
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1

Deception Honeypots:

Deep Intelligence
Nil Ortiz Rabella

Resum—En un món on Internet és una eina fonamental pel desenvolupament de les empreses, que volen créixer i establir-se
en el mercat econòmic global, la seguretat dels seus sistemes informàtics es converteix en una necessitat. La constant
evolució de les tecnologies, promou un ambient en el qual els mètodes que es fan servir per atacar els sistemes informàtics,
evolucionen encara més ràpid que les pròpies tecnologies, crean un estat on és pràcticament impossible garantir la integritat i
la seguretat completa dels sistemes. La majoria dels mètodes actuals de seguretat, tenen com a objectiu la prevenció o
detecció. Per aquest motiu aquest treball implementa els honeypots d’alta interacció, amb els quals podem implementar un
factor proactiu en la nostre seguretat, atraient als atacants a un espai controlat, per aprendre els seus mètodes i fer servir
aquesta informació per protegir els sistemes reals. En aquest article, es proposa el desenvolupament d’un honeypot d’alta
interacció i la seva implementació, en una xarxa similar al entorn de producció d’una empresa per enganyar possibles atacants.

Paraules clau—Honeypot, Alta interacció, Cyber-seguretat, Deception, Intel·ligència d’amenaçes, Amenaça dirigida

Abstract—In a world where Internet is a key element for the development of any company, that wants to rise and establish in
the economic global market, the security of the computer systems used in the company’s becomes an imperious need. The
constant evolution of technology, provides an environment where the methods used to attack the computer systems evolve
even faster than the technologies itself, creating a state where it is practically impossible to assure the integrity and complete
security of the systems. Most actual security methods and policies, act only as a prevention or detection solution. Therefore in
this paper we implement high interaction honeypots, which allow a new proactive factor in our security, to attract the attackers
into a controlled environment, where we can learn their methods and use that information to protect the real systems. In this
paper we will propose the development of a high interaction honeypot, and its implementation in a network, which we could find
in a real bussines environment.

Index Terms—Honeypot, High interaction, Cyber-security, Deception, Threat intelligence, Targeted threat

—————————— ——————————

1 INTRODUCTION

OWADAYS Internet has taken part not only of our
personal life, but it is a core piece in the scheme of

any company that wants to succeed in a global market,
and for every successful product, there is someone trying
to get advantage illegally from it.

Cyber-crime is an ongoing and critical issue that raises

every day, evolving even faster than security, and no
longer can we think of a computer system in terms of
completely protected, with preventive and detection poli-
cies as our only security, it is just a matter of time since
our systems gets compromised, and maybe by the time
we find the breach it will be too late to prevent losses.

In the last years, a new approach to security has been

developed, proactive security, instead of trying to keep
the attackers from breaching in the system, create a con-

trolled environment where we can track all the actions
done by any attacker to learn their methods and tech-
niques to improve the security of our real systems at the
same pace as the attacks evolve.

The honeypots are tools designed to detect, deflect and

counteract unauthorized use of a computer system, they
can be classified in two groups, low interaction honeypots
and high interaction honeypots, the core difference be-
tween the two groups is that the low interaction honey-
pots don’t provide real services, they only simulate them,
therefore the information that can be obtained through
this type of honeypot has quite low depth or value, where
high interaction honeypots have real services with whom
the attackers can fully interact, and provide information
about each and action done by the attacker that can be
used to prepare our security against it on the real sys-
tems.

In order to enhance the security of a company, we can
place a high interaction honeypot in the same network as
the real production systems that will attract potential
attackers and waste their time using deception tech-
niques.

N

————————————————

 Contact E-mail: nil.ortiz@e-campus.uab.cat

 Specialization: Information Technologies.

 Tutored by:
Ramon Vicens (Blueliv)
Guillermo Navarro Arribas (DEIC)

 Curs 2016/17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/132088905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 EE/UAB TFG INFORMÀTICA: DECEPTION HONEYPOTS: DEEP INTELLIGENCE

There are four styles of deception, which combined
create the so called Deception Stack. The deception stack
consists of a set of tools and responses that operate at
different layers the attacker may interact with, the net-
work, endpoint, application and data layers. In order for
the deception techniques to be believable, they have to be
deployed across the whole Deception Stack, it is im-
portant to notice that further the attack carries on; the
harder it becomes to maintain the deception. [1]

A graphic of the deception stack can be found on the
section A1 of the annex.

1.1 Objectives

This work is done in cooperation with Blueliv, a targeted
cyber-threat intelligence provider for enterprises, aiming
to provide new sources of threat intelligence and counter-
intelligence data.

The main objective of this project is to develop a high

interaction honeypot, which can be deployed in to a fully
functional business network to retrieve intelligence about
the attacks targeted to the network company.

The specific goals to accomplish the main objective are

the following:

1. Find or develop a series of tools to monitor the
honeypots at both user and kernel level.

2. Harden the system to keep the attackers from
fully compromising the system.

3. Implement a logging system that can produce
personalized outputs from the system calls,
the user’s activities and the network traffic.

4. Install and modify a series of services and ap-
plications to be exploited.

5. Test all services and functionalities.
6. Develop deception techniques to retrieve

deeper intelligence on the attacks.
7. Develop installation scripts to automate the

deployment process.

While objectives two, three and five are the most im-

portant for the project itself, spending more time on the
objectives one and seven will provide a more solid solu-
tion. Objective six could be split for each layer of the de-
ception stack optionaly, but since we will be focusing on
the data layer, there is no need.

2 METHODOLOGY

2.1 Research

In order to gain a full view of the state of the art in the
field of honeypots, both high and low interaction, an
extensive research phase took place at the start of the

project. The goal of the research phase was to understand
the architechture and functionality of honeypots that
could become the first stone of the project.

 This phase concluded with the results that there was
no available build-in technology suitable to our case,
hence we would need to elaborate our own customize
solution.

2.2 Requirements

In order to ease the design phase, a set of basic require-
ments for the high interaction honeypot that would be
fundamental to the succeed status of the project were
established.

2.3 Design

After having set the initial requirements of the project, the
design phase started, trying to find tools that fitted our
needs to register all activity done in the system and to-
wards it, considering the requirements, a specific architec-
ture for the system was planned and series of services
and applications were selected to be tested.

2.4 Development

Once the design of the system was complete and all re-
quirements and functionalities were established, they
were developed combining open-source tools with tai-
lored scripts for each situation.

2.5 Test

After the system architechture was developed and func-
tional, we begin to test to functionalities of the services
and our capability to register the activity done by a user,
this test were conducted on a standalone honeypot, first
simulating attacks from our own platform and then set-
ting the honeypot open for real attackers to interact with.

2.6 Deployment

Once all functionalities of the honeypot were tested, a
base image of the system was developed and deployed to
a series of honeypots to create a proof of concept, each
system was then loaded with tailored scripts to deploy
the desired services.

A deception story was planified to interconnect the

honeypots and mislead the attackers from on to another
in order to acquire intelligence on their methods.

3 STATE OF THE ART

Even if the project was aimed towards high interaction
honeypots, to understand better its functionality, low

February 2017, Escola d’Enginyeria (UAB)

NIL ORTIZ: DECEPTION HONEYPOTS: DEEP INTELLIGENCE 3

interaction honeypots were also part of the research pro-
cess and considered to be part of the project initial state.

3.1 Honeypots

Honeypots are security resources that simulate and pre-
tend to be services of a computing system, or the whole
system, with vulnerabilities or weak points in order to be
probed, attacked, compromised, used or accessed in any
unauthorized way. [2]

Their objective is to gather all the possible information

from these attacks or unauthorized accesses in order to
study the methodology used from the attackers and pre-
vent them in the future. Since they only simulate the envi-
ronment and responses of these services, no sensitive
information is compromised from the attacks.

3.1 Low interaction honeypots

Low interaction honeypots simulates services, networks
or other aspects of a real computing system, usually they
simulate a limited set of services and network protocols
(mostly TCP and IP) that allow a limited interaction with
the attacker in order for him to think at it is a real system.

The main advantages of low interaction honeypots it is

that they are easy to deploy and maintain, even without
deep knowledge in the field; with a basic configuration
anyone can deploy a low interaction honeypot in their
network. Since every service its simulated, this kind of
honeypots can’t compromise the real system behind it,
because they only offer a limited set of interactions with
the attacker, if he were able to surpass the honeypot using
instructions out of its reach, he would discover that it is a
honeypot instead of a real system but still couldn’t do
anything in the system behind it.

The fact that the interactions with the attacker are lim-

ited develops the main problem with these type of
honeypots, they can only retrieve a limited amount of
information about the attacks based on what interactions
are designed to handle.

Considering everything stated before, it is clear that

this kind of honeypots aren’t useful to gather intelligence
against targeted attacks, but their main use is to gather
statistics on attack types and patterns. They can also be
used as a NIDS (Network Intrusion Detection System)
given the fact that the honeypot isn’t a production sys-
tem; any access attempts can be considered as an attempt
to breach in the network.

3.2 High interaction honeypots

High interaction honeypots are real systems, with a real
operating system, real services and real protocols. To
disguise the honeypot in a network it is advised that the
honeypot has the same operating system and the same
services that the other systems in the network have.

Since it is a real system, the interactions with the at-
tacker are also real and this allow us to gather all possible

information about the attack, every command or file
used, every I/O action, every bit of data transmitted
through the network is recorded and encapsulated in a
session for post forensic analysis. We can also modify the
system in any way we need to make it look like the pro-
duction systems, enabling the same services, creating
similar file systems, using outdated former credentials,
and since it is placed in the same network than the pro-
duction systems but isn’t actually one of them, any access
will be categorized as an attack, eliminating the false
positive alerts and providing a view of focused and tar-
geted attacks against a network.

Given that the system is real, the operating system and

the services may have vulnerabilities out of our
knowledge that can be exploited and used against us,
therefore the possibility of having a compromised honey-
pot becomes real, and so it has to be prepared and pro-
tected from any unwanted activity, it is the designer re-
sponsability to make sure that the attacker can’t use the
system for anything that isn’t supposed to do, which
leads to a high cost design, deploy and maintenance.

3.3 Honeynet

Honeynets [3] extend the concept of a single honeypot to
a highly controlled network of honeypots. A honeynet is
a specialized network architecture configured in a way to
achieve data control, data capture and data collection.
This architecture creates a highly controlled network, in
which one can control and monitor all kind of systems
and online activity. Honeypots are then placed within this
network. A basic honeynet is composed by honeypots
placed behind a transparent gateway – the honeywall.
Acting as a transparent gateway the honeywall is unde-
tectable by the attackers and serves its purpose of logging
all network activity going in or out of the honeypots.

3.4 BeeSwarm

BeeSwarm [4] is a built-in solution for Linux to deploy a
honeynet using low-interaction honeypots, its ar-
chitechture its similar to the honeynet minus the honey-
wall, but it keeps the three main focus points of data con-
trol, data capture and data collection.

 The minimum agents that compose BeeSwarm are a
system with a BeeSwarm server who is responsible for
deploying the rest of the agents and receiving the data
gathered on them, it also provides a web interface to vis-
ualize the data retrieved from the honeypots and classify
the attacks in two types, as credential reuse if the attacker
manged to log in or brute force if the attacker didn’t log
in the service.

The other agents are the honeypot sensor and the

honeypot drone. The sensor is the one with the simulated
services, BeeSwarm provides simulation of 9 services and
protocols (FTP, HTTP, HTTPS, POP3, POP3S, SMTP, SSH,
Telnet, VNC) through Python scripts. The honeypot
drone has the same base as the sensor, but doesn’t simu-
late any services, it only generates traffic against the

4 EE/UAB TFG INFORMÀTICA: DECEPTION HONEYPOTS: DEEP INTELLIGENCE

honeypot sensors through dummy tests connections feed-
ing them a set of pre-stablished credentials.

Theoretically an attacker could intercept the traffic be-

tween the drones and the sensors and then reuse the sto-
len credentials to attack the sensors, but usually the
drone’s traffic is used only to generate activity in the sen-
sors, in order to make the sensors look like real systems
with real activity to deceive anyone who is sniffing the
network.

3.5 Sebek

Sebek [5] is a data capture tool. As with all data capture
tools, the goal is to capture data that will allow us to ac-
curately recreate the events on a honeypot.

Sebek has two components, the client and the server.

The client captures data of a honeypot and exports it to
the network where is collected by the server. The server
collects the data from one of two possible sources: the
first is a live packet capture from the network, the second
is a packet capture archive stored as a tcpdump formatted
file. Once the data is collected it is either uploaded into a
relational data base or the keystroke logs are immediately
extracted. The communications used by Sebek are UDP
based and as such are connection-less and unreliable.

The client resides entirely in kernel space on the

honeypot and, in the case of the Linux version, is imple-
mented as a Loadable kernel Module (LKM). The client
can record all data that a user accessed via the read()
system call. This data is then exported to the server over
the net in a manner that is difficult to detect from the
honeypot running Sebek. The server then gathers the data
from all of the reporting honeypots. Since there is a
standard platform independent log format the server can
collect from any honeypot independent of Operating
System type.

Since Sebek register the activity of the honeypot ac-

cessing to the system calls of the operating system at ker-
nel space, even if the attacker were to download and use
trojaned binaries or shared libraries to bypass regular
loggin methods, every action would still be recorded by
Sebek, the only way to surpass it would be a hook on the
system calls table at kernel space, which should take too
much time for the attacker to do without being kicked
from the system. It is a perfect tool to deploy in a high
interaction honeypot.

3.6 Loadable kernel modules (Linux)

The most basic method of adding code or capabilities in
the Linux kernel is through adding source files in the
kernel source tree and recompile it, actually the configu-
ration of the kernel consists mainly of choosing a set of
files to include in the kernel. But there is a method to add
code to the Linux kernel while its still running without
recompiling it.

Loadable kernel modules (LKM) [6] are chunks of code

that can be loaded in the kernel on the go, they usually
provide functionalities for device drivers, file system
drivers and system calls, but are not limited to those.

3.7 Linux security modules

The Linux Security Module (LSM) [7] framework pro-
vides a mechanism for various security checks to be
hooked by new kernel extensions. The name "module" is
a bit of a misleading since these extensions are not actual-
ly loadable kernel modules. Instead, they are selectable at
build-time and can be overridden at boot-time.

The primary users of the LSM interface are Mandatory
Access Control (MAC) extensions which provide a com-
prehensive security policy. LSM include SELinux, Smack,
Tomoyo, and AppArmor. In addition to the larger MAC
extensions, other extensions can be built using the LSM to
provide specific changes to system operation when these
tweaks are not available in the core functionality of Linux
itself.

4 REQUIREMENTS

After understanding the nature of the high interaction
honeypots we set a base of requirements for the design of
the honeypot.

1. Operating system:

a. Has to be customizable.
b. Has to be easy to deploy.

2. System security:
a. We must remain in control of the

honeypot before, during and after the
attacker breaches in even if he gets
root permissions.

b. The tools used to monitor the honey-
pot must be concealed from the at-
tacker.

c. Failed attempts to breach in the sys-
tem must also be logged.

3. Services:
a. They have to be customizable
b. Provide a method to retrieve new or

modified files.
4. Monitoring

a. We have to be able to register all ac-
tivity at both kernel and user level.

b. Any changes done by the service in
the file system must be logged.

c. All actions done by the attacker must
be logged.

d. We must be able to retrieve any new
or modified files by the attacker.

e. The actions of a specific attacker must
be registered in a specific session with
a specific identifier.

5. Deploy:
a. Customizable within the needs of the

client.
b. Easy and automate deployment.

NIL ORTIZ: DECEPTION HONEYPOTS: DEEP INTELLIGENCE 5

5 DESIGN

In order to comply with the requirements, the following
solution became the design of the high interaction honey-
pot. The names of certain tools or software cannot be
revealed due to a confidentiality agreement with Blueliv.

For the operating system we chose Linux Ubuntu 4.7

since it is an open source solution, which provides exten-
sive documentation to ease the process of customization
and can easily be installed on any machine using virtual
images.

In order to achieve the security requirements we con-

sidered using LSM, but were discarded because: LSM
only involve Mandatory Access Control (MAC) through
file system permission, LSM is compiled and enabled in
the kernel, which means that the symbols are exported
and every hook is accessible using root-kits, allowing the
attacker to be create back-doors and be completely unde-
tected, since LSM are included in the Linux kernel since
release 2.6, advanced attackers would be aware of its
presence.

Instead, we modified the Linux kernel using an al-

ready build solution as a base, that allowed us to track all
system calls and a software that works upon the custom
kernel like the LSM but using Role Base Access Control
(RBAC) policies and allows control over all Linux capabil-
ities, the RBAC functionality allow to create a new level
of permission above the usual root user, that acts like a
super-root, invisible to any attacker and only available
with the appropiate credentials, using this features we
can easily hide any process, parts of the file system and
pretty much anything we need from the attacker.

To keep a register of the connection attempts, port

scans and other sniffing network actions, we used an
Intrusion detection System (IDS) software to examine the
packets before and after they enter in the system, the IDS
had been pre-loaded with some traffic rules created by
the community and some rules developed by us.

On the initial phase of the design, we included the fol-

lowing services:
1. FTP
2. Samba
3. HTTP
4. SSH
5. VNC
6. OpenVPN

Later we decided to focus only on the FTP, Samba,
HTTP and SSH services due to the lack of use and possi-
ble information that was retrievable of the remaining.

To enhance security, the FTP and Samba services were
configured to prevent the users from accessing any other
part of the file system that was not dedicated to the ser-

vice, limitating the FTP users to their home path and the
Samba users to a unique share.

HTTP was implemented using Apache2, enabling spe-

cific modules to enhance the security of Apache2 and
retrieve more information from the HTTP requests; we
also added the possibility to equip Apache2 with Word-
Press and phpMyAdmin depending on the needs of the
client.

SSh was configured so only a list of specific users

could gain access to the system using the standard
username password log in option.

To achive the monitoring requirements a few options

were considered, sebek seemed like a good option, but it
needs a kernel 2.4 for Linux, which not only is highly
outdated but also would conflict with our custom kernel
previously mentioned, and does not have active support
or a community behind it.

The next explored option was to make us of the log-

ging facilities of Linux itself and the services along side
with the tracking of system calls implemented in the cus-
tom kernel, which then would be parsed and sent to a
centralized server to process the information. This solu-
tion was deeply tested using a server with Logstash, an
open source, server-side data processing pipeline that
ingests data from a multitude of sources simultaneously,
transforms it, and then sends it to the storage application,
to process the information, ElasticSearch, a distributed,
RESTful search and analytics engine that stores data in-
dexed in volumes, to store and sort it and Kibana, an
open source data visualization plugin for Elasticsearch, to
display the final information, but was discarded because
it was very difficult to encapsulate the actions of a user in
a session format across all services, we would need some
sort of backup software to retrieve the new or modified
files which added a new layer of complexity due to the
possibility of I/O atomic operations.

Finally, we decided to use a software that reads the

system calls of the kernel and saves them in a file that can
later be processed using LUA scripts, the developers of
the software provides a wide variety of scripts but we
chose to develop our own scripts to extract the infor-
mation that better suited our needs.

To improve visibility from the network traffic and the

actions developed outside of the system, we used the IDS
not only to emit alerts but also capture the network traffic
in a pcap format.

To fulfil deployment requirements we created a set of

bash scripts that install all the Linux packages, tools and
services that we need in a modular fashion, therefore
when a customer needs to deploy a honeypot we can
execute a series of scripts on the machine to install the
base of the honeypot and the functionalities selected by
the customer without having to remove or leave unused

6 EE/UAB TFG INFORMÀTICA: DECEPTION HONEYPOTS: DEEP INTELLIGENCE

modules.

6 TEST

To test all capabilities and services of the honeypot, we
deployed a standalone virtual machine with the previous-
ly mentioned set up, including the FTP, Samba, HTTP
(Apache2) and SSH services. The system was being moni-
tored with the kernel syslog and the services own loggin
facilities which were sent to a centralized server using
Filebeat. On that server an instance of Logstash received
and parsed the logs using grok patterns and then the logs
were stored on a ElasticSearch, this server also had an
instance of Kibana to visualize the logs in a comprehen-
sive way.

In order to test the logging mechanism’s the FTP and

Samba services were configured so they could be ac-
cessed anonymously. The Apache2 logging facilities were
modified to acquire the request headers, the request
body, the response headers and the response body. To
monitor the activity on the SSH service we kept track of
the attempts of connection using the auth.log provided by
the operating system and once a intruder managed to get
in the system, we monitored he’s activity tracing the sys-
tem calls using the logging facilities provided by the cus-
tom kernel and implementing a script to record the ses-
sion commands when ever a shell is created in the Linux
system, two users were created, one with a very easy to
guess password and another one with a more complex
but quite accessible password, the root password was set
at the highest difficulty to test the capabilities of the at-
tackers.

The first month of activity generated on the standalone

test virtual machine provided us a lot of intelligence on
how the attacks were being executed. The following table
shows the statistics of the attacks during the first month.

TABLE 1
ATTACKS STATISTICS

Service FTP Samba SSH Apache2

Attacks 1.110
(12%)

462
(5%)

5924
(64%)

1758
(19%)

Successful 966
(87%)

328
(71%)

1421
(24%)

X

Files up-
loaded

113 48 906 0

Different
IP’s

535 171 3859 768

As we can see on the table above, the SSH service re-

ceived the most attacks, but only 24% of them were suc-
cessful, that is because most of the attacks were from bots
that just go through dictionaries trying different sets of
users and passwords, it is worth mentioning that only
seven attackers were able to access with the root user, but
even then they weren’t able to gain full access of the vir-
tual machine hence the security policies from the RBAc
software and the custom kernel proved to work so far.

During the SSH sessions the attackers usually started
looking what permissions do they had, then trying to
create a new user and download some root-kit or com-
mand and control software to include the machine in a
bot network.

The FTP and Samba services were the ones with the

highest success rate, that is because when first connecting
to the service, you would receive a banner advertising the
virtual machine as an anonymous server, still some at-
tackers didn’t manage to get it, probably bots without the
option to access using empty credentials.

The sessions on the FTP service followed two defined

patterns, the first one could be labeled as mass deploy
since they uploaded files on every available directory,
usually bit coin miners, and the second patter could be
labeled as reconnaissance since they try to move laterally
through the file system to find files with valuable data in
the /etc, /opt and /home directories, but failed since the
FTP user only had visibility of the directory specified for
its purpose.

The successful Samba sessions followed two patterns

that looked alike the FTP sessions, the first was like the
FTP mass deploy, were the attackers would upload files,
again mostly bit coin miners, on every available directory,
and in the second one the attackers would first check if
the operating system was windows or Linux, then look
for all the available shares, printers and other devices,
and then try to reconnect on the new found devices.

For the HTTP service, Apache2 was configured to al-

low any request but always return either the default in-
dex.html file or a 404 response, therefore if we define a
session as a number of requests done by the same IP dur-
ing a limited short time, we can separate the attacks in
two sections, the first one would be PUT request were the
attacker would try to input code using binary or hexadec-
imal characters to run commands on the virtual machine,
which failed since one of the modules of Apache2 pre-
vented any code from the requests to be executed. The
second one would be a series of GET requests of different
files to identify if there was any application on the
Apache2 service, mostly phpMyAdmin and, less but still
worth considering, WordPress. The GET request not only
looked for applications but also bot-nets, in this case the
most searched was muieblackcat, a web scanner bot that
attempts to exploit PHP vulnerabilities or missconfigura-
tions. Since the GET requests never found any of the files,
we have no information about what the attacker may do
next.

The logs generated from the attacks contained a lot of

useless or repeated information and it was difficult to
keep track of a single attacker through the different ser-
vices of the virtual machine, hence we decided to imple-
ment a different and unified logging system for all ser-
vices using a software that reads all system calls on a
kernel level, then tracking the process of the service we

NIL ORTIZ: DECEPTION HONEYPOTS: DEEP INTELLIGENCE 7

could easily record all activity on a single file that later,
when the session had finished, would be analyzed using
LUA scripts developed to extract different information
from each session file, using this method also would facil-
itate display the output.

7 DEPLOYMENT

Considering that the test on the standalone machine was
successful we proceeded to deploy 8 virtual machines
with different services to create a honeypot network as a
proof of concept.

The following table shows the services installed on

each honeypot deployed in the honeypot network.

TABLE 2
HONEYPOT NETWORK

 FTP Samba SSH Apache2

Alpha X

Bravo X X

Charlie X X

Delta X

Echo X

Foxtrot X

Golf X

Hotel X X X X

All honeypots have the same base configuration with

the custom kernel, the RBAC policies, the system call
reader software and the IDS software.

We pictured a story to get accross the honeypots and

test how the attackers may move through a real produc-
tion network were the goal was to gain access to the Hotel
honeypot.

We created a user with the most used credentials on

the honeypots with the FTP and Samba services and
placed a series of documents with users, passwords and
IP’s of the Alpha, Bravo and Charlie honeypots to gain
access through the SSH service.

Since we received a lot of GET requests on the

standalone honeypot concerning phpMyAdmin and
WordPress, we placed an instance of phpMyAdmin on
the Bravo honeypot and an instance of WordPress on the
Charlie honeypot, both systems had a MySQL data base
with credentials to access the same machine respectively
using the SSH service and the Alpha honeypot.

In the Alpha honeypot we created a series of users

bound with each of the other honeypots that lead to Al-
pha, to keep track of where the attacker had gotten the
credentials to access it and keep track of its actions. Inside
this honeypot there were files with credentials to access
each service of the Hotel honeypot.

Most of the attacks the honeypots received didn’t fol-
lowed the story we set up and got stuck in the first
honeypot they got access to, without developing any kind
of lateral movement, but we will focus on the ones that
did follow the story line.

From the FTP honeypots there wasn’t any attack that

managed to use the credentials found in the file system to
gain access to the Alpha honeypot which leads to believe
that most of the activity generated on there honeypots it
is caused by bots and not actual human attackers, but
since they downloaded the files, that could happen later
on.

From the Samba honeypots one attacker managed to

access the Alpha honeypot and download a set of scripts
to transform the honeypot in to a proxy SMTP server to
forward spam mail, using the IDS we were able to read
and save all the e-mails sent, and keep a list of source
systems that most likely are also compromised machines.

On the Bravo honeypot an attacker managed to gain

access to the same machine using the SSH credentials
stored on the MySQL data base and also transformed the
honeypot in to a proxy SMTP server to forward spam
mail, using also the IDE we were able to retrieve the same
information.

On the Charlie Honeypot several attackers managed to

use the credentials stored on the MySQL data base and
gain access to the Alpha honeypot, where five of them
managed to escalate privileges through a vulnerability
named Dirty COW [8] of the type race condition, and find
the credentials to gain access to the Hotel honeypot, these
attackers certainly would have to be humans.

So far from the five attackers that managed to gain the

credentials to access the Hotel honeypot, only four of
them have access it. All attackers used the SSH service to
access the honeypot. One of the attackers left the honey-
pot shortly after breaking in; therefore we can assume
that he realized it was a honeypot and not a real machine.
Two of the attackers spend almost an hour in the system,
looking for potential valuable data and trying to install
different services and root-kits that failed due to the cus-
tom kernel and the protections set by the RBAC policies.
The last attacker downloaded a command and control
package to use it as part of a bot-net which failed for the
same reason as the previous two mentioned, then pro-
ceeded to download various bit coin miners and left.

8 RESULTS

During the two weeks that the eight virtual machines
corresponding to the honeypot network were online and
fully functioning, they gathered intelligence of hundreds
of attacks each machine, both statistical data, and targeted
intelligence against a specific machine.

On the main entry points of the honeypot network

8 EE/UAB TFG INFORMÀTICA: DECEPTION HONEYPOTS: DEEP INTELLIGENCE

composed by the four honeypots with FTP and Samba
services we have mostly statistical data about the at-
tempts to break in, the credentials used and the files up-
loaded to the services, since the access to these machines
wasn’t locked down.

On the Bravo and Charlie honeypots we have both

types of information, statistical data consisting of the
attempts to break in the SSH service and the requests that
the Apache2 service received, and intelligence on targeted
attacks using the credentials stored in the MySQL data
base located respectively in each machine that can be
used to gain access through the SSH service.

On the Alpha and Hotel honeypots we also have both

types of information, statistical data consisting of the
attempts to break in the SSH service, and intelligence on
targeted attacks using the credentials stored in the other
honeypots.

This architecture of the network allow us very easily to

classify the more interesting information concerning the
targeted attacks separated from the less meaning statisti-
cal data, since the virtual machines are not real produc-
tion servers, any access to anyone of the machines will be
an attack without false positives.

9 CONCLUSIONS

In the requirements section, we stated five different as-
pects of the design that would need to be achieved to call
the project a success. Through the design phase we were
able to accomplish each requirement modifying the ker-
nel base of Linux to make it more secure and create a
second layer of protection between the kernel and user
level with the RBAC policies, due to the new layer of
permissions we never lost control of the virtual machines
even when the attackers escalated its privileges to root
level.

Using an IDS we were able to log all the network ac-
tivity to further inspect any action when it was needed,
but this feature remains mostly as a second layer of back-
up information since all the attacks were analyzed using
the system calls of the operating system.

Currently, the honeypot network deployed as a proof

of concept is still online and keeps gathering intelligence
from the attacks received, the information is centralized
in a platform that allow to visualize the attacks in a
friendly user view that allows the client to keep track of
the actions performed in each honeypot.

The data gathered so far by the network of honeypots

already provided valuable information about behaviors,
trends of attacks and, in general, intelligence about cyber-
threats at anonymous scale.

The solution implemented in the project seems viable

to be adapted to the needs of the clients, with a few
changes in the service configurations and RBAC policies,
since the honeypots should resemble the actual produc-
tion systems.

From a personal point of view, this project has served

to learn about honeypot technology and to expand the
previous knowledge about information security and net-
works. It also helped to take contact with many technolo-
gies, such as ElasticSearch, MySQL, IDS software, Linux
kernel; to experience all the steps of a real development
project; to understand the importance of a thorough re-
search and design stage and how positively it affects to
the development of the project itself; and to be able to face
unexpected problems and find suitable solutions in a
limited time frame.

10 FUTURE WORK

Since the High interaction honeypots only differ from a
real system by its use, the only limitation they have it is
the time spent developing it.

There are countless other services and applications that

could be implemented to have ready to deploy, but it
would be better to first ask what the clients need in order
to not generate useless content.

Right now the data acquired from the network sniffing

by the IDS isn’t being actively used, with more time we
could develop a platform that analyzed that data and
provided a correlation with the attacks as well as new
information that may not reach the system.

The story created in the honeypot network relies in

having a human attacker go through the available direc-
tories and fetching the documents that we exposed for
him with the credentials, considering that a almost all
attacks are originated by bots, we could develop a story
that a bot may follow, creating virtual private networks
between the honeypots, generating TLS/SSL certificates
to access the SSH service of other machines among other
methods.

Last but not least, there could be a more in deep analy-

sis of the uploaded files and the data gathered by the
honeypots.

ACKNOWLEDGEMENTS

I would like to thank both, Ramon Vicens from Blueliv
and Guillermo Navarro from UAB, for their mentoring
and help; to Ramon especially for making possible this
project and giving me the opportunity to work in it.

I would also like to thank Ramsés Pascual, Àngel
Puigventós and Asif A. Khan Ferdous for their priceless
help, as well as other co-workers from Blueliv.

NIL ORTIZ: DECEPTION HONEYPOTS: DEEP INTELLIGENCE 9

Finally, huge thanks to the open source community

which has been really helpful through forums, mail lists
and IRC chats, providing tips and clarifying a lot of
doubts.

This project was supported by Blueliv.

REFERENCES

[1] M. Dornseif, T. Holz1, S. Müller, “Honeypots and
Limitations of Deception”, 07 June 2010.

[2] T. Grudziecki, P. Jacewicz, Ł. Juszczyk, P. Kijewski
and P. Pawliński, “Proactive Detection of Security In-
cidents II – Honeypots”, 2012.

[3] “Conode a tu enemigo: Honeynets”, HIS Honeynet
Project. Aviable: HTTP://his.sourceforge.net/ hon-
eynet/papers/honeynet/, 25 July 2003.

[4] “BeeSwarm: Active IDE made easy”, Johnny
Vestergaard, the Honeynet Project, Aviable:
HTTPs://github.com/honeynet /beeswarm.

[5] “Know Your Enemy: Sebek”, The honeynet Project,
Aviable:
HTTP://old.honeynet.org/papers/sebek.pdf, 17 No-

vember 2003.

[6] “Linux Loadable Kernel Module HOWTO”, The
Linux Documentation Project, Aviable:
HTTP://www.tldp.org/HOWTO/Module-
HOWTO/x73.html, 24 September 2006 .

[7] "LSM Design: Mediate access to Kernel Objects,"
Usenix, the Advenced Computing Systems Associa-
tion, [Online].Available:
HTTPs://www.usenix.org/legacy
/event/sec02/full_papers/wright/wright_html/nod
e3.html.

[8] DirtyCow, Aviable: HTTPs://dirtycow.ninja/ 19

October 2016.

[9] M. T. Qassrawi, Z. Hongli, “Deception Methodology
in Virtual Honeypots”.

[10] F. H. Abbasi, R. J. Harris, “Experiences with a Gener-
ation III Virtual Honeynet”, 13 May 2010.

[11] S. Forrest, S. Hofmeyr, A. Somayaji “the Evolution of
System-call Monitoring”, December 2008.

[12] Honeynet Project & Research Alliance, “Know Your
Enemy: Honeywall CDROM Roo”, 17 August 2005.

Annex

A1. DECEPTION STACK

.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mahmoud%20T.%20Qassrawi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhang%20Hongli.QT.&newsearch=true

