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Abstract

Anesthetics are in routine use, yet the mechanisms underlying their function are incompletely understood. Studies in vitro
demonstrate that both GABAA and NMDA receptors are modulated by anesthetics, but whole animal models have not
supported the role of these receptors as sole effectors of general anesthesia. Findings in C. elegans and in children reveal
that defects in mitochondrial complex I can cause hypersensitivity to volatile anesthetics. Here, we tested a knockout (KO)
mouse with reduced complex I function due to inactivation of the Ndufs4 gene, which encodes one of the subunits of
complex I. We tested these KO mice with two volatile and two non-volatile anesthetics. KO and wild-type (WT) mice were
anesthetized with isoflurane, halothane, propofol or ketamine at post-natal (PN) days 23 to 27, and tested for loss of
response to tail clamp (isoflurane and halothane) or loss of righting reflex (propofol and ketamine). KO mice were 2.5 - to 3-
fold more sensitive to isoflurane and halothane than WT mice. KO mice were 2-fold more sensitive to propofol but resistant
to ketamine. These changes in anesthetic sensitivity are the largest recorded in a mammal.
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Introduction

The molecular mechanisms responsible for the effects of volatile

anesthetics are far from clear. Although volatile anesthetics inhibit

excitatory synaptic transmission and enhance inhibitory signaling,

there is little agreement as to how this phenomenon occurs [1–3].

Ligand-gated ion channels initially emerged as the leading

candidates to mediate these effects. Both GABAA and NMDA

receptors were initially viewed as likely volatile anesthetic targets,

by virtue of their physiologic functions and anatomic locations

within the central nervous system (CNS) [3]. A large number of

compelling in vitro studies substantiated these hypotheses, since

volatile anesthetics could potentiate inhibitory currents through

GABAA channels, or inhibit excitatory transmission in glutama-

tergic neurons [1,4]. However, for a number of different possible

reasons, whole animal models have not supported the hypothesis

that NMDA and GABAA receptors mediate all aspects of general

anesthesia produced by volatile anesthetics [5,6]. To date the

largest change in a mammal to a volatile anesthetic is a 40%

decrease in sensitivity to halothane in a mouse that lacks a 2-pore

potassium channel, TREK-1 [7].

In a forward genetic screen in the nematode, C. elegans, we

identified a mutation, gas-1(fc21), that caused a very significant

hypersensitivity to all volatile anesthetics [8]. The gas-1 gene

encodes a highly conserved subunit of complex I of the electron

transport chain (83% similar to the human orthologue NDUFS2)

[9,10]. RNAi inhibition of most complex I subunits also increased

volatile anesthetic sensitivity [11]. Interestingly, mutations in

subunits of complex II, III, or IV did not change sensitivity of C.

elegans to volatile anesthetics, even though animals carrying these

mutations share many other phenotypes with gas-1 [12,13].

Children with defects in complex I function were hypersensitive

to sevoflurane, whereas children with defects in other steps of

electron transport within the mitochondrion were not, even

though they were indistinguishable in symptoms of mitochondrial

disease from the complex I-deficient patients [14]. Although the

data obtained from patients predicted enhanced sensitivity of other

mammals with complex I dysfunction, the sample size was low, the

genes involved were unknown, and controls were a mixed

population.

A mouse model with complex I deficiency was developed by

conditional inactivation of the Ndufs4 gene that encodes an 18 kD

subunit of complex I. This subunit is not directly involved in

electron transport, but appears to play a role in assembly or

stability of the complex [15,16]. Homozygous Ndufs4-null mice

appear neurologically normal at weaning, but by post-natal day 35

(PN35) the KO mice manifest increasing ataxia, failure to thrive,

and usually die by PN55. This strain has been established as a

model for Leigh syndrome, the most common infantile mitochon-

drial disorder. Mice with selective loss of Ndufs4 function within the

CNS have the same behavioral phenotype as the total KO mice

[16].
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Initial attempts to anesthetize KO mice using standard

conditions were often fatal. Those observations along with the

knowledge of sensitivity of worms and children with complex I

deficiencies prompted us to hypothesize that the KO animals

would be hypersensitive to volatile anesthetics. We determined the

sensitivity to anesthetics shortly after weaning (PN23 to 27), when

the animals are still behaviorally normal and before there is any

evidence of neuronal degeneration in the CNS [16]. Remarkably,

KO mice displayed the greatest hypersensitivity to volatile

anesthetics ever recorded for a mammal. This sensitivity extended

to the non-volatile GABAA facilitator and agonist, propofol [17],

but not to the NMDA antagonist, ketamine [18,19]. The

differential sensitivity to different classes of anesthetics may

provide a clue to the role of complex I in mediating anesthetic

action.

Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All

animal experiments were performed with the approval of the

Animal Care and Use Committee of the University of Washington

(IACUC #2183-02). No surgery was performed and all efforts

were made to minimize suffering.

Anesthetic sensitivity
Mice were maintained with rodent diet (5053, Picolab,

Hubbard, OR) and water available ad libitum in a vivarium with

a 12-h light-dark cycle at 22uC. The KO mice were generated by

crosses of heterozygotes on a C57Bl/6 genetic background,

genotyped by polymerase chain reaction at PN22; KO and WT

littermate controls were tested for anesthetic sensitivity during the

next week.

Mice were anesthetized with halothane or isoflurane and their

temperature was maintained by radiant heat according to the

techniques of Sonner [20,21]. Animals were between 23–27 days

old at the time of exposure to anesthetic. Failure to respond to a

non-damaging tail clamp was recorded. Responses of the same

mouse to different doses of the volatile anesthetics were measured

after 15 min of equilibration between doses. All animals were

exposed to a single anesthetic drug. Samples of isoflurane or

halothane were taken at different delivery settings and measured

by gas chromatography as described [8]. The non-volatile

anesthetics: propofol (DiprivanH, AstraZeneca, Wilmington DE,

USA) or ketamine (KetasetH, Fort Dodge, IA, USA) were injected

intra-peritoneally with drug at a concentration of 10 mcg/ul.

Animals were tested for loss of righting reflex (LORR) at 5-min

intervals following injection. Animals were kept warm on a heating

pad throughout. Animals were allowed to recover for at least 24 h

before testing again at a different dose of the same anesthetic. No

animal received more than four test doses. Animals that did not

lose righting reflex within 30 min of injection were denoted as a no

LORR.

Statistics
The effective concentration for 50% of the animals tested (EC50)

for volatile anesthetics was determined as described by Sonner et

al., using an up and down method [20]. The effective dose for 50%

of maximum effect (ED50) values for propofol and ketamine were

determined by constructing a dose-response curve for each drug

and taking the midpoint of the curve. Values for EC50s and ED50s

were compared between the WT and KO strains using GraphPad

PrismH and SigmaplotH software (T-test analysis for EC50 and

built-in dose-response curve fitting for ED50) with a modification

as described by Waud [22]. Values for EC50 and ED50 were

compared between the WT and KO strains using a Students t-test.

Significance was defined as a p,0.01. Error bars in Figure 1

represent the standard deviations of the mean. Errors for propofol

and ketamine represent Standard Errors of the mean.

Results

Ndufs4 KO mice were extremely hypersensitive to isoflurane

(Figure 1), with an EC50 that was about one third that of their WT

littermates (KO EC50 = 0.4460.07%; WT EC50 = 1.2360.13%).

KO mice were also hypersensitive to halothane (KO

EC50 = 0.5260.11%; WT EC50 = 1.2860.07%, WT) as shown

in Figure 1. No animals displayed any seizure-like activity with

exposure to the volatile anesthetics. Animals reached steady state

for their response within 5 min of volatile anesthetic exposure and

they recovered from exposure to the gases within 15 min of

breathing room air. KO and WT mice displayed vigorous

responses to tail pinch in air and at sub-anesthetics doses of

volatile anesthetics. The EC50 values of WT mice were similar to

that previously reported for the C57Bl/6 strain [20]. Animals lost

righting reflex at concentrations too low to be delivered with

standard vaporizers.

KO mice were also hypersensitive to propofol, although the shift

was not as extreme as that for the volatile agents (Figure 2). The

dose of propofol that produced LORR in the KO mice was about

one half that of their WT littermates (KO ED50 = 3865 mg/kg;

WT ED50 = 6766 mg/kg). The maximum effect of propofol was

observed within 5 min of injection in both the WT and KO mice

and all animals recovered righting reflex within 15 min of

injection. The ED50 for propofol in WT mice agrees with

published data [23,24].

In contrast to both the previous results, the KO animals were

strikingly resistant to the effects of ketamine (Figure 3), and were

significantly resistant to the LORR (KO ED50 = 10665 mg/kg;

WT ED50 = 6964 mg/kg). The maximum effect of ketamine on

LORR was seen within 5 min of injection for both WT and KO

animals and all animals recovered by 15 min after injection. The

ketamine data for the WT animals agree with a published value of

Figure 1. EC50s for isoflurane (ISO) and halothane (HAL) to
cause immobility in response to tail pinch. Dark bars show the
EC50s for wild-type (WT) mice (n = 10, ISO; n = 6, HAL); open bars show
the values for the Ndufs4 KO mice (n = 10, ISO; n = 6, HAL). Error bars
show the standard deviations. The values for the KO animals were
significantly different from those for WT with a p,0.01.
doi:10.1371/journal.pone.0042904.g001
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65 mg/kg [23,24]. Recovery times for all drugs were similar

between WT and KO animals.

Discussion

We report here the largest change in sensitivity to volatile

anesthetics recorded for a mammal. The ability of complex I

mutations to change response to volatile anesthetics transcends

many phyla, which implies an ancient, common mechanism of

action. The KO mice were equally hypersensitive to two volatile

anesthetics that are quite different in structure. These results are in

contrast to our results with mutations in transmembrane leak

channels that result in differential sensitivity to isoflurane and

halothane in C. elegans [25]. As we have noted previously, we

believe that mitochondrial defects affect a downstream target

relative to the leak channels, such that sensitivities to all volatile

anesthetics are affected [26].

Isoflurane and halothane both enhance GABAA receptor

signaling while antagonizing NMDA receptor signaling [17]

although it is not clear that these effects cause the anesthetized

state. Numerous structure-function experiments have shown that

GABAA receptors are targets of volatile anesthetics, using in vitro

assays. However, when putative targets that were thought to be

resistant to anesthetic action were tested in genetically engineered

mice, the responses to volatile anesthetics were insufficiently

affected [5,27–29]. Thus, the true target(s) of volatile anesthetics

remain enigmatic.

The degree/direction of changes in sensitivity of Ndusf4(KO) is

not uniform across different classes of anesthetic drugs. The KO

mice were also hypersensitive to propofol, which is known to act

primarily on GABAA receptors [17]. However, the hypersensitivity

was not as great as with the volatile anesthetics. In addition, any

explanation for the hypersensitivity of the KO animals to volatile

agents and to propofol must also account for the surprising

resistance of these animals to an NMDA antagonist, ketamine

[18,19]. Since times of onset and recovery for propofol and

ketamine were the same for WT and KO animals, pharmacoki-

netics did not play a major role in these responses; the responses

represent changes in pharmacodynamics. The observation that the

KO mice are resistant to ketamine argues against the possibility

that the KO mice manifest a general neuronal dysfunction at the

time of testing that makes them hypersensitive to all neuronal

depressants. This is in agreement with studies in a mouse model of

Alzheimer’s disease, which also demonstrated no increase in

anesthetic sensitivity despite generalized CNS depression. [30,31].

It also indicates that the targets that produce the anesthetic state

are not identical between ketamine and the other anesthetics

tested here. Ketamine anesthetic action may be unique, as it has

been suggested to involve increased activation and cortical

synchronization rather than neuronal inactivation [32]. Inhibition

of HCN1 channels has also been recently suggested as a

contributing factor in the hypnotic actions of ketamine further

indicating that ketamine function is more complicated than usually

thought [33]. The resistance to ketamine in these mice raises an

intriguing question as to whether similar changes might be present

in humans and may suggest future studies.

How can mitochondrial dysfunction cause extreme hypersen-

sitivity to volatile anesthetics and propofol, and why are defects in

complex I function so important? Complex I is responsible for over

half of the electron transport necessary to generate the mitochon-

drial membrane potential and drive ATP synthesis [34]. The

mitochondrial TCA cycle generates glutamate and the precursors

of GABA and, while a small part of total energy requirements, the

glutamate/glutamine cycle between neurons and glia is dependent

on glycolysis and oxidative phosphorylation [35]. Complex I also

has the potential to generate reactive oxygen species (ROS), which

can result in deleterious oxidation events and/or serve as a critical

signaling molecule, when not functioning optimally [34]. Thus,

there are many possible ways that loss of complex I might cause

hypersensitivity to volatile anesthetics. Most notable is the finding

that presynaptic function in glutamatergic neurons is extremely

sensitive to complex I function [36].

It is possible that anesthetic sensitivity of the KO mice (as well as

C. elegans and children) with complex I deficiency is due to the

direct actions of these compounds on defective complex I [37],

Figure 2. The dose response curves for WT and Ndufs4 KO mice
for LORR after intraperitoneal propofol. Dose-response curves
were generated using the percentage of mice that presented LORR at
the measured concentrations (n = 5–7 per group for each injection
dose). The values for the KO animals were significantly different from
those for WT (p,0.01).
doi:10.1371/journal.pone.0042904.g002

Figure 3. The dose response curves for WT and Ndufs4 KO mice
for LORR after given intraperitoneal ketamine. Dose-response
curves were generated using the percentage of mice that presented
LORR at the measured concentrations (n = 5–7 per group for each
injection dose). The values for the KO animals were significantly
different from those for WT (p,0.01).
doi:10.1371/journal.pone.0042904.g003

Mitochondrial Effects on Anesthetic Sensitivity

PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e42904



further inhibiting its activity and resulting in the inability to

maintain ATP production and/or essential signaling necessary to

maintain neuronal activity. Xi et al. [37] noted that several

mitochondrial proteins bind halothane, including three from

complex I, consistent with the possibility that complex I may be a

direct anesthetic target. In both worms and in mammals,

movement of electrons through complex I is clearly the most

sensitive step within the mitochondrial respiratory chain to

disruption by volatile anesthetics [9,38,39] whereas defects in

respiratory complexes II, III, and IV do not affect anesthetic

sensitivity [12–14,40].

An alternative idea is that anesthetics act primarily on ion

channels as is generally hypothesized [6,17,35], but select

populations of neurons within the CNS may depend on optimal

complex I function to maintain neuronal activity [34]. Assuming

that volatile anesthetics work by altering synaptic transmission in

some specific areas of the CNS, it may be that the animal is able to

match ATP supply to demand in most of the CNS, but has

insufficient ATP to support synaptic transmission by some crucial

neurons. Thus, if those neurons were already compromised due to

complex I mutations and consequently functioning at maximum

capacity, then modulation of ion currents by anesthetics could

selectively compromise their ability to function adequately.

Although many authors hypothesize that anesthetics act

diffusely throughout the CNS, others attribute their actions to

specific brain regions; for example, a portion of the rat brainstem

has been dubbed the ‘‘mesopontine tegmental anesthesia area’’

since injection of GABAA receptor agonists into this region

produces anesthesia [41–44]. The central medial thalamic region

of the rat brain has also been shown to be as crucial to maintaining

consciousness [44]. However, considerable controversy still

surrounds the putative location in the brain for producing the

anesthetic state. The KO mice display progressive gliosis and

eventually neurodegeneration in specific brain regions; primarily

the olfactory bulb, vestibular nucleus, posterior lobes of the

cerebellum and deep cerebellar nuclei. However, some other brain

regions are without obvious gliosis, for example, the pre-Bötzinger

complex, yet are also affected by the mitochondrial defect [16,45].

Consequently, we assume that Ndfus4 deficiency does not affect all

neurons equally. The differences in sensitivity to loss of Ndufs4

could be attributable to differences in (a) intrinsic activity of the

neurons, (b) extent of activation in response to changing

conditions, or (c) regulation of complex I, for example, by

phosphorylation.

It may be possible to identify brain region(s) and neuronal

type(s) where Ndufs4 functions to maintain anesthetic sensitivity.

Because the Ndufs4 allele in our KO mice can be inactivated by

Cre recombinase, it is possible to use Cre-expressing viruses or

specific Cre-driver lines of mice to selectively inactivate Ndufs4 in

specific cell types or brain regions. Alternatively, it is possible to

restore Ndufs4 function to specific cells or brain regions in KO

mice. These approaches were used to demonstrate that the

vestibular nucleus of KO mice is selectively compromised leading

to fatal breathing abnormalities [45]. An additional challenge will

be to ascertain whether complex I dysfunction indirectly facilitates

anesthetic sensitivity or whether volatile anesthetics interfere with

complex I function to directly control sensitivity.
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