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5 A NEW APPROACH TO INCLUSIVE DECAY SPECTRA
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Madingley Road, Cambridge, CB3 0HE, UK

The main obstacle in describing inclusive decay spectra in QCD — which, in particular, limits
the precision in extrapolating the measured B̄ −→ Xsγ rate to the full phase space as well as
in extracting |Vub| from inclusive measurements of charmless semileptonic decays — is their
sensitivity to the non-perturbative momentum distribution of the heavy quark in the meson.
We show that, despite this sensitivity, resummed perturbation theory has high predictive
power. Conventional Sudakov–resummed perturbation theory describing the decay of an on-
shell heavy quark yields a divergent expansion. Detailed understanding of this divergence
in terms of infrared renormalons has paved the way for making quantitative predictions. In
particular, the leading renormalon ambiguity cancels out between the Sudakov factor and
the quark pole mass. This cancellation requires renormalon resummation but involves no
non-perturbative information. Additional effects due to the Fermi motion of the quark in
the meson can be systematically taken into account through power corrections, which are only

important near the physical endpoint. This way the moments of the B̄ −→ Xsγ spectrum with
experimentally–accessible cuts — which had been so far just parametrized — were recently
computed by perturbative means. At Moriond these predictions were confronted with new
data from BaBar.

1 Introduction

Experimental measurements of inclusive decays, such as B̄ −→ Xsγ and B̄ −→ Xulν̄, cannot
be performed over the whole phase space. Therefore, in order to make precision tests of the
Standard Model, we must have a quantitative understanding of the spectra.

Most of the rate of these decays is associated with jet–like kinematics, where the invariant
mass of the hadronic system is small. It is well known that this important region is difficult to
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describe theoretically [1–3]: the observed spectrum is directly sensitive to soft radiation off the
heavy quark which is hard to disentangle from the “primordial” momentum distribution of the
heavy quark in the meson. Technically, this sensitivity leads to the breakdown of the perturbative
expansion in powers of αs(mb) as well as that of the local Operator Product Expansion (OPE)
in powers of Λ/mb.

Let us consider the photon–energy spectrum in B̄ −→ Xsγ. The non-perturbative nature of
this distribution is obvious from the fact that the physical endpoint is near Eγ = MB/2, where
MB is the meson mass, while at any order in perturbation theory — where the initial state is
represented by an on-shell heavy quark — the spectrum vanishes for Eγ > mb/2, where mb is the
quark pole mass. In reality the quark is off shell and its Fermi motion translates into smearing a

of the spectrum up to Eγ ≃ MB/2. Given this physical picture the perturbative approach
appears inappropriate. Consequently, the predominant strategy has been to parametrize the
spectrum based on available data, rather than to compute it. On the other hand, since total
inclusive rates, as well as their first few moments, are theoretically described by the OPE [4,5] —
and in particular, if O(Λ2/m2

b) terms are neglected, by perturbation theory — one expects just
small, computable deviations when moderate kinematic cuts are applied [6]. Progressing to more
stringent cuts, resummed perturbation theory is needed. Eventually it must be complemented by
non-perturbative corrections. We will show that the predictive power of resummed perturbation
theory is significantly higher than it superficially appears to be.

2 The divergent nature of the perturbative expansion of spectral moments

A key ingredient in the perturbative approach to inclusive spectra is the use of moment space.
Considering the B̄ −→ Xsγ photon–energy spectrum in terms of x ≡ 2Eγ/mb, the perturbative
coefficients have singular structure at the perturbative endpoint, x = 1. Owing to cancellation
of logarithmic infrared singularities between real–emission and virtual corrections, the moments

ΓPT

N ≡

∫

dEγ

(
2Eγ

mb

)N−1 dΓPT

dEγ
=

∫ 1

0
dxxN−1 dΓPT(x)

dx
(1)

are infrared– and collinear–safe. ΓPT

N has a well defined perturbative expansion to all orders. This
expansion, however, does not converge well. It has: (a) Sudakov logarithms, ln N , that are
the finite reminder in the cancellation of logarithmic infrared singularities. These logarithms
appear at any order in the expansion and dominate the coefficients at large N (b) infrared
renormalons that reflect power–like sensitivity to soft momenta and induce factorial growth of
the coefficients at large orders that renders the perturbative expansion non-summable.

To make quantitative predictions both these sources of large corrections need to be re-
summed. The resummation of Sudakov logarithms is possible thanks to the factorization prop-
erty of matrix elements in the soft and the collinear limits. In decay spectra there are two
distinct regions of phase space giving rise to infrared logarithms [7]: soft radiation with mo-

menta of order m/N from the nearly on-shell heavy quark and fragmentation of the final–state

jet of mass squared m2/N . In moment space these contribution factorize:

ΓPT

N = H(mb)J(m2
b/N ;µ)SPT(mb/N ;µ) ≡ H(mb) × Sud(N,mb), (2)

up to corrections O(1/N). Here µ is a logarithmic factorization scale. The Sudakov factor,
which sums up the logs to all orders in αs(mb), takes the form of an exponential:

Sud(N,mb) = exp

{

−
∞∑

n=1

n+1∑

k=1

cn,k lnk N

(

αMS

s (m2
b)

π

)n}

= exp







∞∑

l=0

gl(λ)

(

αMS

s (m2
b)

π

)l−1





,(3)

aThis smearing is related to the structure of the initial state, and it is independent of the appearance of
resonances in the final state.



where λ ≡
(

β0α
MS

s (m2
b)/π

)

lnN . Note that Sud(N,mb) depends on the quark mass only through

the argument of the coupling and that it does not depend on any factorization scale. The first
three towers of logarithms in the exponent, i.e. cn,n+1 — leading logs (LL), cn,n — next–to–
leading logs (NLL) and cn,n−1 — next–to–next–to–leading logs (NNLL) are known exactly [8,9].
The numerical values of the first few coefficients (for Nf = 4) are given in Table 1. Obviously,
there is problem: the coefficients increase so fast with increasing powers of αs(mb) (corresponding
to subleading logarithms) that the sum in the exponent cannot be determined. The result of
conventional Sudakov resummation with fixed logarithmic accuracy (see Section 2.1 in Ref. [8])
is shown in Fig. 1. It does not reach perturbative stability.

−1.564 0.667 0 0 0 0 0 0
3.837 −0.078 1.389 0 0 0 0 0

? 20.579 6.339 3.376 0 0 0 0
? ? 116.464 33.024 9.042 0 0 0
? ? ? 597.221 138.600 25.955 0 0
? ? ? ? 2859.284 548.170 78.492 0
? ? ? ? ? 13141.289 2129.058 247.233
? ? ? ? ? ? 58941.217 8238.359
? ? ? ? ? ? ? 260391.559

Table 1: The coefficients cn,k in Eq. (3) that are known exactly (NNLL accuracy). Rows (top to bottom) and
columns (left to right) correspond to increasing powers of n (power of αs(m)) and k (power of ln N), respectively.

The three diagonals are LL, NLL and NNLL, respectively.

−1.56 0.67 0 0 0 0 0 0
1.24 0.90 1.39 0 0 0 0 0

61.17 28.32 8.28 3.38 0 0 0 0
1096.06 515.20 166.25 34.89 9.04 0 0 0

20399.23 10078.43 3231.40 793.25 131.33 25.95 0 0
444615.21 221481.03 73268.94 17791.58 3514.66 482.12 78.49 0

11342675.74 5665794.49 1883129.50 468180.33 91361.30 15080.79 1768.50 247.23
334032127.30 166960507.50 55609620.17 13867704.58 2760946.21 449959.01 63745.75 6532.65

Table 2: The coefficients cn,k in Eq. (3) computed in the large–β0 limit. Columns and rows are as in Table 1.

To understand the reason for this divergent behavior it is useful to consider the large–β0

limit, where all the coefficients in the exponent can be computed. The numerical values of the
first few coefficients (for Nf = 4) in this approximation are given in Table 2. We observe that:
(a) the result is similar to the full QCD matrix of Table 1; (b) further subleading logarithms
have yet larger coefficients. We therefore deduce that the divergent behavior in Table 1 is related
with running–coupling effects. This is a general phenomenon [10–14]: the large–order behavior
of Sudakov exponents is dominated by infrared renormalons. The increasing coefficients of
subleading logarithms build up factorial growth that renders the series non-summable. Since in
the case under consideration the divergent behavior hits already at low orders it seems that any
attempt to use this expansion is doomed to fail.
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Figure 1: The moment–space Sudakov factor Sud(N, mb), and the corresponding differential spectrum, where
the exponent is computed to LL, NLL and NNLL accuracy , as dotdashes, dashes and dots, respectively. In each
case the spectrum is matched to the full NLO result for the magnetic interaction O7. The curves end at N ≃ 33

and at x ≃ 0.97, respectively, where the Landau singularity in gl(λ) appears.

3 Taming the divergence by Dressed Gluon Exponentiation (DGE)

It was recently shown [8] that, despite the divergent behavior described above, resummed per-
turbation theory à la DGE does lead to quantitative predictions for the B̄ −→ Xsγ spectrum:

dΓ(Eγ)

dEγ
=

MB

2

∫ c+i∞

c−i∞

dN

2πi
ΓN

(
2Eγ

MB

)−N

≃
mPV

b

2

∫ c+i∞

c−i∞

dN

2πi
ΓPT,PV

N

(

2Eγ

mPV

b

)−N

, (4)

where the first inverse–Mellin integral is written in terms of physical spectral moments:

ΓN ≡

∫

dEγ

(
2Eγ

MB

)N−1 dΓ

dEγ
= ΓPT,PV

N e−(N−1)Λ̄PV/MB F((N − 1)Λ/MB), (5)

with Λ̄PV ≡ MB − mPV

b , and ΓPT,PV

N corresponds to the perturbative moments of Eq. (1), where
the renormalon ambiguity is regularized using Principal Value (PV) Borel summation. In the
second inverse–Mellin integral in Eq. (4) we assumed F ≃ 1, an approximation that is valid
away from the endpoint. Computing the spectrum by resummed perturbation theory involves:

(a) Defining the Sudakov exponent in ΓPT

N (as an analytic function of N in the complex N
plane) using PV Borel summation:

Sud(N,mb)|PV
= exp

{

CF

β0
PV

∫ ∞

0

du

u
T (u)

(

Λ2

m2
b

)u

×

[

BS(u)Γ(−2u)(N2u − 1)−BJ (u)Γ(−u)(Nu − 1)

]}

, (6)

where T (u) ≡ (uδ)uδe−uδ/Γ(1+uδ) with δ ≡ β1/β
2
0 and where the Borel transforms of the

quark distribution (soft) and the jet anomalous dimensions, BS(u) and BJ (u), respectively,
are defined in Section 2.2 in Ref. [8].

(b) Applying the same prescription to the quark pole mass mb in Eq. (4) — or, equivalently
to Λ̄ in Eq. (5) — when computing it from the short distance mass (e.g. from mMS

b ).

(c) Performing an inverse–Mellin integral according to Eq. (4).



In general, the calculation of the Sudakov exponent by DGE differ from conventional Su-
dakov resummation (truncation of the sum over l in Eq. (3)) in two respects. First, on the
purely perturbative level, by using Eq. (6) and incorporating the exact analytic results for the
anomalous dimensions in the large–β0 limit [14],

BS(u) = e
5

3
u(1 − u) + O(1/β0),

BJ (u) =
1

2
e

5

3
u
(

1

1 − u
+

1

1 − u/2

)
sinπu

πu
+ O(1/β0), (7)

the resummation of running–coupling contributions is performed to all orders (rather than to
a given logarithmic accuracy) making the result renormalization–group invariant [10]. The
power–like infrared sensitivity, which shows up in Eq. (3) through the divergence of the series,
explicitly appears in Eq. (6) as Borel singularities at integer and half integer values of u. This
brings us to the second difference, which is an important advantage of DGE, namely having a
definite prescription to make power–like separation between perturbative and non-perturbative
contributions. The PV prescription we choose guarantees that the perturbative moments are
real valued: Sud(N,mb)|PV

= [Sud(N∗,mb)|PV
]∗. This choice also defines the non-perturbative

power corrections.
Another key property of this calculation is the exact cancellation [14] of the leading, u = 1/2

infrared renormalon ambiguity b between the Sudakov factor and the quark pole mass in Eq. (4).
This means that the infrared sensitivity, which severely limits the accuracy of the calculation
in a conventional perturbative approach (Fig. 1), is nothing else but an artifact of perturbation
theory — specifically, of using an on-shell heavy quark in the initial state — and it is fully
removed if renormalon resummation is applied in both the Sudakov factor and the pole mass.

To understand this cancellation consider the process–independent definition of the quark

distribution in the meson as the Fourier transform of
〈

B(PB)
∣
∣
∣

[

Ψ̄(y)γ+ Φy(0, y) Ψ(0)
]

µ

∣
∣
∣B(PB)

〉

with respect to y− where y is a lightlike vector, Φy(0, y) is a Wilson line in this direction,
and µ is a (dimensional–regularization) ultraviolet renormalization scale. Let us compare this
distribution to its perturbative counterpart, namely the quark distribution in an on-shell heavy

quark defined by the Fourier transform of
〈

b(pb)
∣
∣
∣

[
Ψ̄(y)γ+ Φy(0, y) Ψ(0)

]

µ

∣
∣
∣ b(pb)

〉

. While the

former is unambiguous, the latter involves an on-shell heavy quark external state, which is
unphysical. While the moments of the latter distribution are infrared– and collinear–safe as
far as logarithms are concerned, their infrared sensitivity renders them ambiguous at power
accuracy. The large–N limit corresponds to the replacements iP+

B y− −→ N and ip+
b y− −→ N

in the two matrix elements, respectively. One then obtains the following relation between the
two soft functions [14]:

S(MB/N ;µ) = SPT(mb/N ;µ) e−(N−1)Λ̄/MB

︸ ︷︷ ︸

leading renormalon cancels out

F((N − 1)Λ/MB), (8)

where power corrections on the soft scale are split into two categories: kinematic ones, which
involve Λ̄ ≡ MB−mb and therefore strongly depend on the quark–mass definition, and dynamical
ones (F), which describe the Fermi motion of the quark in the meson. The OPE shows [1, 2]

that the latter begin at O
(

((N − 1)Λ/MB)2
)

. As indicated in Eq. (8) the cancellation of the

leading renormalon ambiguity involves only the kinematic term and therefore it can be realized
without using any non-perturbative input on the quark distribution in the meson. An explicit
calculation of the quark distribution in an on-shell heavy quark in the large–β0 limitc shows that

bThis cancellation concerns all the moments and it comes on top of the cancellation of the u = 1/2 renormalon
in the total rate [18].

cSuch calculations were performed in a process–specific context [14] for B̄ −→ Xsγ and B̄ −→ Xulν̄ as well as
using the process–independent definition of the quark distribution function [9].



Figure 2: The moment–space Sudakov factor Sud(N, mb) (left), and the corresponding differential spectrum in
b −→ Xsγ (right) as computed by DGE with perturbative expansions of NLL (dotdashed blue line) and NNLL
(full red line) accuracy. In the latter also the residue at u = 1/2 is fixed. The DGE spectra are both matched

with the full NLO. For comparison the conventional NNLL result is also shown (dashed green line).

the leading renormalon ambiguity in the exponent in SPT(mb/N ;µ) is indeed equal in magnitude
and opposite in sign to the one in the pole mass [15,16], confirming the cancelation in Eq. (8).

Returning to the observable, the replacement of the perturbative soft function SPT(mb/N ;µ)
in Eq. (2) by S(MB/N ;µ) of Eq. (8), corresponding to the quark distribution is the meson, yields
the physical spectral moments defined in Eq. (5):

ΓN = H(mb) Sud(N,mb) e−(N−1)Λ̄/MB

︸ ︷︷ ︸

leading renormalon cancels out

F((N − 1)Λ/MB). (9)

These moments are free of the leading renormalon ambiguity. Given our limited knowledge of
dynamic power corrections, as a first approximation it is sensible to neglect them altogether by
setting F ≃ 1. This leads to the second inverse–Mellin formula in Eq. (4), which is nothing but
resummed perturbation theory.

In practice, the application of DGE requires evaluating the integral in Eq. (6) despite in-
complete knowledge of the anomalous dimensions of both the soft and the jet functions. What
we currently know about the exponent includes [8]:

• The analytic expressions in the large–β0 limit [14] for BS(u) and BJ (u) given by Eq. (7).

• NNLO (i.e. O(u2)) perturbative expressions in QCD [8, 14] for both BS(u) [9, 17] and
BJ (u) [13].

• The normalization of the leading renormalon corresponding to the value of BS(u) at
u = 1/2. This value was determined [8], using the cancellation, based on the u = 1/2
renormalon residue in the pole mass, which has been computed [8,19] with a few percent
accuracy from the NNLO perturbative expansion of the ratio between the pole mass and
mMS

b , taking into account the known structure of the singularity [20].

This information is sufficient [8] to constrain the moments up to N ∼ 20 fairly well. This is
demonstrated in Fig. 2. The most important source of remaining uncertainty arises from the
unknown behavior of BS(u) away from the origin, and in particular, for u > 1/2. The stability
reflected in Fig. 2 stands in sharp contrast with the situation we encountered at fixed logarithmic
accuracy (Fig. 1), where the leading renormalon is untamed.

Looking at Fig. 2 one immediately observes that the support properties have changed. While
at any order in perturbation theory the result is identically zero for Eγ > mb/2, upon taking the
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Figure 3: The partial B̄ −→ Xsγ BF with Eγ > E0 as computed by DGE compared with new data from BaBar.
Inner and total error bars on the data points show systematic and statistical plus systematic errors (added linearly),
respectively. The three theory curves shown (indicated on the plot by the corresponding values for Λ̄) correspond

to different input values for mMS

b that roughly cover the uncertainty range on this parameter. Note that the overall
normalization of the theoretical BF, which is fixed here to its central value of BF(Eγ > E0 = mb/20) = 3.73 ·10−4 ,

has ∼ 10% uncertainty.

PV in Eq. (6) the distribution becomes non-zero there. The Eγ = mb/2 boundary is a direct
consequence of the assumption that the initial b quark is on-shell. This inherent limitation of
perturbation theory is removed upon defining the sum of the series in moment space by PV.
Remarkably, the PV result tends to zero near the physical endpoint. This, together with the
observed stability, suggests that in this formulation the dynamical power corrections associated
with the Fermi motion (F), which were neglected here, are indeed small.

4 Comparison with data

Experimentally–favored observables are the partial branching fraction (BF) for Eγ > E0,

BF ≡
ΓB̄−→Xsγ(Eγ > E0)

ΓB̄−→anything

; Γ(Eγ > E0) ≡

∫

E0

dEγ
dΓ(Eγ)

dEγ
, (10)

where the cut value E0 is above 1.8 GeV, as well as the first few spectral moments defined over
similarly limited range of photon energies:

〈

Eγ

〉

Eγ>E0
≡

1

Γ(Eγ > E0)

∫

E0

dEγ
dΓ(Eγ)

dEγ
Eγ , (11)

〈(〈

Eγ

〉

Eγ>E0
− Eγ

)n〉

Eγ>E0
≡

1

Γ(Eγ > E0)

∫

E0

dEγ
dΓ(Eγ)

dEγ

(〈

Eγ

〉

Eγ>E0
− Eγ

)n
. (12)

Measurements of the average energy defined in Eq. (11), and the variance, n = 2 in Eq. (12),
with E0 = 1.815 GeV were published [21] by Belle in 2004.

The method presented in the previous section facilitates theoretical calculation of the B̄ −→
Xsγ spectrum, and thus also evaluation of the cut moments defined above, by purely perturbative
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Figure 4: The first two cut moments of the B̄ −→ Xsγ spectrum: 〈Eγ〉 (left) and
〈
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〉
(right), as a

function of the minimum photon energy cut E0, as calculated by DGE (varying mMS

b and αs within their error
ranges), compared with data from Belle and BaBar. Inner and total error bars show systematic and statistical

plus systematic errors (added linearly), respectively.

means, so long as power corrections (F) can be neglected. Since these power corrections are
controlled by the soft scale mb/N , they become increasingly important with increasing E0.
In order to test the theory and, eventually, determine these power corrections it is therefore
useful [8] to compare the theoretical calculation with data as a function of E0. Such comparison
was done for the first time during the Moriond meeting, following the talk by J.J. Walsh [22]
who presented new (and preliminary) results from Babar; see Figs. 3 and 4.

5 Conclusions

We presented a new approach to inclusive decay spectra in QCD and its application to the
B̄ −→ Xsγ spectrum. Our method, Dressed Gluon Exponentiation, incorporates renormalon
resummation as well as Sudakov resummation and uses the PV prescription to separate between
computable perturbative contributions and non-perturbative power corrections, which become
important near the endpoint.

We have shown that, despite the apparent infrared sensitivity which shows up as divergence
of the perturbative expansion in Eq. (3), the predictive power of resummed perturbation theory
is high. This is reflected, for example, in the stability of the DGE result shown in Fig. 2.
A key property underlying this predictive power is the exact cancellation of the leading infrared
renormalon ambiguity [14]. This cancellation can be understood as a manifestation of the
infrared– and collinear–safety of the physical spectral moments at power accuracy.

In the calculation of the spectrum by Eq. (4) the leading renormalon cancellation is realized
by using the same prescription when defining the sum in the Sudakov exponent and when
computing the quark pole mass which sets the overall energy scale. Renormalon resummation in
both these quantities is of course imperative for this cancellation to take place. The final result
for the spectrum is prescription independent as far as this leading renormalon is concerned.
Having neglected higher power corrections on the soft scale, our result does depend on using
the PV prescription for higher renormalon singularities. While we do not assign to the chosen
regularization any physical meaning, we find the PV prescription particularly useful. Specifically,
the PV–regularized spectrum shares the following key properties with the physical spectrum:
(a) the moments are real valued, (b) the resummed spectrum smoothly extends beyond the

perturbative endpoint and, quite remarkably, tends to zero for Eγ = (mb + O(Λ)) /2, close to
MB/2. This suggest that in this formulation power corrections are indeed small.



Finally, as shown in Figs. 3 and 4, there is good agreement between the theoretical predictions
and data from the B factories for both the partial BF and the first two spectral moments over
the entire range of cuts where data is available. Fits can readily be performed to measure
mMS

b and to put bounds on the dynamical power corrections, which were so far neglected in
this approach. Finally, this successful comparison with data shows that prospects are good for
precision determination of Vub from charmless semileptonic decays using DGE.
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