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Abstract The scientific research community has reached a stage of

maturity where its strong need for high-performance computing has dif-

fused into also everyday life of engineering and industry algorithms. In

efforts to satisfy this need, parallel computers provide an efficient and eco-

nomical way to solve large-scale and/or time-constrained problems. As

a consequence, the end-users of these systems have a vested interest in

defining the asymptotic time complexity of parallel algorithms to predict

their performance on a particular parallel computer.

The asymptotic parallel time complexity of data-dependent algorithms

depends on the number of processors, data size, and other parameters.

Discovering the main other parameters is a challenging problem and the

clue in obtaining a good estimate of performance order. Great examples

of these types of applications are sorting algorithms, searching algorithms

and solvers of the traveling salesman problem (TSP).

This article encompasses all the knowledge discovery aspects to the

problem of defining the asymptotic parallel time complexity of data-

dependent algorithms. The knowledge discovery methodology begins by

designing a considerable number of experiments and measuring their ex-

ecution times. Then, an interactive and iterative process explores data in

search of patterns and/or relationships detecting some parameters that

affect performance. Knowing the key parameters which characterise time

complexity, it becomes possible to hypothesise to restart the process and

to produce a subsequent improved time complexity model. Finally, the
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methodology predicts the performance order for new data sets on a par-

ticular parallel computer by replacing a numerical identification.

As a case of study, a global pruning traveling salesman problem im-

plementation (GP-TSP) has been chosen to analyze the influence of in-

determinism in performance prediction of data-dependent parallel algo-

rithms, and also to show the usefulness of the defined knowledge discovery

methodology. The subsequent hypotheses generated to define the asymp-

totic parallel time complexity of the TSP were corroborated one by one.

The experimental results confirm the expected capability of the proposed

methodology; the predictions of performance time order were rather good

comparing with real execution time (in the order of 85%).

Keywords Complexity, Data-Dependent Algorithms, Parallel Com-

puting, Performance Order

§1 Introduction
Computational science (CS ) is often referred to as the third science,

complementing both theoretical and laboratory science 29). As shows Fig. 1,

Fig. 1 Computational science as the third science.

there is a symbiotic relationship between the three sciences: theoretical find-

ings guide the experimentalists, experimental data is used to build and validate

computational research, and computational research provides the theorists with

new directions and ideas. In particular, as is shown in Fig. 2, the components of

CS are applications, algorithms, and architectures. CS is a scientific endeavor

(an application) that is supported by concepts and skills of mathematics (al-

gorithms) and computer science (architecture). Central to any computational

science problem, there is a model of the problem. Building models for abstracting
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the components of a real problem let us to make predictions of what might hap-

pen. CS takes advantage of not only the improvements in computer hardware,

but also improvements in computer algorithms and mathematical techniques. It

allows resolving issues that were previously too difficult to do due to the intricacy

of the mathematics, the large number of calculations involved, or a combination

of both. Besides, it permits visualization, analysis, and interpretation of large

data sets in ways that can inform some complex problems.

Fig. 2 Computational science components.

For a data-dependent parallel algorithm, similar input data sets may

cause significant execution time variations. Measuring the time required to reach

the solution (the fundamental performance metric) of any parallel algorithm for

all possible input values would allow to answer any question about how the

algorithm will respond under any set of conditions. Nevertheless, it is impossible

to make all of these measurements.

The asymptotic parallel time complexity of a data-dependent algorithm

does not depend only on the number of processors (P ) and on the problem size

(N) but also on unknown parameters. Unfortunately, the other parameters are

unpredictable and seemingly dependent on the properties of the data. Discov-

ering these properties is a challenging problem and the clue to obtain a good

estimate of performance order of data-dependent parallel algorithms. Great ex-

amples of these types of problems are sorting algorithms, searching algorithms,

solvers of the satisfiability problem, solvers of the graph partition, solvers of the

knapsack problem, solvers of the bin packing, solvers of the motion planning,

and solvers of the traveling salesman problem, amongst many others. There are

a lot of interesting related works in the literature that deal with one implementa-



4 Paula FRITZSCHE and Dolores REXACHS and Emilio LUQUE

tion that solve a problem mentioned above and define its complexity. However,

there are no studies showing how to evaluate the asymptotic time complexity of

data-dependent algorithms.

The complexity of a sorting algorithm is established in terms of the size

of a problem and in terms of the disorder of the given problem instance 12). As a

consequence, different measures of disorder have been presented in these kinds of

algorithms 9, 12, 35). The complexity of the problem of deciding whether a given

propositional formula in conjunctive normal form is satisfiable and its variations

has been widely studied 32, 2). The asymptotic complexity of the knapsack prob-

lem is defined by O(nW ) where n is the number of items and W the knapsack

capacity. Many articles exist that discuss different implementations. Most of

them talk about the partially-ordered knapsack 23). It is well-known that an

exhausted search for a traveling salesman problem TSP has an exponential time

complexity 36). An exact solution takes O(n!) time, which is prohibitively long.

For this reason, polynomial-time heuristic search approaches are proposed 21, 22).

This paper provides a general methodology to cover all the issues to the

problem of defining the asymptotic parallel time complexity of data-dependent

algorithms, using a computational approach. This is a good starting point for

understanding some facts related to the non-deterministic algorithms. Any min-

imum contribution in this sense represents a great advance in this subject.

The scientific experimental methodology begins by designing a consider-

able number of examples and measuring their execution times. A well-designed

example involves the worked hypotheses at that time. It guides the experi-

menters in selecting what experiments actually need to be performed. A data-

mining tool then explores the collected data in search of hidden patterns and/or

relationships detecting the main parameters that affect performance. The pat-

terns and/or relationships are modelled numerically in order to generate an

analytical formulation of the execution time required. Knowing the key pa-

rameters which characterise time complexity, it becomes possible to hypothesise

to restart the process and to produce a subsequent improved time complexity

model. Finally, the methodology predicts how the algorithm will perform on a

particular parallel computer when it is given new data sets. The entire process is

neither more nor less than the scientific method, a way to ask and answer scien-

tific questions by making observations and doing experiments 20), computational

experiments in this case.

The traveling salesman problem (TSP) has been chosen as a case study.
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The TSP is of considerable importance not only from a theoretical point of

view but also from a practical one. The drilling of printed circuits boards, the

assignment of routes for planes of a specified fleet, the handling of materials

in a warehouse are some examples. Therefore, there is a concrete need for

defining TSP asymptotic time complexity. As a representative of these practical

problems, a parallel global pruning traveling salesman problem implementation

(GP-TSP) has been analyzed.

The goals of this research are both to examine the influence of indeter-

minism in performance prediction of data-dependent parallel algorithms and to

show the usefulness of the defined scientific experimental process for this kind of

algorithms. A significant number of experiments confirm the expected capability

of the proposed methodology.

The remainder of this article is organized as follows. The next section

presents a general ”knowledge discovery” methodology to the problem of defining

the asymptotic parallel time complexity of data-dependent algorithms. Section 3

describes the case study: the traveling salesman problem. Besides, it provides

detailed coverage of a TSP implementation and their underlying ideas behind

the discovery process of the significant input parameters. Section 4 summarizes

and draws the main conclusions of this work.

§2 Knowledge discovery methodology
The scientific experimental knowledge discovery methodology attempts

to define the asymptotic parallel time complexity of data-dependent algorithms.

The process of knowledge discovery is certainly not new. It is typical of the exper-

imental sciences. An experimental science is based on observation of performing

repeated controlled experiments. Before computers were used to automate this

process, math, physics or statistics researchers were using probability techniques

to model historical data.

The following subsections describe how the scientific experimental meth-

odology works.

2.1 Design of experiments to propose a model
First of all, it is important to understand the algorithm domain and

the relevant prior knowledge, and to analyze its behavior step by step, in a

deep way. It is a try-and-error method that requires specialists to manually

or automatically identify the relevant parameters that can affect the execution
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time of the studied algorithm. Discovering the key parameters is the basis to

obtain a good prediction capacity. Including too many parameters may lead to

an accurate but too complex or even unsolvable model. Hence, great care should

be taken in selecting parameters and a reasonable trade-off should be made. The

CS takes advantage of not only the improvements in computer hardware, but

also, probably more importantly, the improvements in computer data-mining

algorithms and mathematical techniques.

Creating a well-designed experiment involves articulating a goal, choos-

ing an output that characterizes an aspect of that goal, and specifying the data

that will be used in the study taking into account the worked hypotheses at that

time. The experiments must provide a good training data set first to measure the

quality of the model / hypotheses and then to fit the model. After the necessary

training data set has been defined, the studied parallel algorithm must process

each training data obtaining their corresponding execution time, left side of the

Fig. 3.

The term knowledge discovery in databases (KDD) refers to the process

of analyzing data from different perspectives and summarizing it into useful

information. Technically, KDD is the process of finding correlations or patterns

among dozens of fields in large relational databases. A KDD process involves

data preparation (cleaning, preprocessing, and transformation), defining a data-

mining study, reading the valuable data and building a model, understanding

the model, and finally predicting. Every step is shown in Fig. 3. Understanding

previous models and the final model will help researches to improve their general

knowledge about the interest problem. It is an interactive and iterative process,

surrounding numerous steps with many decisions that the end-user carries out
18).

The stage of defining a data-mining study encompassing both the deci-

sion of choosing a data-mining technique (classification, regression, clustering,

dependency modeling, summarization of data, or change and deviation detec-

tion), and the selection of the particular technique and the algorithm to apply

according to the chosen technique. It is important for these techniques to have

the ability to identify relevant attributes and to disregard the superfluous ones.

Regarding the analysis of the problem, a clustering study could be per-

formed to potentially identify groups. Current clustering techniques can be

broadly classified into two categories: partitional and hierarchical. Given a set

of records, partitional clustering obtains a partition of the records into k subsets
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(clusters), so that the data in each subset (ideally) share some common traits

(often proximity according to some defined distance measure). Hierarchical clus-

tering algorithms produce a nested sequence of partitions. These algorithms

work on both bottom up and top down approaches.

Therefore, some important parameters values that affect performance

for the studied algorithm together with their corresponding measured execution

times are analyzed with a k-means clustering algorithm (partition algorithm)

included in a data-mining tool in order to summarize these into a useful infor-

mation (patterns). A more concise description of the result including only a

handful of necessary attributes is more desirable than hundreds of attributes,

see right side of the Fig. 3. Studying these attributes which characterise time

complexity, it becomes possible to suspect new hypotheses to restart the process

and to produce a subsequent improved time complexity model (dashed lines in

Fig. 3).

Fig. 3 Knowledge construction process.

In summary, Fig. 3 shows the high-level steps that are involved in the

overall knowledge acquisition process which includes designing of the training

data set, executing of the studied parallel algorithm, data preparation, defining

a data-mining study and building a model, understanding the model, and finally

predicting. There is no doubt that the design of experiments is directly related

to the suspected hypotheses. The solid lines represent the compulsory path to

follow in the methodology and the dashed lines represent paths of refinement.
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2.2 Validation of the model
A new data set is proposed to be able to validate the created model (left

side in Fig. 4). Although the validation data set constitutes a hold-out sample,

it has not been considered in the building of the model. This enables to estimate

the error in the predictions without having the assumption that the execution

times follow a particular distribution.

Fig. 4 Model validation phase.

Instantiating the analytical formulation (called asymptotic time com-

plexity in Fig. 4) with validation data and particular values of a parallel com-

puter architecture, it is possible to make predictions of performance order. The

quality analysis is an important issue in this stage and has to include relevant

measurements. Each prediction is then compared to the execution time obtain-

ing the prediction error, right side in Fig. 4. The average of the square of this

prediction error enables to compare different models and to assess the accuracy

of the model in making predictions.

2.3 Predicting the performance order
The objective of predicting modeling is always to build a model which

best predicts outcomes for future data. In this study, building a model means

giving a formulation of complexity order. Then, every prediction of performance

order for new input data in a particular parallel computer is obtained instanti-

ating the asymptotic time complexity.
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2.4 The entire methodology
The entire methodology is shown in Fig. 5. The higher part of the picture

describes how is built and fit the model in order to define the final asymptotic

time complexity formulation, sections 2.1 and 2.2. The lower part of the picture

shows the prediction framework, section 2.3.

Every stage in the defined methodology can implicate a backward motion

to previous steps (dashed lines in Fig. 5) in order to obtain extra or more precise

information.

Fig. 5 The entire novel methodology.
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§3 A case of study: the traveling salesman prob-
lem

The traveling salesman problem (TSP) is one of the most famous issues

in the field of the combinatorial optimization. In spite of the apparent simplicity

of their formulation, the TSP is a complex solving data-dependent problem.

Not only the complexity of its solution has been a continue challenge to many

researchers 7, 33, 36, 3) but also the prediction of its performance to reach the

solution.

This section gives an overview of the existing TSP problems as well as

many practical issues that can be formulated as TSP problems. In addition a

parallel Euclidean TSP implementation is presented. The objective is to show

the usefulness of the general knowledge discovery process.

3.1 TSP problem statement
The TSP for C cities is the problem of finding a tour visiting all the

cities only once and returning to the starting city so that the sum of the distances

between consecutive cities is minimized. The requirement of returning to the

starting city does not change the computational complexity of the problem 13).

3.2 TSP practical problems
The TSP is of considerable importance not only from a theoretical point

of view but also from a practical one. Issues having the TSP structure occur in

the analysis of the structure of crystals 8), in handling materials in a warehouse
30), in clustering of arrays data 25), in sequencing jobs on a single machine 15),

in physical mapping problems 1), in genome rearrangement 31), and in phyloge-

netic tree construction 24) amongst many others. Related variations on the TSP

include the resource constrained traveling salesman problem which has applica-

tions in scheduling with an aggregate deadline 28). The prize collecting traveling

salesman problem 5) and the orienteering problem 17) are special cases of this.

The max TSP objective is finding a tour of maximum length 6). The maximum

scatter TSP is the problem of computing a path on a set of points in order

to maximize the minimum edge length in the path. This kind of algorithm is

motivated by applications in manufacturing and medical imaging 4). Most impor-

tantly, the TSP often emerges as a subproblem in more complex combinatorial

problems. The problem of determining for a fleet of vehicles which customers

should be served by each vehicle and in what order each vehicle should visit the
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customers assigned to it is the best known combinatorial problem 11).

But why is it so important to define the asymptotic time complexity

in any of the above examples? For instance, a model for the vehicle routing

problem can provide answers to questions such as ’How much computing time

is needed to finish daily scheduling?’; ’What happens to the complexity if data

and machine sizes are modified?’; ’How many machines are needed to finish the

work within a given time order?’ Besides, the purpose of parallel complexity

theory is to explore the extent to which efficient and fast parallel computation

is possible 10).

3.3 GP-TSP implementation
An Euclidean global pruning TSP∗1 implementation (called GP-TSP) is

presented to obtain the exact TSP solution in a parallel machine. It is used to

analyze the influence of indeterminism in defining the asymptotic time complex-

ity and also to show the usefulness of the methodology. The implementation is

a branch-and-bound algorithm which recursively searches all possible Hamilto-

nian paths and prunes large parts of the search space by maintaining a global

variable containing the length of the shortest path found up to that moment.

The GP-TSP follows the Master-Worker (MW ) programming paradigm 16).

Each city is represented by two coordinates in the Euclidean plane then,

for each city pair exists a symmetrical distance. Considering C different cities,

the Master defines a certain level L to divide the tasks. Tasks are the evaluations

of the possible permutations of C − 1 cities in L elements. The granularity G of

a task is the number of cities that defines the task sub-tree: G = C −L. At the

execution, the Master sends tasks with a variable containing the length of the

shortest path found until that moment.

A diagram of the possible permutations for 5 cities, considering the

salesman starts and ends his trip at the city 1, can be seen in Fig. 6. The

Master can divide this problem into one task of level 0 or four tasks of level

1 or twelve tasks of level 2 for example. The tasks of the first level would be

represented by the cities 1 and 2 for the first task, 1 and 3 for the second, followed

by 1 and 4 and 1 and 5.

∗1 Since any distance measure (Euclidean, Manhattan, Chebychev, ...) would be equivalent,
it was decided to use the Euclidean. Besides, for simplicity, it was considered cities
in R2 instead of Rn. Finding an optimal Hamilton Circuit with the least weight in
a complete weighted graph (where the vertices, the edges, and the weights represent the
cities, the roads, and the cost or distance of that road respectively) would be an equivalent
formulation. Consequently, the ideas of this article can be generalized.



12 Paula FRITZSCHE and Dolores REXACHS and Emilio LUQUE

Fig. 6 Possible paths for the salesman considering 5 cities.

Workers are responsible for calculating the distance of the permutations

left in the task and sending the minimum path and distance of these permu-

tations to the Master. Since the performance of the GP-TSP is not only I/O,

but also CPU -bound, it is very important to minimize the number of distance

computations. Pruning conditions must be applied not only to avoid accessing

irrelevant sets of cities, but also to minimize the number of distances computed.

If the length of a partial path is bigger than the current minimal length, this

path is not expanded further and a part of the search space is pruned in the

GP-TSP. Hence, the estimate of times becomes a complex function.

The GP-TSP algorithm internally works on a symmetric matrix of Eu-

clidean distances. Fig. 7(a) shows an example of a strictly lower triangular

matrix of Euclidean distances; meanwhile, Fig. 7(b) shows a pruning process.

Analyzing Fig. 7(b), each arrow has an associated distance coefficient between

the two cities it connects. The total distance in the first path (in the left) is

of 40 units. The distance between 1 and 2 on the second path (in the right) is

already of 42 units. It is then not necessary for the GP-TSP algorithm to con-

tinue calculating distances from the city 2 on because it is impossible to improve

the distance for this branch.

3.4 Discovering the significant GP-TSP input parameters
Using simple experiments, varying one or two values at a time, it is

possible to infer that time required for the parallel GP-TSP algorithm depends
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Fig. 7 (a) Matrix of distances (b) and a pruning process in the GP-TSP algorithm.

on the number of processors (P), on the number of cities (C ), and on other

parameters. The value of these other parameters are data-dependent. As a result

of the investigation, right now the sum of the distances from one city to other

cities (SD) and the mean deviation of SDs values (MDSD) are the numerical

parameters characterizing the different input data beyond the number of cities.

But, how have these final parameters been obtained? Next, it is described the

way to discover the above mentioned dependencies (SD and MDSD).

Specification of the parallel machine: The executions have been reached

with a 32 node homogeneous PC Cluster (Pentium IV 3.0GHz., 1Gb DDR-

DSRAM 400Mhz., Gigabit Ethernet) at the Computer Architecture and Oper-

ating Systems Department, University Autonoma of Barcelona. All the commu-

nications have been accomplished using a switched network with a mean distance

between two communication end-points of two hops. The switches enable dy-

namic routes in order to overlap communication.

[ 1 ] First hypothesis: location of the cities (geographical pattern)

Given a number of cities with its pattern of distribution, the initial

experiments have provided evidence that times required for the completion of

the algorithm are dissimilar. In order to understand the general process and to

show its progress and results, it has been chosen an example data-set to follow

along this section. It consists of 5 different geographical patterns (named G1 to

G5) of 15 cities each (C1 to C15). Fig. 8 shows the five patterns used for the 15
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cities.

Fig. 8 Five patterns for 15 cities.

The GP-TSP algorithm receives the number of cities (C ) and their coor-

dinates, the level (L), and the number of processors (P). It proceeds recursively

searching all possible paths, applying the pruning strategy whenever possible

and, finally, generating the minimal path and the time spent.

Table 1 GP-TSP execution times (ET , in sec.) by pattern (G1...G5) and starting city (SC,

C1...C15) and assigned cluster (Cl).

Pattern
G1 G2 G3 G4 G5

SC ET Cl ET Cl ET Cl ET Cl ET Cl
C1 216.17 1 36.50 3 15.34 2 10.51 4 8.03 5
C2 214.44 1 36.82 3 15.19 2 10.49 4 7.82 5
C3 77.25 1 38.09 3 15.57 2 10.02 4 7.71 5
C4 72.64 1 37.29 3 15.02 2 10.30 4 7.91 5
C5 70.94 1 18.54 2 15.84 2 10.41 4 7.83 5
C6 74.21 1 17.83 2 15.24 2 10.24 4 7.71 5
C7 75.59 1 18.16 2 10.31 4 10.36 4 7.93 5
C8 73.72 1 18.03 2 10.34 4 10.26 4 7.87 5
C9 69.47 1 17.79 2 10.27 4 9.98 4 8.14 5
C10 74.96 1 17.48 2 10.23 4 9.88 4 8.22 5
C11 75.89 1 17.07 2 10.24 4 9.85 4 8.04 5
C12 70.17 1 17.39 2 10.28 4 9.87 4 8.12 5
C13 73.73 1 18.10 2 10.36 4 9.88 4 7.98 5
C14 70.87 1 17.37 2 10.17 4 9.95 4 8.02 5
C15 73.30 1 18.00 2 10.32 4 9.97 4 7.78 5

Mean Mean Mean Mean Mean
92.23 22.97 12.32 10.14 7.94

Table 1 shows the execution times (ET , in sec.) by pattern (columns

G1 to G5) and starting city (SC, C1...C15) for the GP-TSP using only 8 nodes

of the parallel machine. It is important to observe the dispersion of times while
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maintaining constant the number of processors and the number of cities.

Clustering, a data mining technique, has been applied to discover the

internal information of these values and then to decrease the data-dependence.

Its divides the data set into distinctive data clusters, so that the data in each

cluster share some common trait (similar execution time). The general action

has been done using the well-known k-means clustering algorithm 26) included

in Cluster-Frame 16). Cluster-Frame is a dynamic and open environment of

clustering.

To obtain quite similar groups with respect to the patterns used at

the beginning, k has been fixed in 5 (k is the number of searched clusters).

The initial centroids (one for each cluster) have been randomly selected by the

clustering application. The k-means algorithm aims at minimizing a squared

error function. The objective function with n data points and k disjoint subsets

is:

k∑
j=1

n∑
i=1

|x(j)
i − cj |2 (1)

where |x(j)
i − cj |2 is a chosen distance measure between a data point x

(j)
i and

the cluster centroid cj . The Eq. 1 is an indicator of the distance of the n data

points from their respective cluster centroids.

Columns Cl in Table 1 show the assigned cluster for each sample. For

the clusters 1 to 5, the centroids values have been 92.23, 16.94, 37.17, 10.19, and

7.94 seconds, respectively.

The quality evaluation involves the validation of the above mentioned

hypothesis. For each experiment, the assigned cluster has been confronted with

the defined graphic pattern previously. The percentage of hits expresses the

capacity of prediction. A simple observation is that the execution times have

been clustered in a similar way to patterns fixed at starting (Fig. 8). In this

example, the capacity of prediction has been of 65% for the GP-TSP. This

means that there is a close relationship between the patterns and the run times.

Conclusions: The initial hypothesis for the GP-TSP has been corrob-

orated; the capacity of prediction has been greater than 60% for the full range

of experiments tested. The expressed percentage has given evidence of the ex-

istence of other significant parameters. Therefore, a deep analysis of results

revealed an open issue remained for discussion and resolution, the singular ex-

ecution times by pattern. Another major hypothesis was formulated. At this
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stage, the asymptotic parallel time complexity was defined as O(P, C, pattern).

[ 2 ] Second hypothesis: location of the cities and starting city

The data-set is the same previously used. Comparing each chart of Fig. 8

with its corresponding column in Table 1, it is easy to infer some important facts:

• The two furthest cities (1, 2) in Fig. 8(a) correspond with the two higher

time values of starting city C1 and C2 in Table 1 (G1).

• The four furthest cities (1, 4) in Fig. 8(b) correspond with the four higher

execution time values of starting city C1 to C4 in Table 1 (G2).

• The six furthest cities in Fig. 8(c) correspond with the six higher time

values of Table 1 (G3).

• The cities in Fig. 8(d) are distributed among two zones therefore, the

times turn out to be similar enough, see Table 1 (G4).

• Finally, the cities in Fig. 8(e) are close enough, in consequence, their times

are quite similar, see Table 1 (G5).

Another important observation is that the mean of execution times by

pattern decreases as the cities approach, see again Table 1.

Conclusions: Sampling demonstrates the location of the cities and the

starting city (SC) play an important role in run times; the hypothesis has been

corroborated. However, an open issue remains for discussion and solution: how

to relate a pattern (in general) with a numerical value which means execution

time. This relationship establishes a numerical characterization of patterns. On

this basis, an original hypothesis was formulated. At this point, the asymptotic

time complexity for the GP-TSP was redefined as O(P,C, pattern, SC).

[ 3 ] Third hypothesis: sum of distances and mean deviation of sum

of distances

What parameters could be used to quantitatively characterize different

geographical patterns in the distribution of cities? In graph theory, the distance

of a vertex p, d(p), of such a connected graph G is defined by d(p) =
∑

d(p, q)

where d(p, q) is the distance between p and q and the summation extends over

all vertices q of G. This measure is an inverse measure of centrality. At this

stage, the worked inputs are the sum of the distances from one city (x, y) to

the other cities (SD, as shown on Eq. 2), and the mean deviation of SDs values

(MDSD).
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SD =
C∑
i=1

√
(x− xi)2 + (y − yi)2 (2)

The greater is the sum of the distances, the lower is the centrality. If a

particular city is very far from the others, its SD will be considerably greater

than the rest and consequently the execution time will also increase. This can

be observed in Table 2. Therefore, the SD value is an index time.

Table 2 GP-TSP execution times (ET , in sec.) and sum of the distances (SD) by pattern

(G1...G5) and starting city (SC, C1...C15).

Pattern
G1 G2 G3 G4 G5

SC ET SD ET SD ET SD ET SD ET SD
C1 216.17 853.94 36.50 746.10 15.34 664.60 10.51 643.75 8.03 148.74
C2 214.44 887.44 36.82 740.49 15.19 649.14 10.49 635.54 7.82 104.16
C3 77.25 315.51 38.09 820.63 15.57 707.70 10.02 555.70 7.71 141.15
C4 72.64 230.11 37.29 789.80 15.02 678.07 10.30 599.99 7.91 103.35
C5 70.94 226.88 18.54 345.83 15.84 643.65 10.41 611.45 7.83 111.79
C6 74.21 244.56 17.83 330.76 15.24 638.04 10.24 595.58 7.71 102.81
C7 75.59 276.09 18.16 369.56 10.31 467.99 10.36 592.68 7.93 111.28
C8 73.72 294.62 18.03 383.38 10.34 490.55 10.26 639.61 7.87 147.14
C9 69.47 233.53 17.79 370.10 10.27 491.52 9.98 574.23 8.14 123.19
C10 74.96 234.84 17.48 323.12 10.23 446.48 9.88 578.78 8.22 172.52
C11 75.89 259.19 17.07 332.87 10.24 477.42 9.85 544.61 8.04 124.64
C12 70.17 234.22 17.39 325.19 10.28 449.03 9.87 534.91 8.12 131.68
C13 73.73 306.99 18.10 383.11 10.36 504.79 9.88 530.72 7.98 109.78
C14 70.87 239.19 17.37 327.02 10.17 451.21 9.95 574.97 8.02 124.96
C15 73.30 295.27 18.00 372.00 10.32 494.09 9.97 534.36 7.78 96.29

MDSD MDSD MDSD MDSD MDSD
140.94 165.47 90.60 31.56 16.78

Why is it needed to consider MDSD in addition to SD as a significant

parameter? Quite similar SD values from the same pattern (same column) of

Table 2 imply similar execution times. In G1, the SD values for starting city

C4 and C10 are 230.11 and 234.84, respectively. Their execution times (ET )

are similar, 72.64 and 74.96 seconds respectively. But, this relation is not true

considering similar SD values from different patterns (different experiments).

The SD value for G1 and starting city C3, and the SD value for G2 and starting

city C10 are similar (315.51 and 323.12, respectively) but the execution times

are considerably different. The distinct values of MDSD for G1 and G2 explain

the variation of execution times for these similar SD values.

Conclusions: asymptotic parallel time complexity for the GP-TSP al-

gorithm should be defined as O(P,C,SD ,MDSD). A new fact was discover in

the process. By choosing the city which has minimum SD associated value, it is
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possible to obtain the exact TSP solution investing less amount of time. Much

better results it would be reached if the algorithm begins considering the closer

L cities to that city.

3.5 Prediction of GP-TSP performance order
To start, the concepts of geometric pattern matching under Euclidean

motion were applied to measure the mismatch between a new data set and

historical patterns. The Hausdorff distance as a function of relative position was

the distance used 19). Then, the comparison module was definitely replaced by

an identification number in order to make the prediction. Comparing graphics

patterns provides a higher level of uncertainty respect of using a good analytical

expression.

The redefinition of the asymptotic parallel time complexity for the non-

deterministic TSP algorithm represents a significant qualitative change. At this

moment, the GP-TSP has a time complexity of O(P,C,SD ,MDSD). The ana-

lytical formulation allows making predictions for a new data set on a particular

parallel computer. Fig. 9 shows the prediction framework.

Fig. 9 The prediction of performance order framework.

3.6 Two relevant GP-TSP experiments
Additional TSP experiments have been tested to prove certain hypothe-

ses. Tests show how important the geographical patterns of cities are in com-

parison to knowing only their coordinates. Two groups of experiments which

follow a specific pattern each one have helped to confirm the strong compliance

of our hypotheses. Both groups are presented to illustrate this section.
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[ 1 ] Importance of the geographical pattern

Make geometric transformations (shifting, scaling, and rotation) to pat-

terns is without a doubt a trivial test. This is an excellent case study to un-

derstand the importance of geographical patterns. Applying each one of the

transformations to a cities set, similar times are expected using the same algo-

rithm. This leading to conclude, the time required to reach the solution of the

GP-TSP algorithm is constant to certain transformations into the geographical

patterns.

• The coordinates of a city shifted by △x in the x-dimension and △y in

the y-dimension are given by

x′ = x+△x y′ = y +△y (3)

where x and y are the original and x′ and y′ are the new coordinates.

• The coordinates of a city scaled by a factor Sx in the x-direction and

y-direction (the distances among cities are enlarged when Sx is greater

than 1 and reduced when Sx is between 0 and 1) are given by

x′ = xSx y′ = ySx (4)

• The coordinates of a city rotated through an angle θ about the origin of

the coordinate system are given by

x′ = x cos θ + y sin θ y′ = −x sin θ + y cos θ (5)

Fig. 10 A historical pattern (G1) consisting of 15 cities. Besides, the same pattern shifted

and rotated (G2) and then the pattern scaled (G3).
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An example set consisting of 15 cities is chosen from the historical

database (G1). The shifting and rotation transformations are obtained inter-

changing x-coordinate by y-coordinate (G2), and the scaling transformation di-

viding by 2 both coordinates (G3), see Fig 10.

Table 3 shows theGP-TSP execution times using 32 nodes of the parallel

computer for each pattern and starting city. Analyzing the values by row, the

historical execution times and the execution times of the geometric transforma-

tions for a sample (row) are quite similar as it was to be expected. For all cases,

Table 3 GP-TSP execution times (ET , in sec.) by patterns (G1, G2, G3) and starting city

(SC, C1...C15).

Pattern
G1 G2 G3 Mean

SC ET ET ET deviation
C1 46.25 48.52 47.30 0.78
C2 100.30 105.60 102.77 1.81
C3 73.48 76.34 74.52 1.04
C4 32.92 34.52 33.75 0.54
C5 30.83 31.96 31.35 0.39
C6 30.49 31.92 31.22 0.48
C7 31.77 33.00 32.21 0.45
C8 30.10 31.06 30.43 0.35
C9 31.08 32.13 31.92 0.42
C10 30.98 32.24 31.60 0.42
C11 29.94 31.09 30.36 0.42
C12 30.33 31.53 30.85 0.42
C13 31.45 32.82 32.14 0.46
C14 32.67 33.44 32.53 0.37
C15 32.49 33.49 32.89 0.36

the mean deviation of execution times is smaller than 2%.

[ 2 ] Limit cases

A singular case is to have the cities uniformly distributed in a circum-

ference. As the MDSD value will be close to 0, similar execution times are

expected. The idea is considering a limit case in order to confirm the hypothesis

with respect to the MDSD value and its pattern.

Scaling circumference patterns where cities are uniformly distributed

imply obtaining similar execution times. Table 4 shows a comparative behav-

ior study of different circumference patterns (G1, ..., G10) and starting city

(C1...C16, C1...C17,..., C1...C25) applying the GP-TSP algorithm using 32

nodes. The difference between each pattern is the number of cities uniformly

distributed; from 16 (C1...C16 for G1) to 25 (C1...C25 for G10). As presented

in Table 4, there is a progressive increase in the mean execution times. For every

pattern and its derived geometric patterns, the execution times were quite sim-
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ilar starting by each city. The mean deviations of execution times were smaller

than 1%.

Table 4 Mean and mean deviation of execution times (in sec.) by pattern and starting cities.

Pattern
G1 G2 G3 G4 G5

(C1...C16) (C1...C17) (C1...C18) (C1...C19) (C1...C20)
Mean 17.47 23.42 31.87 42.95 54.94
MDev 0.04 0.08 0.08 0.07 0.10

Pattern
G6 G7 G8 G9 G10

(C1...C21) (C1...C22) (C1...C23) (C1...C24) (C1...C25)
Mean 68.67 129.53 367.29 1085.57 2957.15
MDev 0.10 0.11 0.30 2.12 3.03

§4 Conclusion
This article shows that a knowledge discovery methodology based on

simplicity, including only the major factors in performance, can define the as-

ymptotic parallel time complexity of data-dependent algorithms with useful ac-

curacy. Nevertheless, it is important to understand that the performance of a

parallel application is resultant from at least factors of algorithm, implementa-

tion, underlying processor architecture, and interconnected technologies.

In short, the general knowledge discovery methodology begins by design-

ing a considerable number of experiments and measuring their execution times.

A well-designed test guides the researcher in choosing what experiments actually

need to be performed in order to provide a representative sample. A data-mining

tool then explores these collected data in search of patterns and/or relationships

detecting the main parameters that affect performance. Knowing the key pa-

rameters which characterise performance, it becomes possible to hypothesise

to restart the process and to produce a subsequent improved time complexity

model. Finally, the methodology predicts the performance order for new data

sets on a particular parallel computer by replacing a numerical identification.

As a case of study, a global pruning TSP (named GP-TSP) algorithm

has been examined. It has been used to analyze the influence of indeterminism

in performance prediction and also to show the practicality and the advantages

of the methodology. The asymptotic time complexity for the parallel GP-TSP

algorithm depends on the number of processors (P ), the number of cities (C),

and other parameters. As a result of the investigation, right now the sum of the

distances from one city to the other cities (SD) and the mean deviation of these
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SD values (MDSD) are the numerical parameters characterizing the different

input data beyond the number of cities (C). The followed to discover these

significant input parameters has been exhaustively described.

This work encourages further research and testing, as well as how to

provide automatic useful feedback in order to assess more studies and exper-

iments. The existence of more parameters that affect the performance of a

data-dependent algorithm may suggest strategies to fit their asymptotic time

complexity.
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