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Abstract 26 

The rapidly growing human population in sub-Saharan Africa generates increasing demand for agricultural land 27 

and forest products which presumably leads to deforestation. Conversely, a greening of African drylands has 28 

been reported, but this has been difficult to associate with changes in woody vegetation. There is thus an incom-29 

plete understanding of how woody vegetation responds to socio-economic and environmental change. Here we 30 

used a passive microwave Earth Observation data set to document two different trends in woody cover land area 31 

for 1992-2011: an 36% increase (6,870,000 km²), largely in drylands, and an 11% decrease (2,150,000 km²), 32 

mostly in humid zones. Increases in woody cover were associated with low population growth and driven by 33 

increases in CO2 in the humid zones and by increases in precipitation in drylands, whereas decreases in woody 34 

cover were associated with high population growth. The spatially distinct pattern of these opposing trends re-35 

flects (1) the natural response of vegetation to precipitation and atmospheric CO2 and (2) deforestation in humid 36 

areas, minor in size but important for ecosystem services, such as biodiversity and carbon stocks. This nuanced 37 

picture of changes in woody cover challenges widely held views of a general and ongoing reduction of the 38 

woody vegetation in Africa.  39 
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Introduction 40 

Africa’s human population has increased from about 230 million in 1950 to over 1000 million in 2010 and is 41 

expected to grow to as high as 5700 million by the end of the 21st century1. This growth has led to the expansion 42 

of agricultural land and the reduction of natural forests and other woody vegetation2,3,4, affecting biodiversity and 43 

carbon storage3. Severe droughts in recent decades have also had an adverse impact on humid and sub-humid 44 

forested areas5. In contrast, studies of drylands have shown an increase in vegetation productivity over the last 45 

30 years6,7,8, also highlighting the importance of drylands for global carbon variability and as land CO2 sink9. 46 

Whether this increase in vegetation productivity is driven by the growth of woody vegetation and/or by an in-47 

crease in productivity of herbaceous vegetation is not clear6,7,8. This is because the scattered nature of woody 48 

plants in drylands is very different from forests with closed canopies and challenging to detect with optical satel-49 

lite imagery at regional to continental scales10,11. Previous studies have used vegetation indices as proxies for net 50 

primary productivity, but these indices measure the photosynthetically active part of the vegetation and most 51 

studies do not distinguish between woody and herbaceous vegetation12,13. Furthermore, studies of deforestation 52 

in humid areas traditionally report the presence or absence of forests3 and do not assess gradual changes in forest 53 

biomass within existing forests (e.g., forest degradation). They are also based on temporal snapshots of satellite 54 

imagery at a higher spatial resolution and only capture forests based on given definitions, e.g. tree height and 55 

canopy cover percentage3,14, which substantially underestimate shrubs and scattered trees in drylands10. Conse-56 

quently, little quantitative information is available about the state, rate, and drivers of change in the cover of 57 

woody vegetation at the scale of the African continent. This information is crucial for ensuring that the design of 58 

natural resource management in relation to deforestation and desertification is based on observations rather than 59 

those based on narratives. 60 

 61 

Results 62 

Africa's changing woody cover 63 

We used a new passive microwave Earth Observation (EO) data set (Vegetation Optical Depth, VOD) that cap-64 
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tures continuous changes in the coverage of canopies of all woody phanerophytes, regardless of size, in both 65 

drylands and humid areas15-17. We applied VOD as a proxy for annual woody cover and documented changes in 66 

Africa's woody vegetation between 1992 and 2011, with a special focus on the changes in drylands and humid 67 

areas (defined by the ratio between annual precipitation and potential evapotranspiration, Supplementary Fig. 68 

1a). Woody vegetation changed significantly (linear regression, p<0.05, n=20) during 1992–2011 in approxi-69 

mately half of sub-Saharan Africa (47% of land areas). A majority (77%) of the significant trends were positive, 70 

covering 36% of sub-Saharan Africa and representing an overall increase of 2.1 woody cover (%) (Fig. 1a). Most 71 

(70%) of the significant positive changes were in drylands covering approximately 4 900 000 km² (overall 72 

change +2.9 woody cover (%)), mainly in the Sahel and southern Africa18-20 (Fig. 2a). Positive trends are also 73 

observed in the humid zones to a much smaller extent (2 100 000 km²), with an overall change of +0.8 woody 74 

cover (%). Negative changes affected 11% of sub-Saharan Africa, of which 75% were in humid areas (approxi-75 

mately 1 600 000 km² in humid zones and 530 000 km² in drylands). The decline in woody cover primarily af-76 

fected areas that are also characterized by high carbon stocks (Supplementary Figs 2a, 2b), suggesting that areas 77 

with the largest carbon sinks have been disturbed at the fastest rate. The classification of woody cover change 78 

into bioclimate zones21 confirms the overall tendency with larger increases in drier zones (except extremely hot 79 

xeric) and lower increases and decreases in moister zones (Fig. 2d). 80 

 81 

Drivers of woody cover changes 82 

The positive changes in woody cover in Africa's drylands are significantly related to precipitation (Fig. 1a). In 83 

contrast to herbaceous vegetation, woody plants can benefit from a higher variability and intensity of precipita-84 

tion22, as in southern Africa and the Sahel (Supplementary Fig. 1c).  The dependence on precipitation was cor-85 

roborated with simulations of the vegetation using the dynamic vegetation model LPJ-GUESS23, which simulat-86 

ed an increase in woody biomass for 1992-2011, consistent with the satellite estimates of woody cover (Fig. 3). 87 

The relative increase of both woody cover and biomass was largest in drylands, and factorial simulations of the 88 

individual driving variables indicated that precipitation accounted for most of the simulated increase in woody 89 

biomass in drylands such as the Sahel and southern Africa (Fig. 3, Supplementary Fig. 3). Increasing concentra-90 
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tions of atmospheric CO2 was a minor contributor to these dryland trends yet was the main variable driving the 91 

growth of woody vegetation in humid areas, enhancing primary production24 (Fig. 3, Supplementary Figs. 2, 3). 92 

The absolute increase in woody biomass was largest in humid areas (mean increase of 0.04 kg C m-2 y-1 near the 93 

equator, Supplementary Fig. 2), coinciding with overall large stocks of woody biomass. Solar radiation, nitrogen 94 

deposition and temperature had minor impacts on the changes in woody biomass (Supplementary Fig. 2).  95 

This overall increase in woody vegetation driven by climate and CO2, however, was offset by anthropogenic 96 

impacts, especially in humid areas. The increase in woody cover in the VOD analysis was thus most pronounced 97 

in areas of low human population density and change (Fig. 4). Areas and countries with a higher population den-98 

sity and growth (Fig. 1b, Supplementary Fig. 1d) had decreases in VOD-based woody cover (Figs. 1a, 4, Sup-99 

plementary Fig. 4), offsetting the climate-driven increases in other parts of the humid zones (Figs. 2c, 3). This 100 

separation in areas of high and low human pressure applied to both drylands and humid tropics. The average 101 

trend, however, remained positive in drylands, even in areas with strong population growth, but was negative in 102 

humid areas with strong population growth, regardless of the trends in precipitation and CO2 (Fig. 2b, c). Popu-103 

lations increased by an average of 40 persons km-² over 20 years in areas where woody cover decreased suppos-104 

edly due to agricultural expansion, logging, and other uses of woody products. In contrast, populations increased 105 

by an average of only 6 persons km-² in areas where woody cover increased. Human population increase was 106 

highest in moist and mesic bioclimate zones and woody cover changes were accordingly negative or low, where-107 

as population growth was lower in xeric areas and woody cover increases were higher (Fig. 2d). At the continen-108 

tal scale, a simultaneous autoregressive model (SAR) explained nearly half of the spatial pattern of changes in 109 

woody cover in terms of changes in population and precipitation (r²=0.46), with population being more im-110 

portant than precipitation (standardized slopes of -0.27 and 0.08, respectively) (Supplementary Table 1).  111 

 112 

Discussion 113 

The opposing trends in dry and humid zones have implications for our understanding of environmental change in 114 

sub-Saharan Africa. While areas of high population growth, mostly in humid zones, on average experience a 115 
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decrease in woody vegetation, areas with low population growth on average experience an increase in woody 116 

vegetation, mainly driven by changes in precipitation and CO2 concentrations. This latter increase is not captured 117 

in official forest statistics, since much of it takes place outside of humid forests. 118 

This implies that the ‘problem’ of woody cover loss - and thus carbon stocks decreases - in the humid forest 119 

zones is at least partly balanced by an increase in drylands. ‘Bush encroachment’ in savannas of southern Africa, 120 

however, has traditionally been considered an undesired effect14,25. Since the VOD data used to estimate woody 121 

cover does not allow a direct estimation of carbon stocks, the exact balance between gains and losses in carbon 122 

cannot be directly assessed in this study. Further work combining field measurements, ecosystem modelling and 123 

new satellite-based passive microwave sensors is required to further understand these linkages. In humid areas, 124 

woody biomass may actually increase without any change in woody cover. 125 

The close relationship between population growth and decreased woody cover suggests that agricultural expan-126 

sion, urbanization and wood fuel harvest were the main causes of the decrease in woody cover, as also found in 127 

studies of tropical deforestation3,26. The reduction in woody cover tends to primarily affect areas with high car-128 

bon stocks and other studies suggest that these are also areas characterized by the highest biological diversity27. 129 

There is, however, no simple relation between losses and gains in woody cover and biodiversity. While diversity 130 

and productivity of natural vegetation are generally positively correlated28, this does not exclude the possibility 131 

that great losses may be experienced in areas of deforestation, while only smaller gains are seen in drylands with 132 

increasing woody cover. 133 

Due to the impact on land surface albedo, woody cover changes in dryland areas may trigger climate feed-backs. 134 

Since the hypothesized existence of a ‘biogeophysical feed-back’29, many studies have attempted to model such 135 

effects30,31, with some research claiming that man-made afforestation efforts would give rise to increased precipi-136 

tation32. The extent of the observed increase in woody cover in African drylands may impact climate if the in-137 

crease continues in the coming decades, and this altered feed-back should preferably be implemented in regional 138 

climate or Earth system models, with the observed increase in woody vegetation providing a test case for these 139 

models. 140 

 141 
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Methods 142 

VOD data and calibration to woody cover. We define woody cover as the percentage of a given area covered 143 

by woody vegetation, including both leaf and woody components of woody plant canopies. The unit is woody 144 

cover (%). The VOD data was retrieved from satellite passive microwave observations quantified as brightness 145 

temperature based on the NASA-VU Land Parameter Retrieval Model (LPRM)33. Three passive microwave 146 

sensors, i.e. the Special Sensor Microwave Imager, the Advanced Microwave Scanning Radiometer – Earth Ob-147 

serving System, and the radiometer of WindSat are used to form the long-term data set by applying a trend-148 

preserving cumulative distribution function matching without changing the inter-annual variations and long-term 149 

trends of the original retrievals34,35. The merged long-term VOD data set was gridded at a 0.25° spatial resolution 150 

and monthly interval from 1992 to 2011 and is consistent between different sensors36. VOD is sensitive to the 151 

total aboveground water content in both the photosynthetic (foliar) and non-photosynthetic (woody) components 152 

of the vegetation stratum15,37. Soil moisture conditions are retrieved simultaneously with the VOD information in 153 

LPRM and large variations in soil moisture can influence the accuracy of VOD, especially for dense rainforest 154 

regions33. Thus VOD values exceeding 1.2 are suggested to be excluded in vegetation studies16. The VOD signal 155 

has been separated from soil moisture and is used as a proxy for vegetation biomass globally34. The VOD sea-156 

sonal variation is a combined effect of the seasonal dynamics of both herbaceous (including crops) and woody 157 

vegetation15. We used the annual minimum VOD values as a proxy for woody vegetation cover to minimize the 158 

influence of annual herbaceous vegetation10 and avoided values exceeding 1.2 (Supplementary Fig. 5). Areas 159 

with perennial herbaceous vegetation may lead to an over-estimation of woody cover; however, the woody cover 160 

in % is usually higher in these areas concealing the influence from the herbaceous plant understory. Also, VOD 161 

data have been used to estimate forest change in South America by limiting the range of VOD values to 0.6-162 

1.216. We did not restrict the VOD range to also include young trees and shrubs, which form an important part of 163 

the community of woody vegetation. Minimum VOD agrees well with a field data based map of woody cover 164 

for Sahel (r²=0.80)10 (Supplementary Fig. 5). A global map calibrated with optical high spatial resolution images 165 

and also assessing smaller trees produced similar results38 and was thus used to transform the annual minimum 166 

VOD to the unit woody cover (%) for further analyses (r²=0.85, slope=0.86) (Supplementary Fig. 5). A third-167 
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degree polynomial regression was used for the transformation. Woody cover <10% was predicted with an expo-168 

nential regression to avoid underestimation of very low values. The VOD is insensitive to the effects of atmos-169 

pheric and cloud contamination, ensuring reliable retrievals in cloudy regions e.g. central Africa. 170 

Correlation between the trends in woody cover and changes in human population and precipitation. Pre-171 

cipitation data were derived from the Climate Research Unit (CRU) (data set version 3.23), which is globally 172 

available for a 0.5° grid at monthly scale and is based on the upscaling of data from rain gauges39. CRU precipi-173 

tation data intrinsically includes some uncertainty, as the number of stations used for each grid cell varies con-174 

siderably between cells and years. Even though it is the most widely used precipitation data set in dynamic vege-175 

tation modelling40 and consistency with other data sets has been shown41, results have to be considered with cau-176 

tion7. We have tested the blended GPCP data set, without significant changes of the results, still it has to be not-177 

ed that a linear trend analysis on annually summed data includes uncertainties and simplification. We summed 178 

the monthly observations to obtain annual sums from 1992 to 2011 and resampled the data to 0.25° using a bicu-179 

bic interpolation. Population data were acquired from Gridded Population of the World (GPW) v342, which in-180 

cludes estimates for 1990, 1995, 2000, 2005, and 2010, gridded with an output resolution of 2.5 arc-minutes, 181 

resampled for this study to 0.25° (nearest neighbor). GPW population data were acquired from national statisti-182 

cal offices and gridded based on the proportional method, which allocates population counts to grid cells based 183 

on the proportion of each administrative areal unit that overlaps the cell. The gridded counts for existing census 184 

years are then projected to the set of output years based on a simple model of population growth. The modeling 185 

was thus not based on any additional layers of data, such as land cover, avoiding potential problems of endoge-186 

neity between VOD and simulated population grids. A linear trend analysis was conducted for annual woody 187 

cover and precipitation data, and the slope multiplied with the number of years to retrieve the absolute change 188 

over time in the corresponding unit, facilitating the direct comparison with the human population data. We quan-189 

tified the relationships between the changes in woody cover (estimated by VOD), population increase (GPW), 190 

and precipitation (CRU) by applying a simultaneous autoregressive model (SAR) (spatial error type43) to the 191 

three gridded data sets. The SAR model accounts for spatial autocorrelation and uses change in woody cover as 192 

response and log(change in population) and change in precipitation as explanatory variables. The logarithm of 193 
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the human population data was applied since the relation between woody cover changes and human population is 194 

non-linear at pixel scale, i.e. if a high number of population is reached (mostly in cities), the woody cover stops 195 

to decrease further. Standardized variables were used to enable model coefficients inter-comparison (standard-196 

ized variable = (variable - mean) / standard deviation). 197 

Fires frequently occur in most African ecosystems. However, at the spatial and temporal scale of our analysis, 198 

we do not expect changes in fire regimes as a major cause of changes in woody cover in itself but rather as a 199 

consequence of human induced deforestation and land use change44. 200 

Dynamic ecosystem model. The dynamic ecosystem model LPJ-GUESS23 was applied to simulate changes in 201 

woody-biomass carbon in natural vegetation for 1992-2011. LPJ-GUESS simulates the distribution of plant 202 

functional types, and each type is represented by four pools of biomass carbon: leaves, roots, sapwood, and 203 

heartwood. The latter two were added to represent the amounts of stem (wood) carbon. This variable is closely 204 

related to the woody cover estimated by VOD, but especially in tropical forests, differences are expected, as 205 

VOD is not able to fully penetrate the tree crowns45. Simulations were run for 1992-2011, applying monthly 206 

climate data (temperature, precipitation, sunshine duration) from meteorological stations, gridded to 0.5°×0.5° 207 

resolution (CRU TS 3.2139), monthly model-derived estimates for nitrogen deposition46, and annual mean at-208 

mospheric CO2 concentrations47,48 based on ice-core data and atmospheric observations as forcing. Land use and 209 

land use change were not accounted for in the simulations, which were only applied to quantify the changes in 210 

natural vegetation. The simulations were preceded by a two-stage spinup: For the first stage, vegetation growth 211 

starts from bare-ground conditions, using climatic data for 1901-1930, and CO2 levels were kept constant at the 212 

concentration for 1901. For the second stage, representing 1901-1991, the actual climate data, atmospheric CO2 213 

concentration and N deposition were used. 214 

In addition to a full simulation with the forcing as described above, five factorial simulations were performed to 215 

separate the impact of individual driving variables. Only one of the four parameters (temperature, precipitation, 216 

radiation, or CO2) was applied using the transient data as described above, whereas the other three parameters 217 

used a climatology for 1992-2011, applying monthly means over this 20-year period for the climatic parameters 218 

and an annual mean for CO2. In the fifth factorial simulation, similar to the transient CO2 simulation above, the 219 
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changing CO2 concentration was combined with a climatology for N deposition, to separate the impacts of at-220 

mospheric CO2 and N deposition on the CO2 fertilization. These simulations were applied to determine the im-221 

pact of the individual driving variables on the simulated trend.  222 

Data availability  CRU precipitation data are available from the University of East Anglia 223 

(http://www.cru.uea.ac.uk/). The global tree cover map is available from the Geospatial Information Authority of 224 

Japan, Chiba University (http://www.iscgm.org/gm/ptc.html#use). VOD raster data are developed by Yi Liu, 225 

University of New South Wales. Gridded population maps are provided by CIESIN 226 

(http://sedac.ciesin.columbia.edu/). Humidity zones are available from http://www.grid.unep.ch/index.php. 227 

DGVM results are available from the corresponding author upon reasonable request. 228 
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Figure legends: 244 

Figure 1 | Changes in woody vegetation and human population over two decades. a, Significant trends of 245 

woody cover (VOD) for 1992-2011, separated by the presence or absence of a significant (p<0.05, n=12845) 246 

correlation with cumulative 2-year precipitation during this period. b, Changes in human populations for 1990-247 

2010. The maps in (a) and (b) share a clear pattern, especially areas with a decrease in woody cover, and no 248 

relation to precipitation coincide with a high population pressure. c, SAR model of the changes between woody 249 

cover, precipitation (both 1992-2011), and population (1990-2010). The units are expressed as change in the 250 

corresponding unit over the period of analysis. 251 

Figure 2 | Changes in woody cover (VOD) in different humidity zones. a, Areas with changes in woody cov-252 

er (linear regression of change in woody cover for 1992-2011). Annual profiles of woody cover for areas of sta-253 

tistically significant changes in woody cover in b, drylands and c, the humid areas of sub-Saharan Africa (Sup-254 

plementary Fig. 1a). Black lines characterize areas of high human population increase (>30 persons km-2) and 255 

grey lines areas of low human population increase (<10 persons km-2) for 1990 to 2010. d, Woody cover and 256 

human population changes are grouped according to bioclimatic zones21.  257 

Figure 3 | Climatic drivers of changes in woody cover and biomass in sub-Saharan Africa. Relative trends 258 

(% of mean year-1) for 1992-2011 in woody cover (estimated with VOD) and woody biomass (simulated with 259 

LPJ-GUESS) had similar patterns of change from north to south. The trends of woody biomass were mainly 260 

driven by CO2 (humid areas) and precipitation (drylands) (Supplementary Figs. 2, 3). 261 

 262 

Figure 4 | Links between changes in woody cover and human population. Intervals of mean population den-263 

sity (1990-2010, Supplementary Fig. 1d) were used to group the changes in woody cover (VOD) associated with 264 

population increases and the number of pixels showing significant woody cover change. A Chi-squared test be-265 

tween woody cover and population change indicated the statistically significant dependency between the two 266 

variables. 267 


