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Abstract
Mouse models of intestinal crypt cell differentiation and tumorigenesis have been used to

characterize the molecular mechanisms underlying both processes. DNA methylation is a

key epigenetic mark and plays an important role in cell identity and differentiation programs

and cancer. To get insights into the dynamics of cell differentiation and malignant transfor-

mation we have compared the DNA methylation profiles along the mouse small intestine

crypt and early stages of tumorigenesis. Genome-scale analysis of DNA methylation to-

gether with microarray gene expression have been applied to compare intestinal crypt stem

cells (EphB2high), differentiated cells (EphB2negative), ApcMin/+ adenomas and the corre-

sponding non-tumor adjacent tissue, together with small and large intestine samples and

the colon cancer cell line CT26. Compared with late stages, small intestine crypt differentia-

tion and early stages of tumorigenesis display few and relatively small changes in DNA

methylation. Hypermethylated loci are largely shared by the two processes and affect the

proximities of promoter and enhancer regions, with enrichment in genes associated with

the intestinal stem cell signature and the PRC2 complex. The hypermethylation is progres-

sive, with minute levels in differentiated cells, as compared with intestinal stem cells, and

reaching full methylation in advanced stages. Hypomethylation shows different signatures

in differentiation and cancer and is already present in the non-tumor tissue adjacent to the

adenomas in ApcMin/+mice, but at lower levels than advanced cancers. This study provides

a reference framework to decipher the mechanisms driving mouse intestinal tumorigenesis

and also the human counterpart.
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Introduction
The intestine is a fascinating organ exposed to very dynamic environmental factors including
food, toxins and a complex microbiota. A powerful immunological system developed during
breastfeeding and weaning provides protection against a wide variety of harmful agents [1]. Nev-
ertheless, the maintenance of a life-long functionality (basically the capability to absorb nutri-
ents) and resisting the multiple hazards is accomplished through an intensive regeneration of
intestinal mucosa [1]. Deregulation of cell proliferation and differentiation processes may lead to
malignant transformation and propagation of intestinal cancer stem cells [2]. In the mouse, the
intestinal epithelial layer has a turnover of 5 days and is folded forming the crypts [3]. Two dis-
tinct pools of Intestinal Stem Cells (ISCs) coexist in the crypt bottom: the quiescent ISCs at +4
position (Paneth cells precursors and crypt restorers after injury) and the rapidly cycling crypt-
based columnar cells, which are responsible for crypt homeostasis [4]. The cellular differentiation
occurs along the crypt axis and the terminally differentiated cells of the small intestine migrate
towards the tips of villi (protrusions into the small intestine lumen). Important methodological
advances have been made in crypt’s cells isolation and propagation [3,5,6] allowing the charac-
terization of the expression signatures of the different cellular fractions [2,7,8,9,10,11,12,13,14].

DNA methylation is the main epigenetic modification of DNA and, together with other epi-
genetic marks, regulates cellular homeostasis. In mammalian cells DNAmethylation mostly
occurs at the 5’-position of cytosine within the CpG dinucleotide, which is not equally distrib-
uted along the genome, clustering in regions called CpG islands [15]. DNA methylation pro-
files show important differences among tissues [16] and several studies have reported a role for
DNAmethylation in cellular differentiation [17,18,19,20,21,22], including the intestine [23].
Pioneering investigations proposed a crypt niche model based on DNA methylation profiles
[24] and, more recently, Kaaij et al [25] have shown an impact of transcription factor binding
on shaping the DNAmethylation landscape during differentiation of stem cells in vivo. More-
over, Sheaffer et al have demonstrated that dynamic DNAmethylation at enhancers is required
for stem cell differentiation in the small intestine [23].

The disruption of the epigenetic landscape is considered to be a common hallmark of many
widespread diseases including cancer [26]. While tumor progression is characterized by global
DNA hypomethylation [27] and hypermethylation of selected CpG islands (reviewed in
[28,29]), most tissue specific DNAmethylation changes occur in the lower CpG density regions
that lie in close proximity of CpG island, known as CpG island shores [30]. It is well known
that intestinal stem cell dynamics and premalignant disease is accompanied by DNA methyla-
tion changes [31], but it is yet unclear how the epigenetic control of cell differentiation is over-
ridden in early stages of cell transformation [32].

Besides genome-wide DNAmethylation profiles have been investigated in murine intestinal
cell differentiation [23,25] and mouse intestinal adenomas [33], no study to date has addressed the
concurrent and comparative analysis of both processes. We aim to identify the epigenetic determi-
nants that set either the normal program of differentiation or the aberrant and progressive repro-
gramming into malignant cells. We have analyzed the DNAmethylation profiles along the mouse
small intestine crypt and early stages of tumorigenesis (ApcMin/+mice adenomas) using a sensitive
and feasible genome-wide approach. Gene expression analyses were performed to determine the
impact of DNAmethylation in transcriptional regulation and the cellular expression signature.

Materials and Methods

Tissues and cell lines: ethical statement
All mice used were in a C57BL/6J background housed in centralized accredited research animal
facilities, staffed with trained husbandry, technical, and veterinary personnel. Animal care,
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monitoring, and sacrifice were conducted in accordance with protocols approved by the Animal
Care and Use Committees of the Barcelona Science Park (PCB) and the Barcelona Biomedical
Research Park (PRBB), and the Ethical Committee for Animal Experimentation of the Govern-
ment of Catalonia. Food and water were provided to the mice ad libitum. Ten adult wild type an-
imals (>8 weeks old) were euthanized in a chamber with a saturated CO2 atmosphere. Intestines
were extracted and cellular fractions from small intestine were obtained by purification of intesti-
nal crypt cell based on the EphB2 surface levels as described [7]. Four ApcMin/+mice were also
used for this study. The general condition of ApcMin/+mice was monitored daily using animal fit-
ness and weight controls throughout the experiment. When animal suffering was detected, they
were administering with analgesics (Buprenorphine in a dose of 0.05–0.1 mg/kg of weight).
When deteriorating clinical alterations were observed mice were euthanized in a chamber with a
saturated CO2 atmosphere. Adenomas and normal colon tissue were obtained from ApcMin/+

mice as previously described [34]. Mouse colon carcinoma cell line CT26 was obtained from the
American Type Culture Collection (ATCC).

Experimental design
Two experimental settings were designed for analysis of DNA methylation profiles (Fig 1). The
first setting allowed the comparison of EphB2high small intestine stem cells (ISC) with the
EphB2negative counterpart (differentiated cells) and adenomas and their adjacent non-tumor tis-
sue from ApcMin/+mice. Intestinal crypts were sorted into four populations of cells representing
different levels of differentiation based on the presence of EphB2 (EphB2high, EphB2medium,
EphB2low and EphB2negative). The ISC gene expression signature [7] was analyzed to confirm
the profile of the fractions and only the extreme fractions (EphB2high, and EphB2negative) were
included in the study to avoid overlap among differentiation stages. In a second setting, we
compared colon and small intestine mucosa from healthy mice and the CT26 cell line. All

Fig 1. Simplified scheme of the experimental design to identify differential DNAmethylation in intestinal cell differentiation and cancer. SettingA
examines changes related with cell differentiation processes and early stages of intestinal cancer. SettingB allows the identification of differences between
the large intestine and the CT26 colon cancer cell line representing advanced stages of cancer progression. Illustration of the intestinal epithelium is based
on schemes published in reference [82].

doi:10.1371/journal.pone.0123263.g001
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samples were analyzed by AIMS-Seq in duplicate. Validation of the DNA methylation and
gene expression results were performed in additional samples obtained using the same proce-
dures. The list of samples analyzed in this study and the molecular studies performed in each
one are summarized in Table A in S1 File.

AIMS-Seq
To compare the DNAmethylation profiles at the genome scale we have applied next generation
sequencing to the products of the Amplification of InterMethylated Sites technique (AIMS-Seq)
(S1 Fig). AIMS allows the identification of differentially methylated DNA fragments flanked by
two XmaI sites (CCCGGG) when two or more samples are compared [35]. AIMS principles and
protocol have been described in detail elsewhere [35,36]. Briefly, genomic DNA (obtained by
conventional phenol–chloroform extraction) was digested using the methylation-sensitive en-
zyme SmaI (Roche Diagnostics, GmbH, Mannheim, Germany) during 16h at 25°C, which gener-
ates blunt ends in the unmethylated sites. A second digestion with the methylation-insensitive
isoschizomer XmaI (New England Biolabs, Boston, MA) was performed (6h at 37°C) generating
cohesive ends in the methylated targets. The fragments flanked by cohesive ends (methylated)
were selectively ligated to specific adaptors (5’CCGGTCAGAGCTTTGCGAAT and
5’CCGAATTCGCAAAGCTCTGA) using T4 DNA ligase (New England Biolabs, Boston, MA).
Products were purified with Illustra DNA and Gel Band Purification Kit (GE Healthcare, Piscat-
away, NJ, USA). Fragments flanked by the adaptor were amplified by PCR with primer
(ATTCGCAAAGCTCTGACCGGG). PCR product was purified with the JETQUICK PCR Spin
Kit (Genomed, St. Louis, MO, USA), sheared with Covaris S2 system and the library was clus-
tered and sequenced in Illumina GA2 devices. Reads (36 nucleotides long) were mapped with
Bowtie [37] against the mouse genome build NCBI37/mm9. Only reads mapping uniquely inside
virtual amplicons of the AIMS universe were taken into account for analysis of differential dis-
play. The AIMS virtual universe includes all the mouse genome fragments flanked by two XmaI
sites and with a length range between 20 and 2000 bp. A total of 50,745 virtual amplicons were
considered (Table B in S1 File). The number of reads mapping inside each amplicon represent
an arbitrary indicator of methylation level of the affected XmaI sites. By comparing the number
of reads mapped to a given amplicon in two different samples, it is possible to detect differential
methylation: the sample with a higher number of reads will be more methylated in a given re-
gion. Total-sum scaling normalization was applied considering the number of reads mapping in-
side virtual amplicons (Table C in S1 File). Reproducibility assays were performed to test the
variability of the technique. Due to limited availability of cells, AIMS-Seq was performed with
300 ng of genomic DNA for of intestinal crypt fractions and adenomas. Normal tissues, adeno-
mas and cell lines were analyzed using 1000 ng of DNA. Results generated with different
amounts of genomic DNA were not comparable due to the differential display of a large number
of amplicons (data not shown).

Differentially methylated regions (DMRs) were revealed as differentially represented ampli-
cons determined using the DESeq R package [38], considering significantly different those
amplicons that had a log2 fold change value�3 and adjusted p-value�0.01. Differentially
methylated domains (DMD) were identified using the circular binary segmentation method
developed to analyze DNA copy number data [39]. Only genomic regions>50 kb and encom-
passing a minimum of five AIMS-Seq amplicons were considered. AIMS-Seq amplicons locat-
ed in X and Y chromosomes were excluded in the global quantification of DMRs.
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Bisulfite treatment
Bisulfite treatment was performed using the EZ DNAmethylation kitTM (Zymo Research).
Specific genomic regions were amplified by nested PCR (primers are listed in Table D in S1 File)
and the purified product was sequenced with the BigDye Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems, Foster City, CA, USA).

Gene expression
RNA was extracted with RNeasy Mini or RNeasy Micro Kit (Qiagen), according to manufactur-
er’s instructions and including the DNase digestion step. Labeled RNA was hybridized following
one color protocol into SurePrint G3 Mouse 8x60K Agilent arrays. Data analysis was performed
using the TMEV software applying Limma statistics (two class analysis) [40]. Gene expression
differences with log2 fold change�1.2 and with a FDR�0.01 were considered significant.

Genomic annotation and functional analysis
AIMS-Seq amplicons were annotated according to the overlap of the two flanking XmaI with
selected genomic elements in the NCBI37/mm9 assembly. Genomic elements were down-
loaded from the mm9 annotation database at the UCSC browser (http://hgdownload.soe.ucsc.
edu/goldenPath/mm9/database/).

Genes exhibiting changes at either DNA methylation or expression were analyzed for
functional enrichment using the Functional Annotation Chart from DAVID Bioinformatics
Resources 6.7 (http://david.abcc.ncifcrf.gov/) and taking into account the Gene Ontology
classification (GO FAT category) and KEGG pathway [41]. FDR �0.05 was considered
significant.

Results

Genome-wide analysis of DNAmethylation by AIMS-Seq
AIMS-Seq generated an average of 14 million of reads uniquely mapped in the mouse genome
(Table C in S1 File). Technical replicates were performed in samples pooled from several ani-
mals (intestinal crypts cell fractions) and biological replicates in tissues and cell lines (Table A
in S1 File). Taking into account PCR limitations, only reads mapping inside canonical ampli-
cons (ranging in size from 20 to 2,000 bp) were considered (S1B Fig). Noteworthy, 92–98% of
all reads mapping unambiguously were located inside the AIMS-Seq virtual universe (Table C
in S1 File).

AIMS-Seq offers a broad representativeness of most types of genetic elements, although the
amplicons are not evenly distributed among them (Table B in S1 File). Therefore we analyzed
the genomic features of regions represented in the AIMS-Seq virtual universe against the whole
genome (Table B in S1 File). The adscription of the functional and structural features was
based on the location of the XmaI sites flanking each amplicon. As compared with the relative
contribution of the different genetic elements to the mouse genome (Fig 2A), AIMS-Seq ampli-
cons are especially enriched in CpG islands, exons and 5’UTR and depleted in non-coding
RNAs and SINEs (Fig 2B and Table B In S1 File). It is of note that a large proportion of CpG is-
lands and the neighboring regions (CpG island shores) are represented in AIMS-Seq (Fig 2C).
Indeed, the density of amplicons within 1kb from transcription start sites is also very high
(Fig 2D). A comparison with data generated by WGBS in a similar setting [25] revealed that
AIMS-Seq amplicons represented with a high number of reads tend to be flanked by methylat-
ed CpGs, while fully unmethylated CpGs are poorly amplified (Fig 2E).
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Fig 2. Genomic representativeness of AIMS-Seq. A, Mouse genome composition according to the different genetic elements considered. B, Relative
distribution of AIMS-Seq amplicons in the mouse genome.C, Coverage of genetic elements by AIMS-Seq amplicons. D, Distribution of AIMS-Seq amplicons
regarding its distance to the transcription start site (TSS) of the closest gene. E, Density distribution of AIMS-Seq amplicons according to the number of reads
detected in ISCs compared with the beta values of the amplicon flanking CpGs determined in Lgr5+ cells analyzed byWGBS (data from reference [25]).

doi:10.1371/journal.pone.0123263.g002
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Differential DNA methylation along intestinal cell differentiation and
tumor progression
The number of reads assigned to each canonical amplicon was normalized according to the
total number of reads mapping unambiguously in the mouse genome (Table C in S1 File) and
used as an index of DNAmethylation for sample comparisons. Differentially methylated re-
gions (DMRs) in cell differentiation along the small intestine crypt and early states of tumori-
genesis were determined using the DESeq package (see Material and methods).

Validation studies by direct bisulfite sequencing were applied to a subset of the DMRs de-
tected by AIMS-Seq. Illustrative examples are shown in Fig 3 and S2 Fig. It is of note that most
differences detected by AIMS-Seq in the cell differentiation process corresponded to moderate
changes in the levels of DNAmethylation. In some cases, the methylation change only affected
part of the amplicon. This may be the case of XmaI sites located in the boundaries of certain ge-
nomic elements as CpG islands or CpG island shores.

At the global level, only 1.6% of AIMS-Seq amplicons displayed changes in small intestine dif-
ferentiated cells versus intestinal stem cells, with an overwhelming prevalence of hypermethyla-
tions (n = 831) versus hypomethylations (n = 5) (Table 1 and Fig 4). In adenomas, 2.7% of
amplicons were found differentially methylated when compared with intestinal stem cells. Inter-
estingly, hypermethylations represented the most abundant changes in adenomas and a large
proportion of them were shared with differentiated cells (Table 1). About 2/3 of the hypermethy-
lations within 2kb of the TSS were shared by differentiated cells and adenomas (S3 Fig), which
indicates they are not specific of the transformation process. This hypothesis is also supported by
the lower overlap (about 1/5) with the hypermethylations detected in CT26 cells. Nevertheless, it
remains to be elucidated whether they are required for cell transformation. Alternatively, hypo-
methylations in adenomas versus ISCs were observed to a lesser extent than hypermethylations
(Fig 4); and unlike hypermethylations, they appeared to be specific of the tumor process, because
they were absent in the cell differentiation process. When compared with differentiated cells
(from healthy animals) and adjacent tissue (from ApcMin/+mice), adenomas showed a low num-
ber of DMRs with opposite trends: prevalence of hypomethylations respect normal differentiated
cells but hypermethylations versus the adjacent tissue (Table 1).

Finally, the colon carcinoma cell line CT26, representing an advanced stage of the tumor
process, presented alterations in 4.5% of amplicons with a predominance of hypomethylations
(Table 1 and Fig 4).

Genetic features of differentially methylated loci
Regarding the genomic distribution of DMRs, the proportion of both hypermethylations and
hypomethylations in different genetic elements was quite different depending on the compari-
sons considered (Fig 4 and S2 Fig). Results are summarized in Tables E to I in S1 File and the
lists of DMRs together with the most relevant biological information are reported in Tables J
thru R in S1 File.

Gains of methylation, as the most prominent trend in intestinal cell differentiation, affected
3’UTRs, introns, CpG island shores, non coding RNAs and frequently occurred in the proximi-
ties of TSSs but excluding the TSS itself (Fig 4). Hypomethylations affected all genomic ele-
ments with no specific enrichment (Fig 4). Moreover, hypermethylations exhibited by the
adenomas affected CpG island shores and 5’UTRs of genes.

CT26 cells, representing advanced stages of carcinogenesis, show a higher number of DNA
methylation changes in which hypermethylations follow genomic profiles (3’UTRs, lincRNAs
and CpG island shores) similar to cell differentiation and early cell transformation processes,
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Fig 3. AIMS-Seq analysis. A, Distribution of normalized reads obtained by AIMS-Seq in the genomic region
neighboring the Slitrk1 gene. Amplicons amp133978 and amp133981 are indicated by arrows and the
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whereas hypomethylations show a broader genomic impact, being more prominent in gene
desert regions and repetitive sequences (Fig 4 and Tables E thru I in S1 File).

Functional impact of differentially methylated genes during intestinal
differentiation and cancer
To gain insights into the biological implications of DNAmethylation changes we analyzed
functional enrichment of genes with DMRs within 2Kb of the TSS (Tables J-R in S1 File).
Hypomethylations were not enriched in any specific functional category in any of the compari-
sons performed. On the other hand, developmental and regulatory processes were enriched in
the hypermethylated compartment of differentiated cells and adenomas as compared with
ISCs (Table S in S1 File). Interestingly, in addition to these categories, CT26 cells also exhibited
significant enrichment of hypermethylation in genes related with cell migration and adhesion
(Table S in S1 File), which are critical to convey invasive features to malignant cells.

Genome-wide analysis of DNAmethylation in multiple mouse tissues has shown that most
tissue specific DMRs occur at distal cis-regulatory elements [42]. Therefore we analyzed the
distribution of DMRs detected by AIMS-Seq in regard to the localization of predicted enhanc-
ers as reported in adult mouse intestine [42]. Interestingly, both cell differentiation and malig-
nant transformation showed enrichment of hypermethylations in the vicinity or overlapping
with predicted enhancers, whereas hypomethylations only affected enhancer regions during
the differentiation process (S4 Fig).

Chromosomal domains with coordinated differential methylation during
intestinal cell differentiation and cancer
To determine the occurrence of regional changes in the DNA methylation profiles during
the cell differentiation and transformation processes, we compared the differential represen-
tation of AIMS-Seq reads along the mouse genome by applying CGH-like analysis

number of reads mapped in each one is shown next to the peak in four types of cells (ISC, differentiated,
colon and CT26 cells) analyzed in duplicate. B, Both amplicons showed statistically significant differences
according to the defined criteria (see Material and methods) in the comparison ISC vs. Differentiated cells
and normal colon vs. CT26 cells. The logarithm of the fold change (log2FC) and the false discovery rate
(FDR) are indicated for two comparisons between samples.C, Methylation profile of CpGs surrounding the
XmaI site of amp133978 in four samples. The profile was represented using the Methylation plotter tool [83]
and the methylation level of each CpG (beta value) is represented by a grey scale lollipop from white
(unmethylated) to black (fully methylated) according to the scale. Sticks represent CpGs not determined. The
CpG corresponding to the 3’ XmaI site is boxed.D, Comparison of the differential methylation detected by
AIMS-Seq in ISC and differentiated cells with data generated byWGBS in related samples. Note the
progressive increase of methylation from intestinal stem cells (Lgr5+) to more differentiated states. WGBS
data were obtained from references [25,42].

doi:10.1371/journal.pone.0123263.g003

Table 1. Differentially methylated regions (DMR) as determined by AIMS-Seq during intestinal cell differentiation and transformation.

Hypermethylated Hypomethylated

Comparison no of amplicons % of AIMS-Seq no of amplicons % of AIMS-Seq

Differentiated vs. ISC 831 1.64 5 0.01

Adenomas vs. ISC 993 1.95 297 0.58

Adenomas vs. differentiated 15 0.03 96 0.19

Adenoma vs. Adjacent 178 0.35 0 0.00

CT26 vs. colon 628 1.24 1,655 3.26

doi:10.1371/journal.pone.0123263.t001
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(see Material and methods). Twenty-two differentially methylated domains (DMD) were
identified among all comparisons performed (Permutation test with 100 permutations, p-
value = 0.01). Only regions represented by 5 or more AIMS-Seq amplicons and affecting>50
Kb were considered (Table T in S1 File). Four of these regions were reproduced in more than
one comparison. Interestingly, differentiated cells exhibited 8 DMDs ranging from 80 Kb to
2.58 Mb in length, all of them hypermethylated when compared with ISCs. A 67 Kb region in
chromosome 13 including Tmem181b-ps and Gm2792 pseudogenes was hypomethylated in
adenomas (in comparison with differentiated and ISC), but hypermethylated in CT26. The
large 2.58 Mb region hypermethylated in differentiated cells as compared with ISC included a
subregion of 882 Kb that was also hypermethylated in adenomas (Fig 5). This region contains
109 genes, including two gene families: there are two clusters of histone coding genes at the 5’
and 3’ ends, while in the middle there is a vomeronasal type-1 receptor family cluster
(Table T in S1 File). The detected increase of methylation was mostly located in the region
occupied by the histone coding genes, which is a CpG rich region. Functional analysis

Fig 4. Distribution of differentially methylated AIMS-Seq amplicons. A, The results of five different comparisons (as illustrated in Fig 1) are distributed in
rows. MA plots show the log2 ratio of the number of normalized reads per amplicon in the indicated comparisons. B, Relative distribution (% of the AIMS-Seq
virtual universe) of hypermethylations (red) and hypomethylations according to different genomic features regarding gene context (UTR, exons, introns,
junction exons/introns), genome element (CpG island, CpG island shore, LINE, SINE, LTR and non classified elements) and distance to transcription start
site (TSS).

doi:10.1371/journal.pone.0123263.g004
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showed enrichment for nuclear and chromosome organization, largely explained by the pres-
ence of multiples isoforms of histone 1 (Table U in S1 File).

Differential gene expression along intestinal cell differentiation and
tumor progression
In addition to DNAmethylation, we also compared the gene expression signatures among
healthy small intestine and colon, ApcMin/+ mouse adenomas and their adjacent non-tumor tis-
sue, and CT26 cell line. Genes with differential expression are described in detail in Tables A to
J in S2 File and a summary of the differences is illustrated in Fig 6. Normal tissues (Small intes-
tine and colon of control animals versus normal tissue adjacent to adenomas in ApcMin/+mice)
showed few changes: 29 genes were differentially expressed between small intestine and colon,
whereas non tumor tissue adjacent to adenomas in ApcMin/+mice was indistinguishable from
the small intestine of healthy animals. Interestingly, of the 326 genes overexpressed in adeno-
mas as compared with healthy small intestine, only 62 were overexpressed when the compari-
son was performed against the tissue adjacent to the adenoma, indicating that the adjacent
tissue displays intermediate levels for about 81% of genes overexpressed in adenomas (Fig 6).
The cellular functions of genes overexpressed in adenomas showed enrichment in chemotaxis,
angiogenesis and regulation of transforming growth factor beta-receptor signaling pathway

Fig 5. Differentially methylated domains in Differentiated-ISC and Adenoma-ISC comparisons. Four examples are illustrated. Each track corresponds
to the number of normalized reads in the AIMS-seq for each sample. Highlighted regions indicate domains larger than 50 kb and with at least 5 amplicons
showing differential methylation between samples. R4 and R7 domains are hypermethylated in differentiated and adenoma cells versus ISCs. R10 and R12
domains are hypomethylated in adenoma cells versus ISCs and differentiated cells.

doi:10.1371/journal.pone.0123263.g005
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(Fig 6C and Table K in S2 File). Unlike adenomas, CT26 cells exhibited a high number of dif-
ferences with normal colon and with similar rates of over- and downregulation (Fig 6 and Ta-
bles A to J in S2 File). As expected, multiple biological processes related with cancer were
affected (Fig 6C and Table K in S2 File).

Lack of global correlation between differential methylation and gene
expression
Next, we investigated the correlation between DNA methylation changes and gene expression
data generated in another study [7]. By AIMS-Seq we determined that in differentiated cells,
397 had a gain of methylation in the promoter region (2kb from the TSS) (Table L in S2 File).
Most genes did not show any association between DNA methylation and gene expression
changes (data not shown). Only 14 genes exhibited inverse correlation between methylation
and expression (Table M in S2 File). Strikingly, ten of these hypermethylated AIMS-Seq ampli-
cons were located in the gene promoter region of the downregulated genes (Aqp4, Axin2,

Fig 6. Differential gene expression. A, Diagram of the gene expression analyses performed by microarrays. Comparisons are denoted by connecting lines.
The number of genes overexpressed in the sample pointed by the arrowhead is indicated next to the connecting line. B, Overlapping of genes differentially
expressed in different pair of samples.C, Semantic representation of biological processes enriched in genes overexpressed in adenomas and CT26 cells
compared with the respective normal tissue. The graph was generated with Revigo [84]. Bubble size indicates the-log10 of the FDR (see Table K in S2 File
for details).

doi:10.1371/journal.pone.0123263.g006
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Atad5, Brca1, Fads1, Lgr5, Phgdh, Slc1a2, Slit2, St3gal3) belonging to the expression signature
of the intestinal stem cell [7], which represents a highly significant enrichment (Fisher exact
test, p value<2.2e-16). These changes affected the gene CpG island and/or CpG island shore,
except for Aqp4. Direct bisulfite sequencing (S2 Fig) and inspection of WGBS profiles obtained
by Kaaij et al in an independent setting (S5 Fig) revealed that the changes corresponded to
moderate variations in the percentage of DNAmethylation in one or several CpG sites.

Genes becoming hypermethylated in CT26 are low expressed in healthy colon when com-
pared with genes maintaining methylation levels constant or hypomethylated (S6 Fig). Indeed,
a global trend was observed in hypermethylated genes that showed even lower values in CT26
cells (S6 Fig).

Discussion

Genome-wide analysis of differential DNAmethylation, technical
remarks
Our knowledge of biological processes as cell differentiation and cancer has improved dramati-
cally in the last two decades thanks to the application of advanced genomic tools to decipher
the epigenetic code. Besides this progress and the wide range of available methodologies
[43,44,45], genome scale analysis of DNAmethylation dynamics still represents critical
technical challenges.

The use of methylation sensitive endonucleases played a pivotal role in the early characteri-
zation of genomic regions affected by DNA methylation and the discovery of disease specific
epigenetic biomarkers [43,44]. With the advent of next generation sequencing technologies,
the potential of techniques based in this type of approaches has reemerged. Methyl-Seq is one
of such examples developed in Richard Myers lab and applied to identify DNA methylation
changes associated with human liver development [46].

Here we have applied AIMS-Seq, a variation of the AIMS method [35]. This technique re-
quires minute amounts of material (<500 ng of genomic DNA) and has a very high sensitivity,
which makes it adequate for the experimental setting described here. The standard version of
AIMS has been applied with a significant success to uncover specific [47,48,49] and global
DNAmethylation alterations in cancer [50,51,52], epigenetic differences between monozygotic
twins [53] and was instrumental for the characterization of functional CpG methylation in the
honeybee [54].

The coupling of high throughput sequencing to AIMS (AIMS-Seq) renders an approach
based in the same principles of Methyl-Seq and allows the study of differential DNA methyla-
tion at the genome scale level, but at a relatively low cost. AIMS-Seq targets about half of the
sites covered by Methyl-Seq, but this reduction of complexity results in a five-fold increase in
read depth per amplicon with a similar sequencing effort. AIMS-Seq reports information on a
wide range of sequences, including those with low CpG content, which have been described as
the most variable regions in healthy tissue [55] and repetitive sequences, which are poorly ana-
lyzed by other approaches. About half of the CpG islands and CpG island shores in the mouse
genome get canonical representation (Fig 2). Another important advantage of AIMS-Seq is the
simplicity of data analysis, as currently available bioinformatic and biostatistical pipelines can
be applied with minimal adaptations, overcoming the computational bottleneck that often
slows down this type of projects.

A limitation of enzyme-based methods to detect differential DNA methylation is that they
rely in a single CpG site. Nevertheless, in a recent study using whole genome bisulfite sequenc-
ing data we have shown that scoring of DNA methylation in a single CpG is highly representa-
tive of the status of a whole CpG island [56]. This is also the case for other genomic elements
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(Jordà M et al, manuscript in preparation). Therefore, the target of the methylation sensitive re-
striction enzymes can be used as a faithful surrogate indicator of the methylation status of the
comprising genomic element.

An important feature of this AIMS-Seq is its high sensitivity to detect differential methyla-
tion affecting a small percentage of cells [35]. It should be noted that a large proportion of the
changes observed in the DNAmethylation levels in similar settings byWGBS are below 10–
20% [25,42,57], and AIMS-Seq is able to detect these small variations (S5 Fig). These features
make AIMS-Seq a feasible approach to identify new epigenetic targets in settings where DNA
methylation differences are small and sample availability is limited. The suitability of AIMS-Seq
in this type of studies has been well exemplified by its application to analyze DNAmethylation
profiles in murine myogenesis [58]. Carrió et al. uncovered more than 1000 differentially meth-
ylated regions providing an overall view of the epigenetic landscape along the muscle-lineage de-
termination process. Indeed, the comparison with data generated by Reduced Representation
Bisulphite Sequencing allowed a global validation of the results [58]. This study also demon-
strated the adequacy of AIMS-Seq to identify specific changes with a prominent role in the cell
differentiation process. In particular, they found hypomethylation of Myf5 superenhancer (a
crucial myogenic regulatory factor) as a key epigenetic event associated with the functional acti-
vation of this locus [58].

In summary AIMS-Seq provides an overall view of the differential methylome between mul-
tiple biological conditions and allows the identification of specific candidates with a potential
role in the process. Most outstanding features AIMS-Seq are high sensitivity, low material re-
quirements and a relatively small demand of technical and computational labors.

DNAmethylation dynamics in intestinal differentiation
Our analysis indicates that intestinal cell differentiation is accompanied by small changes in
DNAmethylation, mostly consisting in hypermethylations that affect less than 2% of the genome
analyzed by AIMS-Seq. As a whole, these figures are difficult to compare with WGBS data gener-
ated in similar experimental settings [23,25]. Kaaij et al reported 297 TSS with>50% DNA
methylation difference and most of them corresponded to hypomethylations in differentiated
cells as compared with ISC. For their sake, Sheaffer et al identified 4240 DMRs and more than
half of them affected CpG islands and CpG island shores. In our setting, about 1/3 of hyper-
methylations occurring during cell differentiation were located near TSS (less than 500 bp).

DNA methylation changes in enhancers play an important role in cell identity and differen-
tiation processes (reviewed in reference [59]); and previous investigations have reported that a
large proportion of DMRs affect enhancers during cell differentiation [23,25,60]. Our results
are in agreement with these observations, but also expand the scope of the conclusions by
showing that hypermethylations also affect distal regulatory elements in mouse intestinal tu-
mors, as previously shown in different human cancer types [61,62,63]. However, unlike cell dif-
ferentiation, our data indicate the spreading out of hypomethylation to non-regulatory regions
in intestinal tumorigenesis. It is well known that the functional implications of global genomic
hypomethylation in cancer go beyond the deregulation of specific genes (reviewed in reference
[26,27])

Only a small proportion of these epigenetic changes were associated with transcriptional si-
lencing of the respective gene (Table M in S2 File). Similar studies applying WGBS [23,25],
which offers a more comprehensive genomic coverage, have found good correlation between
hypermethylations near TSSs and gene expression. The overall lack of correlation between
DNAmethylation and gene expression in our study may be explained by the high sensitivity of
AIMS-Seq to detect DMRs. Direct comparison with WGBS data [25] revealed that most
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hypermethylations detected by AIMS-Seq were very small and affected a few CpG sites. Inter-
estingly, genes reported to constitute the ISC signature (and therefore downregulated or si-
lenced in differentiated cells, i.e. Lgr5) showed very small increases of DNAmethylation in a
few CpGs in the respective CpG island shore (S5 Fig). By AIMS-Seq these changes were clearly
detected, which confirms the sensitivity of this technique.

A note of caution should be sounded regarding the interpretation of DNAmethylation
changes detected in intestinal cell differentiation. Due to the small amounts of starting material,
fractions from four animals were pooled in order to reach enough DNA to perform the analyses.
This implies that inter-animal variability was abolished from our data. While this limitation
does not challenge our results and conclusions, we cannot fully disregard inter-individual vari-
ability, as well as heterogeneity in analyzed cell fractions. Our data on specific changes with a
role in the intestinal cell differentiation (e.g.: Lgr5 hypermethylation, see above) have been con-
firmed by ourselves and other studies [23], but further studies using more powerful techniques
are needed to determine the steadiness of epigenetic and transcriptional profiles in intestinal
cell differentiation.

DNAmethylation dynamics in intestinal tumorigenesis
ApcMin/+ adenomas displayed few changes in DNAmethylation when compared with intestinal
stem cells (2.7% of the canonical AIMS-Seq amplicons), and a large subset of them were shared
with differentiated cells (in the case of hypermethylations), and the non-tumor tissue adjacent
to the adenoma (in the case of hypomethylations). It has been previously reported that the dy-
namics of hypermethylation and hypomethylation are independent in human colorectal cancer
[51,64,65]. In this context, we can postulate that hypomethylation would be an early phenome-
non preceding the morphological emergence of the adenoma and consistent with a field effect
[66] in which the adjacent tissue already displays a large fraction of the molecular changes bear
by the tumor. Moreover, hypermethylation in adenomas would recapitulate in part the ISCs
differentiation process and incorporate tumor specific changes. The conservation of DNA
methylation profiles may explain the retention of cell differentiation capacity in ApcMin/+

microadenomas [67]. In fact most ApcMin/+ adenomas maintain the crypt architecture and do
not progress to carcinoma [68]. The subsequent cell transformation would require additional
changes consistent with the stepwise model of cancer progression in which genomic and epige-
nomic instability drive subsequent alterations.

Recently, Grimm et al. [33] applied MeDIP-seq to study the methylome of ApcMin/+ adeno-
mas. Similarly to our analysis, a high proportion of DMRs affected CpG islands and promoter
regions. Indeed, they found polycomb targets were enriched among hypermethylated regions
in adenomas, although just a few tumor suppressor genes were silenced. Binding of Polycomb
repressive complex 2 (PRC2) has been shown to point genes prone to be hypermethylated in
cancer [69]. Our data confirm Grimm’s observations, as 64 of the genes found hypermethy-
lated in adenomas and 76 in CT26 by AIMS-Seq constitute targets of the PRC2 complex [70]
(S3B Fig). The enrichment of PRC2 targets in the DMRs detected by AIMS-Seq is highly signif-
icant (Fisher exact test, p value<2.2e-16). This group of genes includes the homeobox gene
En1 (S7 Fig), whose hypermethylation has been described as a promising biomarker of neo-
plastic stages of human colorectal cancer [71].

Hypermethylation affects large chromosomal domains in cell
differentiation and cancer
We have identified several regions displaying coordinated hypermethylation of all the encom-
passed amplicons. Interestingly, differentiated cells and adenomas shared many of the
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hypermethylated domains. The nature and functional implications of DMDs are unknown.
Nevertheless, it is tempting to compare hypermethylated DMDs with the well characterized
Long Range Epigenetic Silencing (LRES) phenomenon initially described in human colorectal
cancer [48] and also found in murine tumors [72]. LRES appears as the concurrent hyper-
methylation of multiple CpG islands and downregulation of most of the genes in a genomic re-
gion ranging from hundreds of kilobases to a few megabases [73]. Although LRES was
discovered with the classical version of the AIMS method, our current data are insufficient to
assimilate the differentially hypermethylated domains identified here to LRES. It should be
noted that AIMS-Seq is not the most appropriate method to detect epigenetic changes affecting
large chromosomal regions due to the interspersed nature of its genomic coverage. Specific re-
gional analyses are required to clarify the nature of DMDs as it was done for LRES in different
settings [48,71,72,74,75,76]. On the other hand, genome-wide approaches have identified large
chromosomal domains undergoing extensive DNA hypomethylation in human colorectal can-
cer [64,65]. In our setting, hypomethylation was relatively scarce and no large domains were
detected. This may be due to the technical reasons, as the AIMS-Seq coverage is high in gene-
rich regions and near the promoters (Fig 1 and reference [35]), but low in gene poor regions
and nuclear lamina associated domains where most of the hypomethylation occurs [64,65].

Concluding remarks
In summary, the AIMS-Seq approach appears as a sensitive and feasible tool to compare the
epigenetic profiles of samples with very limited availability. Our analysis shows that DNA
methylation changes along small intestine crypt differentiation and early stages of tumorigene-
sis are few and small compared with late stages. Hypermethylations constitute the predominant
change and are enriched in genomic regions related with gene regulation. Both processes ex-
hibit highly overlapping panels of genes with DNAmethylation changes; besides tumor related
hypermethylation appears as a progressive phenomenon reaching deeper methylation levels in
advanced stages. On the other hand, hypomethylation shows different signatures in differentia-
tion and cancer and is already present in the non-tumor tissue adjacent to the adenomas in
ApcMin/+mice, which is consistent with a role in the promotion of tumorigenesis [77,78].

Our findings may be also relevant to the comprehension of these processes and the underly-
ing epigenetic mechanisms in the human counterpart. Different studies have pinpointed the
parallelisms between mouse and human colorectal cancer at epigenetic level [33,72,79] and
many of the genes we have found hypermethylated in early stages of mouse tumorigenesis (i.e.,
Lgr5, Axin2 and En1) may have potential clinical applications in human cancer [71,80,81].

Supporting Information
S1 Fig. Features of AIMS-Seq technique. A, Scheme of the AIMS-Seq technique. B, Represen-
tation of the read coverage against amplicon length. To facilitate visualization, only 1,000 out
of 50,745 amplicons have been plotted. Left panel shows the mean values obtained for the first
set of samples (Fig 1A); right panel shows the results for the second set (Fig 1B).
(TIF)

S2 Fig. Bisulfite sequencing validation of differentially represented AIMS-Seq amplicons.
Data for eight amplicons is shown. Genomic localization of the amplicons is shown. Graphs on
the left show the number of normalized AIMS-Seq reads in each sample. The amplicon ID is
shown on top f each graph. Logarithmic fold change values in base = 2 (log2FC) and False Dis-
covery Rate (FDR) are indicated for each comparison (colon vs Ct26 and ISC vs differentiated
cells). The results obtained with direct bisulfite sequencing are represented as lollipops using
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the Methylation plotter tool (Mallona et al, 2014, reference [79]). Each circle represents a CpG
dinucleotide and the degree of grey indicates the methylation level from fully methylated
(black) to completely unmethylated (white). Sticks represent CpG sites not determined. Blue
boxes identify XmaI sites corresponding to amplicon flanks. Colon: normal colon mucosa,
ISC = Intestinal Stem Cell, Diff = Differentiated cells, CT26 colon cancer cell line. Data may be
obtained from Tables J through R in S1 File.
(TIF)

S3 Fig. Differentially methylated genes. A, Overlap of hypermethylated genes as detected by
AIMS-Seq. Only genes with one or more AIMS-Seq amplicons within 2Kb of the Transcription
Start Site (TSS) are considered. B, Distribution of hypermethylated genes in adenomas (versus
ISC) and CT26 cells (versus normal colon) and PRC2 targets.
(TIF)

S4 Fig. Features of differentially methylated amplicons. A, Density plot of AIMS-Seq ampli-
cons according to their distance (log10 of bp) to the nearest enhancer region. Red line shows
the distribution of all amplicons included in the virtual AIMS-seq universe. Black line shows
the distribution of DMRs for each comparison as indicated in the graph. Statistical significance
(p-value) for distribution of enhancers inside/outside DMRs, within 1Kb of the DMRs, and
the Kolmogrov-Smirnov (KS) test are shown on top of each graph. B, Summary of the results:
Enhancer associated hypermethylations and hypomethylations are enriched in the
indicated comparisons.
(TIF)

S5 Fig. UCSC Genome Browser (NCBI37/mm9) representation of AIMS-Seq reads in two
genomic regions displaying DNAmethylation changes detected by AIMS-Seq (highlighted
area) and associated with silencing of the respective gene (Lgr5 and St3gal3) during the dif-
ferentiation process of ISCs.Whole genome bisulfite sequencing data from Kaaij et al. [25] is
shown for comparison. Note small changes in DNAmethylation levels in the boundaries of
the amplicon.
(TIF)

S6 Fig. Differential DNAmethylation and gene expression levels. Genes were classified ac-
cording to its differential DNAmethylation between CT26 and healthy colon tissue as deter-
mined by AIMS-seq amplicons as follows: constant (no gains or losses of DNAmethylation),
hypermethylated and hypomethylated. Only genes with one or more AIMS-Seq amplicons
within 2Kb of their Transcription Start Site were considered. CT26 hypermethylated genes
showed a statistically significant downregulation in CT26 (Wilcoxon test, p<2.2e-16). No dif-
ferences were observed for constant or hypomethylated genes.
(TIF)

S7 Fig. Differential DNAmethylation of En1 CpG island shore detected by AIMS-Seq in in-
testinal cancer. Each track indicates the number of reads mapped in AIMS-Seq amplicons.
(TIF)

S1 File. Table A, Samples used in the study and analyses performed with each sample. Table B,
Distribution of virtual AIMS-Seq amplicons in the mouse genome (mm9). Table C, Distribution
of AIMS-Seq reads. Table D, Primer sequences. Table E, Differentially methylated AIMS-Seq
amplicons, by genomic context. Table F, Differentially methylated AIMS-Seq amplicons, by
gene context. Table G, Differentially methylated AIMS-Seq amplicons, by transcript type.
Table H, Differentially methylated AIMS-Seq amplicons, by genomic element. Table, Differen-
tially methylated AIMS-Seq amplicons, by distance to TSS. Table J, Hypermethylated in
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Differentiated vs ISC. Table K, Hypermethylated in Adenoma vs ISCs. Table L, Hypermethy-
lated in Adenoma vs Differentiated. Table M, Hypermethylated in Adenoma vs Adjacent.
Table N, Hypermethylated in CT26 vs Colon. Table O, Hypomethylated in Differentiated vs
ISC. Table P, Hypomethylated in Adenoma vs ISCs. Table Q, Hypomethylated in Adenoma vs
Differentiated cells. Table R, Hypomethylated in CT26 vs Colon. Table S, Functional enrich-
ment of differentially methylated AIMS-Seq amplicons near TSS Genes. Table T, Differentially
methylated domains (DMD). Table U, Functional enrichment in DMD R6.1.
(XLSX)

S2 File. Table A, Differential gene expression. Table B, Differential gene expression. Table C,
Differential gene expression. Table D in S2 File. Differential gene expression. Table E, Differen-
tial gene expression. Table F, Differential gene expression. Table G, Differential gene expres-
sion. Table H, Differential gene expression. Table I, Differential gene expression. Table J,
Differential gene expression. Table K, Functional enrichment in gene differential expression in
intestinal cell differentiation and cancer. Table L, Gene expression/DNAmethylation correla-
tions. Table M, Hypermethylated regions associated with gene downregulation in Differentiat-
ed versus ISC.
(XLSX)
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