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Abstract

Motivation

Genome-scale metabolic models (GEMs) are tools that allow predicting a phenotype from a

genotype under certain environmental conditions. GEMs have been developed in the last

ten years for a broad range of organisms, and are used for multiple purposes such as dis-

covering new properties of metabolic networks, predicting new targets for metabolic engi-

neering, as well as optimizing the cultivation conditions for biochemicals or recombinant

protein production. Pichia pastoris is one of the most widely used organisms for heterolo-

gous protein expression. There are different GEMs for this methylotrophic yeast of which

the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and

iLC915. However, these three models differ regarding certain pathways, terminology for

metabolites and reactions and annotations. Moreover, GEMs for some species are typically

built based on the reconstructed models of related model organisms. In these cases, some

organism-specific pathways could be missing or misrepresented.

Results

In order to provide an updated and more comprehensive GEM for P. pastoris, we have

reconstructed and validated a consensus model integrating and merging all three existing

models. In this step a comprehensive review and integration of the metabolic pathways

included in each one of these three versions was performed. In addition, the resulting

iMT1026 model includes a new description of some metabolic processes. Particularly new

information described in recently published literature is included, mainly related to fatty acid

and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed

model was tested and validated, by comparing the results of the simulations with available

empirical physiological datasets results obtained from a wide range of experimental
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conditions, such as different carbon sources, distinct oxygen availability conditions, as well

as producing of two different recombinant proteins. In these simulations, the iMT1026

model has shown a better performance than the previous existing models.

Introduction
Genome-Scale metabolic models (GEMs) have become one of the most useful and widely
employed tools in systems biology in the last fifteen years [1]. Since the first genome based met-
abolic model was presented [2], a huge number of models have been developed for a broad
variety of species, from archaea and bacteria, to higher eukaryotes [3]. These models link geno-
type with phenotype; thus, they can predict the behavior of an organism under certain environ-
mental conditions [4–6]. GEMs have been applied for both descriptive and predictive
purposes. They have been used for multiple omics data integration [4, 7], for discovering meta-
bolic network properties and organism capabilities as well as for comparing these capabilities
between organisms. In addition they are commonly used for predicting metabolic engineering
targets to improve growth and production of chemicals or recombinant proteins, thus making
processes more efficient at industrial-scale [8–12].

Regarding the expression of heterologous proteins, Pichia pastoris has become more exten-
sively used for industrial applications [13, 14]. It has many interesting properties that make it
suitable for recombinant protein production. One of the main advantages is the availability of
well-established protocols and techniques for its genetic manipulation [15, 16] that enables the
expression and secretion of recombinant proteins, even those with complex post-translational
modifications [17–19]. Moreover, there are a number of promoters available which are suitable
for regulation with different carbon sources [20, 21]. Specifically, one of the most commonly
used is the very powerful and tightly regulated AOX promoter, inducible with methanol [19].
Finally P. pastoris is able to grow up to high cell densities, resulting in high protein production
yields [22, 23]. Due to the increasing interest in using this advantageous methylotrophic yeast,
several efforts have provided tools to better understand its operation, from physiological char-
acterization to metabolic modelling.

The first metabolic models for P. pastoris were limited to the central carbon metabolism and
were used for 13C flux data analysis [24–27]. In 2009, the genome of two different strains,
DSMZ 70382 [28] and GS115 [29], was sequenced. More recently, a third strain (CBS7435)
was also sequenced and annotated [30] showing some discrepancies with previously reported
sequences. Once the genomic data was available, two GEMs were published simultaneously:
iPP668 [31] corresponding to GS115 strain, and PpaMBEL1254 [32] based on the DSMZ
70382 genome. Two years later, a third model (iLC915) became available, also based on the
GS115 genome [33]. Moreover, other GEMs derived by automatic application of reconstruc-
tion algorithms are also available [34, 35] which will not be discussed in this paper due to their
low level of curation and comprehensiveness.

P. pastoris’ GEMmodels are potentially useful platforms for bioprocess design and optimi-
zation, as well as for strain metabolic engineering [36, 37]. In fact, Nocon and co-workers [38]
have already used PpaMBEL1254 to predict overexpression and deletion mutants to enhance
recombinant protein production.

Each one of the three currently available models is fully compartmentalized, but they differ
in the number of reactions and metabolites. The first two models, iPP668 and PpaMBEL1254
have a comparable number of associated genes, reactions and metabolites, as well as similar
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metabolite and reaction identifications and nomenclature. On the other hand, iLC915 incorpo-
rates more P. pastoris specific gene-protein-reaction associations and hence, a larger number of
genes, but several extracellular and nuclear reactions are missing. In general terms, these mod-
els cover the same metabolic processes, but iLC915 is more detailed. Nevertheless, there still
exist some critical issues in these models, such as missing and divergent information or reac-
tions that require manual revision and curation.

Similar to other organisms, such as Saccharomyces cerevisiae, new versions and updated
models integrate previous versions and incorporate new features and information from newly
published literature. In the case of S. cerevisiae, despite the existence of other versions, a con-
sensus metabolic model was developed [39] and it was further developed and upgraded, being
expanded and revised up to the 7th version [40–43].

In this work, we compare the models of P. pastoris and provide an upgraded version. As
mentioned above two different strains were used to obtain these models. Nonetheless, there is a
high degree of identity at the amino acid coding sequences level (93.7%) and functional anno-
tation between the two genome sequences [32]. In addition, no differences were observed in
reactions involved in the metabolization of the different carbon sources [44]. Therefore, a
major objective of our study was to obtain a general model that can be applicable to both
strains. Furthermore, an extensive analysis was performed on several pathways, comparing the
three models and updating them with the newly published literature. Recent findings on P. pas-
toris physiology and metabolism enabled to complete sphingolipid biosynthesis metabolism
and glycosylation pathways, as well as the oxidative phosphorylation electron transport chain.
Furthermore, we included different biomass compositions specific for each of the alternative
carbon sources used. Finally, the model accuracy was tested in a variety of physiological
conditions.

Materials and Methods

Model merging
For the model comparison, an initial step of metabolite nomenclature unification was required.
In PpaMBEL1254 only the identifier (ID) was available in the SBML file, i.e. neither the com-
plete name of metabolites nor any association to a reference database was included. These
metabolite IDs, were mostly the standard IDs most commonly used and therefore also included
in both in BiGG [45] and The SEED [46] reference databases. After this first metabolite parsing
and renaming step was done, MetaNetX [47] database was used in order crosslink information
from KEGG [48], ChEBI [49] and MetaCyc [50]. This step not only allowed unifying metabo-
lite names but also to include its molecular formula and charge at pH 7.2.

Once all metabolite names were unified, PpaMBEL1254 and iPP668 were compared using
ModelBorgifier [51], thereby obtaining a first pre-merged model. In a second step, this merged
model was compared to iLC915, generating a first draft of the consensus model. Due to impor-
tant differences in model structure between iLC915 and the other models, a manual compari-
son was necessary. This was performed by analyzing the structure of each of the remaining
pathways or subsystems. Differences were resolved according to the available literature, com-
paring the reactions with those included in two latest versions of the consensus S. cerevisiae
GEMs [42, 43] or in another recently published S. cerevisiae GEM [52]. Divergences in gene
assignments were resolved using P. pastoris or S. cerevisiae literature. The P. pastoris high qual-
ity sequence annotation [30] and the automatic reconstructions for P. pastoris [34, 35] were
also used to verify annotations and gene-reaction assignments from the previous models.
Finally, pathway revamping and addition of new reactions was performed based on available
yeast literature and metabolic pathways/reaction databases [45, 50, 53, 54].
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Eventually, the network was loaded into a convenient environment for debugging [55].
Thus, both COBRA [56] and RAVEN [57] toolboxes were used in order to ensure pathway
connectivity and biomass formation. Duplicated reactions in the final model were deleted and
blocked reactions were connected (gap filling) to the network when few steps were required. In
addition, the elemental mass balance of each reaction was checked and corrected when unbal-
anced. The final model (S1 and S5 Files) can also be obtained in SBML format from BIOMO-
DELS database with accession number: MODEL1508040001 [58]. The SBML model was
generated with the RAVEN toolbox [57] and validated with SBMLeditor [59].

Biomass and recombinant protein composition
The biomass reaction is defined by the sum of biomass components, grouped in macromole-
cules (carbohydrates, proteins, lipids, DNA, RNA), essential cofactors and ATP consumption
associated to growth. This equation was adapted depending on culture conditions or carbon
source used in accordance to the available literature experimental data [60, 61]. In addition,
composition of each macromolecule type, such as lipid and carbohydrate, was updated and
extensively detailed due to the recently published detailed information of the specific composi-
tion [62, 63]. See S2 File for details in composition and calculations.

The model was also tested for the expression of two different recombinant proteins under
different growth conditions: i) the antibody fragment 2F5 (FAB), expressed constitutively
under the GAP promoter [64] and, ii) a Rhizopus oryzae lipase (ROL), regulated by the metha-
nol inducible AOX promoter [65]. The dataset from the FAB-producing strain was used for
simulations in oxygen limiting growth conditions [26, 66], whereas the dataset from the ROL
producing strain was used in simulations for glycerol-methanol co-feeding experimental con-
ditions [25, 61]. Reactions for heterologous protein production were included considering dif-
ferent levels: DNA sequence, transcription and mRNA formation, as well as translation and
protein formation. Similarly to PpaMBEL1254 and iLC915, a ratio of 1:100:105 between recom-
binant DNA (gene copies), mRNA and heterologous protein was assumed, as described in
[32]. These equations also include energetic requirements for polymer formation [67]. Details
of DNA, RNA and amino acid composition of each protein, as well as equations for the biosyn-
thesis of their components can be found in S3 File.

Energy requirements
Before the validation step, classic energetic parameters were estimated using experimental data.
These parameters are the growth-associated maintenance energy (GAME) and non-growth-
associated maintenance energy (NGAME). Both are represented as ATP consumption in the
model. For the NGAME calculation, a classical approach was used [68]. For the glucose-limited
cultivations, the glucose uptake rate (mmol glucose�gDCW-1�h-1) was represented against the
specific growth rate using data from [24, 60, 69, 70]. The y-intercept of the linear regression
line to this data corresponds to the amount of glucose needed for maintenance by non-growing
cells. Using this value and the model, the NGAME can be calculated by maximization of the
ATP turnover per mmol of glucose for the case of no biomass growth. Using the obtained
value as fixed value for the non-growth associated maintenance, GAME is determined by
adjusting the ATP consumption coefficient in biomass equation to fit biomass-substrate yields
using experimental data (including CO2 and O2 constrains) from [60].

However, for the case of glycerol:methanol growth conditions NGAME was directly taken
from the calculated values reported in [61]. This was necessary due to the range of cultivation
conditions considered and the insufficient experimental data available. Using these values, and
similarly to the glucose-only growth condition, the GAME values for glycerol:methanol
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conditions were calculated by fitting the predicted values to the range of experimental bio-
mass-substrate yields reported in [61].

Model analysis and validation
Model analysis and validation were performed using both RAVEN [57] and COBRA [56] tool-
boxes as described below.

Carbon assimilation capabilities were determined maximizing growth rate and arbitrarily
constraining the carbon source influx to 10 mmol�gDCW-1�h-1 except were otherwise stated.

Reaction essentiality was determined performing an additional set of simulations. The pro-
cedure consisted on sequentially deleting each reaction of the model, maximizing biomass
production and calculating the ratio of the resulting growth rate over the wild type result
(GRKO = growthKO/growthWT). The ratios obtained allowed to classify each reaction into
three categories: i) essential (GRKO = 0), ii) partially-essential (0< GRKO < 1) iii) non-essen-
tial (GRKO = 1).

Evaluation of the effect of oxygen limiting conditions on glucose cultures was performed
constraining glucose and oxygen uptake rates to the measured values [66]. For the glycerol:
methanol experimental conditions, only glycerol and methanol uptake rates were constrained
to the experimental values [24] while O2 uptake rate was left unconstrained. In all these cases
biomass, CO2 and by-products were left as unconstrained positive values and therefore
appeared as calculated products were necessary. In all these cases biomass production was the
maximized objective function.

Results and Discussion

Model merging
As described in Materials and Methods section and summarized in Fig 1, the generation of the
new model consists of several steps. In the first step of reconciliation, PpaMBEL1254 and
iPP668 were automatically compared using modelBorgifier [51]. After the initial pairing step,
75% of the complete set of reactions was identified as identical (exact coincidence) reactions.
This pre-merged model was compared with iLC915 resulting in a low number of identical or
equivalent reactions (36% of the complete set). Nevertheless, a larger number of reactions were
comparable. Those mainly differ in having different stoichiometric coefficients, being assigned
to different compartments, decomposed in multi-step reactions, or using alternative names for
metabolites (different synonyms, generic names or corresponding to enantiomer compounds).

The iPP668 and PpaMBEL1254 models were the first models to be published, and they
are more similar to each other than to iLC915. Approximately 83% of the reactions from
PpaMBEL1254 are present in iPP668 and 89% of the reactions in iPP668 are shared with
PpaMBEL1254. Overall, models iPP668 and PpaMBEL1254 have a 75% of reaction identity.
Furthermore, similar nomenclature and abbreviations are used in these two models. In addi-
tion, model structure and detail are similar to iND750 [71], from S. cerevisiae, and those
models in the BiGG database [45].

The third published model, iLC915, has many differences with the previous two models. Its
nomenclature and structure is KEGG-based [48]. Therefore, its metabolites are fully proton-
ated and many pathways include the same number of steps described in KEGG. That is, many
condensed or simplified metabolic branches in the other two models appear decomposed as
multi-step reactions in iLC915. Such reaction differences among the models are one of the
major reasons for the low pairing of iLC915 with the other two models and seem to be the
result of the main database or model scaffold used as basis for model reconstruction.
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Updated pathways
As a result of the model comparison and merging step, some divergences in several pathways
of the three existing models were evident. In addition, some of them were incomplete or mis-
represented in all three models. Therefore we engaged in a curation step according to the
recently published literature and database information. Nevertheless, some difficulties in gene
and pathway verification were found. The fact that new genomes are usually automatically
annotated, at least in an initial step, and that enzyme activities or functions are inferred by
homology, propagates errors from already annotated sequences to the new ones [72]. This
issue arises when there is limited biological knowledge of the organism. Furthermore, not only
genome annotations are based in other organisms and sequences, but GEMs are also

Fig 1. Schematic overview of the major steps involved in the construction of P. pastorisGEM iMT1026. The process of GEMs integration started with
the metabolite identification, unifying nomenclature and curation steps of iPP668, PpaMBEL1254 and iLC915. The continuation steps were performed on the
resulting pre-merged model and subsequent drafts. Experimental data for model validation was taken from [25, 60, 61, 66].

doi:10.1371/journal.pone.0148031.g001
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commonly developed from previous existing models. As a result, annotation errors or misrep-
resented pathways are also spread to the subsequent new/updated models. Moreover, as new
GEMs are mostly based in pre-existing reconstructions, few new metabolic reactions are often
incorporated in the novel GEMs versions. Consequently, the metabolic potential and biological
diversity is often not fully reflected in the GEMs and the total number of enzymatic activities
present in the existing models remains far below from the complete catalog of enzymatic steps
described in the literature for each organism [3].

In the case of P. pastoris, the current annotation of its genome is rather limited [73], with
most of all annotations being inferred by homology, mainly from S. cerevisiae. According to
the best annotation available P. pastoris has 5040 protein-coding annotated genes of which
only 3532 has been assigned an Ontology term and all but 21 annotations are automatically
inferred [73]. Despite to the fact that P. pastoris and S. cerevisiae belong to the same family
(Saccharomycetaceae), they present significant differences in their metabolic capabilities. Thus,
besides P. pastoris well known additional pathways such as the methanol incorporation steps,
other significant metabolic differences exist. More specifically, in this work, pathways such as
sphingolipid biosynthesis, oxidative phosphorylation and glycosylation pathway, were adapted
and redefined, as described below.

Fatty acid biosynthesis
Due to the limited information on specific fatty acid (FA) metabolic pathways in P. pastoris, it
was assumed that most of S. cerevisiae fatty acid pathways were identical in the P. pastoris case.
According to Hiltunen and co-workers [74], the latest version of yeast consensus model [43]
and iTO977 model of S. cerevisiae [52], fatty acid biosynthesis takes place both in mitochondria
and cytosol by fatty acid synthase (FAS) type II and I, respectively [75]. FAS type II has individ-
ual enzymes for each reaction in fatty acid de novo biosynthesis and elongation. Despite it is
well known that mitochondrial FAS type II synthetizes at least up to C8 fatty acid, some evi-
dences suggest that this system can synthesize longer fatty acids [74, 76]. While in S. cerevisiae
7th version of the consensus model [43] mitochondrial biosynthesis is up to C8, this model also
include reactions for up to C18 biosynthesis.

On the other hand, cytosolic FAS is a complex formed by Fas1p and Fas2p within which the
successive elongation reactions take place and only the final acyl-CoA is released [77]. The
final products of this cytosolic complex are considered to be C14 to C18 acyl-CoAs, mainly
because they are the main fatty acids found in P. pastoris [62]. The biosynthesis takes place
inside the complex in a number of four step cyclic reactions for each acetyl-CoA added. Differ-
ent number of cycles results in a range FA (C14, C16 and C18 acyl-CoAs). In addition to de novo
biosynthesis, P. pastoris also has fatty acid elongation enzymes, which are able to extend C12-14

fatty acids and generate very long chain fatty acids (up to C26).
Activation of free fatty acids (FFA) was considered to take place in cytosol only for C14, C16

and C18 FFA, as well as their respective acyl-CoA hydrolysis. Finally, only acyl-CoA desatura-
tions were included (that is not acyl-ACP or FFA) according to the pathway defined in S. cere-
visiae [43].

Fatty acid oxidation
Two different transport mechanisms are commonly described depending on the FA chain
length [78–80], both being closely coupled to its activation to acyl-CoA [81–85]: on the one
hand, a simple diffusion and further activation of medium-chain fatty acids (up to C12 chain
length) and, on the other hand, long and very long chain fatty acids are translocated as acyl-
CoA concomitant with the corresponding ATP hydrolysis [86]. For the active transport
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mechanism, the ATP has a cytosolic origin in ILC915, while in PpaMBEL1254 and iPP668 the
required ATP is peroxisomal. According to [87, 88], peroxisomal ATP is only required for
medium chain fatty acid activation, therefore long and very long chain fatty acids transport
should be dependent on cytosolic ATP.

Each cycle of β-oxidation is represented by 4 reactions. Nevertheless, for unsaturated fatty
acid degradation, and due to its highly complex degradation steps which depend on the position
of its double bounds [89, 90], lumped reactions up to the generation of acetyl-CoA were taken
from iPP668. However, the desaturation reaction of C18:3 to C18:2 was taken from iLC915.

Sphingolipid metabolism
General sphingolipid biosynthetic pathways in yeast are partially homologous to S. cerevisiae
and they are extensively described in the literature [91, 92]. Nevertheless, unlike S. cerevisiae,
some yeasts such as P. pastoris, are able to produce glucosylceramides (GlcCer) from sphingoli-
pid bases [93–96].

None of the three models include GlcCer biosynthesis. Ternes and co-workers [97, 98] iden-
tified the gene role in GlcCer pathway and described the fatty acid specific composition in
GlcCer and other sphingolipids, as well as the main chain sphingoid bases in P. pastoris.

Sphingoid bases can be derived from palmitoyl-CoA and stearoyl-CoA. However, only a 5%
of the detected species correspond to the last one. In fact, Ternes and co-workers [98] charac-
terized sphingolipid composition assuming all the species were formed with a palmitoyl-CoA
derived sphingoid base. This sphingolipid composition is in agreement with other literature
sources [62, 99, 100]. As palmitoyl-CoA bases represents around 95% of sphingoid bases, only
palmitoyl-CoA derived ones are taken into account in this model.

Glycosylation pathways
Protein glycosylation pathways are not accurately described in previous models of P. pastoris.
Only iLC915 partially included N-glycosylation, O-glycosylation and glycosylphosphatidylino-
sitol-anchor (GPI-anchor) biosynthesis pathways. However, compartmentalization of several
reactions of this pathway also required revision.

The first part of the N-glycosylation process is highly conserved among eukaryotes [101,
102]. It takes place in the cytosol up to the addition of 5 mannose residues (Man) forming
(Man)5(GlcNAc)2(PP-Dol)1 oligosaccharide. At this point, the oligosaccharide is transferred
to the endoplasmic reticulum (ER), where up to 9 Man and 3 glucose residues (Glc) are further
added [103]. In the second and less conserved part of the pathway, the dolichol diphosphate
attachment to the protein is represented by a pseudo-reaction forming the compound (Glc)3
(Man)9(GlcNAc)2(Asn)1 in which Asn represents an asparagine residue from the targeted
protein. Once the oligosaccharide is attached to the Asn residue of the target protein, it is fur-
ther modified by the removal of one Man. The resulting glycoprotein is transported to the
Golgi Apparatus [104, 105]. There, an heterogeneous pattern of glycosylation has been
observed corresponding to the different heterologous proteins expressed in P. pastoris [19, 106,
107]. As an example, differences in Man residues range from 6 to 18 [108–110] and even may
include hypermanosylation [111]. Due to its complexity and variability, in this model an aver-
age glycan is assumed to consist of (Man)9(GlcNAc)2(Asn). The resulting oligosaccharide con-
tributes to the formation of a mannan (Man polymer represented by 1 mannose residue
polymer) and a chitin (N-Acetylglucosamine polymer). Both contribute to the biomass forma-
tion as a specific component of the carbohydrate fraction.

Similarly to N-glycosylation in mannan formation, O-glycosylation is included assuming an
average of 3 Man oligosaccharides [112–115]. O-glycosylation is also represented by a pseudo-
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reaction forming the compound (Man)1(Ser/Thr)1 in which Ser/Thr represents a serine or
threonine residue of a protein.

Finally, GPI-anchor biosynthesis was also reviewed and compartments reassigned according
to Orlean and Menon [116].

Oxidative phosphorylation
There are P. pastoris specific traits in respiratory chain that should be included in the GEM. As
an example, while complex I is not present in S. cerevisiae [117], it is described in P. pastoris
[118, 119]. None of the previous P. pastorismodels include respiratory complex I and so, an
important proton translocation step was missing. In general, two main traits of oxidative phos-
phorylation were deeply analyzed: the proton stoichiometry and the complexes integrating the
electron transport chain.

In this model the mitochondrial intermembrane space has been included. Hence proton
translocation is assumed to occur from the mitochondrial matrix to the intermembrane space.
Thus, protons pumped out from the mitochondria do not merge with the high amount of pro-
tons from the cytosolic space. Regarding the electron transfer chain reactions, each of the previ-
ous P. pastorismodels shows a different stoichiometry for proton translocation. After a review
of the stoichiometry and relevant literature it was decided to apply a stoichiometry that satisfies
the H+ balance of the metabolites’ charged formula and including complex I stoichiometry con-
siderations proposed by Wikström and Hummer [120]. This includes the complex I translocat-
ing 4 H+ to the intermembrane space [120, 121].

In the present model, reactions for non H+ translocating outer and inner mitochondrial
membrane NAD(P)H dehydrogenases (cytoplasmic side and matrix side) were also included.
While inner NADH dehydrogenase appears in all three models, outer NADH dehydrogenase
was only present in iPP668 and PpaMBEL1254, despite both dehydrogenases have been previ-
ously reported [118, 122, 123]. We also included PAS_chr1-4_0299 putative NADPH dehydro-
genase homologue to Kluyveromyces lactis [124, 125] and also included in its metabolic
reconstruction [126].

On the other hand, complex III and IV are included in all three models, but several discrep-
ancies exist on the details of the H+ balance due to the consideration of alternative metabolite’s
molecular formulas or the result of using different criteria when considering chemical and
translocated protons [127]. An additional trait for complex III equations is the complexity on
the stoichiometric representation of Q-cycle [128, 129]. Therefore, in this model stoichiometric
coefficients of equations for complex III and IV reactions were chosen with special attention to
the proton balance. The selected stoichiometry was of 2H+/2e- for complex III and 4H+/2e- for
complex IV according to recent literature [121, 128, 129].

One additional characteristic of P. pastoris is the presence of an alternative oxidase that
could bypass complex III and IV in the respiratory chain [117, 130] which seems to be active
only in certain growth conditions [117, 122, 131]. Although this oxidase was only included
iLC915, our consensus model also incorporates this reaction in the electron transport chain
module. Finally, the stoichiometry for ATP synthase was maintained as in PpaMBEL1254 and
iPP668 (4H+/ATP, resulting in a final maximum theoretical stoichiometry of 2.5e-/ATP) as its
H+ balance is in agreement with the available literature [132].

Other reviewed pathways
Metabolization of some sugars was also updated. Sugars such as starch, maltose or cellobiose
were able to be assimilated in some of the previous models. However, Kurtzman [44] and Nau-
mov and co-workers [133] characterized substrate assimilation in P. pastoris and reported non
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growth for these carbon sources. Consequently reasons for their metabolization were revised
and discarded reactions are detailed in S4 File. L-rhamnose assimilation was only possible in
PpaMBEL1254. However the specific metabolic steps included for its metabolization were not
typical of yeast species. Therefore alternative reactions and genes associated to the metaboliza-
tion of L-rhamnose were added as suggested in [134], also described similarly for P. stipitis
[135, 136].

A full list of modifications from the original models, also including some additional path-
ways and subsystems not discussed above such as phosphatidylinositol synthesis or transport
reactions, is provided in S4 File.

General characteristics of the model
After following all the steps described above, an extended model (iMT1026) is obtained that
integrates previous P. pastoris’ GEMs, which is provided in S1 and S5 Files and is also available
at BIOMODELS database (MODEL1508040001) [58]. The general characteristics of the result-
ing model are described in the following.

In the first place this model includes an increased number of gene-protein-reaction relation-
ships as can be seen in Table 1.

Our final model incorporated 185 new reactions that didn’t appear in previous models and
has 614 common reactions in all three models (Fig 2). Reactions appearing in Fig 2 as common
to two or all three different models include those reactions that have been taken directly from
the previous model. Therefore, they do not include those reactions that are either not the same
but equivalent, have been decomposed in several reactions or are a combination of several
other reactions. Thus, taking into account these multi-step, lumped or decomposed reactions,
in the final model there are up to 721 equivalent reactions in common in all three models, 504
in two of the three models and 638 reactions in only one of the models, without any clear
equivalence in any of the other two models.

Maintenance and growth-associated ATP calculations
As described in Materials and Methods, data from [24, 60, 69, 70] was used to calculate the
NGAME. As an initial step, a value of 32 mol ATP/ mol glucose, was obtained by maximizing

Table 1. Comparison of the main features of iMT1026 and previous P. pastoris’GEMs.

iPP668 PpaMBEL1254 iLC915 iMT1026

Genes 668 540 915 1026

Metabolites a 1177 (684) 1058 (696) 1302 (899) 1689 (1018)

Reactions 1354 1254 1423 2035

Cytosolic 623 604 790 1059

Mitochondrial 163 155 205 268

Peroxisomal 66 66 64 102

Extracellular 12 11 0 16

Endoplasmic reticulum 15 7 34 41

Golgi apparatus 4 8 4 13

Vacuolar 3 6 12 9

Nuclear 16 17 0 17

Intercompartmental/Transport 452 328 314 510

a Total number of metabolites, with compartment, and unique metabolites (in brackets).

doi:10.1371/journal.pone.0148031.t001
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the ATP turnover using 1 mmol/(gDCW�h) of glucose. The y-intercept from a representation
of glucose uptake rate versus growth rate was 0.0878 mmol glucose/(gDCW�h) which corre-
sponds to 2.81 mmol ATP/(gDCW�h) using the glucose-ATP conversion factor obtained in the
initial step. This calculated glucose NGAME value is similar to the 2.3 mmol ATP/(gDCW�h),
previously proposed by [31] for glucose, and close to the NGAME estimated for Pichia (Schef-
fersomyces) stipitis also growing in glucose [137].

On the other hand, GAME for glucose was estimated by fitting the calculated biomass-sub-
strate yields to experimental data. This way a value of 72 mmol ATP/gDCW was obtained.
This amount of ATP associated to cell growth is also similar to 70.5 mmol ATP/gDCW calcu-
lated previously for P. pastoris [33] and close to the experimentally calculated values for S. cere-
visiae of 62–71 mmol ATP/gDCW [138, 139], and to the 69.2 mmol ATP/gDCW, in silico
estimated [5].

For the case of the glycerol and methanol co-feeding cultivations, ATP maintenance val-
ues calculated by Jordà and co-workers [61] were used as NGAME as available data was
insufficient for a new determination. These values range from 4.5 to 5.7 mmol ATP/gDCW
and are similar to 6 mmol ATP/gDCW, proposed in iLC915 [33]. For the different condi-
tions tested, specific GAMEs were calculated by fitting the simulations to experimental data
from [61]. These experimental data show that the ratio of the glycerol or methanol uptake
rates with the growth rate is different for each pair of glycerol:methanol feeding conditions
(80:20, 60:40 and 40:60, % w/w at 0.05 and 0.16 h-1 growth rates), therefore a specific GAME
was calculated for each case. The obtained values ranged within the 69.8 and 125.6 mmol
ATP/gDCW interval. These GAME values increase with the fraction of methanol in the
mixed feeding and are in agreement with those calculated by Caspeta and co-workers [33],
who estimated a maximum GAME for methanol as sole carbon source of 150 mmol ATP/
gDCW.

Fig 2. Reactions from PpaMBEL1254, iPP668 and iLC915 included in iMT1026model.

doi:10.1371/journal.pone.0148031.g002
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Carbon source assimilation
The model agreement with P. pastoris utilization of different carbon sources was tested and
compared to experimental data [44, 133]. A total of 47 carbon sources were evaluated (Table 2)
using an in silicominimal medium, with ammonium, phosphate and biotin. The model suc-
cessfully predicts carbon assimilation for all sources tested.

Reaction essentiality
An interesting trait of the obtained GEMs is the identification of those reactions critical or
essential for biomass growth (essential reactions). Simulations to determine reaction essential-
ity were performed for glucose in normoxia, limited oxygen and hypoxia conditions and also
for mixtures of glycerol and methanol at different growth rates. No significant difference in
reaction essentiality was observed in all the conditions tested. Thus, similar patterns of distri-
bution of essential reactions in each pathway are observed for all the cases. The results, grouped
into major metabolic pathways, are summarized in Fig 3 (and S1 Fig). From a global point of
view, essential reactions represent a 15–16% of the total reactions, while 76–79% of the reac-
tions are classified as non-essential. The remaining 6–9% are partially-essential and its deletion
causes a decrease in growth rate.

The results show that there are 312 condition independent essential reactions, which are
essential in all the performed simulations. These essential reactions can be grouped in three
main groups: in the first group, most of them are associated with lipid metabolism (40%), in
the second group most reactions belong to the amino acid metabolism (18.6%) while the third
group mostly includes cofactor related essential reactions as a 14.1% of all common essential
reactions. Similarly to other GEMmodels, such as S. cerevisiae, extending the model and
including more detailed biomass composition results in an increase of essential reactions
directly linked to the biomass related metabolites. Nevertheless, this essentiality could be over-
estimated in silico, due to the fact that in vivo systems are able to replace de missing species
with other similar biomass components.

Model validation
An additional step of model validation was performed by comparing the model predicted val-
ues with an additional set of experimental data including diverse combinations of glucose, glyc-
erol and methanol chemostats [61, 66].

For the glucose chemostats, simulations with different oxygen availabilities, growth rates
and CO2 production were successfully predicted with errors lower than 6% for both FAB
expressing and non-expressing strains (Fig 4A, 4B and 4C). According to the available experi-
mental data [60, 66], when the oxygen availability decreases ethanol and other metabolites are
secreted. The present model is also able to predict by-product formation when oxygen-limited
conditions are simulated. However, the model predicts a slightly higher production of ethanol
and none of the other by-products, such as arabitol or pyruvate. Nevertheless, when ethanol
secretion flux is constrained to the experimentally measured value, arabitol secretion is also
predicted (Fig 4C). In addition to arabitol, pyruvate is also secreted in the in silico predictions
when both ethanol and arabitol are constrained to the experimental values. This discrepancy of
the model to directly predict arabitol or pyruvate secretion if no additional constraint is
imposed points to additional regulatory constraints other than those strictly stoichiometric. In
addition, different cofactor utilization by combinations of isoenzymes [143, 144], and their
impact on NAD(P)+/NAD(P)H regeneration, could be one of the key factors for the produc-
tion of those alternative products [145, 146]. Constraining the model with additional 13C-label-
ling data [147] as well as studying the impact of cofactor perturbation and analyzing these
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Table 2. Evaluation of the substrate assimilation capabilities in P. pastoris.

Experimental a In silico

D-glucose + +

DL-lactate + +

Mannitol + +

Ethanol + +

Glycerol + +

L-Rhamnose + +

Methanol + +

Succinate + +

Trehalose + +

Sorbitol + +

Citrate v +

D-Xylose - / + b +

Xylitol - / + c +

5-keto-D-gluconate - -

Arbutin - -

Cellobiose - -

D-arabinose - -

D-Galacturonate - -

D-gluconate - -

D-glucono-1,5-lactone - -

D-Glucosamine - -

D-Glucuronate - -

D-Ribose - -

Erythrol - -

Galactitol - -

Galactose - -

Hexadecane - -

myo-Inositol - -

inulin - -

Lactose - -

L-Arabitol - -

L-Arabinose - -

L-Sorbose - -

L-Tryptophan - -

Maltose - -

Meleziose - -

Melibiose - -

methyl-alpha-D-glucoside - -

N-acetylglucosamine - -

Raffinose - -

Ribitol - -

Saccharate - -

Salicin - -

Soluble starch - -

Sucrose - -

+, carbon assimilation and growth; -, no carbon assimilation; v, variable growth/non-growth experiments

observed.
a Experimental data from [44, 140].
b Described in [141].
c Described in [142].

doi:10.1371/journal.pone.0148031.t002
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cofactor demands for cell growth, as done in other organisms [148] would be interesting
approaches to consider in future studies.

For the second dataset, (glycerol:methanol mixtures), specific growth rate, together with
specific O2 consumption and CO2 production rates were predicted within a 11% of deviation,
as shown Fig 4E, 4F and 4G. Similarly to the above described glucose tests, arabitol was only
produced when ethanol was constrained to the experimental values; otherwise, ethanol is the
preferred product of the stoichiometric model. As in the previous glucose case these results
point to another possible level of regulation for arabitol production not included in the model,
as without it ethanol production appears as the most efficient way to regenerate NAD+ for
maximum biomass production.

In order to compare the accuracy of our model with the previous existing models a set of
simulations were performed for glucose and glycerol:methanol cultivations (S5 File). The same
constrains were set to all the models and growth rate, CO2 production and O2 consumption
(only in the glycerol:methanol simulations) were compared to the experimental values [61, 66].
As shown in S5 File, iMT1026 can predict the evaluated macroscopic cultivation parameters
more accurately, i.e. with smaller deviations from experimental data. Moreover, our model is
also able to describe byproduct secretion under respirofermentative conditions.

Conclusions
In summary, a consensus GEM of the yeast P. pastoris integrating the three preexisting models
has been obtained. Importantly, the new GEM, iMT1026, is more complete and includes a
comprehensive revision and upgrading of several metabolic processes (e.g. fatty acid and
sphingolipid metabolism, protein glycosylation and energy metabolism) based on new infor-
mation emerged from recent literature. Furthermore, the new GEM has been validated using
different sets of experimental data corresponding to a wider range of physiological states than
previous GEMs. From our point of view this GEM improves the capabilities in terms of accu-
racy of predictions/simulations in relation to previous models. Overall, we provide an
improved tool to the P. pastoris community for the physiological analysis and understanding

Fig 3. Summary of reaction essentiality results for glucose simulations grouped into major pathways. FBA was performed by optimizing biomass
production and sequentially constraining to 0 each reaction in the corresponding simulations. The resulting growth rate was compared with the wild type one.
Metabolic reactions were classified in three categories according to the relative growth rate obtained: Essential (E), partially-essential (PE) and non-essential
(NE). X axis represent the fraction of each type of reactions in each category of E (in red), PE (in blue) and NE (in green). Reactions are distributed in 8 major
subsystems (Y axis). Numbers between brackets indicate number of reactions in each group. Equivalent figures for oxygen limiting conditions and glycerol:
methanol simulations can be found in S1 Fig.

doi:10.1371/journal.pone.0148031.g003
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Fig 4. Results of the model validation.Graphs with (A) growth rate (B) CO2 and (C) D-arabitol production predictions when simulating glucose chemostats
at different oxygen conditions, with and without recombinant protein production [60, 66] with glucose, O2 and ethanol fluxes constrained to the experimental
values. (D) Growth rate (E) CO2 production and (F) O2 consumption predictions when simulating different glycerol:methanol chemostats [25, 61]. White and
black bars correspond to experimental and predicted data respectively.*Not determined in [25].

doi:10.1371/journal.pone.0148031.g004
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of this yeast. It is expected that on-going efforts in the functional (re)annotation of the P. pas-
toris genome will allow for further improvements of its GEMs by all the P. pastoris community.
From a wider perspective, it also has to be pointed out the importance of curating and manu-
ally revising new GEMs of non-model organisms that are based on GEM scaffolds from related
model organisms. Despite the comprehensiveness of these scaffolds, an exhaustive analysis of
specific metabolic traits of the non-model organism is still essential to construct a GEM
describes/predicts its metabolic phenotype accurately.
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