3), since f6 = 8.

Unlike Example 62, there is need to invoke the method presented in Chapter 4

to obtain an s-PD-set of size s+ 1 achieving the upper bound f1,3 for H1,3.

5.2 Explicit construction for Z4-linear Hadamard

codes

In this section, we give an explicit construction of s-PD-sets of minimum size

s + 1 for Z4-linear Hadamard codes Hγ,δ with δ ≥ 4 by �nding a permuta-

tion τ ∈ PAut(Hγ,δ) that satis�es the conditions of Theorem 60. The results

obtained in this section regarding the order of elements in PAut(H0,δ) com-

plement the comprehensive study of this permutation automorphism group

started in [PPV14].
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In Chapter 4, we show that PAut(H0,δ), the permutation automorphism

group of H0,δ, is isomorphic to the following set of matrices over Z4, denoted

in this chapter by Aδ:

Aδ =

{(
1 η

0 A

)
: A ∈ GL(δ − 1,Z4), η ∈ Zδ−14

}
⊆ GL(δ,Z4).

When dealing with the order of nonsingular matrices, the following results

are useful.

Lemma 64 ([Max51]). Let p be a prime. Let P be a partition of n,

n = N + n1 + · · ·+ nh,

with N ≥ 0, h ≥ 1, 2 ≤ n1 < n2 < · · · < nh. Let p{y} designate the �rst

in the series 1, p, p2, . . . that equals or exceeds y. Then the orders of the

nonsingular matrices (mod p) of size n× n are

f = p{n}(p− 1)

gP = p{N} lcm(pn1 − 1, pn2 − 1, . . . , pnh − 1)

and their divisors, taken over all possible partitions P .

Lemma 65 ([Max51]). The orders of the nonsingular matrices (mod pa) of

size n× n for n > 1 are pa−1f, pa−1gP , and their divisors, with f and gP as

in Lemma 64.

Corollary 66. The maximum order of a matrix A ∈ GL(k,Z4) is 2(2k − 1).

Proof. By Lemma 64, one can easily check that max{ord(A) : A ∈ GL(k,Z2)}
= 2k − 1. Therefore, by Lemma 65, max{ord(A) : A ∈ GL(k,Z4)} =

2(2k − 1).

It is well known that the order of a permutation τ ∈ PAut(H0,δ) (or

equivalently, the corresponding matrix M ∈ Aδ) must divide the order of

PAut(H0,δ). We can strengthen this result by studying the possible orders of

a matrixM∈ Aδ.

Lemma 67. Let A ∈ GL(k,Z4). Then

ord

(
1 η

0 A

)
= λ · ord(A), where λ ∈ {1, 2, 4}.
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Proof. Denote the order of A by r. Since(
1 η

0 A

)λr+i
=

(
1 η[(λ+ 1) Id + · · ·+ (λ+ 1)Ai−1 + λAi + · · ·+ λAr−1]

0 Aλr+i

)
,

the order of

(
1 η

0 A

)
must be a multiple of r. Moreover, λ ∈ {1, 2, 4} since(

1 η

0 A

)4r

=

(
1 4η(Id + · · ·+ Ar−1)

0 A4r

)
= Id(k+1)×(k+1) .

Lemma 68. Let τ ∈ PAut(H0,δ). Then

ord(τ) ∈ {λ·ord(A) : A ∈ GL(δ−1,Z4), λ ∈ {1, 2, 4}, λ·ord(A) ≤ 2(2δ−1)}.

Proof. By Corollary 66, ord(τ) is always bounded by 2(2δ − 1), since Aδ ⊆
GL(δ,Z4). This fact together with Lemma 67 lead us to the result.

In any case, if η = 0, then

ord

(
1 η

0 A

)
= ord(A).

Example 69. We give the possible orders of a permutation τ in the permu-

tation automorphism group PAut(H0,4) of the quaternary linear Hadamard

code H0,4 of length 64 and type 2044. We know that ord(τ) must divide

|PAut(H0,4)| = 218 · 3 · 7 [PPV14] (or by Proposition 41). By Lemma 64,

taking p = 2 and n = 3, we obtain that the orders of all matrices in GL(3,Z2)

are {1, 2, 3, 4, 7}. Indeed, there exist only two admissible partitions as in

Lemma 64, denoted here by P1 and P2, obtaining respectively,

3 = N + n1 = 0 + 3,

3 = N + n1 = 1 + 2.

Then, f = p{3} = 4, gP1 = 7, and gP2 = 3. By Lemma 65, the orders of all

matrices in GL(3,Z4) are {1, 2, 3, 4, 6, 7, 8, 14}. By Lemma 68,

ord(τ) ∈ {1, 2, 3, 4, 6, 7, 8, 14, 16, 24, 28}.
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Nevertheless, 16, 24, and 28 are not suitable orders for τ ∈ PAut(H0,4).

Indeed, an equivalent study of the orders of elements in GL(4,Z4) shows that

these cannot be the order of an element in GL(4,Z4). Note that

14 = max{ord(A) : A ∈ GL(3,Z4)}
= max{ord(τ) : τ ∈ PAut(H0,4)}.

Note that in order to obtain the best s-PD-sets by using Theorem 60,

the more suitable candidates are the high order permutations. It does not

seem very restrictive to focus on obtaining permutations τ ∈ PAut(H0,δ) of

order 2(2δ−1−1) to acquire suitable candidates for H0,δ, in view of the results

obtained for δ = 4 in Example 69.

Although we can characterize when a permutation τ ∈ PAut(H0,δ) has

order 2(2δ−1 − 1), we do not know its cyclic structure. Recall that, in order

to apply Theorem 60, we need a permutation τ ∈ PAut(H0,δ) ⊆ Sym(β)

with at least δ disjoint cycles of the same length. Next, we show how some

known results on maximum length sequences over Z4 can be used to solve

this question.

Let f(x) = xk − ak−1xk−1 − · · · − a1x − a0 ∈ Z4[x]. The kth-order ho-

mogeneous linear recurrence relation over Z4 with characteristic polynomial

f(x) is

sn+k = ak−1sn+k−1 + · · ·+ a1sn+1 + a0sn, n = 0, 1, . . . (5.2)

Let {sn}∞n=0 be a nonzero sequence over Z4 satisfying (5.2). For each n ≥ 0,

we de�ne the tuple sn = (sn, . . . , sn+k−1) over Z4. In the language of feedback

shift registers, sn is called the n-state vector.

The set of all nonzero sequences {sn}∞n=0 over Z4 satisfying (5.2) whose

characteristic polynomial f(x) is a primitive basic irreducible polynomial

dividing x2(2
k−1) − 1 in Z4[x] is called Family B in [ZF15]. It is known that

there are 2k−1+1 cyclically distinct periodic sequences in each Family B: 2k−1

of them with common period 2(2k − 1) and one with period 2k − 1 [BHK92].

Moreover, the sequence with period 2k−1 is the unique containing only zero-

divisors. Examples of primitive basic irreducible polynomials f(x) ∈ Z4[x]

suitable for constructing sequences of Family B for degrees 3 to 10 can be

found in [BHK92, Table III] and also in [ZF15, Table 5.8].

Example 70. Let f(x) = x3 +x+1 ∈ Z4[x]. It is easy to see that µ(f(x)) =

x3 + x + 1 ∈ Z2[x] is primitive over Z2[x], so f(x) is a primitive basic

irreducible polynomial. It is also easy to check that f(x) divides x14 − 1.
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Consider the linear recurrence relation over Z4 with characteristic polynomial

f(x), that is,

sn+3 = 3sn+1 + 3sn, n = 0, 1, . . . (5.3)

We now give all nonzero sequences {sn}∞n=0 over Z4 satisfying (5.3) whose

characteristic polynomial is f(x). By di�erent choices of initial state vectors

s0, we obtain the following sequences {sn}∞n=0:

s0 {sn}∞n=0

100 10030113203213

300 30010331201231

110 11023233322303

210 21013302121112

200 2002022

Note that we show only the nonrepeated part of those sequences. Note also

that there are 5 periodic sequences in the Family B generated by f(x). Four of

them have period 2(23−1) = 14 and the remaining one has period 24−1 = 7.

As we can see, this last sequence is the one with initial state vector s0 =

(2, 0, 0) and the unique containing only zero-divisors (only zeros and twos).

Let G0,δ denote the generator matrix G0,δ, described in Section 2.3 for

the quaternary linear Hadamard code H0,δ of length β = 4δ−1 and type 4δ,

without the �rst row (1, . . . , 1). Let wi denote the ith column vector of G0,δ.
Since G0,δ has as columns all the di�erent vectors from Zδ−14 , each state vector

sn ∈ Zδ−14 in the di�erent sequences {sn}∞n=0 from the Family B generated

by a primitive basic irreducible polynomial f(x) of degree δ− 1 represents a

column vector wi of G0,δ. Sequences {sn}∞n=0 are all di�erent and they do not

share any state vector, so the correspondence between state vectors sn and

column vectors wi is one-to-one. Thus, de�ne τf ∈ PAut(H0,δ) ⊆ Sym(β)

as follows: τ(i) = j as long as wi and wj are consecutive state vectors of a

sequence {sn}∞n=0.

Proposition 71. Let H0,δ be the quaternary linear Hadamard code of length

β = 4δ−1 and type 4δ with δ ≥ 4 generated by G0,δ. Let f(x) ∈ Z4[x] be a

primitive basic irreducible polynomial of degree δ − 1 dividing x2(2
δ−1−1) − 1

in Z4[x]. Then, the permutation τf has order ord(τf ) = 2(2δ−1 − 1) in the

group PAut(H0,δ). Moreover, τf has 2δ−2 + 1 disjoint cycles, where 2δ−2 of

them have length 2(2δ−1 − 1) and one of them has length 2δ−1 − 1. Finally,

the permutation τf has only one �xed point.
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Proof. There are 2δ−2+1 sequences in the Family B de�ned by the polynomial

f(x) = xδ−1 − aδ−2xδ−2 − · · · − a1x− a0 ∈ Z4[x]: 2δ−2 of them with common

period 2(2δ−1 − 1) = 2δ − 2 and the remaining one with period 2δ−1 − 1. All

di�erent state vectors s0, . . . , s`, where ` ∈ {2δ−1 − 2, 2δ − 3}, from the same

sequence {sn}∞n=0 de�ne a disjoint cycle of the permutation τf ∈ PAut(H0,δ).

Thus,

τf =
2δ−2+1∏
i=1

τi

where τ1, . . . , τ2δ−2 have length 2(2δ−1 − 1) and τ2δ−2+1 has length 2δ−1 − 1.

Moreover,
ord(τf ) = lcm({ord(τi) : 1 ≤ i ≤ 2δ−2 + 1})

= lcm({2(2δ−1 − 1), 2δ−1 − 1})
= 2(2δ−1 − 1).

.

Finally, since

2δ−2[2(2δ−1 − 1)] + (2δ−1 − 1) = (2δ−1 + 1)(2δ−1 − 1)

= 22δ−2 − 1

= β − 1,

the permutation τf has only one �xed point. Indeed, τf (1) = 1.

Corollary 72. Let f(x) ∈ Z4[x] be a primitive basic irreducible polynomial

of degree δ − 1 dividing xλ − 1 in Z4[x], where λ = 2(2δ−1 − 1) and δ ≥ 4.

Let I be a quaternary information set for H0,δ with exactly one quaternary

information position per cycle of length λ of τf . Then S = {Φ(τ if )}λi=1 is a

(λ− 1)-PD-set of size λ for H0,δ = Φ(H0,δ) with information set Φ(I).

Proof. By Proposition 71, τf has 2δ−2 disjoint cycles of length λ. Since

|H0,δ| = 4δ, the set I has size δ. Note that 2δ−2 ≥ δ if and only if δ ≥ 4. By

Theorem 60, the result holds.

Example 73. Let f(x) ∈ Z4[x] be the primitive basic irreducible polynomial

dividing x14 − 1 in Z4[x] introduced in Example 70. By Propisition 71, the

permutation τf ∈ PAut(H0,4) ∈ Sym(64) has order 14. In addition, its cyclic

structure behaves as follows: four disjoint cycles of length 14 and one cycle

of length 7. Note that

τf = (2, 49, 13, 20, 21, 54, 46, 12, 51, 45, 28, 55, 30, 8)

(3, 33, 9, 35, 41, 43, 11)

(4, 17,5, 50, 61, 32, 40, 10, 19, 37, 58, 31, 56, 14)

(6, 34, 57, 47, 60, 63, 64, 48, 44, 59, 15, 52, 29, 24)

(7,18, 53, 62, 16, 36, 25, 39, 26, 23, 22, 38, 42, 27).
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δ s f0,δ = fm

3 3 4

4 13 15

5 29 50

6 61 169

7 125 584

8 253 2047

Table 5.1: Maximum s for which an s-PD-set of size s + 1 generated by a

single permutation is found for some codes H0,δ.

It is easy to check that I = {2, 5, 6, 18} is a quaternary information set for

H0,4 with generator matrix G0,4 obtained by applying (2.12) three times start-

ing from G0,1 = (1). Note that each quaternary information position in I is

in a di�erent cycle of length 14 of τf . By Corollary 72, S = {Φ(τ if )}14i=1 is

a 13-PD-set of size 14 for the Z4-linear Hadamard code H0,4 with informa-

tion set I = Φ(I) = {3, 4, 9, 10, 11, 12, 35, 36}. In practice, it is not di�cult

to �nd such a set I. For example, computations in Magma software pack-

age [BPPV16, BCFS16] shows that, in this case, there are 10752 suitable

quaternary information sets.

We have that f7 = f0,4 = 15. An s-PD-set of size s + 1, s ∈ {14, 15},
for H0,4 cannot be obtained by using Theorem 60. Indeed, a permutation

τ ∈ PAut(H0,4) as in Theorem 60 needs at least 4 disjoint cycles of length

s+ 1, so ord(τ) ≥ 15 if s ∈ {14, 15}. This is not possible by Example 69.

Table 5.1 shows the maximum values of s for which an s-PD-set of size

s + 1 can be constructed by using Corollary 72, together with the values

of the upper bound f0,δ = fm attained by using Theorem 50 and shown in

Table 4.1.

Towards a better understanding of the relation between sequences over Z4

generated by a polynomial f(x) (the previously called Family B under some

assumptions on f(x)) and the permutation τf ∈ PAut(H0,δ), we introduce

the notion of companion matrices. In general, the companion matrix of a

polynomial f(x) = xk−ak−1xk−1−· · ·−a1x−a0, denoted by Af , is the k×k
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matrix de�ned as

Af =


0 0 0 · · · 0 a0
1 0 0 · · · 0 a1
0 1 0 · · · 0 a2
...

...
...

...
...

0 0 0 · · · 1 ak−1

 . (5.4)

LetMf be the matrix

Mf =

(
1 0

0 Af

)
.

Lemma 74. If f(x) = xδ−1−aδ−2xδ−2−· · ·−a1x−a0 ∈ Z4[x] is a primitive

basic irreducible polynomial of degree δ − 1, thenMf ∈ PAut(H0,δ).

Proof. If f(x) is a primitive basic irreducible polynomial, then its indepen-

dent coe�cient a0 ∈ {1, 3}. Indeed, since µ(f(x)) is a primitive polynomial

over Z2[x], we can assure that a0 ≡ 1 (mod 2). On the other hand, Mf ∈
PAut(H0,δ) as long as Af ∈ GL(δ − 1,Z4). Since det(Af ) = (−1)δ−1a0 ∈
{1, 3}, we obtain the desired result.

Note that if Af is the companion matrix of the polynomial f(x) associated

with (5.2), then it holds that sn = s0A
n
f . Moreover, the matrixMf viewed

as a permutation of coordinate positions is precisely τf .

Example 75. The companion matrix of the polynomial f(x) = x3 + x+ 1 ∈
Z4[x] introduced in Example 70 is

Af =

 0 0 3

1 0 3

0 1 0

 .

It is straightforward to check that the n-state vector sn, for any of the �ve

di�erent sequences {sn}∞n=0 presented in Example 70, may be obtained as

s0A
n
f , where s0 is the initial state vector we have used for that sequence.

The matrix Mf ∈ PAut(H0,4) ⊆ GL(4,Z4) associated with the permutation

τf ∈ PAut(H0,4) ⊆ Sym(β) introduced in Example 73 is then

Mf =


1 0 0 0

0 0 0 3

0 1 0 3

0 0 1 0

 .
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We can also generate s-PD-sets of size s + 1 under the conditions of

Theorem 60 for Hγ,δ with γ > 0. We proceed as follows: First, we compute

an s-PD-set S of size s+1 for H0,δ, for example, by using Corollary 72. Then

applying Proposition 54 recursively γ times over S, we obtain an s-PD-set

of size s+ 1 for Hγ,δ, with γ > 0.

Corollary 76. Let f(x) ∈ Z4[x] be a primitive basic irreducible polynomial

of degree δ − 1 dividing xλ − 1 in Z4[x], where λ = 2(2δ−1 − 1) and δ ≥ 4.

Let I be a quaternary information set for H0,δ with exactly one quaternary

information position per cycle of length λ of τf . Then 2γ{Φ(τ if )}λi=1 is a

(λ− 1)-PD-set of size λ for Hγ,δ = Φ(Hγ,δ) with information set obtained by

applying recursively Proposition 37 over Φ(I).

Example 77. Let H1,4 be the quaternary linear Hadamard code of length 128

and type 2144 with generator matrix G1,4 obtained by applying (2.11) over the

matrix G0,4 given in Example 73. Let S ⊆ PAut(H0,4) and I ⊆ {1, . . . , 128} as
de�ned in the same example. Then (S|S) is a 13-PD-set of size 14 for the Z4-

linear Hadamard code H1,4 with any information set of the form I∪{128+i},
where i ∈ I, by Corollary 76.

The set of all nonzero sequences {sn}∞n=0 over Z4 satisfying (5.2) whose

characteristic polynomial f(x) is a primitive basic irreducible polynomial

dividing x2
k−1 − 1 in Z4[x] (that is, the Hensel lift of a binary primitive

polynomial) is called Family A in [BHK92]. In [BHK92, Table I] and [Wan97,

Table 6.1], the primitive basic irreducible polynomials over Z4 up to degree

10 that are suitable for generating Family A are listed. Although this family

may also be used to obtain s-PD-sets, they are not as good as those generated

by Family B in this section. Speci�cally, a (2δ−1 − 2)-PD-set of size 2δ−1 − 1

for Hγ,δ can be found by using Family A, for all δ ≥ 3 and γ ≥ 0.

5.3 Explicit construction for Z4-linear Kerdock

codes

In this section, we obtain s-PD-sets of minimum size s + 1, for all m ≥ 5

and 1 < s ≤ λ − 1, for the Z4-linear Kerdock code of length 2m such that

2m−1 − 1 is not prime, where λ is the greatest divisor of 2m−1 − 1 satisfying

λ ≤ 2m−1/m.

Let h(x) be a primitive basic irreducible polynomial of degree m − 1

over Z4 such that h(x) divides xn − 1, n = 2m−1 − 1, and let g(x) be the
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reciprocal polynomial to the polynomial (xn − 1)/((x− 1)h(x)). Recall that

the shortened quatenary Kerdock code K−m is the quaternary linear cyclic

code of length n = 2m−1−1 with generator polynomial g(x). The quaternary

Kerdock code Km is the code obtained from K−m by adding a zero-sum check

symbol at the end of each codeword of K−m. The Z4-linear Kerdock code

Km is de�ned to be the Gray map image Φ(Km) of the quaternary Kerdock

code Km. Since K−m is a cyclic code of length n = 2m−1 − 1, it is clear that

(1, . . . , 2m−1 − 1) ∈ PAut(K−m). Therefore, by de�nition of Km, we also have

that (1, . . . , 2m−1 − 1) ∈ PAut(Km).

Corollary 78. Let Km be the quaternary Kerdock code of length 2m−1 and

type 4m such that 2m−1−1 is not a prime number. Let ν = (1, . . . , 2m−1−1) ∈
PAut(Km) ⊆ Sym(2m−1). Let λ be the greatest divisor of 2m−1 − 1 such that

λ ≤ 2m−1/m and µ satisfying that λµ = 2m−1 − 1. Then S = {Φ(νi·µ)}λi=1

is a (λ − 1)-PD-set of size λ for Km = Φ(Km) with information set I =

{1, . . . , 2m}.

Proof. Let g(x) = g0 + g1x+ · · ·+ grx
r ∈ Z4[x] be a generator polynomial of

K−m, where r = 2m−1 −m− 1. Then the following m× (2m−1 − 1) matrix
g0 g1 · · · gm

g0 g1 · · · gm
. . . . . .

g0 g1 · · · gm

 (5.5)

is a generator matrix of K−m. From matrix (5.5), it is clear that I =

{1, . . . ,m} is a quaternary information set for K−m and so for its extended

code Km. Thus, I = Φ(I) = {1, . . . , 2m} becomes a valid information set for

the Z4-linear Kerdock code Km. Finally, the result holds since ν ∈ PAut(Km
and the permutation τ = νµ is under conditions of Theorem 60.

Example 79. Let K5 be the quaternary Kerdock code of length 16 and type

45 with generator matrix
1 1 3 0 3 3 0 2 1 2 1 0 0 0 0 3

0 1 1 3 0 3 3 0 2 1 2 1 0 0 0 3

0 0 1 1 3 0 3 3 0 2 1 2 1 0 0 3

0 0 0 1 1 3 0 3 3 0 2 1 2 1 0 3

0 0 0 0 1 1 3 0 3 3 0 2 1 2 1 3

 ,
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where h(x) = x4 + 2x2 + 3x+ 1. Note that I = {1, 2, 3, 4, 5} is a quaternary

information set for K5. In this case, we have that λ = 3 and µ = 5. Let

S = {ν5, ν10, ν15}, where ν = (1, . . . , 15). Note that

τ = ν5 = (1, 6, 11)(2, 7, 12)(3, 8, 13)(4, 9, 14)(5, 10, 15)

has 5 disjoint cycles of length 3, where each quaternary information position

in I is placed in a di�erent cycle of τ . Hence, S = Φ(S) is a 2-PD-set of

size 3 for the Z4-linear Kerdock code K5 of length 32 with information set

Φ(I) = {1, . . . , 10}.

Theorem 60 provides the best s-PD-sets of size s+1 when the permutation

τ ∈ PAut(C) has the minimum number of disjoint cycles |I| = γ+δ, each one

being of maximum length. Note that the parameters µ and λ, considered in

Corollary 78, denote the number of disjoint cycles and the length of the cycles

of the permutation τ = νµ, respectively. Therefore, this corollary yields the

best (λ − 1)-PD-sets of size λ when µ = m, or equivalently, when λ = fKm .

For example, when m = 5, 7, 11 or 13. Note that fKm = fm.

Table 5.2 shows the maximum values of s for which an s-PD-set of size

s+ 1 for the Z4-linear Kerdock code Km of length 2m can be constructed by

using Corollary 78, together with the values of the upper bound fm shown

in Table 2.2.

Prime numbers of type 2m−1− 1 are known as Mersenne primes and have

been extensively studied. It is known that ifm−1 is not prime, then 2m−1−1

is not a Mersenne prime. Hence, Corollary 78 can be applied to all nonprime

values of m− 1. Despite this, there are also some prime values of m− 1 (for

example, m−1 = 11) for which 2m−1−1 is not a prime number, so Corollary

78 can also be applied. Moreover, even for values of m− 1 for which we can

not apply this corollary, there are permutations that verify the conditions of

Theorem 60, as shown in the following example.

Example 80. Let K6 be the quaternary Kerdock code of length 32 and type

46. Note that I = {1, 2, 3, 4, 5, 6} is a quaternary information set for K5.

The conditions of Corollary 78 are not ful�lled since 31 is a Mersenne prime.

Nevertheless,

τ = (1, 32, 9, 19, 25)(2, 18, 24, 15, 31)(3, 27, 23, 28, 12)

(4, 8, 20, 30, 26)(5, 14, 16, 21, 13)(6, 10, 17, 29, 22)

satis�es the conditions of Theorem 60 for s = 4. Thus, S = {Φ(τ i)}5i=1

is a 4-PD-set of size 5 for the binary Kerdock code K5 of length 64 with

information set Φ(I).
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m s fm

5 2 2

7 8 8

9 16 27

10 6 50

11 92 92

12 88 169

13 314 314

Table 5.2: Maximum s for which an s-PD-set of size s+ 1 is found for some

Z4-linear Kerdock codes Km

Corollary 81. Let K−m be the shortened quaternary Kerdock code of length

2m−1 − 1 and type 4m such that 2m−1 − 1 is not a prime number. Let ν =

(1, . . . , 2m−1−1) ∈ PAut(K−m) ⊆ Sym(2m−1−1). Let λ be the greatest divisor

of 2m−1 − 1 such that λ ≤ 2m−1/m and µ satisfying that λµ = 2m−1 − 1.

Then S = {Φ(νi·µ)}λi=1 is a (λ − 1)-PD-set of size λ for K−m = Φ(K−m) with

information set I = {1, . . . , 2m}.





Chapter 6

Magma package implementation

and performance analysis

In this chapter, we present the computational part of this dissertation. Most

of the concepts and results described in the previous chapters have been

implemented as function in the Magma Computational Algebra System

http://magma.maths.usyd.edu.au/magma/ [BCFS16]. In Section 6.1, we

explain the general context for the functions implemented in this Magma

software. For quaternary linear codes (also named in this chapter, codes

over Z4) and their corresponding Z4-linear codes, besides the permutation

decoding algorithm described in [BBFV15] or Section 2.6, three more known

general decoding methods suitable for these codes have been implemented.

For linear codes over �nite �elds, only the permutation decoding algorithm

and related functions have been developed. In Section 6.2, we brie�y re-

view the three general decoding methods implemented for quaternary linear

codes. In section 6.3, we provide a comparison of the performance of these

four methods, including the permutation decoding method, when they are

applied to Z4-linear Hadamard and Kerdock codes. In Section 6.4, we include

the manual describing all implemented functions for codes over Z4. Most of

them have been used in the performance analysis presented in Section 6.3.

Finally, in Section 6.5, the manual of the implemented functions for linear

codes over �nite �elds is also included.

6.1 Magma package implementation

Magma is a software system designed to solve computationally hard prob-

lems in algebra, number theory, geometry and combinatorics. In general,

81
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Magma supports basic facilities for linear codes over �nite �elds [BCFS16,

Chapter 158] and linear codes over integer residue rings and Galois rings

[BCFS16, Chapter 161], including additional functionality for the special

case of codes over Z4 [BCFS16, Chapter 162]. The members of the research

group Combinatoric, Coding and Security Group (CCSG) have been work-

ing on extending the Magma system implementing new packages to work

e�ciently with Z4-linear codes [PPV12], Z2Z4-linear codes [BFP+12], and

nonlinear codes in general [PV14]. More speci�cally, version 1.4 of the pack-

age that expands the functionality for Z4-linear codes (equivalently, for codes

over Z4) includes constructions for some families of codes over Z4; e�cient

functions for computing the rank and dimension of the kernel of any code

over Z4; general functions for computing coset representatives for a subcode

in a code over Z4; as well as functions for computing the permutation au-

tomorphism group for Hadamard and extended perfect codes over Z4, and

their orders.

As part of this dissertation, new functionality related to the information

space, information sets, syndrome space and coset leaders for codes over Z4

has been included inMagma. For example, now there are functions to obtain

an information set and to check whether or not a set or coordinate position

is an information set for a code over Z4. We have also implemented functions

to compute the syndrome of a given vector and the coset leaders (vectors of

minimal Lee weight in their cosets) for a code over Z4.

In the Magma default distribution (up to version V2.21), there was not

any function available for decoding codes over Z4. In this sense, functions

to decode by using di�erent methods have been included in the extension

package for these codes. Speci�cally, the syndrome, lifted, and coset decod-

ing algorithms have been implemented. These decoding methods are brie�y

described in Section 6.2. For the permutation decoding, besides functions

to simulate the decoding process by using this method, functions to check

whether or not a set of permutations is an s-PD-set for a code with respect

to an information set have been developed. Moreover, functions for con-

structing most of the s-PD-sets described in Chapters 4 and 5 for Z4-linear

Hadamard and Kerdock codes have also been implemented.

The last version 2.0 of the package for Z4-linear codes together with a

manual describing all functions can be downloaded from the CCSG web site

http://ccsg.uab.cat [BPPV16]. It is also worth mentioning that Magma

version V2.22 (from May 2016) and later contains this package by default

[BCFS16, Chapter 162], so it is no longer necessary to install it. For the con-

venience of the reader, the detailed description of the implemented functions
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for codes over Z4 can be also found in Section 6.4, where several examples

showing how to use these functions are also included.

Unlike for codes over Z4, for linear codes over �nite �elds, theMagma de-

fault distribution already contained a function to decode. The implemented

methods through this function are the syndrome and Euclidean decoding. If

the code is alternant (BCH, Goppa, and Reed�Solomon codes, etc.), then

the Euclidean algorithm is applied, and otherwise the syndrome decoding

is performed. We have also extended the functionality for codes over �nite

�elds, adding functions to simulate the permutation decoding method. There

is also a new function to check whether or not a set of permutations is an

s-PD-set for a linear code with respect to an information set. Finally, func-

tions to construct the s-PD-sets given in Chapter 3 for the family of binary

linear Hadamard codes and in [FKM12] for simplex codes over any �nite �eld

have also been implemented.

The above mentioned functions can be also downloaded from CCSG web

site http://ccsg.uab.cat [BPPV16], and are also included inMagma ver-

sion V2.22 (from May 2016) and later [BCFS16, Chapter 158]. Again, for

the convenience of the reader, the detailed description of the implemented

functions for codes over �nite �elds can also be found in Section 6.5. Along

with the description of the functions, several examples showing how to use

these functions are included.

In CCSG web site http://ccsg.uab.cat, apart from the �les with the

implemented functions and the manual, �les to test the correctness of the

implemented functions are included. Figure 6.1 shows the directory structure

and �les of this package. Note that all examples provided with the manual

can also be found written in a text �le, so they can be uploaded directly to

Magma.

6.2 Implemented decoding methods

The hardest problem in the process of transmitting information is decod-

ing. For linear codes, a general decoding algorithm is the syndrome decoding

[MS77, Chapter 1]. For linear codes over Galois rings, there is also a general

decoding method [GV98, BZ01], which will be referred as lifted decoding. For

codes in general (not necessarily linear), an algorithm to decode based on the

kernel and coset representation was proposed in [VZP15] and is called coset

decoding. Finally, for some families of Z4-linear codes for which we know the
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Figure 6.1: Directory structure and �les for "Codes over Z4" package

existence of PD-sets, a permutation decoding algorithm can also be applied

[BBFV15, BPV16, BV16a, BV16b].

This section brie�y describes the �rst three algorithms mentioned above

for decoding vectors from the ambient space over Z4, or the binary space

under the Gray; that is, syndrome, lifted, and coset decoding. Permutation

decoding is reviewed in Section 2.6 of this dissertation. These four decod-

ing algorithms for codes over Z4 are the ones that have been implemented

in Magma. The description of the functions can be found in Section 6.4,

together with several examples showing how to use them.

Let C be a quaternary linear code of length n, type 2γ4δ, and minimum

Lee distance d.

6.2.1 Syndrome decoding

The general decoding algorithm for linear codes over �nite �elds, called syn-

drome decoding [MS77, Chapter1], can also be applied to quaternary linear

codes.

The syndrome of a vector u ∈ Zn4 with respect to a parity check matrix

H of C is the vector s = Hu ∈ {0, 2}γ × Zn−γ−δ4 . We consider H as a parity
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check matrix containing the minimum number of rows, where the �rst γ rows

are of order two and the last n − γ − δ rows are of order four. Note that C
consists of all vectors whose syndrome is equal to the zero vector. Moreover,

every vector in {0, 2}γ × Zn−γ−δ4 is a syndrome and there is a one-to-one

correspondence between cosets of C and its syndromes. Let Cs be the coset

of C consisting of all vectors in Zn4 having syndrome s.

The syndrome decoding algorithm consists of computing a table pairing

each possible syndrome s ∈ {0, 2}γ×Zn−γ−δ4 with an error vector of minimum

Lee weight es, called coset leader, in the coset Cs. After receiving a vector

u ∈ Zn4 , compute its syndrome s = Hu. Then, u is decoded as the codeword

c = u− es.
Although creating the syndrome table is a one-time task, which is carried

out before decoding the received vectors, sometimes it can be di�cult to

create and store it. Moreover, if it contains many elements, it can also be

di�cult to �nd the corresponding error vector from a given syndrome.

6.2.2 Lifted decoding

A general decoding algorithm for linear codes over Galois rings was presented

in [BZ01]. We refer to this method as lifted decoding, since it is based on

lifting decoding algorithms for a family of linear codes over a �nite �eld. This

method can be applied to quaternary linear codes, which maybe nonfree Z4-

modules.

More speci�cally, this method comprises lifting decoding algorithms for

two binary linear codes C0 and C1, such that C0 ⊆ C1, constructed from a

generator matrix of C. The binary codes C0 and C1 are known as the residue

and torsion codes of C. Let t0 and t1 be the error-correcting capability of C0

and C1, respectively. Assume the received vector u = c+ e, where c ∈ C and
e ∈ Zn4 is the error vector. Then, all error vectors e such that τ1 +τ3 ≤ t0 and

τ2 + τ3 ≤ t1, where τi is the number of occurrences of i in e, can be corrected.

For the binary linear codes C0 and C1, the general syndrome decoding

method for codes over �nite �elds can be applied. However, in case we have

more information about these codes, other more e�cient methods can be

used, as the Euclidean algorithm if they are known to be alternant codes (for

example, BCH, Goppa, or Reed-Solomon codes) [MS77, Chapter 12].
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6.2.3 Coset decoding

A general decoding algorithm for codes over �nite �elds (not necessarily

linear) was introduced in [VZP15]. This method, called coset decoding, is

based on representing the code as the union of cosets of a linear subcode called

kernel [FPV08, FPV10] and computing the minimum Hamming weight for a

family of linear codes.

The Z4-linear code C = Φ(C) is a binary code, which can be represented

as

C =
t⋃
i=0

(K + ci),

where K = {x ∈ C : x + C = C} is a binary linear subcode, c0, c1, . . . , ct
are coset representatives of C with respect to K (not necessarily of minimal

Hamming weight in their cosets) and c0 is the zero codeword. Note that if

C is linear, then C = K. Moreover, note that the minimum Lee distance d

of C coincides with the minimum Hamming weight of C = Φ(C).
After receiving a vector u ∈ Zn4 , the coset decoding algorithm considers

the binary linear codes

Ki = K ∪ (K + ci + Φ(u)),

i ∈ {0, . . . , t}. If the minimum Hamming weight of ∪ti=0Ki is less than the

minimum Hamming weight of K, then u is decoded as the codeword c such

that Φ(c) = Φ(u) + e, where e is a word of minimum Hamming weight of

∪ti=0Ki.

This decoding method is based on computing the minimum Hamming

weight of t+ 1 linear codes Ki, i ∈ {0, . . . , t}. Although it is known that the

problem of computing the minimum Hamming weight for linear codes is NP-

hard [Var97], the Brouwer-Zimmermann algorithm, implemented inMagma,

can be used [Whi06, Zim96]. Then, for linear codes with a big codimension or

nonlinear codes with a big kernel, this method can have better performance

than syndrome decoding.

6.3 Performance analysis

This section aims to provide a comparison study of the performance of the

three decoding method described in Section 6.2 and the permutation decod-

ing method reviewed in Section 2.6, when they are applied to the (nonlinear)
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Z4-linear Hadamard codes H0,δ of length 22δ−1, δ ≥ 3, and the Z4-linear

Kerdock codes Km of length 2m, m ≥ 5.

In order to better compare the di�erent decoding methods, we will focus

only on a partial decoding by using the s-PD-sets of size s + 1 found in the

previous chapters. Speci�cally, we use the f0,δ-PD-set Φ(P0,δ) of size f0,δ + 1

given by Theorem 50 for the Z4-linear Hadamard code H0,δ. Recall that f0,δ
is the greater s for which we can �nd s-PD-sets of size s+ 1 for H0,δ. For the

Z4-linear Kerdock code Km, the (λ − 1)-PD-set S of size λ, where λ is the

greatest divisor of 2m−1− 1 such that λ ≤ 2m−1/m, obtained in Corollary 78

is employed. The time spent generating those sets is included in all tests.

Example 82. Let H0,3 be the (nonlinear) Z4-linear Hadamard code of length

32 and type 2043. Figure 6.2 displays the time in seconds to decode random

received vectors with at most f0,3 = 4 errors by using permutation, syndrome,

lifted, and coset decoding. Despite lifted decoding has a similar performance

(in terms of time) than permutation decoding, it is the unique method that

cannot correct all received vectors since t0 = t1 = 3. We observe a negligible

amount of time generating the 4-PD-set obtained by Theorem 50, fact that

facilitates permutation decoding to be the best method (both in terms of time

and correctly decoded received vectors) when trying to correct up to 4 errors.

For the Z4-linear Kerdock code K5 of length 32 we obtain similar results.

In this example, syndrome, lifted and permutation decoding behaves similarly

while coset decoding is the method with the worst performance. Figure 6.3

summarizes these results, displaying the time in seconds to decode random

received vectors with at most 2 errors, since a 2-PD-set of size 3 is used for

the partial permutation decoding.

Although creating the syndrome table is a one-time task, which is carried

out before decoding the received vectors, sometimes it can be di�cult to

create and store it. Moreover, if it contains many elements, it can be hard to

�nd the corresponding error vector from a given syndrome. Thus, syndrome

and lifted decoding are not suitable for decoding neither Z4-linear Hadamard

codes Hγ,δ with δ ≥ 4 nor Kerdock codes Km with m ≥ 7. Note that to

correct up to s errors, the total number of syndromes is 2(
∑s

i=0

(
β
i

)
) for

lifted decoding and
∑s

i=0

(
2β
i

)
for syndrome decoding.

Example 83. Syndrome and lifted decoding become useless when trying to

decode the Z4-linear Hadamard code H0,4 and the Z4-linear Kerdock code K7

both of length 128, since they have too many cosets. Note that the same

problem appears for any Z4-linear Hadamard and Kerdock code of length 2m
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δ m Coset Permutation

decoding decoding

3 5 153.08 9.85

4 7 26.53 19.13

5 9 101.75 64.92

6 11 628.43 243.97

7 13 5879.25 1079.62

Table 6.1: Time for decoding using H0,δ of length 2m, where m = 2δ − 1.

m Coset Permutation

decoding decoding

5 284.34 10.71

7 1473.69 23.03

9 44634.00 62.51

10 9669.70 93.13

11 61215.49 259.18

Table 6.2: Time for decoding using Km of length 2m.

with m > 7. Figures 6.4 and 6.5 display the time in seconds to decode random

received vectors with at most f0,4 = 15 errors for H0,4 and with at most 8

errors for K7.

Example 84. Let H0,δ be the Z4-linear Hadamard code of length 22δ−1 and

type 204δ. Let Km be the Z4-linear Kerdock code of length 2m and type 4m.

Table 6.1 shows the time in seconds to decode 100,000 random received vectors

with at most s = f0,δ errors for H0,δ of length 22δ−1 by using permutation and

coset decoding for δ ∈ {3, . . . , 7}.
Similarly, Table 6.2 shows the time in seconds to decode 100,000 random

received vectors with at most s = λ− 1 errors for Km by using permutation

and coset decoding for m ∈ {5, 7, 9, 10, 11}. Permutation decoding has better

performance than coset decoding for each H0,δ with δ ≥ 3 and Km with m ≥ 5.

The content of Tables 6.1 and 6.2 is partially included in Figures 6.6 and 6.7,

respectively.

All tests have been performed in Magma version V2.21-4, running on a

server with an Intel Xeon processor (clock speed 3.30GHz).
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Figure 6.2: Time for decoding using the Z4-linear Hadamard code H0,3
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Figure 6.3: Time for decoding using the Z4-linear Kerdock code K5
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Figure 6.4: Time for decoding using the Z4-linear Hadamard code H0,4
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Figure 6.5: Time for decoding using the Z4-linear Kerdock code K7
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Figure 6.6: Time for decoding using the Z4-linear Hadamard code H0,δ
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Figure 6.7: Time for decoding using the Z4-linear Kerdock code Km
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6.4 Magma functions for codes over Z4

This section supplies functions for decoding vectors from the ambient space of

a code over Z4, or the corresponding space over Z2 under the Gray map, using

four di�erent algorithms: coset decoding, syndrome decoding, lifted decoding

and permutation decoding. For the permutation decoding algorithm, if the

parameter s is less than the error-correcting capability of the code, then a

partial permutation decoding is performed. A function to know whether or

not a set of permutations S is an s-PD-set for a code over Z4 with respect to

an information set I is included. Moreover, functions for constructing most

of the s-PD-sets described in Chapters 4 and 5 for Z4-linear Hadamard and

Kerdock codes are also provided. Finally, functions related to information

space, information sets, syndrome space and coset leaders for codes over Z4

can also be found. The section also provides detailed examples for all the

implemented functions, in order to see better how they work.

6.4.1 Coset decoding

CosetDecode(C, u : parameters)

MinWeightCode RngIntElt Default : -

MinWeightKernel RngIntElt Default : -

Given a code C over Z4 of length n, and a vector u from the ambient space

V = Zn4 or V2 = Z2n
2 , attempt to decode u with respect to C. If the decoding

algorithm succeeds in computing a vector u′ ∈ C as the decoded version of

u ∈ V , then the function returns true, u′ and Φ(u′), where Φ is the Gray

map. If the decoding algorithm does not succeed in decoding u, then the

function returns false, the zero vector in V and the zero vector in V2.

The coset decoding algorithm considers the binary linear code Cu = Cbin ∪
(Cbin + Φ(u)), when Cbin = Φ(C) is linear. On the other hand, when Cbin is

nonlinear, we have Cbin =
⋃t
i=0(Kbin+Φ(ci)), whereKbin = Φ(KC), KC is the

kernel of C as a subcode over Z4, [c0, c1, . . . , ct] are the coset representatives

of C with respect to KC (not necessarily of minimal weight in their cosets)

and c0 is the zero codeword. In this case, the algorithm considers the binary

linear codes K0 = Kbin ∪ (Kbin + Φ(u)), K1 = Kbin ∪ (Kbin + Φ(c1) + Φ(u)),

. . ., Kt = Kbin ∪ (Kbin + Φ(ct) + Φ(u)).

If the parameter MinWeightCode is not assigned, then the minimum weight

of C, which coincides with the minimum weight of Cbin, denoted by d, is com-

puted. Note that the minimum distance of Cbin coincides with its minimum
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weight. If Cbin is linear and the minimum weight of Cu is less than d, then

Φ(u′) = Φ(u) + e, where e is a word of minimum weight of Cu; otherwise,

the decoding algorithm returns false. On the other hand, if Cbin is non-

linear and the minimum weight of ∪ti=0Ki is less than the minimum weight

of Kbin, then Φ(u′) = Φ(u) + e, where e is a word of minimum weight of

∪ti=0Ki; otherwise, the decoding algorithm returns false. If the parameter

MinWeightKernel is not assigned, then the minimum Hamming weight of

Kbin is computed.

CosetDecode(C, Q : parameters)

MinWeightCode RngIntElt Default : -

MinWeightKernel RngIntElt Default : -

Given a code C over Z4 of length n, and a sequence Q of vectors from the

ambient space V = Zn4 or V2 = Z2n
2 , attempt to decode the vectors of Q

with respect to C. This function is similar to the function CosetDecode(C,

u) except that rather than decoding a single vector, it decodes a sequence

of vectors and returns a sequence of booleans and two sequences of decoded

vectors corresponding to the given sequence. The algorithm used and e�ect of

the parameters MinWeightCode and MinWeightKernel are identical to those

for the function CosetDecode(C, u).

Example 85. Starting with the Hadamard code C over Z4 of length 16 and

type 2043, a codeword c ∈ C is selected and then perturbed to give a vector u

in the ambient space of C. The vector u is then decoded to recover c.

> C := HadamardCodeZ4(3, 5);

> C;

((16, 4^3 2^0)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3]

[0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3]

[0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3]

> d := MinimumLeeDistance(C);

> t := Floor((d-1)/2);

> t;

7

> c := C ! [1,1,1,1,2,2,2,2,3,3,3,3,0,0,0,0];

> c in C;

true

> u := c;

> u[5] := u[5] + 2;



94 Chapter 6. Magma package implementation and performance analysis

> u[12] := u[12] + 1;

> u[13] := u[13] + 3;

> u[16] := u[16] + 2;

> c;

(1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0)

> u;

(1 1 1 1 0 2 2 2 3 3 3 0 3 0 0 2)

> grayMap := GrayMap(UniverseCode(Integers(4), Length(C)));

> grayMap(c-u);

(0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1)

> isDecoded, uDecoded := CosetDecode(C, u : MinWeightCode := d);

> isDecoded;

true

> uDecoded eq c;

true

6.4.2 Syndrome decoding

SyndromeDecode(C, u)

Given a code C over Z4 of length n, and a vector u from the ambient space

V = Zn4 or V2 = Z2n
2 , attempt to decode u with respect to C. The decoding

algorithm always succeeds in computing a vector u′ ∈ C as the decoded

version of u ∈ V , and the function returns true, u′ and Φ(u′), where Φ is

the Gray map. Although the function never returns false, the �rst output

parameter true is given to be consistent with the other decoding functions.

The syndrome decoding algorithm consists of computing a table pairing each

possible syndrome s with a vector of minimum Lee weight es, called coset

leader, in the coset of C containing all vectors having syndrome s. After

receiving a vector u, its syndrome s is computed using the parity check

matrix. Then, u is decoded into the codeword c = u− es.

SyndromeDecode(C, Q)

Given a code C over Z4 of length n, and a sequence Q of vectors from the

ambient space V = Zn4 or V2 = Z2n
2 , attempt to decode the vectors of Q with

respect to C. This function is similar to the function SyndromeDecode(C,

u) except that rather than decoding a single vector, it decodes a sequence

of vectors and returns a sequence of booleans and two sequences of decoded

vectors corresponding to the given sequence. The algorithm used is the same

as that of function SyndromeDecode(C, u).
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Example 86. The Hadamard code C over Z4 of length 8 and type 2142 is

constructed. Next, information bits are encoded using C and three errors are

introduced to give the vector u. Then u is decoded by calculating its syndrome

and applying the map, given by the CosetLeaders function, to the syndrome

to recover the original vector.

> C := HadamardCodeZ4(2, 4);

> C;

((8, 4^2 2^1, 8)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 1 0 3 2]

[0 1 2 3 0 1 2 3]

[0 0 0 0 2 2 2 2]

> t := Floor((MinimumLeeDistance(C)-1)/2);

> t;

3

> R, V, f, fbin := InformationSpace(C);

> i := R![2,1,0];

> c := f(i);

> c;

(1 0 3 2 3 2 1 0)

> u := c;

> u[5] := u[5] + 3;

> u[7] := u[7] + 2;

> c;

(1 0 3 2 3 2 1 0)

> u;

(1 0 3 2 2 2 3 0)

> grayMap := GrayMap(UniverseCode(Integers(4), Length(C)));

> grayMap(c-u);

(0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0)

> isDecoded, uDecoded := SyndromeDecode(C, u);

> isDecoded;

true

> uDecoded eq c;

true

> L, mapCosetLeaders := CosetLeaders(C);

> errorVector := mapCosetLeaders(Syndrome(u, C));

> errorVector;

(0 0 0 0 3 0 2 0)

> u-errorVector eq c;

true
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6.4.3 Lifted decoding

LiftedDecode(C, u : parameters)

AlgMethod MonStgElt Default : �Euclidean�

Given a code C over Z4 of length n, and a vector u from the ambient space

V = Zn4 or V2 = Z2n
2 , attempt to decode u with respect to C. If the decoding

algorithm succeeds in computing a vector u′ ∈ C as the decoded version of

u ∈ V , then the function returns true, u′ and Φ(u′), where Φ is the Gray

map. If the decoding algorithm does not succeed in decoding u, then the

function returns false, the zero vector in V and the zero vector in V2 (in

the Euclidean case it may happen that u′ is not in C because there are too

many errors in u to correct). The lifted decoding algorithm comprises lifting

decoding algorithms for two binary linear codes C0 and C1, being the residue

and torsion codes of C. Let t0 and t1 be the error-correcting capability of C0

and C1, respectively. Assume the received vector u = c+ e, where c ∈ C and

e ∈ V is the error vector. Then, the lifted decoding algorithm can correct all

error vectors e such that τ1 + τ3 ≤ t0 and τ2 + τ3 ≤ t1, where τi is the number

of occurrences of i in e.

In the decoding process, the function Decode(C, u) for linear codes is used.

The accessible algorithms for linear codes are: syndrome decoding and a

Euclidean algorithm, which operates on alternant codes (BCH, Goppa, and

Reed�Solomon codes, etc.). If C0 or C1 is alternant, the Euclidean algorithm

is used by default, but the syndrome algorithm will be used if the parameter

AlgMethod is assigned the value "Syndrome". For non-alternant codes C0

and C1, only syndrome decoding is possible, so the parameter AlgMethod is

not relevant.

LiftedDecode(C, Q : parameters)

AlgMethod MonStgElt Default : �Euclidean�

Given a code C over Z4 of length n, and a sequence Q of vectors from the

ambient space V = Zn4 or V2 = Z2n
2 , attempt to decode the vectors of Q with

respect to C. This function is similar to the function LiftedDecode(C, u)

except that rather than decoding a single vector, it decodes a sequence of

vectors and returns a sequence of booleans and two sequences of decoded

vectors corresponding to the given sequence. The algorithm used and e�ect

of the parameter AlgMethod are the same as for LiftedDecode(C, u).

Example 87. The Hadamard code C over Z4 of length 8 and type 2142 is

constructed. Then an information word is encoded using C, three errors are



6.4. Magma functions for codes over Z4 97

introduced into the codeword c, and then c is recovered by using the lifted

decoding algorithm.

> C := HadamardCodeZ4(2, 4);

> C;

((8, 4^2 2^1, 8)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 1 0 3 2]

[0 1 2 3 0 1 2 3]

[0 0 0 0 2 2 2 2]

> d := MinimumLeeDistance(C);

> t := Floor((d-1)/2);

> t;

3

> C0 := BinaryResidueCode(C);

> C1 := BinaryTorsionCode(C);

> t0 := Floor((MinimumDistance(C0)-1)/2);

> t1 := Floor((MinimumDistance(C1)-1)/2);

> t0, t1;

1 1

Using the lifted decoding, it is possible to correct all error vectors e such that

τ1 + τ3 ≤ t0 = 1 and τ2 + τ3 ≤ t1 = 1, where τi is the number of occurrences

of i in e. The following statements show that it is not possible to correct the

error vector e = (00003020) since τ2 + τ3 = 2 > 1, but it is possible to correct

the error vector e = (00001020) since τ1 + τ3 = 1 ≤ 1 and τ2 + τ3 = 1 ≤ 1.

> R, V, f, fbin := InformationSpace(C);

> i := R![2,1,0];

> c := f(i);

> c;

(1 0 3 2 3 2 1 0)

> u := c;

> u[5] := u[5] + 3;

> u[7] := u[7] + 2;

> c;

(1 0 3 2 3 2 1 0)

> u;

(1 0 3 2 2 2 3 0)

> e := u - c;

> e;

(0 0 0 0 3 0 2 0)

> isDecoded, uDecoded := LiftedDecode(C, u);

> isDecoded;
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true

> uDecoded eq c;

false

> u := c;

> u[5] := u[5] + 1;

> u[7] := u[7] + 2;

> c;

(1 0 3 2 3 2 1 0)

> u;

(1 0 3 2 0 2 3 0)

> e := u - c;

> e;

(0 0 0 0 1 0 2 0)

> isDecoded, uDecoded := LiftedDecode(C, u);

> isDecoded;

true

> uDecoded eq c;

true

6.4.4 Permutation decoding

Let C be a code over Z4 of length n and type 2γ4δ and Cbin = Φ(C), where

Φ is the Gray map. A subset S ⊆ Sym(2n) is an s-PD-set for Cbin with

respect to a subset of coordinate positions I ⊆ {1, . . . , 2n} if S is a subset

of the permutation automorphism group of Cbin, I is an information set for

Cbin, and every s-set of coordinate positions in {1, . . . , 2n} is moved out of

the information set I by at least one element of S, where 1 ≤ s ≤ t and t is

the error-correcting capability of Cbin.

If I = [i1, . . . , iγ+δ] ⊆ {1, . . . , n} is an information set for C such that the

code obtained by puncturing C at positions {1, . . . , n}\{iγ+1, . . . , iγ+δ} is of
type 4δ, then Φ(I) = [2i1−1, . . . , 2iγ−1, 2iγ+1−1, 2iγ+1, . . . , 2iγ+δ−1, 2iγ+δ]

is an information set for Cbin. It is also easy to see that if S is a subset of the

permutation automorphism group of C, that is, S ⊆ PAut(C) ⊆ Sym(n),

then Φ(S) = [Φ(τ) : τ ∈ S] ⊆ PAut(Cbin) ⊆ Sym(2n), where

Φ(τ)(i) =

{
2τ(i/2), if i is even,

2τ((i+ 1)/2)− 1 if i is odd.
(6.1)

Given a subset of coordinate positions I ⊆ {1, . . . , n} and a subset

S ⊆ Sym(n), in order to check that Φ(S) is an s-PD-set for Cbin with re-

spect to Φ(I), it is enough to check that S is a subset of the permutation
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automorphism group of C, I is an information set for C, and every s-set of

coordinate positions in {1, . . . , n} is moved out of the information set I by

at least one element of S [BV16a, BV16b].

IsPermutationDecodeSet(C, I, S, s)

Given a code C over Z4 of length n and type 2γ4δ, a sequence I ⊆ {1, . . . , 2n},
a sequence S of elements in the symmetric group Sym(2n) of permutations

on the set {1, . . . , 2n}, and an integer s ≥ 1, return true if and only if S is

an s-PD-set for Cbin = Φ(C), where Φ is the Gray map, with respect to the

information set I.

The arguments I and S can also be given as a sequence I ⊆ {1, . . . , n} and a

sequence S of elements in the symmetric group Sym(n) of permutations on

the set {1, . . . , n}, respectively. In this case, the function returns true if and

only if Φ(S) is an s-PD-set for Cbin = Φ(C) with respect to the information

set Φ(I), where Φ(I) and Φ(S) are the sequences de�ned as above.

Depending on the length of the code C, its type, and the integer s, this

function could take some time to compute whether S or Φ(S) is an s-PD-set

for Cbin with respect to I or Φ(I), respectively. Speci�cally, if the function

returns true, it is necessary to check
∑s

i=1

(|I|
i

)
·
(
N−|I|
s−i

)
s-sets, where N = n

and |I| = γ + δ when I is given as an information set for C, or N = 2n and

|I| = γ + 2δ when I is given as an information set for Cbin.

The verbose �ag IsPDSetFlag is set to level 0 by default. If it is set to level

1, the total time used to check the condition is shown. Moreover, the reason

why the function return false is also shown, that is, whether I is not an

information set, S is not a subset of the permutation automorphism group or

S is not an s-PD-set. If it is set to level 2, the percentage of the computation

process performed is also printed.

PermutationDecode(C, I, S, s, u)

The arguments for the intrinsic are as follows:

- C is a code over Z4 of length n and type 2γ4δ;

- I = [i1, . . . , iγ+δ] ⊆ {1, . . . , n} is an information set for C given as a

sequence of coordinate positions such that the code C obtained by

puncturing C at coordinate positions {1, . . . , n}\{iγ+1, . . . , iγ+δ} is of
type 4δ;

- S is a sequence S such that either S or Φ(S) is an s-PD-set for Cbin = Φ(C),

where Φ is the Gray map, with respect to Φ(I);
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- s is an integer such that s ∈ {1, . . . , t}, where t is the error-correcting

capability of Cbin;

- u is a vector from the ambient space V = Zn4 or V2 = Z2n
2 ,

Given the above assumptions, the function attempts to decode u with respect

to C. If the decoding algorithm succeeds in computing a vector u′ ∈ C as the

decoded version of u ∈ V , then the function returns the values true, u′ and

Φ(u′). If the decoding algorithm does not succeed in decoding u, then the

function returns the values false, the zero vector in V and the zero vector

in V2.

Assume that the received vector Φ(u) = c + e, where u ∈ V , c ∈ Cbin and

e ∈ V2 is the error vector with at most t errors. The permutation decoding

algorithm proceeds by moving all errors in a received vector Φ(u) out of the

information positions. That is, the nonzero coordinates of e are moved out

of the information set Φ(I) for Cbin, by using an automorphism of Cbin.

Note that Φ(I) and Φ(S) are the sequences de�ned as above. Moreover, the

function does not check whether I is an information set for C, nor whether

S or Φ(S) is an s-PD-set for Cbin with respect to Φ(I), nor that s ≤ t.

PermutationDecode(C, I, S, s, Q)

Given

- a code C over Z4 of length n and type 2γ4δ;

- an information set I = [i1, . . . , iγ+δ] ⊆ {1, . . . , n} for C as a sequence of co-

ordinate positions, such that the code C punctured on the coordinates

{1, . . . , n}\{iγ+1, . . . , iγ+δ} is of type 4δ;

- a sequence S such that either S or Φ(S) is an s-PD-set for Cbin = Φ(C),

where Φ is the Gray map, with respect to Φ(I);

- an integer s ∈ {1, . . . , t}, where t is the error-correcting capability of Cbin;

- and a sequence Q of vectors from the ambient space V = Zn4 or V2 = Z2n
2 ,

attempt to decode the vectors of Q with respect to C. This function is similar

to the version of PermutationDecode that decodes a single vector except

that it decodes a sequence of vectors and returns a sequence of booleans

and two sequences of decoded vectors corresponding to the given sequence.

The algorithm used is the same as that used by the single vector version of

PermutationDecode.
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Example 88. First the Hadamard code C over Z4 of length 32 and type

2143 is constructed. It is known that I = [17, 1, 2, 5] is an information set

for C and S = {πi : 1 ≤ i ≤ 8}, where π = (1, 24, 26, 15, 3, 22, 28, 13)

(2, 23, 27, 14, 4, 21, 25, 16) (5, 11, 32, 20, 7, 9, 30, 18) (6, 10, 29, 19, 8, 12, 31, 17),

is a subset of the permutation automorphism group of C such that Φ(S) is a

7-PD-set for Cbin = Φ(C) with respect to Φ(I). Then, choosing a codeword

c of C, c is perturbed by the addition of an error vector to give a new vector

u, and �nally permutation decoding is applied to u to recover c.

> C := HadamardCodeZ4(3, 6);

> C;

((32, 4^3 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3 1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3]

[0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3]

[0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

> t := Floor((MinimumLeeDistance(C) - 1)/2);

> t;

15

> I := [17, 1, 2, 5];

> p := Sym(32)!(1, 24, 26, 15, 3, 22, 28, 13)(2, 23, 27, 14, 4, 21, 25, 16)

(5, 11, 32, 20, 7, 9, 30, 18)(6, 10, 29, 19, 8, 12, 31,17);

> S := [ p^i : i in [1..8] ];

> SetVerbose("IsPDSetFlag", 2);

> IsPermutationDecodeSet(C, I, S, 7);

Checking whether I is an information set...

Checking whether S is in the permutation automorphism group...

Checking whether S is an s-PD-set...

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

Took 136.430 seconds (CPU time)

true

> SetVerbose("IsPDSetFlag", 0);

> c := C ! [1,2,3,0,0,1,2,3,3,0,1,2,2,3,0,1,3,0,1,2,2,3,0,1,1,2,3,0,0,1,2,3];

> c in C;

true
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> u := c;

> u[1] := c[1] + 2;

> u[2] := c[2] + 2;

> u[3] := c[3] + 1;

> u[16] := c[16] + 3;

> u[27] := c[27] + 1;

> u in C;

false

> LeeDistance(u, c);

7

> grayMap := GrayMap(UniverseCode(Integers(4), Length(C)));

> cbin := grayMap(c);

> ubin := grayMap(u);

> Distance(ubin, cbin);

7

> isDecoded, uDecoded, ubinDecoded := PermutationDecode(C, I, S, 7, u);

> isDecoded;

true

> uDecoded eq c;

true

> ubinDecoded eq cbin;

true

> isDecoded, uDecoded, ubinDecoded := PermutationDecode(C, I, S, 7, ubin);

> isDecoded;

true

> uDecoded eq c;

true

> ubinDecoded eq cbin;

true

PDSetHadamardCodeZ4(δ, m)

AlgMethod MonStgElt Default : �Deterministic�

Given an integer m ≥ 5, and an integer δ such that 3 ≤ δ ≤ b(m + 1)/2c,
the Hadamard code C over Z4 of length n = 2m−1 and type 2γ4δ, where

γ = m+1−2δ, given by the function HadamardCodeZ4(δ, m), is considered.

The function returns an information set I = [i1, . . . , iγ+δ] ⊆ {1, . . . , n} for
C together with a subset S of the permutation automorphism group of C

such that Φ(S) is an s-PD-set for Cbin = Φ(C) with respect to Φ(I), where

Φ is the Gray map and Φ(I) and Φ(S) are de�ned above. The function also

returns the information set Φ(I) and the s-PD-set Φ(S). For m ≥ 1 and
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1 ≤ δ ≤ 2, the Gray map image of C is linear and it is possible to �nd

an s-PD-set for Cbin = Φ(C), for any s ≤ b2m/(m+ 1)c − 1, by using the

function PDSetHadamardCode(m).

The information sets I and Φ(I) are returned as sequences of γ+δ and γ+2δ

integers, giving the coordinate positions that correspond to the information

sets for C and Cbin, respectively. The sets S and Φ(S) are also returned

as sequences of elements in the symmetric groups Sym(n) and Sym(2n) of

permutations on the set {1, . . . , n} and {1, . . . , 2n}, respectively.
A deterministic algorithm is used by default. In this case, the function returns

the s-PD-set of size s + 1 with s = b(22δ−2 − δ)/δc, which is the maximum

value of s when γ = 0, as described in [BV16a]. If the parameter AlgMethod

is assigned the value "Nondeterministic", the function tries to improve the

previous result by �nding an s-PD-set of size s+1 such that b(22δ−2 − δ)/δc ≤
s ≤ b(2m−1 + δ −m− 1)/(m+ 1− δ)c. In this case, the function starts from

the maximum value of s and decreases it if the s-PD-set is not found after a

speci�ed time.

PDSetKerdockCodeZ4(m)

Given an integer m ≥ 4 such that 2m − 1 is not a prime number, the Ker-

dock code C over Z4 of length n = 2m and type 4m+1, given by the function

KerdockCodeZ4(m) is considered. The function returns the information set

I = [1, . . . ,m + 1] for C together with a subset S of the permutation auto-

morphism group of C such that Φ(S) is an s-PD-set for Cbin = Φ(C) with

respect to Φ(I), where Φ is the Gray map and Φ(I) and Φ(S) are de�ned

above. The function also returns the information set Φ(I) = [1, . . . , 2m+ 2]

and the s-PD-set Φ(S). The size of the s-PD-set S is always λ = s+1, where

λ is the greatest divisor of 2m − 1 such that λ ≤ 2m/(m+ 1).

The information sets I and Φ(I) are returned as sequences ofm+1 and 2m+2

integers, giving the coordinate positions that correspond to the information

sets for C and Cbin, respectively. The sets S and Φ(S) are also returned

as sequences of elements in the symmetric groups Sym(n) and Sym(2n) of

permutations on the sets {1, . . . , n} and {1, . . . , 2n}, respectively. The s-PD-
set S contains the s+ 1 permutations described in [BV16b].

Example 89. A 4-PD-set S of size 5 for the Hadamard code C over Z4 of

length 16 and type 2043 is constructed. A check that it really is a 4-PD-set

for C is then made. Note that b(22δ−2 − δ)/δc = 4. Finally, a codeword c

of C is selected, perturbed by an error vector e to give a vector u, to which

permutation decoding is applied to recover c.
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> C := HadamardCodeZ4(3, 5);

> I, S, Ibin, Sbin := PDSetHadamardCodeZ4(3, 5);

> s := #Sbin-1; s;

4

> s eq Floor((2^(2*3-2)-3)/3);

true

> IsPermutationDecodeSet(C, I, S, s);

true

> IsPermutationDecodeSet(C, Ibin, Sbin, s);

true

> c := C ! [3,2,1,0,1,0,3,2,3,2,1,0,1,0,3,2];

> R := UniverseCode(Integers(4), Length(C));

> u := R ! [2,3,2,0,1,0,3,2,3,2,1,0,1,0,3,3];

> u in C;

false

> LeeDistance(u, c);

4

> grayMap := GrayMap(R);

> cbin := grayMap(c);

> isDecoded, uDecoded, ubinDecoded := PermutationDecode(C, I, S, 4, u);

> isDecoded;

true

> uDecoded eq c;

true

> ubinDecoded eq cbin;

true

For the Hadamard code C over Z4 of length 32 and type 2143, a 4-PD-set

of size 5 can be constructed either by using the deterministic method (by

default), or by using a nondeterministic method to obtain an s-PD-set of

size s+ 1 with 4 ≤ s ≤ 7. In both cases, the given sets are checked for really

being s-PD-sets for C.

> C := HadamardCodeZ4(3, 6);

> I, S, Ibin, Sbin := PDSetHadamardCodeZ4(3, 6);

> s := #Sbin-1; s;

4

> IsPermutationDecodeSet(C, I, S, s);

true

> I, S, Ibin, Sbin := PDSetHadamardCodeZ4(3, 6 : AlgMethod := "Nondeterministic");

> s := #Sbin-1; s;
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6

> IsPermutationDecodeSet(C, I, S, s);

true

Finally, a 2-PD-set of size 3 is constructed for the Kerdock code of length 16

and type 2045, and formally checked for being a 2-PD-set for this code.

> C := KerdockCode(4);

> I, S, Ibin, Sbin := PDSetKerdockCodeZ4(4);

> IsPermutationDecodeSet(C, I, S, 2);

true

> IsPermutationDecodeSet(C, Ibin, Sbin, 2);

true

6.4.5 Information space and information sets

InformationSpace(C)

Given a code C over Z4 of length n and type 2γ4δ, return the Z4-submodule of

Zγ+δ4 isomorphic to Zγ2×Zδ4 such that the �rst γ coordinates are of order two,

that is, the space of information vectors for C. The function also returns the

(γ + 2δ)-dimensional binary vector space, which is the space of information

vectors for the corresponding binary code Cbin = Φ(C), where Φ is the Gray

map. Finally, for the encoding process, it also returns the corresponding

isomorphisms f and fbin from these spaces of information vectors onto C

and Cbin, respectively.

Example 90.
> C := LinearCode<Integers(4), 4 | [[2,0,0,2],[0,1,1,3]]>;

> R, V, f, fbin := InformationSpace(C);

> G := MinRowsGeneratorMatrix(C);

> (#R eq #C) and (#V eq #C);

true

> Set([f(i) : i in R]) eq Set(C);

true

> Set([i*G : i in R]) eq Set(C);

false

> i := R![2,3];

> c := f(i);

> c;

(2 3 3 3)

> c in C;
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true

> i*G eq c;

false

> ibin := V![1,1,0];

> cbin := fbin(ibin);

> cbin;

(1 1 1 0 1 0 1 0)

> cbin in GrayMapImage(C);

true

> cbin eq GrayMap(C)(c);

true

InformationSet(C)

Given a code C over Z4 of length n and type 2γ4δ, return an information

set I = [i1, . . . , iγ+δ] ⊆ {1, . . . , n} for C such that the code C punctured

on {1, . . . , n}\{iγ+1, . . . , iγ+δ} is of type 4δ, and the corresponding informa-

tion set Φ(I) = [2i1 − 1, . . . , 2iγ − 1, 2iγ+1 − 1, 2iγ+1, . . . , 2iγ+δ − 1, 2iγ+δ] ⊆
{1, . . . , 2n} for the binary code Cbin = Φ(C), where Φ is the Gray map. The

information sets I and Φ(I) are returned as a sequence of γ + δ and γ + 2δ

integers, giving the coordinate positions that correspond to the information

set of C and Cbin, respectively.

An information set I for C is an ordered set of γ + δ coordinate positions

such that |CI | = 2γ4δ, where CI = {vI : v ∈ C} and vI is the vector v

restricted to the I coordinates. An information set J for Cbin is an ordered

set of γ + 2δ coordinate positions such that |CJ
bin| = 2γ+2δ.

IsInformationSet(C, I)

Given a code C over Z4 of length n and type 2γ4δ and a sequence I ⊆
{1, . . . , n} or I ⊆ {1, . . . , 2n}, return true if and only if I ⊆ {1, . . . , n} is an
information set for C. This function also returns another boolean, which is

true if an only if I ⊆ {1, . . . , 2n} is an information set for the corresponding

binary code Cbin = Φ(C), where Φ is the Gray map.

An information set I for C is an ordered set of γ + δ coordinate positions

such that |CI | = 2γ4δ, where CI = {vI : v ∈ C} and vI is the vector v

restricted to the I coordinates. An information set J for Cbin is an ordered

set of γ + 2δ coordinate positions such that |CJ
bin| = 2γ+2δ.

Example 91.
> C := HadamardCodeZ4(3,6);
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> C;

((32, 4^3 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3 1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3]

[0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3]

[0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

> I, Ibin := InformationSet(C);

> I;

[ 16, 28, 31, 32 ]

> Ibin;

[ 31, 55, 56, 61, 62, 63, 64 ]

> #PunctureCode(C, {1..32} diff Set(I)) eq #C;

true

> Cbin := GrayMapImage(C);

> V := VectorSpace(GF(2), 7);

> #{V![c[i] : i in Ibin] : c in Cbin} eq #Cbin;

true

> IsInformationSet(C, I);

true false

> IsInformationSet(C, Ibin);

false true

> IsInformationSet(C, [1, 2, 5, 17]);

true false

> IsInformationSet(C, [1, 2, 3, 4, 9, 10, 33]);

false true

> D := LinearCode<Integers(4), 5 | [[2,0,0,2,0],[0,2,0,2,2],[0,0,2,2,0]]>;

> IsInformationSet(D, [1,3,5]);

true true

6.4.6 Syndrome space and coset leaders

SyndromeSpace(C)

Given a code C over Z4 of length n and type 2γ4δ, return the Z4-submodule

of Zn−δ4 isomorphic to Zγ2 × Zn−γ−δ4 such that the �rst γ coordinates are of

order two, that is, the space of syndrome vectors for C. The function also

returns the (2n−2δ−γ)-dimensional binary vector space, which is the space

of syndrome vectors for the corresponding binary code Cbin = Φ(C), where Φ

is the Gray map. Note that these spaces are computed by using the function

InformationSpace(C) applied to the dual code of C, produced by function
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Dual(C).

Syndrome(u, C)

Given a code C over Z4 of length n and type 2γ4δ, and a vector u from the

ambient space V = Zn4 or V2 = Z2n
2 , construct the syndrome of u relative to

the code C. This will be an element of the syndrome space of C, considered

as the Z4-submodule of Zn−δ4 isomorphic to Zγ2 × Zn−γ−δ4 such that the �rst

γ coordinates are of order two.

CosetLeaders(C)

Given a code C over Z4 of length n, with ambient space V = Zn4 , return a set

of coset leaders (vectors of minimal Lee weight in their cosets) for C in V as

an indexed set of vectors from V . This function also returns a map from the

syndrome space of C onto the coset leaders (mapping a syndrome into its

corresponding coset leader). Note that this function is only applicable when

V and C are small.

Example 92.
> C := LinearCode<Integers(4), 4 | [[2,0,0,2],[0,1,1,3]]>;

> R, V, f, fbin := InformationSpace(C);

> Rs, Vs := SyndromeSpace(C);

> #R * #Rs eq 4^Length(C);

true

> #V * #Vs eq 4^Length(C);

true

> i := R![2,3];

> c := f(i);

> c;

(2 3 3 3)

> u := c;

> u[2] := u[2]+3;

> u;

(2 2 3 3)

> s := Syndrome(u, C);

> s in Rs;

true

> H := Transpose(MinRowsGeneratorMatrix(Dual(C)));

> s eq u*H;

true

> L, mapCosetLeaders := CosetLeaders(C);
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> errorVector := mapCosetLeaders(s);

> errorVector;

(0 3 0 0)

> errorVector in L;

true

> u-errorVector eq c;

true

6.5 Magma functions for codes over �nite �elds

This section provides functions for decoding vectors from the ambient space of

a linear code C over a �nite �eld by using the permutation decoding method.

If the parameter s is less than the error-correcting capability of the code, then

a partial permutation decoding is performed. A function to know whether

or not a set of permutations S is an s-PD-set for a code C with respect to

an information set I is included. Moreover, functions for constructing the

s-PD-sets of size s+ 1 described in Chapter 3 for the family of binary linear

Hadamard codes, and the ones already known for simplex codes [FKM12]

can also be found. The section also provides detailed examples for all the

implemented functions, in order to see better how they work.

6.5.1 Permutation decoding

IsPermutationDecodeSet(C, I, S, s)

Given

- an [n, k] linear code C over a �nite �eld K;

- a sequence I ⊆ {1, . . . , n};

- a sequence S of elements in the group of monomial matrices of degree

n over K, OR if C is a binary code, a sequence of elements in the

symmetric group Sym(n) acting on the set {1, . . . , n};

- and an integer s ∈ {1, . . . , t}, where t is the error-correcting capability of

C;

this intrinsic returns true if and only if S is an s-PD-set for C with respect

to the information set I.

Depending on the length of the code C, its dimension k, and the integer s,

this function could take some time to compute whether S is an s-PD-set for
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C with respect to I. Speci�cally, if the function returns true, it is necessary

to check
∑s

i=1

(
k
i

)
·
(
n−k
s−i

)
s-sets.

The verbose �ag IsPDSetFlag is set to level 0 by default. If it is set to

level 1, the total time used to check the condition is shown. Moreover, the

reason the function returns false is also shown, that is, whether I is not

an information set, S is not a subset of the monomial automorphism group

of C or S is not an s-PD-set. If it is set to level 2, the percentage of the

computation process performed is also printed.

PermutationDecode(C, I, S, s, u)

Given

- an [n, k] linear code C over a �nite �eld K;

- an information set I ⊆ {1, . . . , n} for C as a sequence of coordinate posi-

tions;

- a sequence S of elements in the group of monomial matrices of degree

n over K, OR if C is a binary code, a sequence of elements in the

symmetric group Sym(n) acting on the set {1, . . . , n}. In either case S

must be an s-PD-set for C with respect to I;

- an integer s ∈ {1, . . . , t}, where t is the error-correcting capability of C;

- and a vector u from the ambient space V of C,

the intrinsic attempts to decode u with respect to C. If the decoding al-

gorithm succeeds in computing a vector u′ ∈ C as the decoded version of

u ∈ V , then the function returns true and the codeword u′. If the decoding

algorithm does not succeed in decoding u, then the function returns false

and the zero vector in V .

The permutation decoding algorithm works by moving all errors in the re-

ceived vector u = c + e, where c ∈ C and e ∈ V is the error vector with at

most t errors, out of the information positions, that is, moving the nonzero

coordinates of e out of the information set I for C, by using an automorphism

of C. Note that the function does not check any of the conditions that I is

an information set for C, S is an s-PD-set for C with respect to I, or s ≤ t.

PermutationDecode(C, I, S, s, Q)

Given
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- an [n, k] linear code C over a �nite �eld K;

- an information set I ⊆ {1, . . . , n} for C as a sequence of coordinate posi-

tions;

- a sequence S of elements in the group of monomial matrices of degree

n over K, OR if C is a binary code, a sequence of elements in the

symmetric group Sym(n) acting on the set {1, . . . , n}. In either case S

must be an s-PD-set for C with respect to I;

- an integer s ∈ {1, . . . , t}, where t is the error-correcting capability of C;

- and a sequence Q of vectors from the ambient space V of C,

the intrinsic attempts to decode the vectors of Q with respect to C. This

function is similar to the function PermutationDecode(C, I, S, s, u) ex-

cept that rather than decoding a single vector, it decodes a sequence of

vectors and returns a sequence of booleans and a sequence of decoded vec-

tors corresponding to the given sequence. The algorithm used is as for the

function PermutationDecode(C, I, S, s, u).

PDSetSimplexCode(K, m)

Given a �nite �eld K of cardinality q, and a positive integer m, the intrinsic

constructs the [n = (qm − 1)/(q − 1),m, qm−1] linear simplex code C over

K, as Dual(HammingCode(K, m)), and then searches for an s-PD-set for C.

The function returns an information set I for C together with a subset S of

the monomial automorphism group of C such that S is an s-PD-set for C

with respect to I, where s = b(qm − 1)/(m(q − 1))c − 1.

The information set I is returned as a sequence of m integers, giving the

coordinate positions that correspond to the information set for C. The set S

is also returned as a sequence, which contains the s+1 elements in the group

of monomial matrices of degree n over K described in [FKM12]. When K is

GF (2), the function also returns the elements of S represented as elements

in the symmetric group Sym(n) of permutations on the set {1, . . . , n}.

PDSetHadamardCode(m)

Given a positive integer m, the intrinsic constructs the [2m,m+ 1, 2m−1] bi-

nary linear Hadamard code C, as Dual(ExtendCode(HammingCode(GF(2),

m))), and then searches for an s-PD-set for C. The function returns an
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information set I ⊆ {1, . . . , 2m} for C together with a subset S of the per-

mutation automorphism group of C such that S is an s-PD-set for C with

respect to I, where s = b2m/(m+ 1)c − 1.

The information set I is returned as a sequence of m+ 1 integers, giving the

coordinate positions that correspond to the information set for C. The set

S is also returned as a sequence, which contains the s + 1 elements in the

group of permutation matrices of degree 2m over GF (2) described in [BV16a].

The function also returns the elements of S represented as elements in the

symmetric group Sym(2m) of permutations on the set {1, . . . , 2m}.

Example 93.
> C := Dual(ExtendCode(HammingCode(GF(2), 5)));

> C;

[32, 6, 16] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1]

[0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0]

[0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1]

[0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0]

[0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0]

[0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1]

> I, SMAut, SPAut := PDSetHadamardCode(5);

> I in AllInformationSets(C);

true

> s := #SMAut-1; s;

4

> [ LinearCode(GeneratorMatrix(C)*SMAut[i]) eq C : i in [1..s+1] ];

[true, true, true, true, true];

> [ LinearCode(GeneratorMatrix(C)^SPAut[i]) eq C : i in [1..s+1] ];

[true, true, true, true, true];

> IsPermutationDecodeSet(C, I, SMAut, s);

true

> IsPermutationDecodeSet(C, I, SPAut, s);

true

> c := C ! [1^^32];

> c in C;

true

> u := c;

> u[1] := c[1] + 1;

> u[2] := c[2] + 1;

> u[4] := c[4] + 1;

> u[32] := c[32] + 1;

> u in C;
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false

> isDecoded, uDecoded := PermutationDecode(C, I, SMAut, s, u);

> isDecoded;

true

> uDecoded eq c;

true

> isDecoded, uDecoded := PermutationDecode(C, I, SPAut, s, u);

> isDecoded;

true

> uDecoded eq c;

true

Example 94.
> K<a> := GF(4);

> C := Dual(HammingCode(K, 3));

> C;

[21, 3, 16] Linear Code over GF(2^2)

Generator matrix:

[1 0 a^2 a 1 0 a^2 a 1 a^2 0 1 a a 1 0 a^2 1 a a^2 0]

[0 1 1 1 1 0 0 0 0 a^2 a^2 a^2 a^2 a a a a 1 1 1 1]

[0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

> I, SMAut := PDSetSimplexCode(K, 3);

> I in AllInformationSets(C);

true

> s := #SMAut-1; s;

6

> [ LinearCode(GeneratorMatrix(C)*SMAut[i]) eq C : i in [1..s+1] ];

[true, true, true, true, true, true, true];

> IsPermutationDecodeSet(C, I, SMAut, s);

true

> c := C ! [0,1,1,1,1,0,0,0,0,a^2,a^2,a^2,a^2,a,a,a,a,1,1,1,1];

> c in C;

true

> u := c;

> u[1] := c[1] + a;

> u[2] := c[2] + a^2;

> u[3] := c[3] + a;

> u[4] := c[4] + a^2;

> u[5] := c[5] + a;

> u[6] := c[6] + a^2;

> u in C;

false

> isDecoded, uDecoded := PermutationDecode(C, I, SMAut, s, u);

> isDecoded;

true



114 Chapter 6. Magma package implementation and performance analysis

> uDecoded eq c;

true



Chapter 7

Conclusions

7.1 Summary

Finding e�cient decoding methods is of great interest in coding theory due

to their practical applications. Permutation decoding is a decoding method,

developed by MacWilliams [Mac64] and Prange [Pra62], which employs a

�xed set of automorphisms of a linear code to assist in decoding received

vectors. This technique is described in [MS77, Chapter 16], [HP03, Chapter

10], and [Huf98, Section 8]. Roughly speaking, this method aims to move all

the errors in a received vector out of the information positions, using an au-

tomorphism from that special �xed set of automorphisms of the code called

PD-set, in such a way that the information positions in the permuted vector

are correct. Since the components of the permuted vector in the informa-

tion positions are correct, one can easily obtain a vector (for example, by

encoding the correct information) that must be a codeword, only permuted.

By applying the inverse of the automorphism (that must be a permutation,

since we are working with binary codes) to this new codeword, we �nd the

codeword that was originally transmitted.

An open problem is to determine appropriate PD-sets for the code where

we would like to perform this decoding method. Since small PD-sets are more

e�cient, there has been some interest in �nding PD-sets of minimum size

(i.e. where the Gordon-Schonheim bound is attained) for di�erent families

of linear codes. This is the case, for example, of binary Golay codes, where

two PD-sets of (minimum) size 14 have been found independently in [Gor82,

Wol83]. In [KMM05], the de�nition of PD-sets is extended to that of s-PD-

sets to correct s errors, where s is lower than or equal to the error-correcting

capability of the code. The question of determining s-PD-sets is addressed

115
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for simplex codes in [KV08, FKM12], MacDonald codes in [KS16], binary

Reed-Muller codes in [Sen09, KMM10], being the size of these sets minimal

in some cases.

An alternative permutation decoding method that can be applied to cer-

tain binary nonlinear codes as Z2Z4-linear codes [BFP+10], which include

Z4-linear codes, was presented in [BBFV15]. However, the determination of

s-PD-sets remained an open question. Since then, as far as we know, no work

in this sense has been done.

In this dissertation, we �rst provide an upper bound fm that represents

the maximum s for which s-PD-sets of size s + 1 for systematic Hadamard

codes and Z4-linear Kerdock codes of length 2m can be found. We also

compute another bound, denoted by fγ,δ, for the Z4-linear Hadamard code

Hγ,δ = Φ(Hγ,δ) of length 2m = 2γ+2δ−1, that becomes essential when s-

PD-sets of size s + 1 are searched for in the subgroup Φ(PAut(Hγ,δ)) of

PAut(Hγ,δ). The bound fγ,δ is generally smaller than fm, since fm is valid

when we examine the whole permutation group PAut(Hγ,δ) to �nd these sets.

Surprisingly, it turns out that f0,δ = fm.

Then we focus on constructing s-PD-sets of minimum size s+1 for binary

linear and Z4-linear Hadamard codes. The idea used here is similar to the

one introduced for simplex codes in [FKM12]. For binary linear Hadamard

codes Hm of length 2m with m ≥ 4 and (nonlinear) Z4-linear Hadamard

codes H0,δ of length 22δ−1 with δ ≥ 3, s-PD-sets of size s + 1 with s up to

the upper bound fm = f0,δ have been constructed. Moreover, for Z4-linear

Hadamard codes Hγ,δ with γ > 0 and δ ≥ 3, s-PD-sets of size s + 1 up to

f0,δ are given. The knowledge of the permutation automorphism group of

the Z4-linear Hadamard codes [PPV14, KV15] was helpful due to its crucial

role in this decoding method.

In this work, we also present a theorem that states su�cient conditions

for a permutation σ ∈ PAut(C) to generate an s-PD-set S = {σi : 1 ≤
i ≤ s + 1} of size s + 1 for a Z4-linear code C. This new second approach

may be applied to any Z4-linear code under certain conditions, unlike the

�rst approach, which can only be applied to Z4-linear Hadamard codes. In

particular, this new method also applies to Z4-linear Hadamard codes, so

s-PD-sets have been constructed for these codes by using this new approach.

Speci�cally, we obtain new s-PD-sets of size s+1 for the Z4-linear Hadamard

codes Hγ,δ for all δ ≥ 4 and 1 < s ≤ 2δ−3. These new sets are generated by a

single permutation, unlike the previously presented s-PD-sets of size s+1 for

Z4-linear Hadamard codes. Howeover, 2δ − 3 ≤ fγ,δ for all δ ≥ 3 and γ ≥ 0,

and hence the �rst approach becomes better to correct the greater number
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of errors for Hγ,δ. We also obtain s-PD-sets of size s + 1, for all m ≥ 5

and 1 < s ≤ λ − 1, for the binary Kerdock code of length 2m such that

2m−1 − 1 is not prime, where λ is the greatest divisor of 2m−1 − 1 satisfying

λ ≤ 2m−1/m. Unlike for Z4-linear Kerdock codes, the upper bound fm for

Z4-linear Hadamard codes Km of length 2m is achieved for some values of m

by using the second approach.

A new package that expands the current functionality for quaternary lin-

ear codes in Magma, including functions to decode these codes and also

their binary images under the Gray map (that is, the Z4-linear codes), has

been developed. Functions related to the information space, information sets,

syndrome space and coset leaders for quaternary linear codes have been im-

plemented, as well as functions to decode these codes by using four di�erent

methods: coset, syndrome, lifted and permutation decoding. The explicit

construction of s-PD-sets of size s+ 1 for Z4-linear Hadamard codes Hγ,δ up

to s = f0,δ given in Chapter 4 has been implemented. Likewise, the function

concerning s-PD-sets of size s + 1 for Z4-linear Kerdock codes Km is based

on the construction presented for this codes in Chapter 5. The performance

of the permutation decoding algorithm when these s-PD-sets are employed

has been evaluated by real tests and have been compared with the outcomes

of the rest of decoding methods implemented. When correcting up to s er-

rors, permutation decoding is the method with the best behaviour among

the methods implemented. The permutation decoding algorithm for linear

codes over �nite �elds has also been implemented. The latest version of this

package for codes over Z4 and this manual with the description of all devel-

oped functions can be downloaded from the web page http://ccsg.uab.cat

[BCFS16, BPPV16].

7.2 Future research

In this section, we indicate some open problems that derive from this disser-

tation which may be considered for future research on this topic:

• Finding an explicit construction of s-PD-sets of size s + 1 for the Z4-

linear Hadamard codes Hγ,δ of length 2γ+2δ−1 with γ > 0 and δ ≥
3 for all f0,δ < s ≤ fγ,δ by using the �rst approach, where fγ,δ =

b2γ+2δ−2−γ−δ
γ+δ

c. For γ = 1 and δ ∈ {3, 4}, these s-PD-sets of size s + 1

have already been found and are exposed in Examples 58 and 59.

• Providing an explicit construction of s-PD-sets of size s + 1 for the
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Z4-linear Hadamard codes Hγ,δ = Φ(Hγ,δ) of length 2γ+2δ−1 with γ > 0

and δ ≥ 3 for fγ,δ < s ≤ fm, where fm = b 2m

m+1
c−1. The automorphism

groups MAut(Hγ,δ) and PAut(Hγ,δ) may be investigated to achieve this

goal.

• Giving an explicit construction of s-PD-sets of size s + 1 for the Z4-

linear Kerdock codes of length 2m where Corollary 78 cannot be applied

(that is, those where 2m−1 − 1 is a prime number). Improving the s-

PD-sets of size s+1 for the Z4-linear Kerdock codes of length 2m where

Corollary 78 applies but the bound fm = b2m−1

m
c − 1 is not achieved.

• Finding PD-sets, that is, s-PD-sets where s equals the error-correcting

capability of the code, for the codes considered throughout this work:

binary linear Hadamard codes, Z4-linear Hadamard codes and Z4-linear

Kerdock codes. Study whether or not the Gordon-Schonheim bound is

sharp for these codes. For values of s ≥ fm, one may ask whether it is

possible to obtain s-PD-sets of size s+ i for i ≥ 2.

• In [PRS09], new families of quaternary linear codes, the quaternary

linear Reed-Muller codes, denoted by RM`(r,m), are constructed in

such a way that, after applying the Gray map, the corresponding Z4-

linear codes have the same parameters and properties as the binary

linear Reed-Muller codes. In particular, the codes RM`(1,m), after

applying the Gray map, are Z4-linear Hadamard codes. A natural

generalization of the results of this work is to �nd s-PD-sets for the

Z4-linear codes obtained as the Gray map image of RM`(r,m).

• In [KV15], it is shown that each Z4-linear Hadamard code is equivalent

to a Z2Z4-linear Hadamard code with a nontrivial binary part. Thus,

for some of the Z2Z4-linear Hadamard codes, the existence of s-PD-sets

of size s+ 1 is already covered by the results given in this dissertation.

Actually, this means that it only remains to determine s-PD-sets of

minimum size s + 1 for all values of s up to the upper bound fm for

Z2Z4-linear Hadamard codes of length 2m, m even, and type 214
m
2 .

• Implementing new functions inMagma for coset, lifted, syndrome and

permutation decoding of Z2Z4-linear codes, both extending the current

package for Z2Z4-linear codes and generalizing the package for Z4-linear

codes done during this dissertation. Studying other known decoding

methods for Z4-linear Hadamard and Kerdock codes and comparing

their performance with the decoding methods already implemented.



7.2. Future research 119

• Studying other families of Z4-linear codes where Theorem 60 (i.e. the

second approach) allows us to obtain s-PD-sets of size s+1. In this case,

providing explicit constructions to obtain such sets for these codes.

• In [KZ13], a family of Z4-linear codes, called extended dualized Kerdock

codes, is constructed as the Gray map image of quaternary linear codes

with a high minimum Lee distance. In [KZ13, KWZ16], it is shown that

in some cases these codes are better-than-linear and a table consisting of

all known better-than-linear Z4-linear codes is provided. Among these

Z4-linear codes, it would be interesting to provide PD-sets for those

with high error-correcting capability. The study of their permutation

automorphism groups could be a �rst step towards achieving this goal.

• De�ning the permutation decoding algorithm for systematic binary

nonlinear codes with subjacent ring structures di�erent from Z4. For

example, for the family of Z2k-linear Hadamard codes introduced in

[Kro07].
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