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Abstract

With the growing scale of HPC applications, there has been an increase
in the number of interruptions as a consequence of hardware failures. The
remarkable decrease of Mean Time Between Failures (MTBF) in current
systems encourages the research of suitable fault tolerance solutions. Mes-
sage logging combined with uncoordinated checkpoint compose a scalable
rollback-recovery solution. However, message logging techniques are usually
responsible for most of the overhead during failure-free executions. Taking
this into consideration, this paper proposes the Hybrid Message Pessimistic
Logging (HMPL) which focuses on combining the fast recovery feature of
pessimistic receiver-based message logging with the low failure-free overhead
introduced by pessimistic sender-based message logging. The HMPL man-
ages messages using a distributed controller and storage to avoid harming
system’s scalability. Experiments show that the HMPL is able to reduce
overhead by 34% during failure-free executions and 20% in faulty executions
when compared with a pessimistic receiver-based message logging.
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1. Introduction

Current HPC machines gather a large number of processors with the ob-
jective of reducing execution time (scalability) or managing more data when
solving complex problems. However, with the increase in the number of
components, the miniaturization and high concentration of hardware com-
ponents, the number of failures that affect systems also increases [1] [2].

In [3] an analysis of 22 HPC systems is presented, where it can be clearly
seen that failure rates in these systems increase as the number of nodes and
processors increases. It has been determined from the data collected that the
main reason for stoppages in these systems are the hardware failures.

Therefore, fault tolerance mechanisms are a valuable feature to guarantee
the successful completion of parallel applications in HPC clusters. The need
for reliable fault tolerant HPC systems has intensified because a hardware
failure may result in a possible increase in execution time because of re-
executions, lower throughput and higher economic costs [3].

In order to handle hardware failures in parallel environments (where in-
trinsic redundancy exists) reducing loss of computational work, rollback-
recovery protocols [4] [3] are used. Many rollback-recovery protocols that
protect parallel applications are based on checkpointing and message logging
or a combination of the two.

Coordinated checkpoint is one of the most used and implemented rollback-
recovery protocol in HPC systems. It consists of interrupting the whole par-
allel application at some points to save a global snapshot of the application,
guaranteeing that there are no message transmissions in course. However,
regarding scalability, this approach has some drawbacks such as: the coordi-
nation time increases with the number of processes; in the event of failure,
even non-failed processes should rollback, affecting resource usage and energy
consumption; and, checkpoint-restart suffer from high I/O overhead.

The current trend in HPC is to avoid fault tolerance solutions where
collective operations (such as the coordination) and centralized components
are used because they could compromise the scalability of applications. On
the other hand, uncoordinated checkpoint protocols allow each process to
save its state independently, without needing coordination. Nevertheless,
in order to avoid the domino effect [4], these protocols should be used in
combination with a message logging approach.

Uncoordinated approaches guarantee that scalability is not compromised,
since each process may take actions on its own, avoiding the costly step
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of process coordination. Moreover, only faulty processes must rollback to
a previous state, reducing the amount of loss computation that has to be
re-executed, and possibly permitting overlap between recovery and regular
application progress. In order to avoid the rollback of non-failed processes,
uncoordinated approaches should be combined with event logging. Thus, in
the event of failure, restarted processes could use the logged messages without
forcing other non-failed processes to rollback for recreating old messages.

Message logging protocols are based on the assumption that process states
can be reconstructed replaying all messages in the correct order [5]. Non-
deterministic events (reception of messages, i/o operations, etc.) should be
replayed in the same way as they occur before the failure. Message logging
techniques consider parallel applications as a sequence of deterministic events
(computation) separated by non-deterministic events (messages) [6].

According to [7], message logging is expected to be more appropriate than
coordinated checkpoints when the MTBF is greater than 9 hours. Moreover,
with smaller MTBF message logging approaches present more advantages
than coordinated checkpoints. For example, while coordinated checkpoints
stop progressing when the MTBF is shorter than 3 hours, message logging
techniques allow applications to continue progressing.

Uncoordinated fault tolerance protocols, such as message logging, seem
to be the best option for failure prone environments, since coordinated pro-
tocols present a costly recovery procedure which involves the rollback of all
processes. Pessimistic log protocols ensure that all messages received by a
process are first logged before it causally influences the rest of the system.

Taking into account that most of the overhead during failure-free execu-
tions is caused by message logging approaches, in this work, we discuss the
most used message logging techniques to provide fault tolerance support. We
also present our proposed message logging approach, which focuses on com-
bining the advantages of pessimistic receiver and sender based approaches,
this technique is called Hybrid Message Pessimistic Logging (HMPL). In [8]
we have presented an introduction and details about this technique, and in
this paper we have extended the analysis made to a wider set of applica-
tions and scenarios, such as failure-free scenarios as well as faulty scenarios.
Furthermore, in this paper the recovery model is fully described.

When designing the HMPL we set the next requirements:

1. Pessimistic: this ensures that in case of a failure, there is no need to
rollback non-failed processes. It also simplifies garbage collection.
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2. Distributed: the logging processes are distributed among the parallel
environment, then the bottlenecks are avoided.

3. Decentralized: messages are saved in senders and receivers of the pro-
cesses involved in the message transmission.

4. Transparent: messages are intercepted by a lower fault tolerant layer,
avoiding changes in application code.

5. Automatic: the protection and recovery mechanisms take place without
any user intervention.

We focus on pessimistic versions because they ensure that in case of a
failure, there is no need to rollback non-failed processes.

The Hybrid Message Pessimistic Logging focuses on combining the fast re-
covery feature of pessimistic Receiver-Based Message Logging (RBML) with
the low protection overhead introduced by pessimistic Sender-Based Mes-
sage Logging (SBML). Furthermore, the main objective of the HMPL is to
perform better than receiver-based approaches during failure-free executions
but also to avoid a high penalization in case of failure.

In this paper we will present and validate the protection and recovery
mechanisms of the HMPL by integrating it inside the Redundant Array of
Distributed and Independent Controllers (RADIC) fault tolerant architecture
[9]. Experiments show that the HMPL is able to reduce overhead by 34%
during failure-free executions and 20% in faulty executions when comparing
it with a pessimistic receiver-based message logging.

The main contributions of this work are detailed below:

• The HMPL focuses on providing fast recovery with low failure-free
overhead by combining characteristics of pessimistic sender-based and
receiver-based message logging approaches. The HMPL aims to bal-
ance fast and local recovery of failed processes (introducing minimal
interference in the rest of the system) with low failure-free overhead.

• We propose the usage of temporal buffers in senders in order to reduce
the penalties of classic pessimistic receiver-based logging in the critical
path of application executions.

• Functional and analytical comparisons between the HMPL and classic
message logging techniques are presented in this paper.
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The main proposal of this work is a message logging protocol that com-
bines advantages of pessimistic sender-based and pessimistic receiver-based
logging in order to reduce failure-free execution time and reduce recovery
complexity.

The rest of the paper is structured as follows: the next section presents the
related work. In Section 3 some classic message logging techniques used as
backbone of our proposal are described. In Section 4, the HMPLis described
in detail. In Section 5 the experimental validation is presented considering
both non-faulty and faulty environments. Finally, in Section 6, we present
our conclusions and future work.

2. Related Work

In the recent past, coordinated approaches were preferred when providing
fault tolerance support to parallel applications because of their ease of de-
ployment and low complexity. However, coordinated checkpoint approaches
present three major disadvantages:

• When using fault tolerance support below the application level ( appli-
cation-transparent fault tolerance ), increasing the number of processes
involved may increase the time needed to coordinate all the processes.
Normally, most protocols require at least two global coordinations [4].

• In the event of failure, all processes of the parallel application must
rollback to a previous state, even the non-failed processes. Then, there
may be a considerable computational time loss and inefficient usage of
resources.

• Checkpoint and restart both suffer from high I/O overhead at the scale
envisioned for future systems, leading to poor overall efficiency barely
competing with replication [10].

The current trend in HPC is to avoid fault tolerance solutions where col-
lective operations (such as the coordination) and centralized components are
used because they could compromise the scalability of applications. On the
other hand, uncoordinated checkpoint protocols allow each process to save
its state independently without needing coordination. Nevertheless, when
combining these protocols with message logging, the overheads in failure-free
executions become relevant.
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Several works have been developed to improve the performance and min-
imize the overhead of message logging protocols. In [11] a sender-based
logging approach to avoid sympathetic rollback of non-failed processes was
presented. Sympathetic rollback means that a process rolls back to re-send a
message that has been lost because the receiver has rolled back to a previous
state. This paper does not address the problem of rolling back because of
orphan message creations. They propose to detect messages that can never
cross a possible recovery line.

In [12] an extensive analysis of message logging protocols is presented
and a comparison of sender-based, receiver-based and causal protocols is
performed. According to the results, they conclude that relying on other
processes to provide messages to restarted processes is not the best option.
Sender-based and causal protocols incur in high recovery costs because of this.
They also recommend that optimistic protocols should focus on developing
orphan-detection protocols, instead of only focusing on performance metrics.

In [7] a coordinated checkpoint protocol is compared with a pessimistic
sender-based message logging implemented in MPICH-V [13]. The obtained
results demonstrate that message logging approaches can sustain a more
adverse failure pattern than coordinated checkpoints.

In [14] a comparison between pessimistic and optimistic sender-based mes-
sage logging approaches is presented, and both seem to have a comparable
performance. Nevertheless, when a failure occurs using sender-based pro-
tocols, processes that were not involved in the failure may need to re-send
messages to restarted processes. Then, the latency and complexity in the
recovery phase are increased.

In [15], they propose to reduce the failure-free overheads in pessimistic
sender-based approaches by removing useless memory copies and reducing
the number of logged events. Nevertheless, the latency and complexity in the
recovery phase are increased because of the usage of sender-based protocols.

In [16] a mechanism to reduce the overhead added using the pessimistic
receiver-based message logging implemented in RADIC was proposed. The
technique consists of dividing messages into smaller pieces, so receptors can
overlap receiving pieces with the message logging mechanism. This technique
and all the RADIC Architecture has been introduced into Open MPI in order
to support message passing applications. RADIC architecture is explained
more in detail in subsection 4.4.

In [12], besides the extensive analysis of classic message logging protocols,
Rao et al. also describe hybrid message logging protocols (Sender-based
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and Causal). They propose an orphan-free protocol that tries to maintain
performance of sender-based protocols while approaching the performance
of receiver-based protocols. In this case the sender syncrhronously saves
messages and the receiver asynchronously saves them into stable storage.
Details about the design of the hybrid logging that they propose are missing.
They do not cover the mechanisms to avoid orphan processes creation, nor do
they specify how and where the received messages are stored. On the other
hand, the HMPL is based on a distributed stable storage where each process
saves messages on a different node and orphan processes are avoided by
detecting the source of non-determinism while receiving messages. Moreover,
the HMPL focuses on providing a scalable message logging solution, and by
being a pessimistic technique it avoids the rollback of non-failed processes.

Classical pessimistic message logging protocols propose saving messages
in a synchronous manner during failure-free executions, thus introducing high
overheads in messages that are transferred between processes inside the same
multicore node. Depending on where the messages should be logged (e.g. a
different node or a centralized stable storage), the latency of an internode
message may be added to the latency of each intercore message.

Coordinated and centralized checkpoints avoid the overhead of message
logging techniques. However, the coordination overheads and checkpoint sav-
ing time may increase considerably when the number of processes increases.

Works like [17], [18] and [19] focus on grouping the processes that com-
municate more frequently in order to reduce the number of messages logged
using a coordinated checkpoint between these processes.

Taking into account that in parallel systems the most common unit of
failure is a node, works such as [20] and [21] focus on developing techniques
to provide hybrid or semi-coordinated checkpoint approaches, where a coor-
dinated checkpoint is used inside the node and messages between nodes are
logged to stable storage. The objective here is to avoid logging intra-node
messages, thus lowering the message logging overhead.

3. Classic Message Logging Techniques

In this section, we describe in detail the pessimistic version of the RBML
and the SBML. We focus on pessimistic versions because they ensure that
in case of a failure, there is no need to rollback non-failed processes. These
two protocols have been used as the backbone of our proposed HMPL. In
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Figure 1: Message Types in uncoordinated checkpoint protocols.

the next paragraphs we present an analysis of the pessimistic versions of the
RBML and the SBML in order to explore their main characteristics.

3.1. Messages Types

When using message logging protocols, we should be able to deal with
different types of messages that could appear during the applications’ exe-
cution. Let us consider the recovery line composed by C1,2, C2,2 and C3,1

while using uncoordinated checkpoints in Figure 1. Below we clarify some
concepts that are used in message logging protocols [21] [18]:

• In-transit Messages: Messages m3 and m4 are crossing the recovery
line and they are considered in-transit messages. Supposing that P3
is affected by a failure, and it restarts from C3,1, messages m3 and m4
will not be available anymore since P2 and P1 have already sent them
in the past. In order to build a consistent recovery line, m3 and m4
should be saved as well as the checkpoints.

• Lost Messages: Messages m3 and m4 from Figure 1 could become
lost messages during a re-execution since the send events are recorded
but not the reception.

• Delayed Messages: These are messages that are sent by non-failed
processes to failed processes that will arrive after the failed processes
restart and reach the corresponding reception event. In Figure 1, m6
is a delayed message.

• Duplicated Messages: These kinds of messages are produced when a
process rolls back and re-sends previously sent messages. Considering
Figure 1, if P3 fails, it will roll back to C3,1 and send m5 to P2 again.
As m5 was already received by P2, this will be a duplicated message
and it should be discarded.
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• Orphan Messages: Considering the recovery line (Figure 1), message
m5 is crossing it from a possible future of P3 to the past of process P2.
Message m5 depends on messages m3 and m4 (taking into account Lam-
port’s happened-before relationship [6]) and in a future re-execution,
the order of reception of these messages could vary (in MPI could be
caused by the usage of a wild-card such as MPI ANY SOURCE). If
this happens, instead of producing message m5, P3 could produce a
different message (m5’) and P2 will become an orphan process because
it depends on a message that does not exist anymore.

Message logging techniques focus on providing a consistent recovery set
from checkpoints taken at independent moments during the execution and
they should be able to deal with the type of messages explained above.

Message logging is useful when the interactions with the outside world are
frequent, because it allows a process to repeat its execution and be consistent
without having to take expensive checkpoints before sending such messages
[4]. Generally, log-based recovery is not susceptible to the domino effect,
making them a good complement to uncoordinated checkpoint techniques.

3.2. Classification of Message Logging Protocols
When using uncoordinated checkpoint protocols, all in-transit messages

should be saved to avoid sender rollback, and non-deterministic events should
be tracked to avoid the creation of orphan messages. Duplicated messages
should also be discarded.

According to the moment in which messages are saved and operation
mode, message logging protocols can be classified in the next three types [4]:

• Pessimistic: In this kind of protocol the assumption is that the failure
could occur immediately after the occurrence of a non-deterministic
event, thus no process can depend on that event until it is correctly
saved in stable storage. Each event is saved in a synchronous manner,
thus increasing the overheads during failure-free execution but avoiding
the generation of orphan messages. Pessimistic protocols guarantee
that only failed processes rollback to their last checkpoint, facilitating
garbage collection and enabling fast recovery.

• Optimistic: Each non-deterministic event is saved in an asynchronous
way, assuming that the events will be saved correctly before the occur-
rence of a failure. This kind of protocols reduces the overhead during
failure-free executions, but orphan processes can be created.
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• Causal: These protocols avoid the synchronous behavior of pessimistic
approaches, but additional copies of messages are generated to avoid
orphan messages. These approaches try to combine the advantages
of the previous ones, but they maintain the drawbacks of optimistic
protocols, since a more complex recovery algorithm is needed.

The mentioned message log protocols can be receiver-based or sender-
based, depending on who saves the message. Receiver-based logging proto-
cols can double the message delivery latency during failure-free executions
because every received message should be re-sent to a stable storage, how-
ever the Mean Time to Recover (MTTR) of a process tend to be lower than
in sender-based approaches. Sender-based logging protocols introduce less
overhead during failure free-executions but during recovery, sender processes
should replay all messages exchanged with restarted processes [4]. Garbage
collection in sender-based protocols is more complex since extra communi-
cations between senders and receivers is needed to erase non-necessary mes-
sages. By contrast, for receiver-based message logging, all necessary data
to rebuild the state of a restarted process is available in its log repository,
therefore this protocol is less complex and normally faster during recovery.
Garbage collection in receiver-based approaches is less complex since after
each checkpoint, receivers can delete their message logs.

3.3. Pessimistic Sender-Based Message Logging

The Pessimistic SBML [22] is a solution that focuses on introducing low
overhead during failure-free executions. Non-deterministic events are logged
in the volatile memory of the machine from which the message is going to be
sent. The main idea behind this message logging technique is to avoid the in-
troduction of high overheads in communications and delays in computations
by asynchronously writing the messages in stable storage.

In Figure 2 we illustrate the operation of a pessimistic version of the
SBML with the main data structures that it requires. We assume that the
message M includes the headers with information about sender, destination
and also the payload of the message. The logical times (tx) that can be
observed on the left of the figure are there only to indicate precedence of
steps. We have split each process task into Application tasks (App) and
fault tolerance (FT) tasks.

The main data structures and values used in the SBML are:
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Figure 2: Sender-Based Message Logging during failure-free execution.

• Send Sequence Number (SSN): this value indicates the number of mes-
sages sent by a process. This value is used for duplicated message sup-
pression during the recovery phase. When a process fails and recovers
from a checkpoint, it will re-send some messages to some receivers. If
the receiver processes have the current SSN value for that sender, they
will be able to discard these duplicated messages.

• Receive Sequence Number (RSN): this value indicates the number of
messages received by a process. The RSN is incremented with each
message reception and then this value is appended to the ACK and
sent back to the sender.

• Message Log : where the sender saves each outgoing message. Along
with the payload of the message also the identification of the destination
process and the SSN used for that message are saved. When the RSN
of the message is returned by the receiver, it is also added to the log.

• Table of SSN : this table is located in the receivers and it registers the
highest SSN value received for messages of each process. The informa-
tion saved in this table is used for duplicated message detection.

• Table of RSN : this table is located in the receivers and has one entry
for each received message. It is indexed by SSN and contains the RSN
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and a value that indicates if the ACK of the message has been received
by the sender.

When a process is checkpointed, all these data structures are also saved,
except the Table of RSN, since all received messages are now part of the
checkpoint. All messages sent to an already checkpointed process should be
deleted from the message log.

In Figure 2, when the message M is about to be sent (from P1 to P2),
P1 first saves the message M and the SSN.

Once the message is saved into a buffer of the sender, the message M and
the SSN are sent to P2. P2 saves the sender ID (P1) and the SSN in the
Table of SSN, as well as incrementing its RSN. After this, P2 adds this RSN
to the Table of RSN and it sends and ACK with the current RSN to P1. P1
receives and adds the RSN to the Message Log, then P1 sends an ACK that
P2 receives and adds to the Table of RSN.

There is almost no delay in computations while the message logging is
taking place since P1 can continue its execution after saving the message and
P2 after receiving it. However, between the reception of a message and the
ACK with the RSN included, the receiver should not send messages [22].

It is possible that processes fail while some messages do not yet have their
RSNs recorded at the sender. These messages are called partially logged mes-
sages. If P2 fails and returns from a checkpoint, it will broadcast requests for
its logged messages and the fully logged messages will be replayed in ascend-
ing RSN order, starting with the stored RSN+1. Partially logged messages
will be sent in any order. As receiver processes cannot send messages while
a message is partially logged, no processes other than P2 can be affected by
the receipt of a message that is partially logged.

If we consider that P1 fails and retransmits M with the SSN equal to 5,
P2 will discard it according to the current SSN value, and if the ACK of this
message was not received by P1, P2 will send it.

However, if a process rolls back to a previous state, it will ask all the
senders for its logged messages. Thus, the senders would have to stop their
executions and look for these messages, unless an FT thread is in charge of
managing the message log.

An approximation of the overheads of the protection stage in the a pes-
simistic SBML approach is represented in Equations 1, 2 and 3, where:

• T Sender is the time spent by the sender when logging the message.
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• T Receiver represents the time spent by the receiver when receiving
the message.

• Wait ACK is the time spent by the process waiting for an ACK.

• ILog and ULog represents the cost of inserting and updating the message
log respectively.

• IDataStructs and UDataStructs represent the cost of inserting and updating
the data structs in the receiver process. IDataStructs includes the time
spent in inserting a new element in the Table of SSN and Table of RSN.
UDataStructs represents the time spent in updating the ACK cell in the
Table of RSN.

The main objective of these equations is to describe analytically how each
message log task may influence the execution time. Equation 1 represents the
total possible delay that may be introduced in each message transmission by
the protection stage. Considering Equation 2, ILog delays the transmission
of each message, Wait ACK could be overlapped with computations and
ULog penalize the progression of the sender process. However, it is impor-
tant to note that the times ILog and ULog (Equation 2) spent in the sender
(T Sender) are in its critical path, thus they are forcibly translated into over-
heads. ILog corresponds to the period of time spent between logical times
t1 and t2 observed in Figure 2 and ULog corresponds to the period between
logical times t4 and t5.

Equation 3 represents the time that the receiver is blocked. During this
time, the receiver can proceed with its execution but it should not send
messages to other processes in order to avoid the creation of orphan processes,
because messages are just partially logged.

Prot SBML = T Sender + T Receiver (1)

T Sender = ILog + Wait ACK + ULog (2)

T Receiver = IDataStructs + Wait ACK + UDataStructs (3)

It is very difficult to accurately represent the recovery cost of a message
logging protocol since it depends on the failure moment, because this affects
the re-execution time. In Equation 4 we represent the cost of the recovery
stage, taking into account that the receiver has been affected by a failure.
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T Restart is the time spent in reading the checkpoint from stable storage and
restarting the process from it. T Broadcast is the time spent in requesting
logged messages to all possible senders. N represents the total number of
processes, X represents the number of messages that a process has to send to
the restarted process (which could be 0 for some processes) and T Message
is the time spent in sending a message to the restarted process. T Rex is the
time spent in re-executing the process till reaching the pre-fault state.

Recovery SBML = T Restart + T Broadcast +
N∑
i=1

X∑
j=0

T Messagei+

T Rex

where i excludes failed process

(4)

It is important to note that the message log is distributed among several
nodes, then the complexity when recovering may be higher. The main draw-
backs of the SBML are: the complexity in dealing with garbage collection
because the message log is distributed among senders; and the disturbances
generated to senders when processes are being recovered.

When a process is checkpointed, it should communicate to the senders
that messages received before the checkpoint will not be needed anymore.
This could be a costly operation if there are many senders and a broadcast
operation is used. However, some works like [13] propose to piggyback this
information when sending an ACK to a sender after a checkpoint.

In faulty scenarios, the failed processes should ask for their logged mes-
sages to all possible senders. The senders should stop their execution, or use
a separated thread, to serve the logged messages to the failed processes, thus
the recovery of a process affects the execution time of non-failed processes.

3.4. Pessimistic Receiver-Based Message Logging

In RMBL protocols, the receiver is in charge of logging each received
message into a stable storage. Thus, in the event of failure, processes are
able to reach the same before fault state by reproducing in order the non-
deterministic events logged.

The pessimistic RBML [4] is a solution that introduces more overhead
during failure-free executions because each received message should be re-
transmitted to a stable storage (eg. memory buffer in another node.). This
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Figure 3: Receiver-Based Message Logging during failure-free execution.

solution may introduce overheads in communications and also in computa-
tions if there are not dedicated resources to deal with message logging.

The main idea behind RBML is to allow failed processes to recover faster,
by avoiding message requests to non-failed processes, and also simplify the
garbage collection, since after a process checkpoint all its received messages
can be erased from the log which is saved only in one location. Moreover, the
recovery is a local task, then a process do not depend on several processes
to reach the before-failure state. In the pessimistic version of this logging
protocol, the receiver processes should not send any messages to other pro-
cesses while all the previous received messages are not properly saved into
stable storage. This is done like this in order to avoid the creation of orphan
processes in case of failure.

In Figure 3 we illustrate the RBML operation in its pessimistic version.
Here we are considering that there are three processes involved, the sender
P1, the receiver P2 and the logger of P2 which is L2. In a system where there
are not dedicate resources, application processes will compete for resources
with the fault tolerance processes and the logger processes. In Figure 3
we are showing in each process and node only the parts involved. We are
also assuming that the message M contains all the header information about
destination and source.

As can be observed in Figure 3, P1 sends a message M with its current
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SSN, P2 receives M, appends its RSN to it and sends it to a stable storage
(L2) (SSN and RSN tables are saved together with each checkpoint). Mes-
sage M is also delivered to the application, it is important to highlight that
operations between instants t3 and t5 can be overlapped. Then, P2 waits for
the confirmation of L2, communicating that message M is properly saved in
order to allow the application to send new messages. This avoids the impact
of partially logged messages in other processes besides the receiver, because
if P2 sends and confirms the logging of a message M1 to another process P3
but fails without logging M, then P3 will be an orphan process.

Let us suppose that P2 fails and restarts from a previous state. After
restarting, P2 will transfer the message log from L2 to its new local node and
consume it in order to reach the pre-fault state. As the non-failed processes
that have received a message from P2 have the SSN value of P2, they can
easily discard messages that P2 sends during recovery.

The cost of the protection stage in the pessimistic RBML approach is
represented in Equation 5, where T Forward M is the time spent in for-
warding the received message to a stable storage, such as memory of another
node. Then the receiver should wait for the insertion of the message into
the message log (ILog) and finally wait for the ACK (Wait ACK) that indi-
cates that the message is properly saved. During these periods, the receiver
should not send messages to other processes in order to avoid the creation of
orphan processes. We consider that times spent in increasing values of SSN
and RSN are negligible, since there is no need to insert values in special data
structures.

Prot RBML = T Forward M + ILog + Wait ACK (5)

In Equation 6 we represent the cost of the recovery stage, taking into
account that the receiver process has been affected by a failure. T Restart is
the time spent in copying the checkpoint from stable storage and restarting
the process from it. T Log represents the time spent in transferring the
message log saved in stable storage (memory of other node, hard disk, etc.),
and T Rex represents the time spent in re-executing the process till reaching
the pre-fault state, the re-execution is usually faster than normal execution
since the restarted process has received all messages locally.

Recovery RBML = T Restart + T Log + T Rex (6)
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In order to erase old messages, after a process finish its recovery could
make a checkpoint and delete all logged messages. This time could also be
used to calculate the recovery time.

If we compare Equation 1 with Equation 5, we can observe that main
difference resides in the time that the RBML approach should spend in for-
warding each received message. In SBML, if the receiver can proceed with
computation while the message logging phase is taking place, it would not
perceive a high delay.

If we compare Equation 4 with Equation 6, we can observe that when
using RBML, the restarted process will be able to reply its messages inde-
pendently, relaying only on the messages saved in the log. On the other
hand, when using SBML, the restarted process will need to consume a mes-
sage log which is distributed among several senders, and this may lead to
higher complexity of the recovery procedure. When collective operations are
used or non-failed processes are disturbed during their normal execution,
these procedures may lead to higher recovery times. It is also important
to highlight that in RBML, the garbage collection is less complex than in
SBML. In RBML, when a process is checkpointed it can send a single com-
mand to delete all its saved log. On the other hand, when using SBML and
a process is checkpointed, all senders should be notified and messages sent
to the process before the checkpoint operation should be deleted.

4. Hybrid Message Pessimistic Logging

The Hybrid Message Pessimistic Logging HMPL aims to reduce the over-
head introduced by pessimistic receiver-based approaches by allowing appli-
cations to continue with their normal execution while messages are being
fully logged. In order to guarantee that no message is lost, a pessimistic
sender-based logging is used to temporarily save messages while the receiver
fully saves its received messages. The HMPL manages messages using a
distributed controller and storage to avoid harming system’s scalability.

4.1. Key Concepts

The HMPL could be presented as a combination of a pessimistic SBML
and an optimistic RBML. We have designed the HMPL to guarantee that
no message is lost in presence of failures in order to allow failed processes
to reach the same before-failure state. In order to design and develop the
HMPL we have set these main objectives:
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Figure 4: Hybrid Message Pessimistic Logging. Event ordering and redundant information
during failure-free executions. Green dotted-lined arrows represent logging operations and
black arrows represent application messages.

1. Availability: we focus on providing a strategy that could achieve a
MTTR of processes similar to those obtained when using a RBML
approach. In order to achieve this, we focus on maintaining the fast
recovery feature of the RBML by allowing a process to restart and
continue with its execution without disturbing non-failed processes.

2. Overhead Reduction: the overheads in communication times during
failure-free executions introduced by a RBML technique could be very
high [4]. Another source of overhead comes from the blocking behavior
of the pessimistic version of RBML. We have focused on removing these
blocking phases from the critical path of a parallel application so we
can reduce the overhead introduced.

4.2. Design

As mentioned before, RBML approaches allow fast recovery of failed pro-
cesses (low MTTR) and SBML approaches introduce low overhead during
failure-free executions. Taking into this account, we designed the HMPL by

18



combining both strategies. The best way to maintain a low MTTR when
using a message log is to save messages when receiving them, so the message
log is not distributed among several processes. By saving received messages,
failed processes may restart from a previous state and then consume this
message log without broadcasting requests for past messages to non-failed
processes. The problem with pessimistic RBML is that each received mes-
sage should be forwarded to stable storage (eg. memory of other node) and
this increases the message transmission and management times.

On the other hand, SBML approaches introduce less overhead during fail-
ure free executions since messages may be saved in a buffer of the sender. If
a process fails and restarts, it has to ask for all necessary messages to the
senders in order to reach the pre-fault state. As we have seen, garbage col-
lection is more complex in SBML since a checkpointed process should notify
the senders so they can erase old messages that belong to the checkpointed
process. It is also important to highlight that the execution of logging tasks
consumes CPU cycles, and this may impact on the execution time if there
are not dedicated resources for the FT tasks.

Figure 4 shows the basic operation of the HMPL when messages are sent
from one process to another (P1 to P2). We have introduced a new data
structure which is a temporary buffer. This buffer is used in the sender and
also in the receiver to temporally save messages in order to allow the receiver
to communicate without waiting for the message log protocol to finish the
full cycle. Thus, the HMPL removes the blocking behavior of SBML and
RBML while the logging is taking place, which means that receiver processes
can communicate with others while messages are just partially logged. The
logger L2 stores the messages in an array in memory which is flushed to disk
asynchronously when a memory limit is exceeded or opportunistically. As
we have seen, message M has all the information about sender and receiver.

Figure 5 shows the flow diagram of the HMPL during the protection stage.
It is important to highlight that we assume the utilization of a transparent
fault tolerant middleware that intercepts and manages messages (FT column
in the figure). Before sending a message, FT of P1 inserts the message M with
its SSN in its temporary buffer (TB). When FT of P2 receives M (checking
the SSN to discard already received messages), it inserts M, the SSN and
RSN in the TB and proceeds with the normal execution. In the meantime,
the FT process of P2 will transmit the message and all the extra data to L2,
which is located in another node, and once FT of P2 receives the confirmation
that M has been correctly saved, it will erase M from its TB (t6 in Figure 5)
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Figure 5: Hybrid Message Pessimistic Logging. Protection mechanism and main tasks
considering three nodes.
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Figure 6: Hybrid Message Pessimistic Logging. Recovery of the receiver.

and inform FT of P1 so it can erase M also from its TB (t7).
Figure 6 illustrates the flow diagram of the recovery procedure of the

receiver. FT of P2 will receive the message log and checkpoint and will
restart the application, connect to its new logger and consume the message
log saved by the Logger L2. After finishing this, FT of P2 will ask P1’s FT if
it has a message in its TB and consume it. Then, the normal execution will
continue, but when P2 has to receive the first message after recovery from a
sender, P2’s FT will ask if there are not messages in the sender’s TB.

It is important to highlight that in most cases the receiver will be able to
fully recover using its message log. However, when there are partially logged
messages, it will need to ask for messages in the TBs of senders. The senders
will hardly be affected by requests since the receiver may directly access the
sender’s TB through the fault tolerance middleware and copy messages.

Taking into account the sender side of each process, when a process is
restarted from a previous checkpoint it may re-send some messages that the
FT process will transparently discard according to the current SSN that the
receiver has for that sender. Furthermore, the receiver can inform the sender
of the current value of the SSN, so the sender will avoid resending unnecessary
messages.

Let us analyze the failure moments and what the impact is on each situ-
ation (we focus on the failure of the receiver). In order to explain the failure
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moments, we will use the logical times (tx) of Figure 4:

• t2-t4 : P1’s FT has the message in its TB, so once P2 starts re-executing
it will consume all saved log in L2, and then ask P1 for message M.

• t4-t6 : P1’s FT has the message in its TB. L2 has also saved M but it
does do not send the ACK to P2, so L2 will erase this message and P1
will re-send M to P2 during re-execution.

• From t6 : M has been saved in L2 and confirmed to P2’s FT. P2 will
consume this message from the message log. In situations where M has
not been erased from P1’s queue, after restarting P2 will continue with
the logging procedure where it stopped and will send the ACK to P1
so it will remove M from its TB.

The overhead of the protection stage in the HMPL is modeled in Equation
7, where ITB is the cost of inserting each message in the TB of the sender
or the receiver. Equation 8 shows the times that are not in the critical path
of each message transmission (unlike the RBML) when using HMPL, where
T Forward M is the time spent when retransmitting the message M to the
Logger in another node, ILog is the time spent in introducing the message in
Log and Wait ACK is the time spent in waiting for ACKs from other nodes.
We are not taking into account the times spent on increasing SSN and RSN
values or checking them, since these times could be negligible.

Prot HML = 2 ∗ ITB + T Overlapped (7)

TOverlapped = T Message + ILog + 2 ∗Wait ACK (8)

In Equation 9 we represent the cost of the recovery stage, where T Restart
is the time spent copying the checkpoint from another node and restarting
the process from it, T Log represents the time spent copying the message log
from stable storage (e.g. memory another node). M represents the number
of neighbors (senders) that have a logged message for the restarted process
in their TB. T Message is the time spent copying messages from senders.
T Rex represents the re-execution time and T ConnectLogger is the hand-
shake time between the restarted process and the Logger.
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Figure 7: Orphan Processes in the Hybrid Message Pessimistic Logging. P2 is restarted
in a spare node after the failure.

Recovery HML = T Restart + TLog

+
M∑
i=1

T Messagei + T Rex + T ConnectLogger
(9)

4.3. Orphan Processes

As the HMPL combines a pessimistic SBML with an optimistic RBML,
there may be a possibility of creating orphan processes. Here we explain how
we avoid the creation of orphan processes. In message logging, the order of
reception is considered the unique source of non-determinism. When using
MPI to write parallel applications, the main source of non-determinism is the
usage of the wild card MPI ANY SOURCE to receive a message. This tag
allows the reception of messages from any possible sender, without specifying
a particular one. In the next paragraphs when we mention Mx’ or Mx” we
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are talking about a message Mx that is coming from another destination.
Let us consider the situation in Figure 7, where message M1 is sent from

P1, received in P2 (R1) and logged in L2 (L M1). Assuming that reception
R2 in P2 is done with a wild card, then P2 receives M2 from P1. Suppose
that having received the message M2, P2 sends M3 to P4 (R3) and then fails
without logging M2 in its logger.

P2 restarts from its checkpoint (C2,1) and reads M1 from its log (RL1)
and, instead of consuming M2 from P1’s temporary buffer, it consumes M2’
from the temporary buffer of P3. Then, P2 saves M2’ in its logger (operation
L M2’) and produces M3’ instead of M3 making P4 an orphan process.

In order to avoid the situation explained above, when we detect that a
wild card reception is being used, we do not allow the receiver to continue
till the message is fully logged. This also allows us to avoid the generation
of requests to all processes’ temporary buffers when restarting.

As different senders have probably initiated the communication to a wild
card reception (M2, M2’ and M2”), non-confirmed messages by the receiver
will be erased from the TB of the senders after the receiver process confirms
the reception of a subsequent message.

4.4. Implementation Details

The proposals presented in this work has been included inside the RADIC
architecture. RADIC is fault tolerant architecture based on a rollback-
recovery protocol which uses a pessimistic receiver-based message logging
associated with uncoordinated checkpoints. RADIC does not need any co-
ordinated or centralized action or element to carry out their fault tolerance
tasks and mechanisms, so application scalability depends on itself. RADIC
acts as a transparent fault tolerant layer between the MPI standard and the
parallel machine, providing a fault resilient environment. The scalability of
RADIC architecture has been addressed in [9] [16]

RADIC operations can be observed in Figure 8. All message exchanges
are made through components called Observers. After receiving a message,
an Observer forwards this received message to a component residing in an-
other node called Protector (Figure 8a). Protectors store checkpoints of the
processes that they protect and they have logger threads that are in charge of
storing received messages. A node failure can be detected through a Heart-
beat/Watchdog mechanism or by Observers that try to communicate with a
failed process (Figure 8b). Failures are masked in order to avoid a fail-stop
behavior.
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Figure 8: RADIC Scenarios: a) Fault free execution. b) Failure in Node 7. c) Inclusion of
Spare Node , transference of checkpoints, Heartbeat/watchdog restoration and assignation
of a new protector to processes of Node 8. d) Restart of faulty processes in Spare Node.

In order to maintain the computational capacity and the initial tuning
in presence of node failures, failed processes may be automatically restarted
in Spare Nodes [23] (Figure 8c). As can be observed in Figure 8d, after the
recovery phase takes place, the initial configuration is maintained.

We have included the HMPL inside the RADIC-OMPI implementation
[23]. The HMPL has been included in the Vprotocol Framework of Open
MPI, since this framework enables the implementation of new message log-
ging protocols in the Open MPI library [14]. The main components of our
message logging implementation are described below. As the HMPL is a
combination of sender and receiver approaches, we split the functionality to
explain it:

1. Sender Message Logging : Before sending a message, the payload of the
message is saved in a circular queue (temporary buffer) in memory. As
this circular queue will be continuously modified, there is no need to
flush it to disk. Before sending another message to the same receiver,
the non-finished logging transmissions will be checked in order to erase
messages from the circular queue. Normally, the circular queue will
contain at most one message per receiver. However, in order to guar-
antee that the size does not grow uncontrollably, the circular queue size
is limited according to a percentage of the total memory available in
the node.

2. Receiver Message Logging : When a message is received, it is introduced
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inside a circular queue and then the message is sent to the logger re-
siding in another node by using a non-blocking communication. When
the logger informs that this message has been saved it will remove it
from its circular queue. Before receiving a message the SSN is always
checked in order to discard already received messages.

3. Logger : We have added special threads (one per application process)
that are executed outside the communicator of the parallel applica-
tion. Each logger publishes its name, so an application process can get
connected to a logger residing in a different node when finishing the
MPI Init command . When a message is received from a connected
process, the logger will save this message in its volatile memory until a
defined level of memory is consumed, then it will asynchronously start
to flush data to disk or it can also command a checkpoint because a
memory limit was exceeded.

5. Experimental Validation

The experiments to test our method have been carried out using a Dell
PowerEdge M600 with 8 nodes, each node with 2 quad-core Intel R© Xeon R©

E5430 running at 2.66 GHz. Each node has 16 GB of main memory and a dual
embedded Broadcom R© NetXtreme IITM 5708 Gigabit Ethernet. RADIC
features and the message logging techniques have been integrated into Open
MPI 1.7. The RADIC middleware is the one in charge of all message trans-
actions that are made through the MPI library. Then, all messages are inter-
cepted and treated according to the specification of each described message
logging technique.

In order to evaluate the HMPL, we have compared it with a pessimistic
RBML since the main objective of the proposed HMPL is to reduce the
overhead of classic RBML avoiding a high penalization in case of failure.

5.1. Initial Validation

In order to make the first experimental validation of our HMPL, we have
used the NetPipe tool [24]. We compare the HMPL with a classic pessimistic
receiver-based message logging technique. We have executed the Netpipe
tool using two processes in two different machines, where one of the process
acts as a sender and the other as a receiver. When using a message logging
approach, messages are retransmitted to a third process running in a third
machine.
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Figure 9: Bandwidth utilization obtained with NetPipe Tool. 100 % of bandwidth is
achieved by not using any log mechanism.

When using the receiver-based logging, every time a message is received,
it is first forwarded to a logger thread residing in another node, and only after
the message is fully saved does the MPI receive call finalize. On the other
hand, as the HMPL proposes the utilization of temporary buffers, there is
no need to wait for messages to be saved while they are being transmitted to
logger threads. Thus after receiving each message, it is copied to a temporary
buffer and then the MPI receive call can finalize. Ideally, the temporary
buffers would contain at most one message per each peer process. However,
when messages are produced faster than they are consumed, the temporary
buffers may increase in size. In order to avoid uncontrolled grows in size, we
set a memory limit for each temporary buffer according to systems’ memory
and once this threshold is surpassed, the HMPL would act as a pessimistic
RBML waiting for confirmation of received messages (Figure 3).

Figure 9 and Figure 10 show the bandwidth utilization and the overheads
respectively (measured by the NetPipe tool), when using each of the message
logging techniques described in failure-free executions. We should notice here
that the benchmark executed without message logging represents 100% of
bandwidth utilization and overhead of 0 % (yaxis). Moreover, a bandwidth
value of 100 % is achieved when no message logging techniques are being
used. Lower bandwidth values indicate a penalization due to re-transmission
of packets (message logging) .The overhead is calculated by comparing the
transmission time of HMPL and receiver-based logging with the transmission
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time of packets when not applying any log mechanism. We are showing
results between 64 KB and 64 MB message sizes.

As the default eager limit of the MPI library is set to 64 KB, for messages
smaller that this size there is no difference between both message logging
techniques. The eager limit is the max payload size that is sent with MPI
match information to the receiver as the first part of the transfer. If the
entire message fits in the eager limit, no further transfers / no Clear-to-Send
(CTS) are needed. If the message is longer than the eager limit, the receiver
will eventually send back a CTS and the sender will proceed to transfer the
rest of the message.

In Figure 9 can be observed that the bandwidth utilization with the
HMPL remains close to 85% while with the receiver-based logging only
reaches 50%. Figure 10 shows that the overheads with the HMPL are near
to 20% for each message transmission and with the receiver-based logging
it is near to 100%, since for each sent message the application should wait
double the time for an answer.

It is important to highlight that these results are just taking into account
two independent processes running in two different nodes, and one logger
thread in other node. Moreover, the system is not under full utilization and
the network cards are not overloaded. In addition, the NetPipe tool just
gives us an approximation of the logging overheads taking into account the
communication times but not the computation cost of logger threads. Thus,
the added overhead will also depend on applications behavior and usage level
of the system.

5.2. Comparison of Logging Techniques in Failure-free Executions

In these experiments we measure the impact of each message logging
technique without taking into account the impact of checkpoints. The main
objective of these experiments is to analyze the impact of two message logging
techniques (HMPL and Pessimistic RBML) assuming the usage of two differ-
ent checkpoint strategies: Uncoordinated Checkpoint and Semi-Coordinated
Checkpoint [20]. When the strategy used is uncoordinated checkpoint, all
message transmissions are logged in a different node. When using a semi-
coordinated strategy, only message transmissions that go from one node to
another are saved in a logger residing in another node. The time required to
take semi-coordinated checkpoints may be longer than uncoordinated check-
points since coordination between processes in the same node is needed, but
this impact is not analyzed here.
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Figure 10: Overheads in message transmissions obtained with NetPipe Tool. 0 % of
overhead is achieved by not using any log mechanism.

In these experiments, the logger threads share cores with application pro-
cesses, so there is also an impact in computations but that is homogeneously
distributed among processes by using CPU affinity to attach each logger to
a core. When there are free cores in a node, these cores are not used by
application processes neither by fault tolerance processes. So, it is ensured
that there are not dedicated resources to fault tolerance threads.

As testbeds we have used the LU, CG and BT benchmarks from the Nas
Parallell Benchmarks (NPB) suite with classes B and C [25]. Each result
presented represents a mean of 5 different and independent executions with
a variance between 1 and 5%.

In Figure 11, we summarize all results obtained by comparing the Hybrid
Message Pessimistic Logging (HMPL) approach with a Pessimistic Receiver-
based Message Logging (RBML) approach. Below we explain each type of
execution made:

• Recv: Executions made using the default pessimistic RBML mechanism
of RADIC. All messages are saved in a logger residing in another node,
even messages between processes residing in the same node. We are
assuming the usage of a fully uncoordinated checkpoint approach.

• Hybrid: In these executions we are using the Hybrid Message Pes-
simistic Logging (HMPL) proposed in this paper. We are assuming the
usage of a fully uncoordinated checkpoint approach.
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(a) Overhead comparison using LU benchmark with classes B and C.

(b) Overhead comparison using CG benchmark with classes B and C.

(c) Overhead comparison using BT benchmark with classes B and C.

Figure 11: Comparison of overheads using the Hybrid Message Pessimistic Logging and
the Pessimistic RBML considering the NAS Parallel Benchmarks during failure-free exe-
cutions. Two checkpoint protocols are used: uncoordinated and semi-coordinated at node
level.

• Recv-SemiCoord: Executions made using the default pessimistic RBML
mechanism of RADIC. In this case we are assuming the usage of the
Semi-coordinated Checkpoint of RADIC Architecture [20].

• Hybrid-SemiCoord: Executions made using the HMPL using the Semi-
coordinated checkpoint approach of RADIC.
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According to the results shown in Figure 11, we can observe that the
HMPL reduces overheads in all cases tested. In each column we can ob-
serve the overhead introduced by each message logging technique used in
comparison to the execution without using message logging. For this set of
experiments, we have used a fill-up strategy to map processes in each node.
Nevertheless, as RADIC requires at least 3 nodes to work properly, experi-
ments with 16 processes have been made with 3 nodes with 7 processes in
the first and second node and 2 processes in the third. It is important to
mention that when there are free-cores in one machine, they are not used
by application processes neither by fault-tolerant threads. This allows us to
take into account the overhead in computation as well as the overhead in
communication of each approach.

Figure 11a shows the overheads obtained when executing the LU bench-
mark. When using the uncoordinated approach of RADIC, we can observe
an overhead reduction between 6% (Class B, 64 processes) and 21% (Class B,
16 processes). If we use the semi-coordinated checkpoint option of RADIC,
we can observe an overhead reduction between 1% (Class C, 16 processes)
and 10% (Class B, 64 processes).

Figure 11b shows the overheads obtained when executing the CG bench-
mark. When using the uncoordinated approach of RADIC we can observe
an overhead reduction of 8% in the worst case scenario (Class C, 16 pro-
cesses) and 27% (Class B, 64 processes) in the best case. If we use the
semi-coordinated checkpoint option of RADIC we can observe an overhead
reduction between 1% (Class C, 64 processes) and 34% (Class B, 32 pro-
cesses).

Results obtained with the BT benchmark are presented in Figure 11c.
With the HMPL and the uncoordinated checkpoint approach of RADIC, we
can observe an overhead reduction of 4% in the worst case scenario (Class
C, 25 processes) and 20% (Class B, 36 processes) in the best case. If we
use the semi-coordinated checkpoint option of RADIC, we can observe an
overhead reduction between 1% (Class C, 36 processes) and 16% (Class B,
36 processes).

The obtained results show that the HMPL is able to reduce overheads
in parallel applications during failure-free executions. The experiments pre-
sented in this section take into account impact in communications as well as
in computations. In order to take into account the impact in communications
we have forced that application processes and fault tolerance threads com-
pete for resources in each core. In the next subsection we will evaluate the
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Figure 12: Total execution time overhead comparison between the Pessimistic Receiver-
based Message Logging and the Hybrid Message Pessimistic Logging in executions affected
by 1 failure.

recovery times of the HMPL and compare them with a pessimistic RBML.

5.3. Experimental Results in Faulty Executions

Here we analyze and compare the impact of the the Hybrid Message Pes-
simistic Logging (HMPL) approach with a Pessimistic Receiver-based Mes-
sage Logging (RBML). The main objective of these experiments is to show
that the HMPL is able to reduce overheads in the total execution time in
applications affected by failures. The experiments presented here are exe-
cuted using 3 nodes and 16 processes, the first two nodes with 7 processes
and the third one with 2 processes. When there are free cores in a node,
these cores are not used by application processes neither by fault tolerance
processes (CPU affinity is used to this purpose). So, it is ensured that there
are not dedicated resources to fault tolerance threads. The uncoordinated
checkpoint approach of RADIC is used. Restart and recovery are made using
a spare node.

In these experiments we consider that the applications are divided in
events, where an event in this case represents the reception of one message
in one process. Checkpoints are taken in the same event in each pair of
executions. Failures are also injected in the same event, in order to properly
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Figure 13: Breakdown of Recovery Times in executions affected by 1 failure. Failure affects
node 3 which has 2 processes running in it.

compare each pair of executions. Failures are injected in the third node where
two processes are residing. One spare node is used to restart failed processes.

In the executions made, the overheads in computations are homoge-
neously distributed among processes by using CPU affinity to attach each
logger thread to a core.

In Figure 12 we summarize the results obtained by comparing the total
execution time with the HMPL approach and with a Pessimistic RBML ap-
proach considering a single failure. Figure 13 presents a breakdown of times
and details about failure injection. Figure 12 summarizes the overheads in
faulty executions, using the LU and the CG benchmarks with classes B and
C. With the class B of the LU benchmark, the HMPL introduces 20% less
overhead than the RBML and 9% less overhead with the class C. Considering
the class B of the CG benchmark, the HMPL introduces 14% less overhead
than the RBML, and 7% less considering class C.

In order to extract the measures shown in Figure 13, we have inserted
timers inside the RADIC architecture that allow us to determine time con-
sumption of each step of the executions. The message log sizes and checkpoint
sizes that are shown have been calculated considering one process when these
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data is transferred to the spare nodes. Below we explain some of the rows of
Figure 13 that are not self-explanatory:

• Checkpoint Event : message number where the checkpoint is triggered.

• Checkpoint Size: the checkpoint size includes the overhead in size
caused by temporary buffers. As it can be observed this overhead
does not affect the checkpoint size (taking into account memory size in
order of MB).

• Failure Event : message number where the failure is injected.

• Pre-checkpoint Time: represents the time spent from the beginning of
the application till the checkpoint takes place.

• Time to failure after checkpoint : represents the time elapsed between
the checkpoint and the failure injection.

• Checkpoint and Message Log to spare Time: is the time spent in trans-
ferring data to the spare node.

• Checkpoint Restart Time: is the time spent in restarting the process
from checkpoint.

• Log Consumption Time: represents the time spent in reading messages
from the message log. When using the HMPL, it also includes the time
spent in copying messages from the temporary buffer of senders.

• Time from restart to end : is the time elapsed between restart finaliza-
tion and application ending.

The main difference between the pessimistic RBML and the HMPL can
be observed in the Log Consumption Time row, since when using the HMPL,
failed processes should ask some messages to their senders and this causes
an almost negligible overhead.

Recovery times of the BT benchmarks are not presented here because
the current RADIC implementation is not able to re-execute properly failed
processes that belong to communicators created with the MPI Comm split
command. The inclusion of restarted processes inside a created communica-
tor will be addressed in the future.
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In faulty executions the HMPL maintains almost the same complexity
of the RBML (garbage collection is simple), slightly increasing the time to
consume the message log. However, this has an almost negligible impact on
the parallel execution, thus the time spent in recovery of the RBML and the
HMPL are almost the same. Therefore, the HMPL seems to be a suitable
replacement to pessimistic RBML, since it reduces the overhead in failure-free
executions with a negligible impact in recovery times.

5.4. Limitations and Overhead Analysis

According to what has been demonstrated in the previous experiments,
the HMPL introduces less overhead than the pessimistic RBML. However,
the overheads in some situations and for some specific configurations could
be high and may discourage the usage of message logging.

Here we are going to discuss the limitations of the HMPL and analyze
possible causes of overheads. Specifically, we will consider the CG benchmark
(Figure 11b), which presents high overheads in some scenarios. The aim of
this discussion is to discover the bottlenecks that avoid the HMPL to perform
better and analyze the best case scenarios for this message logging technique.

Figure 14 illustrates the execution of the CG benchmark class B and D. In
these executions we have put 2 processes per-node, using a total of 8 nodes in
order to avoid system overload, so the applications could be analyzed easily.
As can be observed, overheads in class D are lower than in class B. The
principal reason for this is that the execution of class B in our execution
environment (cluster) is communication-bound.

We have analyzed the execution of each of these benchmarks with the
PAS2P tool [26]. We find that the communications represent 82% of the
execution time of the CG class B with 16 processes. Then, any disturbance
introduced in the communications will considerably affect the total execution
time. Considering the CG class D with 16 processes, the communication time
represents 36% of the application, therefore this is a computation bound
scenario.

The HMPL focuses on removing blocks from the critical path of the ap-
plication. However, extra internode messages will be created, and if these
transmissions could not be overlapped with computations, there is no way to
hide overheads. It is important to note that in communication-bound appli-
cations, the overheads will be considerable since the HMPL will not be able
to overlap the logging step with computation.
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Figure 14: Overhead Analysis of the CG benchmark.

(a) Operation with the Receiver-Based Message Logging.

(b) Operation with the Hybrid Message Pessimistic Logging.

Figure 15: Synthetic Application Operation.

In computation bound scenarios, message logging approaches will be able
to hide a percentage of the overheads in communications with the computa-
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tions. Taking into account that the HMPL focuses on removing blocks from
the critical path of applications, this provides a better chance to overlap the
logging operation with computations.

The HMPL is able to considerably reduce the overheads when comparing
it with the RBML, as have been seen in subsection 5.1. However, if we
consider the computation bound scenario of the CG class D in Figure 14 as an
example, the HMPL is able to reduce around 13% of overhead in comparison
with the RBML. Therefore, it is important to analyze the possible causes
that prevent better results.

We have first analyzed the best scenarios for the HMPL, in order to
find out what the maximum improvement that could be achieved is. A
synthetic application has been developed in order to determine the maximum
potential of the HMPL. In this synthetic application we have a process that
sends messages of different sizes to a receiver, and after the reception of
each message the receiver does some computation. Figure 15a illustrates
the behavior of the synthetic application when using a pessimistic RBML
technique, and Figure 15b shows the execution of the synthetic application
using the HMPL. If the computation is enough to cover the transmission
of the received message to its protector, then the overhead in the execution
time should be very low.

To finalize the experimental evaluation, we have designed a benchmark
application which focuses on replying to the scenario shown in Figure 15.
This is the best case scenario for the HMPL and it can be observed in Figure
16, where the HMPL is able to reduce the added overhead of the RBML up to
fourteen times. In order to achieve such a reduction, receiver processes should
execute computation that allows a total overlap of the logging operation.

Scientific parallel applications are normally composed of a set of phases
that are repeated during application execution [26]. Some of these phases
could be computation bound and others communication bound. If we use
the temporary buffers of the HMPL to save messages during communication
bound phases without retransmitting them to the protectors, we can decrease
overheads in these phases. Then, in computation bound phases, messages in
these temporary buffers could be sent to the logger threads. This method will
allow to reduce impacts in communications, therefore reducing overheads.

In order to apply the above-mentioned method, it will be necessary to
firstly analyze and determine application phases. If a tool such as PAS2P
is used, we will be able to determine the behavior (communication bound,
computation bound, balanced) of each phase and this information could be
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Figure 16: Overhead Analysis with the Synthetic Application.

used by the underlying fault tolerance support to determine the best moment
to log messages in the logger threads.

Such a methodology is beyond the scope of this paper, and is thus left as
an open line of research.

5.5. Discussion

The experiments and validation presented above help us to demonstrate
that the HMPL is able to outperform the RBML in failure-free and faulty
scenarios. Besides that, subsection 5.4 highlights the potential of our ap-
proach when a total overlapping between computational phases and logging
phases is achieved.

In this section we discuss the key aspects that may affect scalability and
sensitivity of the HMPL. We aim to analyze conceptually and experimentally
the benefits of our approach and how it can be extended to other applications
and systems.

The proposed HMPL has been integrated inside the RADIC fault toler-
ance architecture. One of the main advantages of RADIC is that all decisions
and tasks are distributed. Then, there is not a single element or task that
depends on the number of nodes that are being used to execute applications
[9] [16]. Moreover, RADIC acts as a distributed and decentralized controller,
and global communications such as broadcasts are not used. Taking into
account the HMPL design (Section 4), it fulfills RADIC’s characteristics as
well.
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Then, the scalability of the HMPL is fully dependent on how the under-
lying system scales with the increase in the number of nodes used. If the
application (in conjunction with the underlying system) does not scale prop-
erly, then RADIC and the HMPL will not scale because of this. If we analyze
the resource utilization of the HMPL we should take into account the next:

• Communications and Network. Network messages are duplicated
(as any other receiver-based logging approach). However, the HMPL

removes this operation from the critical path, and thanks to RADIC’s
features, these communications can be made between neighbor nodes,
without needing centralized storage. Let us consider the following sce-
nario when RADIC is being used. RADIC (using the HMPL) is being
executed using N nodes with a bandwidth of B between protectors and
protected nodes and then we increase the number of nodes to 100×N ,
but the bandwidth between protectors and protected nodes is still B,
then RADIC will not affect the scalability, since this increment does
not affect the resources that RADIC is currently using. However, if
the bandwidth is reduced, then RADIC and the application will not be
able to scale.

• Memory and Storage. The tables and data structures that RADIC
and the HMPL use can increase a little with the number of nodes, but
as this are simple data structures with only integer values on them, the
tables can easily be allocated in memory. The RADICTable (which is
used by the HMPL) has one entry by application process and each row
contains: process id (4 bytes), URI (256 bytes), the message Receive
Sequence Number (RSN) (4 bytes) and Send Sequence Number (SSN)
(4 bytes). It can be seen that with 10000 processes the size of the
RADICTable that each process has to maintain in memory would be
around 2.5 MB. The size of the Temporary Buffers will depend exclu-
sively on the time spent in logging messages onto stable storage, but
as mentioned before, messages in these buffers are continuously deleted
once they are fully logged. The size of Temporary Buffers can also be
limited, and once the limit is reached, the HMPL can act as a classic
Receiver Based Message Logging (RBML) with the following messages
(until temporary messages are removed from the queue), in order to
avoid increasing the memory usage.

• Computation. The HMPL consumes computational resources as any
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other pessimistic receiver-based approach.

In order to check the sensitivity of our approach when using high speed
networks such as Infiniband, we conducted a set of basic experiments using
an Infiniband environment. We created a synthetic application that pings
data from node A to node B, and node C is in charge of logging messages
received by node B (based on the Netpipe Tool) using packets of 400000
bytes. We executed the application in the using the next infrastructures:

• Dell PowerEdge M600 with 8 nodes, each node with 2 quad-core Intel R©

Xeon R© E5430 running at 2.66 GHz. Each node has 16 GB of main
memory and a dual embedded Broadcom R© NetXtreme IITM 5708 Gi-
gabit Ethernet. RADIC features and the message logging techniques
have been integrated into Open MPI 1.7 with BLCR checkpoint library
support.

• Dell PowerEdge C6145 with 4 nodes, each node with 4 processors AMD
Opteron R© 6200 with Mellanox ConnectX3 MC353A-QCBT (4x10Gbps)
network cards.RADIC features and the message logging techniques
have been integrated into Open MPI 1.7.

Table 1 shows how the performance and benefits of our proposal does
not depend on the underlying network infrastructure. As it can be seen, the
HMPL presents an overhead reduction of around 30% when compared to the
RBML in both environments.

Table 1: Hybrid Message Pessimistic Logging comparison using Infiniband and Gigabit
Ethernet.

Networks Overhead
Receiver-
based (%)

Overhead
Hybrid Pes-
simistic Log-
ging (%)

Overhead Re-
duction (%)

Gigabit Ether-
net

81.42 51.07 30.35

Infiniband 85.04 52.09 32.95
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6. Conclusions and Future Work

In this paper we have presented the Hybrid Message Pessimistic Logging
(HMPL). This technique aims to reduce the impact of pessimistic receiver-
based message logging during failure-free executions without harming the
recovery phase of this protocol.

The main objective of this research is to reduce the negative impact of
message logging techniques in parallel executions. In order to comply with
this objective, we have proposed the HMPL. This is a novel pessimistic
message logging approach that combines the advantages of two of the most
classical message logging approaches: Sender-based Message Logging and
Receiver-based Message Logging. The HMPL approach focuses on provid-
ing a fault tolerant solution with low MTTR of processes by lowering the
complexity of the recovery process of Sender-based approaches and, at the
same time, reducing the impact of failure-free executions in comparison with
receiver-based approaches.

The HMPL relies on the usage of data structures to save messages tem-
porarily (in senders and receivers) and allowing the application to continue
its execution without restricting message emissions while other messages are
being saved in stable storage. The results obtained have demonstrated that
the HMPL is able to reduce up to 34% of overhead during failure-free exe-
cutions and 20% in faulty executions when comparing it with a pessimistic
receiver-based message logging. However, we also have shown that the HMPL

has the potential to reduce the added overhead of the RBML up to fourteen
times when the computation time allows the total overlap of the logging
operation. In order to achieve such a reduction, receiver processes should
execute computation that allows a total overlap of the logging operation.

Future work will focus on extending the analysis of the HMPL to a wider
set of parallel scientific applications. We will also focus our efforts on extract-
ing application data that could be helpful in determining the best moments to
log messages during application executions. By using the HMPL we can save
messages in the temporary buffers during communication bound stages of
applications and allow the logging operation to continue during computation
bound stages.
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