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Abstract
Fanconi anaemia (FA) is an inherited disorder characterized by chromosomal instability.

The phenotype is variable, which raises the possibility that it may be affected by other fac-

tors, such as epigenetic modifications. These play an important role in oncogenesis and

may be pharmacologically manipulated. Our aim was to explore whether the epigenetic pro-

files in FA differ from non-FA individuals and whether these could be manipulated to alter

the disease phenotype. We compared expression of epigenetic genes and DNAmethyla-

tion profile of tumour suppressor genes between FA and normal samples. FA samples

exhibited decreased expression levels of genes involved in epigenetic regulation and hypo-

methylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with

histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced

the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic

and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA

patients, we investigated its functional effects on the FA phenotype. This was assessed by

incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA

cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction

of aberrant cells (81% on average). Our results suggest that epigenetic mechanisms may

play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the pheno-

type of FA patients, potentially reducing tumour incidence in this population.
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Introduction
Fanconi anaemia (FA) is an inherited disorder characterized by developmental abnormalities,
bone marrow failure, leukemic progression and solid tumours, especially head and neck. At the
cellular level, FA is characterized by impaired DNA repair and increased chromosomal fragil-
ity, a feature used in its diagnosis [1]. Mutations in 17 genes have been described, all with simi-
lar phenotypes, suggesting that all FA proteins function in common DNA repair pathway [2].

However, the severity of the disease varies even amongst patients from the same family and
with the same mutation [3, 4].

It is therefore plausible that, alongside genetic mutations in FA genes, other factors may
contribute to disease severity and increase the risk of neoplastic transformation.

Epigenetic modifications are important mechanisms by which cells regulate gene expres-
sion. DNA methylation and posttranslational modifications of histones affect chromatin struc-
ture, modulating gene expression and changes in cellular physiology and behavior [5]. There is
ample evidence implicating epigenetic changes in the pathophysiology of MDS, AML and solid
tumours [6–11]. In these malignancies, abnormal DNA methylation and histone deacetylation
have been shown to silence tumour suppressor genes, and change normal expression of onco-
genes, tumour suppressor genes and genes associated with several key cellular functions like
DNA damage repair, cell cycle regulation, adhesion, motility, apoptosis and also signaling
pathways [6, 8, 12]. For example, in ovarian and cervical cancers, hypermethylation of FANCF
leads to its inactivation and to the disruption of the FA-BRCA pathway [13].

These epigenetic changes may be pharmacologically manipulated with DNA hypomethylat-
ing agents and histone deacetylase inhibitors (HDACi) [12, 14–16].

Vorinostat is an HDACi approved for the treatment of cutaneous T-cell-lymphoma. Vori-
nostat promotes protein acetylation, leading to the activation of genes involved in the control
of cell cycle progression, differentiation and apoptosis. It also affects the expression of epige-
netic regulator genes, contributing to their normal expression. In clinical trials it has shown
promising clinical activity against hematological and solid tumours [17].

The aim of this study was to investigate whether epigenetic mechanisms could play a role in
the pathophysiology of oncogenesis in FA and explore the potential of HDACi to improve the
phenotype in FA.

Materials and Methods

Blood samples
Anonymized blood samples were obtained from twelve confirmed Fanconi anemia (FA)
patients following written informed consent. Blood from healthy blood donors was used for
normal controls. The study was approved by the Ethical Committee of Instituto Português de
Oncologia de Lisboa, Francisco Gentil, EPE and all samples treated according to the Declara-
tion of Helsinki.

In vitro cell cultures
Peripheral blood mononuclear cells (PBMC) from blood samples were separated with Ficcol
(Sigma) and cultured in RPMI—1640 medium supplemented with 10% fetal bovine serum
(GIBCO), 2mM L-glutamine and 100μg/ml penicillin/streptomycin (all from Gibco). Treat-
ments were performed with 1μMVorinostat (Selleck Chemicals) or vehicle for the indicated
time points.
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Gene Expression analysis by real time PCR(qPCR)
Total RNA was isolated from cells using the RNeasy Mini Kit (Qiagen), treated with DNase
(Qiagen) and reverse-transcribed into cDNA using RT2 First Strand Kit (Qiagen) according to
the manufacturer’s protocol. qPCR was performed on Roche LightCycler 480 with 84 gene spe-
cific primers for Human Epigenetic Chromatin Modification Enzymes (PAHS-085G, SABios-
ciences, Qiagen). Data was analyzed according to manufacturer’s instructions.

In silico analysis
Bioinformatic analysis of gene expression in FA was performed using the expression array data
published in Vanderwerf I [18].

Analysis of DNA Methylation
Genomic DNA was extracted from primary cells (1x107/ml) using Citogene kit (Citomed),
treated with RNase (Citomed) and digested using EpiTect Methyl DNA Restriction Kit (Qia-
gen) according to the manufacturer’s protocol. qPCR was performed on Roche LightCycler
480 with 94 gene specific primers for Human Tumour Suppressor Genes (EAHS-3550ZG, Qia-
gen). Samples from 2 FA patients were compared with 2 Healthy donors. Data analysis was
performed according to manufacturer’s instructions.

Chromosomal instability assay
Whole blood (0,5ml) was cultured in RPMI– 1640 (supplemented as above and cultures were
stimulated with 5μg/ml of phytohemaglutinin (GIBCO) during 24h. Thereafter, the cultures
were treated with 1μMVorinostat or vehicle for an additional 24h at which point 0.05 μg/ml of
1,2:3,4-diepoxybutane (DEB, Sigma) or vehicle was added to the cultures for 48h. After 96h of
culture, cells were treated with 2μg/ml of colcemid (GIBCO) for 1h, spread on slides, subjected
to hypotonic lysis with 75mM KCl [19, 20] and fixed in solution of 3:1 volumes of methanol:
acetic acid [21].

Slides were stained with 0,5M Leishamn (Sigma) in phosphate buffer, pH 6.8. Fifty meta-
phases per sample were analysed for chromosome aberrations including chromosome and
chromatid breaks, acentric fragments and chromosome and chromatid-type exchange. Gaps
were excluded and rearrangements were scored as two breaks for the calculation of percentage
of cells with aberrations.

Cellular viability assays. Viability was assessed by flow cytometry with Annexin-V- FITC
(Biolegend) and Propidium Iodide (PI) (Sigma-Aldrich).

Statistical analysis. Populations were compared using unpaired 2-tailed Student’s t test or
One-way ANOVA, when appropriate (a p< 0.05 was considered significant) using the Graph-
Pad Prism version 5.00 for Windows (GraphPad Software).

Results
The clinical characteristics of the patients whose samples were used in these experiments are
detailed in Table 1.

Fanconi anemia patients exhibit different expression of epigenetic genes
compared to healthy donors
To evaluate the hypothesis that epigenetic alterations in Fanconi anemia could contribute to
susceptibility to cancer, we used the Human Epigenetic Chromatin Enzymes PCR array to
quantify the expression of 84 genes involved in epigenetic modification of DNA and histones
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in PBMC from 12 FA and compared these to PBMC from 14 healthy donors. We found that 13
genes were differentially expressed in FA as compared to normal cells (Fig 1). These included
genes encoding DNAmethyltransferases (DNMT1, DNM3Tβ) and genes encoding histone
modifying enzymes: acetylases (CIITA), phosphorylases (PAK1), ubiquitinases (RNF20), dea-
cetylases (HDAC2, HDCA8, HDAC9, HDAC10, HDAC11) and also methyltransferases
(SETD6). This differential expression between normal and FA individuals was confirmed
bioinformatically from data from Vanderwerf et. al [18] for PAK1, USP16, DNMT1, DNMT3B,
HDAC2,HDAC9, CIITA,HDAC10 andHDAC11 (S1 Fig).

FA cells exhibit DNA hypomethylation of tumour suppressor genes
In order to ascertain whether the findings from the gene expression assays translated into a dif-
ference in epigenetic patterns in FA compared to normal subjects, we studied the pattern of
DNAmethylation in FA PBMC. For this we used the Human Tumour Suppressor gene PCR
Array to assess promoter DNAmethylation of 94 tumour suppressor genes in 2 PBMC of FA
patients and 2 healthy donors. This revealed a global aberrant hypomethylation of tumour sup-
pressor genes in FA cells as compared to healthy donors. Six of 94 genes were differentially
methylated in FA relative to healthy donors. These included genes whose function are related
to apoptosis (CADM1, SFRP1), cell cycle (ING1), motility (CDH13), oxidative stress (LOX) and
angiogenesis/transcription (CDX2) (Fig 2).

Vorinostat modifies the expression of epigenetic genes
Having observed differences in epigenetic regulator gene expression and in epigenetic patterns
between FA and normal subjects, we tested whether these could be normalized using epigenetic
agents. We chose Vorinostat to test this effect as it is a wide HDACi which able to modulate
epigenetic and gene expression patterns[8] and with proven clinical efficacy. We tested its

Table 1. Summary of clinical data in FA patients.

Patient
Number

Age
(yrs)

Gender Ethnicity Baseline
Hemoglobin

Transfusion
dependence

Physical abnormalities Solid
Tumors

Current
treatment

FA.1 54 M Caucasian 11,6 None Short stature, café au lait spots None None

FA.2 18 F Caucasian 13,6 None Microcephaly, microphthalmia, short
stature, Skeletal malformations

None Escitalopram

FA.3 9 F Caucasian 12 None Short stature None None

FA.4 2 M Caucasian 12,4 None Congenital cardiopathy,
gastrointestinal malformation, short
stature, renal agenesis,
hypospadias, café au lait spots

None None

FA.5 7 F Caucasian 11,4 None Microphthalmia, short stature, café au
lait spots

None None

FA.6 36 F Caucasian 11,6 None Microcephaly, microphthalmia, short
stature, café au lait spots

None Fólic acid

FA.7 32 F Caucasian 12,6 None Microcephaly, microphthalmia, short
stature, café au lait spots

None None

FA.8 45 F Caucasian 12,4 None Microphtalmia None Omeprazol

FA.9 5 M Caucasian 10,9 None Microcephaly, phymosis, café au lait
spots

None None

FA.10 16 F Caucasian 14,6 None Thumb malformation, deafness, short
stature, café au lait spots

None None

FA.11 25 F Caucasian 12,4 None Microcephaly None None

FA.12 31 M Caucasian 8 None Slight microphtalmia None None

doi:10.1371/journal.pone.0139740.t001
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effect on the expression of epigenetic chromatin modification genes which expression was
altered in PBMC from FA patients (Fig 1). Following treatment of FA PBMC with Vorinostat
for 8h and 16h (Fig 3) there was an increase in the expression levels of the DNMT3β gene.
Interestingly, Vorinostat treatment reduced the expression of CIITA and HDAC9, involved in

Fig 1. FA patients have decreased expression of epigenetic chromatin modification enzymes. RNA
was isolated from PBMC from 12 FA patients and 14 healthy controls and the expression of epigenetic
regulator genes was quantified using the Human Epigenetic Chromatin Enzymes PCR array
(SABiosciences). Each panel (A-L) represents the expression of the indicated genes in FA patients and
control samples as described in the materials and methods section.(* 0.05 >p; ** 0.01>p; *** 0.001 > p). In
each panel is indicated the values of FA1 and FA2 patients whose methylation profile was also determined.

doi:10.1371/journal.pone.0139740.g001
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the immune response, PAK1, regulator of theMAPK signaling pathway, and USP16, involved
in regulating the activity of histone H2A. The expression levels of HDAC10,HDAC11,HDAC2,
SETD6, RNF20 and DNMT1 genes were not significantly altered by Vorinostat.

Vorinostat reduces chromosomal breaks in FA cells
Given the capacity of Vorinostat to modulate the expression of epigenetic regulator genes in
FA samples, we investigated its effect on the in vitro phenotype of FA cells. This functional
effect of Vorinostat in FA was tested by assessing its effect on chromosome breaks induced by
DEB. The percentage of aberrant cells induced by DEB was assessed on metaphases obtained
from peripheral blood lymphocytes of patients with FA. Vorinostat reduced the percentage of
aberrant cells (81% ± 21%, p = 0,06) in 6 patients with Fanconi anemia (Table 2, Fig 4A, 4B,
4C, 4D and 4E). There was no reduction in the number of spontaneous chromosomal breaks in
FA cells following treatment with Vorinostat (Table 2).

In this experimental system Vorinostat did not significantly reduce the viability of cells (S2
Fig).

Discussion
Fanconi anaemia is an inherited disease caused by defective DNA repair. Whereas the skeletal,
genitourinary and morphological abnormalities are rarely life-threatening, the development of
bone marrow failure, leukemia and solid cancers are frequently lethal. The aggressiveness of
these complications are compounded by the low tolerance FA patients have to chemotherapy
and radiotherapy [6]. Therefore, a treatment option which could improve the DNA repair

Fig 2. DNAmethylation pattern on tumour suppressor genes in peripheral bloodmononuclear cells of FA patients. PBMC from FA patients and
healthy donor were isolated as in A, DNA was isolated and methylation profile was identified in 2 FA samples and 2 healthy donors samples using EpiTect
Methyl II Complete PCR array (SABiosciences). Samples CTR1 and CTR2 represent control and FA1 and FA2 represent FA patients. Each row represents a
tumour-supressor genes and each column represent a single DNA sample. The methylation degree are represented by the level of intensity of the square,
red representing greater than 10% promoter hypermethylation, and green representing less than 10% promoter methylation (unmethylated) alleles for the
tumour-suppressor gene.

doi:10.1371/journal.pone.0139740.g002
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defect and reduce the incidence of mutations and secondary malignancies would be highly
desirable.

Epigenetic modifications consist in the addition or removal of small molecules onto DNA
or DNA-associated proteins, i.e. histones, and enable eukaryotic cells to alter their gene expres-
sion without altering the DNA sequence [8, 22]. The molecules most commonly implicated in

Fig 3. Effect of vorinostat on epigenetic patterns on chromatin epigenetic modifications enzymes differentially expressed in FAmononuclear
cells. PBMC from FA patients in culture were treated with 1μM vorinostat as indicated or vehicle (control) for 8h and gene expression quantified by qPCR.

doi:10.1371/journal.pone.0139740.g003
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epigenetic regulation are methyl and acetyl groups and DNA methylation status is closely
related and plays a role in regulating to histone acetylation [7, 10, 22]. In addition to the regula-
tion of gene expression, these modifications, in particular DNAmethylation, play an important
role in maintaining DNA and chromatin stability [17].

Table 2. Number of breaks per cell in cultured lymphocytes from FA patients.

Mean number of breaks per cell

Patients Spontaneous breaks (n) Vor 1μM % reduction DEB 0.05μM (n) DEB 0.05μM + Vor 1μM (n) % reduction

FA1 0.28 (50) 0.32 (50) 0.00 2.04 (50) 0.24 (50) 88.24

FA2 0.08 (50) 0.14 (50) 0.00 0.88 (50) 0.14 (50) 84.09

FA3 0.18 (50) 0.18 (50) 0.00 1.38 (50) 0.7 (50) 49.28

FA4 0.8 (50) 0.32 (50) 60.00 7.96 (50) 0.24 (50) 96.98

FA5 0.44 (50) 0.34 (50) 22.72 1.58 (50) 0.88 (50) 44.3

FA6 0.12 (50) 0.25 (50) 0.00 0.74 (50) 0.16 (50) 79.38

Mean±SD 0.23±0.269 0.28±0.083 1.48±2.750 0.24±0.3151

The effect of the Vorinostat was calculated by the percentage of reduction of the number of breaks per cell in the Vorinostat treatments relatively to

Spontaneous breaks and DEB.

doi:10.1371/journal.pone.0139740.t002

Fig 4. Effect of vorinostat on DEB-induced chromosome fragility of FA lymphocytes. (A) Lymphocytes metaphase without treatment. (B) Lymphocyte
metaphase treated with DEB. (C) Lymphocyte metaphase treated with DEB after Vorinostat treatment. The red arrows indicate aberrant chromosomes
characteristic of FA cells. (D) Number of breaks per cell after treatment with Vorinostat. (E) Number of breaks per cell after treatment with Vorinostat on DEB-
induced breaks. The p values are indicated.

doi:10.1371/journal.pone.0139740.g004
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Aberrant epigenetic patterns have been implicated in the pathophysiology of a variety of
haematological and solid tumours [23]. These have been successfully manipulated pharmaco-
logically with promising therapeutic results [8, 24, 25].

Our aim was to investigate whether the epigenetic machinery in FA differs from that of
unaffected individuals and whether its manipulation could somehow affect the FA phenotype.

In the present study, we show that FA cells present decreased levels of several genes involved
in epigenetic regulation as compared to cells from healthy subjects (Fig 1) Gene expression
studies revealed that DNMT1 and DNMT3β expression, involved in DNAmethylation, were
significantly reduced in FA patients both in PBMCs and BM. DNMT1 is responsible for copy-
ing DNA methylation patterns established during embryonic development and their subse-
quent maintenance. DNMT3β is a tumour-suppressor gene with a critical role in DNA
methylation playing a major role in the establishment and maintenance of genomic methyla-
tion patterns. Reduced activity of DNMT1 and DNMT3βmay lead to DNA hypomethylation,
inducing genomic instability and disruption of proto-oncogenes and is directly associated with
tumour formation[26–28]. Abnormal expression of DNMT1 and DNMT3β has been reported
in several tumours, including lung, liver, breast, ovarian, colorectal, meningiomas and lympho-
mas [29, 30].Reduced expression of CIITA was observed in PBMCs but not in BM. This gene
regulates the expression of MHCII gene by recruiting the transcriptional machinery of basic
proteins, acetyltransferases, histone deacetylases (HDAC), and other proteins involved in chro-
matin remodeling. CIITA expression is decreased in several types of hematological and solid
tumours and is associated with decreased tumour immune recognition [31].

The expression of SETD6, a gene that may also impair anti-tumour immune response by
dysregulation of the NF-kB pathway [32], was also reduced in FA PMBCs but remain roughly
the same in BM.

RNF20, which is essential for the regulation of normal levels of p53 [33], is also underex-
pressed in FA. Its reduced expression causes chromosome instability and has been described in
several types of tumours [34–48]. The decreased expression of RNF20 enhances the transcrip-
tional effects of EGF, leading to an increase in transformation, migration and metastasis of can-
cer cells and tumourigenesis [5, 23, 49].

We also found reduced expression of histone deacetylases HDAC 2, 8, 9, 10 and 11 in FA
PMBCs and confirmed HDAC2 and HDAC9 reduced expression in FA BM samples. HDACs
regulate chromatin remodeling and regulate many genes involved both in the initiation and
progression of a variety of cancers.

Despite some discrepancy between our data, obtained from blood samples and the bioinfor-
matics analysis of gene expression data, obtained from bone marrow samples, both concur that
there is altered expression of epigenetic regulating genes in FA. A larger number of samples
would be required to reach firm conclusions.

The reduced expression of these genes in FA, suggests that these patients have altered epige-
netic regulation, which may be involved in the neoplastic complications of this disease. This
hypothesis is corroborated by our finding showing increased DNA hypomethylation at tumor
suppressor gene loci in FA as compared to normal cells (Fig 2). Liu et al have described aber-
rant expression of tumor suppressor and tumor-related genes in FA, corroborating our data
[50]. It is possible that this hypomethylation may increase genomic instability and have an
additive effect on the DNA repair defect of FA, increasing the oncogenic potential in FA
tissues.

Our initial results show that epigenetic regulation and DNA methylation are altered in FA.
These findings suggested that epigenetic manipulation in FA may have a beneficial effect on
this disease phenotype.
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In fact, treatment of FA cells with Vorinostat induced expression of the DNMT3β, involved
in the maintenance of physiological DNA methylation (Fig 3). The suppression of expression
of CIITA and HDAC9 are consistent with a reduction in inflammatory response, which may
play a role in oncogenesis in the context of DNA repair defects.

Of particular relevance was our finding that Vorinostat treatment reduced chromosomal
breaks in FA cells (Fig 4). This may have been due to DNA stabilization through induction of
DNMT3β or mediated by another mechanism yet to be investigated. Whichever mechanism at
play, our findings are very suggestive that Vorinostat exerts a protective effect on the chromo-
somal breaks induced by cross-linking agents. This effect may have an important clinical coun-
terpart as it may translate into greater tolerability to chemotherapeutic agents in FA patients.

These results are the first report of a potential improvement in FA phenotype with an epige-
netic agent. They warrant further pre-clinical testing in animal models with a view to initiating
clinical trials in FA if the results remain promising.

Supporting Information
S1 Fig. FA patients have altered expression of epigenetic chromatin modification enzymes.
Each panel (A-J) represents the expression of selected genes of interest in FA and control sam-
ples as described in materials and methods section. With the exception of DNMT3B, there is
significant difference in the expression of these genes in FA compared to normal samples (�

0.05>p; �� 0.01>p; ��� 0.001> p).
(TIF)

S2 Fig. Vorinostat has no effect on the viability of DEB-treated cells. Viability PBMC of FA
patients as determined by Annexin V/PI staining following treatment with Vorinostat and
DEB in cell culture medium as used to test for chromosomal fragility.
(TIF)
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