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Abstract 
 

 
 
Fanconi anemia (FA) is characterized by bone marrow failure, defects in 

development, and chromosome fragility. We review the recent discovery of FA 

genes and efforts to develop genetic therapies for FA. Because genetic evidence 

excludes FANCM as an FA gene, 14 genes remain bona fide FA genes and 2 

(FANCO and FANCS) cause an FA like syndrome. Monoallelic mutations in 6 

FANC  genes  predispose  to  breast  and  ovarian  cancer.  FANC  proteins  repair 

stalled DNA replication forks by unhooking DNA interstrand cross-links and 

promoting homologous recombination. The genetic characterization of patients with 

FA is essential for developing therapies, including hematopoietic stem cell 

transplantation from a savior sibling donor after embryo selection, untargeted gene 

therapy, targeted gene therapy, or genome editing using genetic recombination or 

engineered nucleases. Newly acquired knowledge about FA promises to provide a 

cure in the near future.
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Introduction: Fanconi anemia and Fanconi anemia-like genes 
 

 
 
Fanconi  anemia  (FA),  which  affectsapproximately  1–3  of  500,000  newborns, 

causes bone marrow failure (BMF), developmental defects, and cancer 

predisposition. Hallmarks of FA are chromosome fragility and hypersensitivity to 

drugs that induce DNA interstrand cross-links (ICLs). Numerous other physiological 

and cellular abnormalities likely contribute to pathogenesis (Figure 1). The current 

decade has been prolific for the discovery of novel FA genes Thus, seventeen 

genes are associated to FA, including the recently discovered genes 

FANCO/RAD51C[1], FANCP/SLX4[2,3],  FANCQ/ERCC4[4],  and 

FANCS/BRCA1[5]. However, following the stringent criteria of at least 2 patients 

with BMF and a positive chromosome fragility test, only 14 met the criteria for bona 

fide FA genes (FANCA, B, C, D1, D2, E, F, G, I, J, L, N, P, Q). FANCO and S are 

FA-like genes because they cause a chromosome fragility syndrome with FA- 

related  malformations  but  without  BMF  (Figure  2).  FANCM  should  also  be 

excluded from the list of  FA genes, because  the  only patient known  to  carry 

biallelic   mutations   in   FANCM[6],   also   carries   biallelic   pathogenic   FANCA 

mutations, and her brother was subtyped FANCA [7]. Further, enforced expression 

of FANCM failed to complement the genetic defect of this patient’s cells [6]. 

Moreover, pathogenic FANCM variants are more common than originally predicted 

in some populations, and two Finns with homozygous loss-of-function FANCM 

mutations exhibit normal hematology [8]. Thus, we recommend excluding FANCM 

as an FA gene, although, together with FAAP100, FAAP25, and other FA-core 

complex interacting proteins,  FANCM  is  involved  in  the  FA  ICL  repair  (ICLR)
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pathway (see below). Similarly, whole genome exon sequencing (WES) detected 

biallelic XRCC2 mutations in a consanguineous FA family [9]; however, because of 

the lack of genetic complementation data or any other functional evidence of a 

causative role of this homozygous mutation in disease, XRCC2 should not be 

considered an FA gene. Further, this patient may harbor mutations in known FA 

genes that are not easily detected by WES, such as large deletions or  deep 

intronic mutations. 

 
The genetic heterogeneity and the number of private and founder mutationsmakes 

the mutational analysis of FA patients extremely difficult [10-12]. However, the 

implementation of next-generation sequencing (NGS) technologies, including WES 

or targeted sequencing of FA genes, together with high-resolution methods to 

detect large deletions, such as comparative genome hybridization arrays, single- 

nucleotide polymorphism arrays, and targeted Multiplex Ligation-dependent Probe 

Amplification will facilitate subtyping and mutational analysis of new patients with 

FA [4,13-17]. 

 
 
 
 
 
FA genes that predispose to breast and ovarian cancer 

 

 
 
FANCD1/BRCA2, FANCS/BRCA1, FANCJ/BRIP1, FANCM, FANCN/PALB2, and 

FANCO/RAD51Care major breast and ovarian cancer susceptibility genes in 

carriers with monoallelic mutations (Figure 1) highlighting the fundamental link 

between FA and familial breast and ovarian cancer (FBOC). Rad51Cmutations 

influence ovarian cancers more than breast cancer [18,19], and are linked to other
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tumors such as head and neck cancer [20,21]. RAD51C and FANCM were initially 

associated to FA before they were candidates for FBOC in monoallelic carriers 

[22,23] highlighting the role of FA research in molecular oncology. 

 
Historically, only FA genes (see below; Figure 2) with a direct role in the 

homologous recombination repair (HRR) branch of the FA pathway are linked to 

FBOC [24,25]. The two recently identified FA genes upstream of those encoding 

HRR  components,  FANCP/SLX4  and  FANCQ/ERCC4,were  also  excluded  as 

major breast cancer susceptibility genes in Italian, German, Spanish, Estonian, 

Jewish, and non-Jewish  American populations  [26-33]. However, a pathogenic 

mutation in the HRR upstream gene FANCMis associated with breast cancer 

susceptibility in the Finnish population [23], suggesting a core complex- 

independent role (see below) of FANCM. In fact, even that FANCM is not essential 

for Rad51 foci formation and HRR, the camptothecin sensitivity of FANCM cells is 

shared with and FANCD1 and FANCN cells, linking FANCM to the branch of the 

FA pathway connected to HRR[7]. 

 
 
 
 
 

The Fanconi anemia pathway: find, unhook, bypass, and 

recombine 

 
ICLs are highly damaging, because they impede transcription and replication-fork 

progression. Sincethey affect both DNA strands, ICLs complicate error-free DNA 

repair, because an undamaged DNA template is not available. The FA DNA repair 

pathway  coordinates  reactions  that  remove  ICL  damage  to  restore  genome
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integrity  (for  more  detailed  reviews,  see  [34,35].  Eight  FA  proteins  (FANCA, 

FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and FANCM) form a nuclear 

complex (FANCore) whose ubiquitin E3 ligase function is activated by blocked 

DNA replication forks (Figure 3). The activated FANCore complex 

monoubiquitinates the FANCD2–FANCI heterodimer (ID complex) [36,37] and the 

activated ID complex relocates to the damaged DNA in an ATR and BRCA1- 

dependent manner [36-38]. The ID complex promotes nucleolytic cleavage of the 

3´ and 5´ sites of DNA to unhook the ICL and successively induces trans-lesion 

polymerases  Rev1  and  pol[39-42].  These  reactions  extend  the  leading  DNA 

strand above and past the unhooked ICL to produce a substrate that is processed 

by successive HRR reactions [34]. 

 
In the last few years, major advances in understanding the unhooking step of ICL 

repair   came   from   the   discovery   of   the   FA   genes   SLX4/FANCP   and 

ERCC4/FANCQ. Current modelspredict that DNA integrity is not restored without 

cleaving the 3´ and 5´ sequences flanking the lesion. Several nucleases contribute 

to ICLR, such as XPF-ERCC1, MUS81-EME1, SLX1, SNM1A, and SNM1B [43- 

45]. However, the lack of FA patients with mutations in the genes encoding these 

nucleases hindered the identification of the main FA/BRCA pathway nuclease. 

BTBD12/SLX4  provides  a  platform  for  several  endonucleases  involved  in  ICL 

repair, including ERCC4-ERCC1, MUS81-EME1, and SLX1 that dock to cleave 

DNA flaps, replication forks, and Holliday junctions [46-48]. SLX4 is mutated in 

patients with bona fide FA (FANCP) [2,20]. In contrast to FA mouse models, the 

Slx4knockout (KO) mouse exhibits an FA phenotype with developmental defects
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and cytopenia[49]. The N-terminal segment of SLX4/FANCP harbors ubiquitin zinc 

finger (UBZ) domains,  suggesting  that  SLX4  is  recruited  to  DNA  damage  via 

interaction  with  ubiquitinated  proteins  involved  in  the  DNA  damage  response 

(DDR). SLX4 recruitment in chicken DT-40 cells may depend on FANCD2 

monoubiquitination but with uncertain relevance to mammals [50]. SLX4 serves as 

a  scaffold  that organizes  specific nucleases  for  transport  to  DNA  lesions and 

regulates nuclease activity [50,51]. SLX4 contains SUMO-interacting motifs (SIMs) 

required for binding sumoylated DNA repair proteins, and SLX4 acts directly or 

indirectly as a SUMO E3 ligase, and its SUMO-related functions are not required 

for ICL repair but for a general response to replication stress. Accordingly, 

mutations of SLX4 SIMs do not produce ICLs hypersensitivity but cause common 

fragile site instability and increased mitotic catastrophe [52,53]. 

 
ERCC4mutations were identified using WES and Sangersequencing in 

twounrelated and unassignedFA patients [4]. Both patients had characteristic FA 

symptoms, including BMF, chromosome fragility, and FA-related birth defects; 

ERCC4 was therefore renamed FANCQ [4]. ERCC4–ERCC1 is a heterodimeric 

endonuclease discovered as an essential component of the nucleotide excision 

repair (NER) system. The catalytic subunit ERCC4 was originally renamed XPF, 

because it is mutated in patients with xerodermapigmentosum (XP), 

complementation group F [54]. In contrast to other XP-related proteins, defects in 

XPF sensitize cells to UV light and ICLs, indicating an NER-independent DNA 

repair role [55,56]. The ERCC4/FANCQ mutations uncouple NER and ICLR 

functions  as  follows:  mutations  that  inhibit  ICLR  but  not  NER  activity  of
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ERCC4/FANCQ  caused  FA.  Moreover,  FA  patients  lacked  XP  symptoms, 

consistent with functional NER despite ERCC4/FANCQ defects [4]. 

 
The Fanconi anemia-associated nuclease 1 (FAN1) was identified in 2010 and 

immediately stole the scene as the main candidate FA nuclease[57-60]. FAN1 is a 

structure-specific nuclease that,when depleted, causes sensitivity to ICLs. 

Moreover, FAN1 is recruited to damaged DNA via the interaction through its N- 

terminal UBZ domain with monoubiquitinated FANCD2. Recruitment of FAN1 

through FANCD2 monoubiquitination is consistent with the inhibition of nucleolytic 

incisions near the ICL in vitro upon FANCD2 depletion [41]. Although FAN1 

interacts with FANCD2 and contributes to the FA/BRCA pathway of ICLR [61-64], 

FAN1 deficiency is not associated with an FA phenotype [65]. Instead, biallelic 

lack-of-function point mutations in FAN1 cause karyomegalic interstitial nephritis, 

linking chronic kidney failure to ICLR [66].Further,in contrast to ERCC4-ERCC1, 

FAN1 activity (similarly to MUS81-EME1 activity) is not required for nucleolytic 

incisions near an ICL [67]. Therefore, the role of FAN1 nuclease activity in the FA 

pathway is still under discussion. 

 
 
 
 
 

Fanconi anemia and endogenous aldehydes 
 

 
 
Groundbreaking series of  studies led  by Dr. KJ Patel’s team shed  a  light on 

understanding the source of DNA damage that cause FA as they genetically 

demonstrate that the FA DNA repair pathway counteracts the genotoxicity of 

endogenous    aldehydes[68].    Aldh2,    which    mediates    the    metabolism    of
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acetaldehyde, is essential for embryonic development of FA mice, consistent with 

findings  using  DT40  cells,  as  chicken  ALDH5  and  the  FA  pathway  mediate 

synthetic lethality [68,69]. Aldh2–/–Fancd2–/–KO mice are not viable if the mother 

lacks functional Aldh2. When the mother is Aldh2+/-, Aldh–/–Fancd2–/– offspring are 
 
viable, demonstrating that maternal aldehyde catabolism rescues embryo lethality. 

HSCs  of  viable  Aldh–/–Fancd2–/–   mice  spontaneously  suffer  increased  DNA 

damage, and the mice develop acute leukemia and aplastic anemia. Further, there 

is a 600-fold reduction in the HSC population in mice deficient in the FA DNA repair 

pathway and the detoxification of acetaldehyde [70]. When similar experiments are 

performed by knocking out Fanca, which is mutated in the majority of FA patients, 

the  phenotype  is  even  worse.  Aldh2-/-Fanca-/-   embryos  do  not  develop  if  the 

mothers are Aldh2-/-, and the embryos of Aldh2+/-mothers develop but die before 
 
birth. When Aldh2-/-Fanca-/- embryos are transferred to Aldh2+/+mothers they result 

in viable offspring but neonates have low numbers of hematopoietic stem and 

progenitor  cells,  indicating  that  fetal  Aldh2  is  essential  for  proper 

hematopoiesis[71]. These findings are relevant to Asian populations, particularly 

that of Japan with a 40% carrier frequency of a dominant-negative ALDH2 allele. In 

Japanese patients with FA that bear the dominant-negative ALDH2 allele, the FA 

phenotype is more severe with earlier onset of BMF and increased FA-related birth 

defects[72],  which  provides  strong  evidence  that  mouse  data  may  apply  to 

humans. It remains to be determined whether targeting aldehyde metabolism 

ameliorates BMF and cancer predisposition of patients with FA [73-75]. ALDH2- 

deficient Japanese who consume alcohol are at higher risk of developing 

esophageal    cancer,    macrocytosis,    and    macrocytic    anemia    and    oral
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microorganisms produce high levels of acetaldehyde in saliva[76], suggesting a 

modality to prevent BMF as well as head and neck cancer in FA patients. 

 
 
 
 
 

Novel therapies: from genes to patients 
 

 
 
The discovery of innovative therapies highlights the pioneering role of FA 

translational research in the history of medicine. Eliane  Gluckman, one of the 

leading hematologists worldwide, performed the first umbilical cord-blood (UCB) 

transplant in Paris to cure a patient with FA [77]. Cord blood banking is now 

performed worldwide, and more than 30,000 patients with blood disorders and 

other diseases benefited from this source of blood progenitor cells [78]. The 

outcome  of  transplanting  patients  with  FA using  HLA-matched  unrelated  HSC 

donors doubled because of drugs such as fludarabine and improved protocols, 

approaching the excellent survival rates using HLA-matched donor siblings [79,80]. 

The   first   preimplantation   genetic   diagnosis   combined   with   HLA-matching, 

generated a savior baby to cure a sibling with FA using UBC transplantation [81]. 

Hundreds of children with numerous blood disorders were subsequently cured 

[82,83]. However, FA families should be informed of its low success rate (<5% of 

babies born per in vitro fertilization cycle) due to Mendelian restrictions and high 

aneuploidy rates associated with advanced maternal age [84]. 

 
Unfortunately, HSC donors are not available for all patients with FA, and HSCT 

increases further their high cancer risk. To overcome these limitations, FA gene 

therapy clinical trials are in progress [85]. Difficulties in collecting sufficient blood
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progenitor cells from patients with FA and inefficient transduction protocols with 

first-generation retroviral vectors led to unsuccessful initial clinical trials [86-88]. 

Improvements  may  come  from  a  safer  and  more  efficient  lentiviral  vector 

expressing human FANCA using the weak PGK promoter [89,90] developed by 

Bueren’s laboratory, which was designed as an orphan drug by the European 

Medicines Agency. Drugs such as plerixafor efficiently mobilize HSCs for apheretic 

collection and this approach can be useful in patients with FA. Studies of mosaic 

patients and mice with FA after ex vivo gene therapy indicate a survival advantage 

of genetically corrected cells in vivo, even in the absence of myeloablative 

conditioning regimens [91,92]. These measures, together with the expected lack of 

graft-versus-host disease after gene therapy, may cure BMF of patients with FA 

and prevent HSCT-related cancers. 

 
FA research also played a pioneering role in the field of regenerative medicine 

(Figure 4). Disease-free blood progenitor cells were first generated from the skin of 

a patient with FA via induced pluripotent stem (IPS) cells [93]. Ultimately, sufficient 

IPS cell-derived HSCs must be generated for autotransplantation. Because FA 

fibroblasts are difficult to reprogram, this study uncovered a novel role of the FA 

pathway in cell reprogramming. Consequently, correcting FA genes restores the 

reprogramming efficiency of FA fibroblasts to IPS cells [93-98]. Reprogramming 

induces the DDR [99] and activates the FA pathway [94], leading to P53-mediated 

apoptosis and low reprogramming efficiency [96]. This is partially circumvented by 

preventing reactive oxygen species (ROS)-mediated DNA damage [94] or by 

suppressing P53 during reprogramming using RNA interference [96] or human
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papillomavirus P53-repressing E6 protein [100]. Safe and controlled FANCA gene 

correction was achieved using integration-free genome editing by genetic 

recombination  with  helper-dependent  adenoviral  vectors  [96]  or  by  targeting 

FANCA insertion into the safe locus AAVS1[97] using engineered nucleases (“safe 

harbor”   strategy)   [101].   Genome   editing   using   CRISPR/Cas9-engineered 

nucleases corrects FANCA  mutations in human  FA fibroblasts  [102]. Although 

clinical translation of gene-corrected IPS cells and genome editing with engineered 

nucleases is difficult in the short term, successful engraftment of iPSC-derived and 

gene-corrected blood progenitor cells may cure FA and  other blood  disorders 

characterized by low numbers of bone marrow HSCs [97,101]. Therefore, editing 

fibroblasts and IPS-cell genomes may soon translate directly to HSCs from FA 

patients (Figure 4a). FA-IPS cells offer a novel tool to model FA physiology and 

pathogenesis and provide a cell platform for drug screening [96]. Finally, therapies 

designed to enhance the correct mRNA processing at a mutant TT splice donor in 

FANCC  using  suppressor  U1  snRNAs,  suggests  that  correcting  pathological 

mRNA   processing   at   specific   mutant   splice   sites   might   apply   to   FA 

complementation groups in a mutation-specific fashion [103]. Therefore, our better 

understanding  of  the  molecular  genetic  defects  of  FA  and  the  use  of  gene 

correction strategies may contribute to futures treatments for this devastating 

disease. 
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Figure legends 
 

 
 
Figure 1: FA clinical and cellular phenotypes. (a) A wide range of clinical features, all of them of 
incomplete penetrance, characterizes the FA clinical phenotype. The main FA clinical features can 
be organized in four fundamental categories: abnormal embryo development (birth defects, 
microcephaly), bone marrow failure, reproductive and endocrine defects and cancer predisposition 
including solid tumors and leukemia. In some genetic subtypes the disease links to breast and 
ovarian cancer predisposition in monoallelic carriers and some adult FA patients  (b) The hallmark 
of FA cells is a DNA repair defect that causes cellular sensitivity to ICL-inducing agents, 
chromosome instability and cell cycle alterations. FA cells have several other phenotypic 
abnormalities most probably related the DNA repair defect such as the oxygen and aldehydes 
sensitivity, increased cell death and cell reprogramming defects. Additionally, FA cells overproduce 
proinflamatory cytokines that are known to be proapoptotic for HSC. All these characteristics are 
probably related to each other and their combination, together with stochastic factors, account for 
the clinical phenotype of FA patients. 

 

 
 
 
Figure 2: FA related genes. Biallelic mutations in 14 genes (FANCA, B, C, D1/BRCA2, D2, E, F, G, 
I, J/BRIP1, L, N/PALB2, P/SLX4 and Q/ERCC4; marked in purple) cause FA, characterized by the 
triad of bone marrow failure, chromosome fragility and malformations. Biallelic mutations in two 
genes (FANCO/Rad51C and S/BRIP1; marked in red) cause an FA-like syndrome without bone 
marrow failure. There are a number of FA-associated genes not linked to a FA disease phenotype 
in biallelic mutation carriers including FANCM and this gene is therefore excluded from the list of FA 
genes. Six of the above genes (FANCD1, J, M, N, O, and S; marked in dark blue) are associated to 
familiar breast and ovarian cancer in monoallelic mutation carriers highlighting the fundamental link 
between FA and cancer predisposition in the general population. 

 

 
 
 
Figure 3: The FA/BRCA DNA ICL repair pathway: FANCore complex is activated upon stalled 
replication  forks  and  monoubiquitinates  the  ID  complex.  Activated  ID  complex  relocates  to 
chromatin and promotes SLX4 and ERCC4 activities in ICL unhooking and subsequent translesion 
synthesis. In the final step of this process, genome integrity is restored by homologous 
recombination repair upon the action of downstream FA proteins. Proteins coded by bona fide FA 
genes are showed in blue while the products of FA-like genes are showed in green. The FA 
associated proteins whose genes are not mutated in any FA or FA-like patient are shown in red. 

 
 
 
Figure 4: Cell and gene therapy strategies in Fanconi anemia. (a) Gene corrected blood progenitors 
can be generated after genetic correction of  patient-derived hematopoietic stem cells. This is 
classically known as ex vivo gene therapy. Alternatively, blood progenitors can be generated from 
disease-free IPS cells after reprogramming gene-corrected skin fibroblasts. Corrected blood 
progenitors would finally be use to cure the disease by autotransplantation. (b) There are several 
strategies for FA gene correction. Ongoing FA gene therapy clinical trials are based on untargeted 
gene therapy using lentiviral vectors carrying a wild type copy of the FANCA gene. Novel genetic 
tools allow targeted correction of the endogenous FANCA mutation by homologous recombination 
by the use of either helper dependent adenoviral vectors (HDAdV) or engineered nucleases such 
as CRISPR/Cas9. Alternatively, genetic correction can be done by targeting the insertion of the wild 
type FANCA gene into a safe harbor locus with the help of engineered nucleases such as TALEN. 
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