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1. Introduction

In continuum physics the entropy principle constitutes a valuable tool in modeling material properties.
In rational thermodynamics (RT) [1] Coleman and Noll were the first to formulate it as follows [2]:

The constitutive equations, which characterize the material properties of continuous media,
must be assigned in such a way that second law of thermodynamics is satisfied along arbitrary
thermodynamic processes.

These authors also proposed a rigorous mathematical procedure to exploit the requirement above,
currently referred to as Coleman-Noll procedure [2,3]. Afterwards, Liu [4] developed an alternative and
elegant method of exploitation, based on the Lagrange multipliers and known as Liu procedure. Hauser
and Kirchner [5] recognized that the Liu procedure constitutes a special case of a more general result on
linear programming [6].

On the other hand, the Coleman-Noll approach requires an appropriate formulation of second law. In
continuum physics [2,7] it is assumed that:

The rate of entropy production per unit volume σ(s), defined as

σ(s) = ρṡ + ∇ · J − ρ
r
T

(1)

where ρ is the mass density, s is the specific entropy, J is the entropy-flux density (hereafter referred to as
entropy flux), r the rate of heat supply per unit of mass and T the absolute temperature, is nonnegative
along any thermodynamic process.

For the entropy flux Coleman and Noll postulated the constitutive equation J =
q
T

where q is the
heat-flux density (hereafter referred to as heat flux), and T the temperature.

When dealing with the formulation above, one should look for an appropriate constitutive equation not
only for the entropy flux but also for the entropy density, and for an appropriate definition of temperature
in situations far from equilibrium. In extended irreversible thermodynamics (EIT), taking the fluxes as
independent variables, the three questions mentioned above give the following answers [8–13]:

• in processes which are not too far from equilibrium, the extended entropy is the local equilibrium
entropy plus a negative contribution proportional to the square of the fluxes; the corresponding
coefficient is proportional to the relaxation time of the corresponding flux and inversely
proportional to the respective transport coefficient; thus, the non-equilibrium contributions to the
entropy are related to relaxational contributions to generalized transport equations;

• the entropy flux is the Coleman-Noll entropy flux
q
T

plus a non-equilibrium contribution due to
higher-order fluxes;

• the absolute temperature, given by the reciprocal of the derivative of the extended entropy with
respect to the internal energy, differs from the local-equilibrium temperature and depends on the
fluxes; it is related to the average kinetic energy of the particles in the plane perpendicular to the
fluxes, and it is in general different from the temperatures of the other degrees of freedom, which
may have different values.

Some conceptual problems arise by analyzing the different mathematical methods for the exploitation
of the entropy principle. First of all, the entropy principle itself, such as formulated by Coleman and
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Noll, could appear as an arbitrary assumption, since nothing prevents second law of thermodynamics to
restrict the processes instead of the constitutive equations. Thus, Muschik and Ehrentraut [14] proposed
the following amendment to the second law:

In the state space, any curve which represents a reversible process, belongs to the
equilibrium subspace.

As a consequence of this statement, they proved that for regular processes, i.e., for classical solutions
of the system of governing equations, the second law of thermodynamics necessarily restricts the
constitutive equations and not the thermodynamic processes. In this way, the classical Coleman–Noll
approach follows by a rigorous proof (see Section 5, Theorem 2).

It is worth noting that if one applies the classical Coleman–Noll or Liu procedures, weakly nonlocal
continuum theories [15,16], taking the gradients of the unknown variables as independent state variables,
result to be not compatible with second law. Such a severe consequence seems to be related to the
insufficiency of the standard analysis of the entropy inequality in case of weakly nonlocal continua.
For example, according to the usual approaches, thermodynamic principles deny the existence of both
higher grade elasticity [17] and Korteweg fluids [18]. These obstacles can be circumvented by several
means (generalized entropy flux, interstitial working, microforce balance, phase fields, etc. . . . ). All
these theories modify in different ways either first or second law of thermodynamics, so that we have a
non uniform approach with respect to the classical structure of continuum theories. For example, as a
possible remedy to the incompatibility with second law of Korteweg fluids, Dunn and Serrin introduce
an additional rate of supply of mechanical energy, the interstitial working, engendered by long–range
interactions among the molecules [18], which results in an energy extra–flux u into the local balance of
energy (first law of thermodynamics). Alternative approaches suppose that the entropy flux J is affected
by additional mechanical terms, due to long–range forces. Among them, the most celebrated one is
the Müller approach, who, by kinetic considerations, proposed a more general entropy flux J, that is a
constitutive quantity, together with an entropy density that needs to be determined by the compatibility
with the second law [7]. This is tantamount to introduce in the local form of second law an entropy
extra–flux k = J −

q
T

, [7].
An alternative method for circumventing that problem is to generalize the classical exploitation

procedures, by regarding the governing equations for the gradients entering the state space as additional
constraints for the entropy inequality, [19–21].

Recently Fabrizio, Lazzari and Nibbi [22], and Amendola, Fabrizio and Golden [23], proposed a new
procedure to achieve generalizations of the laws of thermodynamics, which consists in expressing them
in terms of internal powers. According to their suggestion, for some classes of nonlocal materials, an
extension of first law of thermodynamics, and not only of second law, is necessary. They propose the
following balance power laws for first and second laws of thermodynamics, respectively,

ρε̇ = Pi
m + Pi

h (2)

ρṡ = Pi
en (3)

where Pi
m is the internal mechanical power density, Pi

h is the internal heat power density and Pi
en is the

internal entropy power density.
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In [22], the authors analyze several different materials, which arise in electromagnetism, in the study
of phase transitions and also in other physical processes, as those describing phase separation by means
of Cahn-Hilliard’s equation. For all these materials they derive the form of the RHS either of Equation (2)
or of Equation (3), getting so explicit constitutive equations for the energy or the entropy extra-flux. It is
shown that this formulation highlights, without ambiguity, the contribution of the internal powers in the
variation of the thermodynamic potentials.

In classical irreversible thermodynamics (CIT) [24], the entropy principle is exploited by a
phenomenological procedure, which regards the entropy production as a bilinear function of
thermodynamical forces and fluxes [15,25]. Nowadays, this approach has ramifications into the general
equation for non-equilibrium reversible-irreversible coupling (GENERIC) [26,27]. Mainly two major
directions have been followed in the literature for the specification of force-flux relations. On the one
hand, the so-called transport coefficients may depend on the forces themselves, in which case we call the
relation quasi-linear. On the other hand, force-flux relations are also often represented in potential form,
with the flux given by the derivative with respect to the force of a so-called dissipation potential. The
second law of thermodynamics is respected by requiring certain properties of the potential, primarily its
convexity. It can be proved that every potential-based force-flux relation can be cast into quasi-linear
form, while the reverse statement does not hold true [27]. It is worth noting that GENERIC can be
formulated either in a quasi-linear form [26] or in a dissipation-potential based form [28].

A different perspective has been open in rational extended thermodynamics (RET) [11,29], in which
the principle is exploited to determine the appropriate constitutive equations (of local type) assuming
a priori that the system is formed by balance laws equations. Concavity arguments postulated a priori
for the entropy density permit to determine the main field which renders the system of field equations
symmetric hyperbolic. That way, the properties of causality and predictability for the physical model
are ensured [30].

The formulation (1) of the second law is not always appropriate when dealing with
micro/nano-systems, in which quantum and confinement effects may become important. In such a case,
a suitable form of second law is represented by the maximum entropy principle (MEP), proposed by
Jaynes in connection with information theory [31,32], which asserts that:

The thermodynamic systems evolve naturally toward states corresponding to a distribution function
f (x, ξ, t) which maximizes the entropy

h = −kB

∫
R3

f log f dξ (4)

where kB is the Boltzmann constant and f dx dξ is the number of particles in the volume dx dξ of the
phase space centered at (x, ξ) and included in R3 × R3 .

Thus, it seems to be quite natural to investigate what is the relation between the two statements above.
Recent results have shown that the procedure of MEP for the closure of the moments equations for
rarefied gases, complies with the recent macroscopic approach of extended thermodynamics to real and
perfect gases [33–35].

Although entropy maximization in isolated systems is a well-known procedure, it becomes
problematic in non equilibrium situations. For instance, entropy maximization around an equilibrium
steady state, submitted to further additional constraints on fluxes, or higher-order moments (which are
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null at equilibrium) is not so evident nor well-known, but it is not in contradiction with maximization
in equilibrium. Nonetheless, several quantum systems, such as interacting fermionic and bosonic gases,
semiconductor heterostructures with confined carrier transport, require a quantum formulation of MEP
in situations out of equilibrium. In achieving that task, the main difficulty is to define, in non equilibrium
situations, an appropriate quantum entropy that explicitly incorporates quantum statistics [36,37]. For
instance, in the formulation of hydrodynamic subband models for charge carriers in semiconductors
in presence of confinement effects in one or two directions, a crucial problem, in order to apply the
maximum entropy principle, is an appropriate formulation of entropy for a 2D or 1D electron gas which
combines a semiclassical description in the transport direction and quantum effects in the transversal
direction [38,39].

As far as the relation between macroscopic and microscopic approaches is concerned, one should
observe that in kinetic theory higher order weakly nonlocal continuum extensions can be obtained by
Chapmann-Enskog expansion. However, the expansion beyond first order results in unstable equations.
Thus, the family of Burnett equations cannot be much improved, contrary to serious efforts [40,41]. The
Grad approach [42], which replaced the Chapmann-Enskog method in some modern thermodynamic
theories, has been used to create agreement between the kinetic and the local continuum theories up to
the limits of continuum mechanics. Although this method gives more satisfactory results with respect
to stability, it does not comply with weakly nonlocal continuum theories [43]. In Section 4, the Grad
method and its application in RET are illustrated in detail.

The examples above show that the proper formulation of the entropy principle in continuum physics
is still an open problem. The aim of this paper is to provide an overview on the state of the art and on
recent researches on this topic, which represents a milestone in thermodynamics of continuous media.

To achieve that task, different approaches, corresponding to the different point of view of the authors
on non-equilibrium continuum theories, are presented and illustrated by some recent applications. In this
way, different thermodynamic theories are analyzed.

The foundation of different theories in the last decades has stimulated several discussions into the
thermodynamic community and produced many progresses, which regard both the mathematical tools
of investigation and the understanding of new physical phenomena. Moreover, if we look at the different
schools of thermodynamics with more attention, we discover that these are not so far as it could appear
at the first sight, since several connections emerge. A further aim of this presentation is just to point out
the similarities between the various approaches.

Then, in Section 2, Péter Ván illustrates the role of the entropy principle in classical irreversible
thermodynamics. In Section 3, David Jou analyzes the application of the entropy principle in extended
irreversible thermodynamics. In Section 4, Tommaso Ruggeri shows the consequences of the entropy
principle in rational extended thermodynamics. In Section 5, Vito Antonio Cimmelli presents some
classical results of rational thermodynamics and recent results regarding the mathematical analysis of
the entropy inequality.

Throughout the paper, summation with respect to repeated indices will be assumed. Moreover we
adopt the following notations:

• ∂t f —partial time derivative of f
• ∂k f , k = 1, 2, . . . n—partial derivative of f with respect to the coordinate xk
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• ḟ = ∂t f + vi∂i f —material time derivative of f
• x · y = xi yi—scalar product between vectors x and y
• X : Y = Xi j Yi j—scalar product between tensors X and Y
• ∇ ≡ (∂i), i = 1, 2, . . . n—Nabla operator
• ∆ ≡ (∂ii)—Laplace operator
• ∇(∇ · x) ≡ ∂i(∂ jx j), i, j = 1, 2, . . . n—Gradient of Divergence of x
• A(i j)—symmetric part of tensor Ai j

• A〈i j〉—symmetric and traceless part of tensor Ai j

• AT —transpose of tensor A
• Rn—the vector space of the n-tuples of real numbers x1 . . . xn

• the word “density” means the amount of a given quantity per unitary volume
• the word “specific” means the amount of a given quantity per unitary mass

The problems illustrated in the present paper have been discussed during the “12th Joint European
Thermodynamics Conference” (JETC 2013), held in Brescia, Italy, from July 1 to July 5, 2013.

It is worth observing that, although in our analysis second law of thermodynamics plays a fundamental
role, the present review is not devoted to the wide topic of the different formulations of second law, but
to the more restricted one of the entropy principle, i.e., the constitutive principle which requires that the
constitutive equations which in continuum physics characterize the material properties, must be assigned
in such a way that second law of thermodynamics is satisfied along arbitrary thermodynamic processes.

The authors gratefully acknowledge the chairman of the conference, Prof. Gian Paolo Beretta, and
the staff of JETC 2013, for the perfect organization, the friendly ambient and the opportunity of several
interesting discussions on new trends in non-equilibrium thermodynamics.

2. The Entropy Principle in Classical Irreversible Thermodynamics

In his pioneering works about reciprocal relations Lars Onsager established a uniform approach
of different interactions in discrete (homogeneous) thermodynamic bodies, where the basic variables
are the classical extensive thermodynamic variables [44,45]. His main concern was the relation
of phenomenological and statistical treatments with the help of fluctuation theory and also a
phenomenological explanation in the form of variational principles, based on dissipation functions (see
also [46,47]). Classical irreversible thermodynamics as a field theory has been started by Eckart [48–51]
and was developed and applied in different cases by Prigogine, de Groot, Mazur and many others [24,52].

CIT constructs evolution equations for dissipative phenomena. Instead of variational principles the
thermodynamic compatibility of continuum material properties plays a key role in the methodology.
Eckart established the connection between homogeneous thermodynamic bodies and classical continua
with the help of the hypothesis of local equilibrium. According to this hypothesis one assumes
the validity of the Gibbs relation and the corresponding equations of state for densities or specific
quantities of the extensive thermodynamic variables—that is local equilibrium—and introduces the
entropy inequality as a balance. There are two crucial points of this procedure:

(1) What is internal energy? How could one separate mechanics and thermodynamics, distinguish
between motion and equilibrium?
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(2) What is the form of the entropy current density?

The answers of these questions are technically simple. The internal energy is the difference between
the conserved total energy and the kinetic energy. One component simple fluids are characterized by the
internal energy and the mass. Their Gibbs relation, expressed with specific quantities is

dε = Tds − pdV (5)

Here the extensive quantities are the specific internal energy ε, the specific entropy s and the specific
volume V = 1/ρ, while p denotes the scalar static pressure and T the temperature. Therefore the partial
derivatives of the specific entropy are:

∂s
∂ε

(ε, ρ) =
1
T
,

∂s
∂ρ

(ε, ρ) = −
p

Tρ2 (6)

In this simple case the entropy inequality (1) can be constructed by calculating the material time
derivative of the specific entropy through the Gibbs relation:

ρṡ(ε, ρ) =
ρ

T
ε̇ −

p
ρT

ρ̇ =
1
T

(
Ti j + pδi j

)
∂ jvi + qi∂i

(
1
T

)
− ∂i

(qi

T

)
(7)

In the expression above we denoted by vi the components of the velocity field and eliminated the time
derivatives with the help of balances of mass and energy

ρ̇ + ρ∂ivi = 0, ρε̇ + ∂ jq j = Ti j∂ jvi, (8)

where Ti j denote the components of the Cauchy stress and the specific heat supply has been neglected.
We can identify the entropy current density in the last divergence term as the product of the reciprocal
temperature and the conductive current density of the internal energy, the heat flux:

Jk =
qk

T
(9)

Then the entropy balance

ρṡ + ∂kJk = σ(s) =
1
T

(
Ti j + pδi j

)
∂ jvi + qi∂i

(
1
T

)
≥ 0 (10)

follows, where δi j are the components of the identity tensor. We may recognize that the inequality (10)
can be solved assuming a linear relationship between the thermodynamic fluxes—the heat flux qi and
the stress Ti j + pδi j, and the thermodynamic forces—the gradient of the reciprocal temperature ∂i(1/T )
and the gradient of the velocity ∂ jvi. The linear coefficient matrix must be positive definite. For isotropic
materials, represented by isotropic functions, one obtains the Fourier law of heat conduction and the
Newtonian viscous stress, with three positive scalar parameters:

qi = λ∂i

(
1
T

)
and Ti j + pδi j = ηv∂kvkδi j + η(∂ jvi + ∂iv j −

2
3
∂kvkδi j) (11)

Here λF = λ/T 2 is the Fourier heat conduction coefficient, ηv and η are the bulk and the shear viscosities.
In case of several components and more complex materials one generalizes the previous procedure

and try to obtain this quadratic form of the entropy production as a sum of product of thermodynamic
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fluxes and forces. The linear relationship with symmetric and positive definite coefficient matrix is
assumed for less symmetric materials, too. In this respect the concepts of crystal physics proved to be
instructive [53,54]. The extension of these ideas for more complex thermodynamic systems is a powerful
and useful theory of classical continuum physics [55].

In the previous heuristic treatment one can identify several problematic points, where a deeper
analysis is necessary for further developments:

(1) Material frame indifference or objectivity. The best parameters from an experimental point of view
are those that characterize the material and do not depend on experimental conditions. Therefore
the theoretical separation of motion related and material properties is crucial. In CIT material
time derivatives are used instead of frame dependent partial ones, and conductive current densities
instead of frame dependent local ones. This seems to work in case of fluids, but for solids one
cannot avoid a more detailed analysis of the basic kinematic fields, the balance structure and the
constitutive relations. In spite of various mathematical formulations of the principle of material
frame indifference [56–59], its proper meaning is still a controversial topic in continuum physics.
For example, there are cases in which the frame indifference is violated by the effect of Coriolis
forces [60–62], although that effect is small under most circumstances, because it depends on the
degree that mean free paths of atoms are bent by the Coriolis force. Two final remarks are worth
of mention.

• The weakly nonlocal extension of the constitutive state space is a safe procedure, because
the gradient is a covector, that does not depend on the motion, e.g., does not transform by a
Galilean transformation [63,64].

• In RET, weakly nonlocal constitutive equations are derived by truncated balance laws (see
Section 4 for more details), so that they do not need to satisfy any constitutive principle.

(2) Solution of the inequality. The mentioned Onsagerian linear relationship is a robust choice for
solving the quadratic inequality, but only one possibility. One can find infinitely many more
functions that could result in nonnegative entropy production. Are there different, or even better
solutions than the linear one? The example of plasticity demonstrates the physical relevance of this
question. The thermodynamic theory is based on a first order homogeneous form of the entropy
production instead of the mentioned quadratic, second order homogeneous one [65,66].

(3) Constitutive character. In the previous treatment the constitutive functions are fixed at the end
of the procedure, with the help of the quadratic flux-force structure. For example, the heat flux
turned out to be proportional to the temperature gradient. However, can be the heat flux a function
of other variables, like the second derivative of the internal energy? How can we go beyond
these experimentally safe classical examples in case of more general state spaces? What are the
conditions that lead to a soluble, possibly quadratic form of the entropy production?

In the following, we focus on these last questions. Exploring the conditions behind of classical theory,
we show some possible generalizations and the way toward extensions.
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2.1. The Role of State Spaces

The limitations of classical irreversible thermodynamics in its original form became more and more
evident soon after the appearance of the monograph of de Groot and Mazur [24]. The criticism of
Truesdell clarified the imprecise and heuristic mathematics of the theory [1]. He initiated a more exact,
rational approach, that rejected the thermostatic foundations together with the Onsagerian reciprocal
relations. However, in several cases Truesdell has not solved but only made understandable the problems.

Other challenges came from the experimental observations and from the part of statistical theories.
Thermodynamic compatibility of rheology and plasticity are old challenges, relativistic fluids and power
law tail statistics provide new ones. Any new approaches of thermodynamics of irreversible processes
(TIP) that generalize CIT should answer these challenges, when keeping the universal applicability and
uniting character of the theory as a framework of dissipative gases, fluids and solids.

From this point of view the Truesdellian program of rationalization encountered various difficulties.
For instance, the extension of the state space of elastic solids with gradients of the basic state variables
(e.g., strain) was forbidden by mathematically rigorous analysis of the second law [17]. Moreover, these
kind of attempted gradient extensions were proved to be untenable because of stability reasons [67].
Therefore the research in these directions either based on local constitutive state spaces without gradients
or the theories have chosen different foundations. The first approach is compatible with the moment
series expansion of the kinetic theory and therefore local state spaces are among the basic postulates in
rational extended thermodynamics (RET). Gradient dependence can be introduced by eliminating higher
order moments in the hierarchy [68]. Examples of different frameworks for weakly nonlocal theories are
the statistically motivated phase field theory [69,70], and GENERIC with the separation of the ideal and
dissipative parts of the evolution equations from the start of the construction [26].

However, the mathematical methods, the Coleman-Noll and Liu procedures, are neutral, and one
should scrutinize the applied conditions and background concepts also from a physical point of view. In
the following we compare the heuristic methods to the more precise ones. In order to focus on the second
law and simplify the treatment, we choose an abstract notation, that hides the details of the particular
continua together with the aspects of material frame indifference.

The formal vector of the densities of extensive quantities zα spans the basic state space zα ∈ Z, where
α ∈ 1, ..., ω is indexing a particular conserved extensive quantity, therefore the evolution equations for zα
are balances with zero source term:

∂t zα + ∂kΦ
α
k = 0 (12)

if the material is considered at rest. The entropy inequality (1) is written as

∂t ρs + ∂kJk = σ ≥ 0 (13)

where ρs is the entropy density and Jk is the entropy current density. Then the hypothesis of local
equilibrium requires an entropy density depending only on the basic state ρs = ρs(zα). The classical form
of the entropy current Equation (9) is generalized as

Jk =
∂ρs

∂zα
Φα

k = ΓαΦ
α
k (14)
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Here Γα =
∂ρs

∂zα
denotes the entropic intensive quantity conjugated to zα and double indices denote

summation both for the vector components (i, j, k) and for the state variables (α, β). The entropy
production can be calculated by substituting Equations (12) and (14) into Equation (13):

∂ρs

∂zα
∂t zα + ∂k(ΓαΦα

k ) = Φα
k∂kΓα = σ ≥ 0 (15)

We may recognize the quadratic flux-force structure and identify the current densities of the
extensives, Φα

k , as thermodynamic fluxes and the gradients of the intensives, ∂kΓα as thermodynamic
forces. Finally, the linear solution of the inequality is

Φα
k = Lαβki ∂iΓβ

if the symmetric part of the conductivity matrix Lαβki is positive definite.
In this procedure the constitutive quantities are the extensive fluxes Φα

k , the entropy density ρs, and
also the entropy current density Jk. Moreover, the fluxes, as constitutive functions, are not local, they
are not only functions of the basic state variables but depend on the gradients of the extensives, too.
An other observation is that the entropy inequality is constrained by the balances. Then we may ask,
whether the entropy inequality selects among the solutions of the balances—then it is a restriction of the
processes –, or, alternatively, it can be considered as a selection of materials, as it is implicitly assumed.
The second possibility is definitely more convenient for any experimental validation and also expresses
our physical (or philosophical) expectation. On the other hand, the question arises, whether our method
of substitution is too naive and the dependence of the constitutive functions on the gradients may lead
to a different form the entropy production. Moreover, one may ask whether constitutive functions that
depend on higher order gradients are compatible with the second law without further conditions, or not.
These kind of observations lead to an amendment of the classical formulation of the second law [14],
and also to more involved mathematical methods (see Section 5). In order to separate the conditions
from the consequences we repeat the previous derivation with the help of Liu procedure.

Let us assume that the constitutive functions Φα
k , Jk and ρs depend on the unknown fields and also on

their gradients, so that our constitutive state space is first order weakly nonlocal:

(zα, ∂kzα) ∈ Z (16)

The balances Equation (12) are considered as constraints, with the help of Λα Lagrange-Farkas
multipliers. Therefore the entropy inequality can be written as:

∂t ρs(zα, ∂kzα) + ∂kJk(zα, ∂kzα) − Λβ

(
∂t zβ + ∂kΦ

β
k(zα, ∂kzα)

)
=(

∂ρs

∂zα
− Λα

)
∂t zα +

∂ρs

∂∂kzα
∂t ∂kzα +

∂Jk

∂zα
− Λβ

∂Φ
β
k

∂zα

 ∂kzα +

 ∂Jk

∂∂izα
− Λβ

∂Φ
β
k

∂∂izα

 ∂2
ikzα ≥ 0 (17)

In this case the vector of highest derivatives is (∂tzα, ∂t∂kzα ∂2
ikzα), and therefore the corresponding

coefficients are zero, leading to the following Liu equations (see Section 5):

∂ρs

∂zα
= Λα (18)
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∂ρs

∂∂izα
= 0 (19)

∂J(k

∂∂i)zα
− Λβ

∂Φ
β
(k

∂∂i)zα
= 0 (20)

According to the second Liu equation there is local equilibrium, the entropy does not depend on the
gradient of the state space. The first Liu Equation (18) identifies the Lagrange-Farkas multipliers with
the entropic intensives. We may also recognize that the form Equation (14) of the entropy flux is a
solution of the third Liu Equation (20). Substituting back these solutions of the Liu equations into
Equation (17) one obtains the dissipation inequality in the following form:

Φα
k∂k

(
∂ρs

∂zα

)
≥ 0 (21)

This is identical to Equation (15). Therefore, the choice of the first order weakly nonlocal constitutive
state space and the balance structure of the evolution equations enforced a local entropy density function
and the classical form of the entropy current density turned out to be compatible.

Moreover,

Jk =
∂ρs

∂zα
Φα

k + Kk(zα) (22)

is a solution of Equation (20), too, with the additive local vector Kk [7]. Let us remark, that there is no
restriction regarding the antisymmetric part, therefore (22) is only one possible solution of Equation (20).
The assumption of zero antisymmetric part in Equation (20) ensures the existence of a scalar potential
whose derivative by ∂kzα is the Jk − ΛαΦ

α
k vector field (see e.g., [71]).

Let us observe, that the final result of this simple derivation, the entropy production in the form
of Equation (21), corresponds only to the structure of the second, thermal term in Equation (10).
The first, mechanical term is different. Classical heat conduction and diffusion is without memory
and inertia, mechanics is not. The realization of this difference leads to theories of extended
thermodynamics [46,47,72] as we will see in the next sections.

Remarks

(1) The extension of the basic state space by additional variables or/and higher order gradients has two
conceptually important consequences.

• In case of higher order weak nonlocality it is necessary to introduce the gradients of the
constraints (e.g., the balances) as independent new restrictions, too [19,20,25].

• In case of internal variables (without balances as constraints) one can derive the complete
evolution equations with thermodynamic methods and a weakly nonlocal extension provides
also natural boundary conditions. The thermodynamic approach can substitute variational
considerations. For example evolution equations of generalized continua can be obtained
with the help of the entropy principle also in the ideal, nondissipative limit [73,74].

(2) Writing about entropy principle in continuum physics we should mention the method of GENERIC
(General Equation of Reversible and Irreversible Coupling) [26]. GENERIC separates the
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dissipative and nondissipative parts of the evolution equations by construction. The structure of
GENERIC evolution equation is the following

dzα
dt

= Lαβ
δE
δzβ

+ Mαβ

δS
δzβ

(23)

The evolution of the nondissipative part is generated by the functional derivative of the energy E
and the related antisymmetric operator-matrix L. The evolution of the dissipative part is governed
by the functional derivative of the entropy S and the corresponding symmetric operator-matrix
M. The second law is introduced by the symmetric positive semidefinite property of M for
the dissipative part. M and L have other properties (in a bracket formulation) to ensure the
expected properties and the compatibility of the two parts. Therefore the constitutive state
space of GENERIC is inherently weakly nonlocal (functional derivatives), and enforces the linear
constitutive structure (matrix formalism) in an operator sense. The comparison of the entropy
principle with the other theories is not straightforward because of the different basic structures.

3. The Entropy Principle in Extended Irreversible Thermodynamics

The entropy principle in extended irreversible thermodynamics (EIT) is analogous to that in CIT,
but with some formal and conceptual differences which we examine here. One starts with an entropy
and an entropy flux which depend on the fluxes, besides on the classical variables. As said in the
introduction, not too far from equilibrium the entropy is the local equilibrium entropy minus some
expressions quadratic in the fluxes, and the entropy flux is the classical entropy flux plus a correction
proportional to the product of the flux of the flux times the flux itself. In principle, these non-equilibrium
contributions are not identified a priori, but depend on coefficients whose physical meaning will be
interpreted later. From here, using the definition (1) for the entropy production, one is led for the entropy
production to a quadratic form which is a sum of products of fluxes times generalized thermodynamic
forces, and it is required that the constitutive equations are submitted to the restriction that the entropy
production is positive definite. The main differences with the entropy principle in CIT are [8–10]:

• The thermodynamic forces are more general than their local equilibrium counterparts, and in them
appear the time derivatives and the gradients of the fluxes, as a consequence of using an entropy
and entropy flux which depend on the fluxes.

• Since the fluxes are considered as independent variables, the constitutive equations do not aim to
express the fluxes in terms of thermodynamic forces, but to express the evolution equations for the
fluxes., i.e., to give the time derivative of the fluxes in terms of classical thermodynamic forces,
the fluxes, and the gradients of the fluxes.

• As a consequence of (1), it is more natural in EIT to express the thermodynamic forces (containing
the time derivatives of the fluxes) in terms of the fluxes and of the gradients of the fluxes. The
presence of these gradients allows to couple fluxes of different tensorial orders (as for instance,
a vector with the divergence of a tensor or a gradient of a scalar, a tensor with the gradient of a
vector, and so on). Thus, the so-called Curie principle of CIT, stating that fluxes and forces of
different tensorial orders are not coupled to each other, [24,26,53,54] is fulfilled.
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• Since the corresponding evolution equations are not exact equations but approximate equations,
requiring that the entropy production is positive may be interpreted as giving a limit of validity to
these equations; thus, whereas the restrictions of the entropy principle on exact evolution equations
could establish that such equations must be valid for any process, the entropy principle as applied
to approximate evolution equations may indicate that these equations are only valid for a range
of processes, but not for every process. This is not in contradiction with the amendment to the
second law proposed by Muschik and Ehrentraut [14], specified in the the introduction, because
that amendment implicitly refers to exact constitutive equations [14,75].

• The temperature appearing in the Gibbs equations, i.e., the reciprocal of the partial derivative of the
entropy with respect to the internal energy, is not the local-equilibrium temperature but depends
also on the fluxes. In fact, the several definitions of temperature (caloric, kinetic), when applied to
the non-equilibrium system under a heat flux, lead to different values, which reduce to the same
value when the non-equilibrium contributions quadratic in the flux are negligible [13].

Two other points worth of comment are the following ones:

• The non-classical contributions to the entropy and entropy flux may be given a microscopic
physical meaning by fluctuation theory, namely, by combining the generalized entropy with
the Einstein’s equation for the probability of fluctuations to obtain the second moments of the
fluctuations of the fluxes, which coincide with the usual forms of the fluctuation-dissipation
theorems [76,77].

• The non-classical contributions to the entropy and entropy flux may also be compared with
the corresponding second-order expressions obtained from kinetic theory [76,77], or from
information theory. Up to the second order in the fluxes, these microscopic expressions
coincide with the macroscopic expressions phenomenologically derived from extended
irreversible thermodynamics.

After the evolution equations for the fluxes have been formulated, one is able to give a physical
interpretation to the several coefficients appearing in such equations (which are related to the coefficients
of the non-equilibrium contributions to the entropy and the entropy flux) in terms of the classical
transport coefficients, the relaxation times of the fluxes, the correlation lengths of the fluxes, and so
on [78,79]. As a simple illustration we mention the situation related to the so-called Guyer-Krumhansl
equation for heat transfer in rigid conductors, which takes into account relaxation effects and non-local
effects, in the form [80–82]

τ∂t q + q = −λ∇T + `2 (∆q + 2∇∇ · q) (24)

where λ is the thermal conductivity, τ the relaxation time of the heat flux and ` the mean free path of the
heat carriers. The corresponding entropy and entropy flux are

s = seq −
τ

2λT 2 q · q (25)

J =
q
T

+
`2

λT 2∇qT · q (26)
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with seq the local-equilibrium entropy.
The second term in Equation (25), i.e., the non-classical contribution to the entropy, has been given

in [8] a phenomenological intuitive interpretation. Namely, assume a small volume element of a system
with energy ε in the presence of a heat flux q, and suddenly isolate it. The heat flux will decay from
the initial value q to 0. This relaxation process will produce some amount of entropy. The entropy
of the final equilibrium state reached after the relaxation has occurred will be the local equilibrium
entropy corresponding to the value of ε, namely seq(ε). This entropy will be equal to the initial entropy
s(ε,q) plus the entropy produced during the heat flux relaxation. Thus, s(ε,q) may be written as
s(ε,q) = seq(ε)−srel, where srel is the entropy produced during relaxation. This is precisely the form (25).
In local-equilibrium theory, the latter term is neglected. This interpretation is complementary to the
kinetic-theory interpretation and the fluctuation theory interpretation mentioned two paragraphs above,
but more direct and intuitive.

When the mean free path is negligible, Equation (24) reduces to Cattaneo’s equation [80,83]

τ∂t q + q = −λ∇T (27)

Equation (26) yields the classical entropy flux, while Equation (25) remains unaltered. Finally, when
the relaxation time and the mean free path are both negligible, Equation (24) reduces to Fourier’s law

q = −λ∇T (28)

while Equations (25) and (26) yield the classical entropy and the classical entropy flux. Thus, we infer
that the presence of non nonlocal terms in the entropy flux is related to the presence of higher-order
gradients in the evolution equation for the heat flux [12].

Absolute temperature is given by the reciprocal of the derivative of the entropy with respect to the
internal energy (at constant values of the other extensive variables). When the extended entropy (25) is
used instead of the local-equilibrium entropy, the resulting absolute temperature is [13]

1
T

=
∂s
∂ε

=
∂seq

∂ε
−
∂

∂ε

(
τ

2λT 2

)
q · q =

1
Teq
−

1
cv

∂

∂T

(
τ

2λT 2

)
q · q (29)

with the (temperature dependent) specific heat at constant volume cv = ∂ε
∂T . Note that T differs from the

local-equilibrium temperature Teq and depends on the fluxes [13].
Relation (29) is purely formal unless a process of measuring it is specified. In equilibrium, all the

many possible operational definitions of temperature lead to the same value, and all the thermometers
will indicate it. However, this is not so out of equilibrium, where different kinds of thermometers yield
different values for the temperature. In particular, the temperature defined in (29) may be related to
the average kinetic energy of the particles in the plane perpendicular to the fluxes, and it is in general
different from the ‘temperatures’ of the other degrees of freedom, which may have different values.

In order to show the important role played by the nonlocal constitutive Equation (26), let us consider
a cylindrical nanodevice of radius r0, and thickness h0, acting as a steady heat source at constant
temperature T0, connected to a graphene circular layer, of outer radius rg, and the thickness hg), which
removes the heat from that source. We analyze the steady-state situation in an isotropic layer, in which
the heat removed is equal to the heat dissipated, thus allowing the temperature to remain constant.
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This situation can be studied starting from the hydrodynamic-like equation

λ∇T = `2∆q (30)

which, in steady states and when the heat flux may be neglected with respect to its spatial derivative,
as it often happens in nanosystems, is a direct consequence of the Guyer-Krumhansl heat-transport
Equation (24), [84]. Let us observe that in 2D steady-state situations wherein the heat diffuses radially
away from a point source, the heat has only one component q given by

q (r) =
Γ

r
(31)

with r as the radial distance from the center of the hot spot, and Γ = Q0/
(
2πhg

)
, Q0 being the constant

amount of heat per unit time irradiated by the point source. Equation (31) is derived under the hypothesis
that the lateral heat transferred from the heated graphene layer to the neighboring environment is
negligible. The coupling of Equations (30) and (31) leads to

λ
dT
dr

= −
Γ

r

1 − (
`

r

)2 (32)

Equation (32) points out that for r < ` the temperature gradient dT/dr is positive, whereas for r > `

the temperature gradient dT/dr becomes negative, i.e., the temperature profile shows the surprising
presence of a hump, which seems to contradict second law of thermodynamics, since for r < ` the
temperature increases if the distance from the heat source decreases. The reality of such a contradiction
may be checked by focusing the attention on the entropy flux (26), which in the case of radial heat
propagation becomes

J (r) =

(
1
T
−

`2

λT 2

Γ

r2

)
q (r) (33)

Thus, in a generic annular region between two radial distances r1 and r2, such that r1 < r2, the
inequality (1) implies

2πr1J (r1) < 2πr2J (r2) (34)

wherein J (r1) is the incoming entropy flux, and J (r2) is the outgoing one. Owing to Equation (33), the
inequality (34) yields

2πr1q (r1)
(

1
T1
−

`2

λT 2
1

Γ

r2
1

)
< 2πr2q (r2)

(
1
T2
−

`2

λT 2
2

Γ

r2
2

)
(35)

Moreover, since the conservation of the total heat flux across each circular zone implies 2πr1q (r1) =

2πr2q (r2), we have
1
T1

(
1 −

`2

λT1

Γ

r2
1

)
<

1
T2

(
1 −

`2

λT2

Γ

r2
2

)
(36)

From this relation it follows that when λT > `2Γ/r2 (or in the limit case of Γ`2/
(
λTr2

)
→ 0), then

inequality (36) is not violated if T1 > T2. On the other hand, when ` < r1, r2 the condition λT > `2Γ/r2

holds. Then we conclude that for radial distances from the center of the hot point larger than the mean
free path, as expected, the larger the radial distance, the smaller the temperature.
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When r1, r2 < `, instead, then λT < `2Γ/r2, and the inequality (34) changes in

1
T1

(
`2

λT1

Γ

r2
1

− 1
)
>

1
T2

(
`2

λT2

Γ

r2
2

− 1
)

(37)

which is not violated for T1 < T2. Then, for radial distances from the center of the hot point smaller
than the mean free path, the larger the radial distance, the bigger the temperature, so that the temperature
hump arises.

Thus, the nonlocal form (26) of the entropy flux, indicates that in some situations it is possible to have
a heat transfer from lower to higher temperature, at the condition that the inhomogeneity in the heat flux
is high enough and the dimension of the system is of the same order of magnitude, (or smaller) of the
mean free path of the heat carriers.

Another field in which nonlocal interactions are important is the analysis of thermoelectric effects,
i.e., the direct conversion of temperature differences to electric voltage and vice-versa. Frequently used
conversion devices are represented by nanostructured crystals, in which the heat is carried by phonons
and electrons. Their thermodynamical efficiency may be evaluated through the parameter ZT , being Z
the so called figure-of-merit, defined as

Z =
ε2σe

λe + λp
(38)

ε being the Seebeck coefficient, σe the electrical conductivity, and λe and λp the thermal conductivities
due to electrons and phonons, respectively.

Let us focus our attention on a cylindrical nanowire with transversal radius R, such that `e < R < `p,
where `e is the mean free path of the electrons and `p is the mean free path of the phonons. If the
nanowire is assumed to be isotropic, then the heat flux on each cross section propagates radially. In such
a case it is realistic to suppose that, due to the reduced dimension of the radius with respect to the phonon
mean free path, the effects of the interaction between the phonons and the wall of the nanowire are not
limited to a thin layer close to the wall but pervade the whole system. According with this point of view,
we suppose that the phonon heat flux is [85,86]

q(p) (r) = q(p)
b (r) + q(p)

w (39)

where

q(p)
b = λp

∆T
L

(
R2 − r2

)
4`2

p
(40)

represents the heat flux in the bulk, calculated by solving the stationary Guyer-Krumhansl Equation (24)
for the phonon heat flux, and q(p)

w is the wall contribution to the heat flux, for which we postulate the
constitutive equation [86]

q(p)
w = Cp`p

∣∣∣∣∂q(p)
b

∂r

∣∣∣∣
r=R

(41)

Cp being a non-negative temperature-dependent numerical coefficient characterizing the walls, the value
of which is smaller than unit . The influence of q(p)

w is important especially in a thin layer near the walls,
the thickness of which is the order of `p (i.e., the so-called Knudsen layer). Far from the boundary, the
wall contribution in Equation (41) would decrease, in such a way that when the phonon mean free path is
negligible with respect to the radial distance (or to the characteristic size of the system), then q(p)

w would
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become negligible. However, in the present case that layer pervades the whole transversal section, so
that the wall contribution arising from Equation (41) is constant. Thus, the radial profile of the total heat
flux is [85,86]

q(p) (r) = λp
∆T
L

(
R2 − r2 + 2Cp`pR

)
4`2

p
(42)

while, the figure-of-merit may be calculated to be [85]

Z =
ε2σe

λe + λp

(
Cp

2

) (
R
`p

) (43)

As it is possible to observe, the figure-of-merit depends on R (size dependency), and this fact allows
to control its value by modulating the physical dimensions of the system. For increasing values of the
ratio Knp = `p/R, Z decreases and tends linearly to the limit value Zlim = ε2σe/λe. Moreover, it emerges
that a further control of Z may be obtained by controlling the material coefficient Cp.

4. The Entropy Principle in Rational Extended Thermodynamics

Modelling non-equilibrium phenomena in which steep gradients and rapid changes occur represents a
challenging task which has been tackled in the case of gas by means of two complementary approaches:
the continuum approach and the kinetic approach.

The continuum model consists in describing the system by means of macroscopic equations (e.g.,
fluid-dynamic equations) obtained on the basis of conservation laws and appropriate constitutive
equations. As an example, classical irreversible thermodynamics (CIT), which relies on the assumption
of local thermodynamic equilibrium (LTE), has proven to be a useful and sound theory characterized by
a systematic and comprehensive theoretical structure [24]. In this framework, the Navier-Stokes-Fourier
(NSF) theory [24,87] has gained much popularity mainly due to its practical usefulness in many
applications (see Section 2). Nonetheless, CIT and NSF suffer of some limits: since the mathematical
structure of these theories is characterized by a system of differential equations of parabolic type, an
infinite speed is predicted for the propagation of signals—an issue which has been addressed as the
“paradox of heat conduction” [83]. Moreover, the applicability of the classical macroscopic theory is
inherently restricted to processes characterized by small Knudsen numbers (dense gas), and the transport
coefficients associated to the dissipation processes are not provided by the theory except for the sign.

On the other hand, the approach based on the kinetic theory, which postulates that the state of the
gas can be described by a velocity distribution function whose evolution is governed by the Boltzmann
equation, is applicable to processes characterized by a large Knudsen number, and transport coefficients
naturally emerge from the theory itself. Nevertheless the range of applicability Boltzmann equation is
limited to rarefied and monatomic gas.

Rational extended thermodynamics is a phenomenological theory aiming at filling the gap between
this two limit cases.

After the well known observation of Cattaneo in the case of a rigid heat conductor [83] and the kinetic
13 moment model due to Grad [42], the first approach of a phenomenological extended thermodynamics
(ET) was proposed by Müller, based on the modification of the Gibbs relation [88].
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It was observed by Ruggeri in [89] that, in this approach, the entropy production depends strongly
of the choice of the entropy flux and for different entropy flux there are different field equations. The
differential system is not a priori in the form of balance laws and this implies from mathematical point
of view that there is not ever the possibility to define weak solutions and to study shock waves.

Taking into account that the most clear situation in which the NSF theory is not valid is when
the gas is very rarefied, Liu and Müller [90] in a classic context and Liu, Müller and Ruggeri in a
relativistic framework [91] developed a new restyling of modern ET that was called rational extended
thermodynamics [11]. The main difference was that a priori the mathematical structure of RET is based
on a hierarchy of balance laws that have the same structure of the moments of the distribution function
in Boltzmann equation truncated at some arbitrary order N; the theory, under this respect, resembles the
kinetic approach, but the closure is achieved by means of the universal principles of continuum theory:
the entropy principle, the objectivity principle and the principles of causality and stability.

More precisely, the kinetic theory of monatomic gases is based on the assumption that the state of the
gas can be described by the distribution function f (x, ξ, t). The rate of change of the velocity distribution
function in the absence of external forces is determined by the Boltzmann equation

∂t f + ξi ∂i f = Q( f ) (44)

where the collision integral Q( f ) represents the rate of change of the distribution function f due
to collisions.

Finding solution of (44) is, in general, an extremely complicated task; however, one is usually
interested in the evolution of macroscopic observable quantities. One way to circumvent direct solution
of the Boltzmann equation is to define macroscopic quantities by averaging f over the velocity space
(moments of the distribution function)

F =

∫
R3

m f dξ, Fi1...ik =

∫
R3

m ξi1 · · · ξik f dξ, ik ∈ {1, 2, 3}, ∀k ∈ �+

where m represents the mass of the particles, and to determine appropriate governing equations for these
new quantities. It is easily seen that the moments of the distribution function satisfy an infinite hierarchy
of balance laws in which the flux in one equation becomes the density in the next one

∂tF + ∂iFi = 0

↙

∂tFi1 + ∂iFii1 = 0

↙

∂tFi1i2 + ∂iFii1i2 = P〈i1i2〉 (45)

↙

∂tFi1i2i3 + ∂iFii1i2i3 = Pi1i2i3
...

∂tFi1i2...ik + ∂iFii1i2...ik = Pi1i2...ik
...
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where
Pi1...ik =

∫
R3

Q( f ) m ξi1 · · · ξik dξ, 2 ≤ k

with Pll = 0.
The balance laws obtained for the collision invariants m, mξi and mξ2/2 (ξ2 = ξ jξ j) turn out to be the

conservation laws of mass, momentum and energy, since the corresponding production terms are null,
and therefore the first 13 moments are identified as the macroscopic variables commonly used

F = ρ, Fi = ρvi, Fi1i2 = −Ti1i2 + ρvi1vi2

Fll ≡ 2ρε + ρv2, Flli = 2qi + 2Tlivl + Tllvi + ρv2vi (46)

where ρ is the mass density, ρvi is the momentum (being vi the macroscopic gas velocity), ρε is the
internal energy density, qi is the heat flux,

Ti j = −(p + Π)δi j + S <i j> (47)

is the stress tensor, p,Π and S i j denote, respectively, the pressure, the dynamical pressure and the
deviatoric part of viscous stress tensor (traceless). Taking into account (46) and (47) we have the relation
3p = 2ρε and Π = 0, typical conditions for rarefied monatomic gas.

When we cut the infinite hierarchy (45) at the density with tensor of rank N and we choose as field
the densities u ≡

(
F, Fk1 , Fk1k2 , . . . Fk1k2...kN

)
, we have the problem of closure because the last flux and the

production terms are not in the list of the densities. The basic idea of RET [11] is to consider the truncated
system as a phenomenological system of continuum mechanics, and to consider the above-mentioned
quantities as local constitutive functions to be assigned

Fk1k2...knkN+1 ≡ Fk1k2...knkN+1

(
F, Fk1 , Fk1k2 , . . . Fk1k2...kN

)
Pk1k2...k j ≡ Pk1k2...k j

(
F, Fk1 , Fk1k2 , . . . Fk1k2...kN

)
2 ≤ j ≤ n

According to the continuum theory, restrictions on the constitutive equations come only from universal
principles, i.e., the entropy principle, the objectivity principle and the principle of causality and stability
(convexity of the entropy).

4.1. The 13 Field Theory

An important example of the procedure outlined above is given by the “13-moment theory”, in which
the truncated system includes only the quantities F (interpreted as the mass density), Fi (momentum
density), Fll (energy density), Fi1i2 (momentum flux), and Flli (energy flux) which are expressed in
Equation (46). This is a particular case of system (45) with N = 3

∂tF + ∂iFi = 0, (conservation law of mass)

∂tFi1 + ∂iFii1 = 0, (conservation law of momentum)

∂tFi1i2 + ∂iFii1i2 = P〈i1i2〉, (trace part: conservation law of energy) (48)

∂tFlli1 + ∂iFllii1 = Plli1
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The closure procedure is very complex. To achieve that task, first we need to require the Galilean
invariance of the system. Hence, as a consequence of a general theorem for generic balance laws
proved in [92], we infer an explicit polynomial dependence of the densities, fluxes and production on
the velocity. Then exploiting the entropy principle by using Theorem 6 of Section 5, it is possible
(for processes not far from equilibrium state) to obtain a complete closure in which all coefficients are
prescribed only by the knowledge of the thermal and caloric equations of state. The closure is proved to
be coincident to the system of equations obtained in the framework of the kinetic theory by means of the
closure procedure proposed by Grad [42]. The closed system rewritten using the material derivative reads

ρ̇ + ρ∂ivi = 0

ρv̇i − ∂ j(S 〈i j〉 − pδi j) = 0

ρ
3
2

k
m

Ṫ + ∂ jq j − (S 〈i j〉 − pδi j)∂ jvi = 0

Ṡ 〈i j〉 + 2S n〈i∂nv j〉 + S 〈i j〉∂nvn −
4
5
∂〈 jqi〉 − 2p∂〈 jvi〉 = −

1
τS

S 〈i j〉 (49)

q̇i + qk∂kvi +
7
5

qi∂kvk +
4
5

qk∂(kvi) −
k
m

T∂ jS 〈i j〉

−
S 〈i j〉

ρ
∂kS 〈 jk〉 −

7
2

k
m

S 〈i j〉 ∂ jT +
S 〈i j〉

ρ
∂ j p +

5
2

k
m

p∂iT = −
1
τq

qi

where τS and τq are the relaxation times which relate to the viscosity and heat conductivity. It is possible
to prove that the differential system is symmetric hyperbolic in the main field components (Lagrange
multipliers associated to the system (48)).

• Remark. We need to observe a misunderstanding point about the Lagrange multipliers. In fact the
Lagrange multipliers introduced by Liu [4] are relative to the non-balance form of a differential
system like Equation (49). These quantities are not in general a field. The main field, which
is instead a vector of independent variables is the particular set of Lagrange multipliers of the
system in balance form (48). Therefore the technique described in Theorem 6 is similar to the one
proposed by Liu for very special choice of Lagrange multipliers (for more detail the reader can
see [92]).

The obtained closed system may be considered as the extension of the Navier-Stokes-Fourier
theory for rarefied monatomic gases. In fact, by performing the Maxwellian iteration [93], the
Navier-Stokes-Fourier theory is derived from the 13-moment theory.

4.2. Molecular Extended Thermodynamics of Moments and Maximum Entropy Principle

In the case of a large number of moments it is too difficult to proceed with a pure macroscopic theory
(as the 13-moments theory) and it is necessary to recall that the Fs are moments of a distribution function
f . An alternative method for achieving the closure of the system of equations is provided by MEP,
which has its roots in statistical mechanics and information theory [31,32,94]. Originally motivated by
the similarity of RET and moment equations derived from the Boltzmann equation on one hand, and
by the observation made by Kogan [95] according to which the Grad’s distribution function maximizes
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the entropy on the other hand, MEP was first proposed by Dreyer [35], then generalized by Müller
and Ruggeri to the case of any number of moments [11], and later proposed again and popularized
by Levermore [96]. More precisely, suppose to close the system (45) retaining the densities until the
tensorial index N. We have the system of balance law

∂tF + ∂ jF j = P (50)

where, the densities F, the fluxes F j and the productions P are:

F(t, x) =

∫
R3
Ψ(ξ) f dξ

F j(t, x) =

∫
R3
ξ jΨ(ξ) f dξ (51)

P(t, x) =

∫
R3
Ψ(ξ)Q( f ) dξ

with

Ψ(ξ) = m



1
ξi1

ξi1ξi2
...

ξi1 · · · ξiN


The MEP procedure states that actual distribution function f is the one which maximizes the physical
entropy (4) under the constraints that its moments (51)1 are prescribed. Thus, the approximate
distribution function comes out as solution of a variational problem, with constraints and yields the
following solution [34]

f (t, x, ξ) = exp (−1 − χ/k) , χ = λ(t, x) ·Ψ(ξ) (52)

where λ ≡
(
λ, λi1 , λi1i1 , . . . , λi1i2...iN

)
is the Lagrange multipliers vector. In equilibrium it is possible

to prove that the approximated distribution function reduces to the usual Maxwellian fE. For both
mathematical (convergence) and physical (not so large Knudsen number) reasons, the maximizer (52) is
expanded in the neighborhood of local equilibrium where all the moments except hydrodynamic ones
can be regarded as small. Therefore, the distribution function can be approximated as

f = fE

(
1 −

1
k
λ̃ ·Ψ

)
, λ̃ = λ − λE (53)

where fE denotes Maxwellian distribution in local equilibrium (the local Maxwellian) and λE are
Lagrange multipliers evaluated at local equilibrium state.

Plugging (53) into (51)1, we obtain a linear algebraic system that permits to evaluate the Lagrange
multipliers λ̃ in terms of the densities F

F(t, x) − FE(t, x) = −
1
k

∫
R3

(
λ̃(t, x) ·Ψ(ξ)

)
Ψ(ξ) fE(t, x, ξ) dξ (54)

(FE denotes the equilibrium values). Inserting the Lagrange multipliers as function of the densities
solution of (54) into the truncated fluxes (51)2 and source terms (51)3, the truncated system of
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moment Equation (50) becomes closed. The complete equivalence between entropy principle
and MEP was proved by Boillat and Ruggeri [34]. It is also proved that the closed balance
laws system can be put into symmetric hyperbolic form using the main field u′ which coincides
with Lagrange multipliers λ. Moreover, the same authors put in evidence that the moments
closure gives a nesting theories of principal subsystems. In fact, it was proved that if the
closure is obtained with two different truncation orders M < N, then the system of order M
is a principal subsystem of the system of order N [97]. The main consequence is that the
maximum characteristic velocity increases with the index N. Boillat and Ruggeri were able to
deduce a lower bound estimate for the maximum characteristic velocity in terms of the truncated
index N [34]

λmax

cS
≥

√
6
5

(
N −

1
2

)
where cS is the sound velocity. Therefore, λmax becomes unbounded when N → ∞. Moreover the same
authors proved an equivalent inequality in the case of relativistic theory both for non-degenerate [98]
and degenerate [99] gas. In this case, as we aspect, the limit of λmax for N → ∞ is the light velocity.

4.3. Rational Extended Thermodynamics of Polyatomic and Dense Gases

For the case of rarefied monatomic gases, the well-established RET theory, endowed with MEP to
achieve the closure, has proven to be very successful. Even in those cases in which the 13-moment
theory is not so satisfactory (problems involving high-frequency sound waves, light scattering, or shock
waves structure [11]), RET provides the right theoretical framework for building theories with higher
number of moments which have given results in excellent agreement with the experience.

Unfortunately the RET theory, being strictly connected with the kinetic theory, suffers from the same
limit as the Boltzmann equation, which is notoriously valid only for rarefied monatomic gases since the
internal energy ε and the pressure p are assumed to be connected by the relation 2ρε = 3p. In the case
of rarefied polyatomic gases, the rotational and vibrational degrees of freedom—which are not present
in the simple rarefied monatomic gases model—come into play [? ], and in the case of dense gases, as
the average distance between the constituent molecules is finite, the interaction between the molecules
cannot be neglected. From a mathematical standpoint, these effects are responsible for intrinsic changes
in the structure of the emerging equations of moments that prevent from building a simple hierarchy of
equations as in the case of monatomic gases (in particular, the internal energy density is no longer simply
related to the pressure).

A RET theory of dense gases and of rarefied polyatomic ones has recently been developed by Arima,
Taniguchi, Ruggeri and Sugiyama which adopts the 14-moment: the mass density, velocity, shear stress,
dynamic pressure, energy and heat flux as independent fields [100]. This theory provides two parallel
hierarchies. One of two hierarchies consists of the balance equations for the mass density, momentum
density and momentum flux (momentum-like hierarchy), and the other one consists of the balance
equations for the energy density and energy flux (energy-like hierarchy). These hierarchies cannot be
merged with each other since the internal energy density (the intrinsic part of the energy density) is no
longer related to the pressure (one of the intrinsic part of the momentum flux)—as it is in the monatomic



Entropy 2014, 16 1778

gas case. By adopting the closure by the RET theory to this 14-moment theory, the constitutive equations
are determined explicitly with the thermal and caloric equations of state. The theory includes as a
singular limit the 13-moment theory for rarefied monatomic gases [101] and this new approach has also
been applied to the derivation of a 6-moment theory [102] which extends the Meixner’s model [103,104].
The validity of the theory has been confirmed by comparing its predictions to experimental evidence, for
rarefied polyatomic gases, in the case of ultrasonic waves [105] and shock waves [106,107].

As far as the kinetic counterpart is concerned, a crucial step towards the development of a theory of
rarefied polyatomic gases is the work by Borgnakke and Larsen [108] in which the distribution function
is assumed to depend on an additional continuous variable representing the internal energy of a molecule,
thus allowing to take into account the exchange of energy (other than translational) in binary collisions.
This model was initially used for Monte Carlo simulations of polyatomic gases, and later it has been
applied to the derivation of appropriate Boltzmann equation by Bourgat, Desvillettes, Le Tallec and
Perthame [109].

Recently Pavić, Ruggeri and Simić have proven [33], using the MEP that the kinetic model for rarefied
polyatomic gases presented in [108,109] yields appropriate macroscopic balance laws in agreement
with the 14-moment theory, and presents a natural generalization to polyatomic gases of the classical
procedure of MEP valid for monatomic ones. In fact, the two hierarchies of moment equations obtained
with the distribution function presented in [33] are consistent with the hierarchies presented in [100].
In particular, it has been shown that the momentum-like hierarchy is related to the classical moments
of the distribution function, and the energy-like hierarchy is related to the moments with an additional
continuous variable representing the internal energy of a molecule. The result obtained by MEP is in
agreement with the macroscopic approach given in [100].

More precisely, the 14 field RET theory of dense gases adopts the following 14 independent fields

mass density: F (= ρ)

momentum density: Fi (= ρvi)

energy density: Gii

momentum flux: Fi j

energy flux: Gppi

(55)

whose evolution is governed by the balance equations

∂tF + ∂kFk = 0

∂tFi + ∂kFik = 0

∂tFi j + ∂kFi jk = Pi j ∂tGii + ∂kGiik = 0

∂tGppi + ∂kGppik = Qppi

(56)

where Fi jk and Gppik are the fluxes of Fi j and Gppi, respectively, and Pi j and Qppi are the productions
with respect to Fi j and Gppi, respectively. The balance equations of F, Fi and Gii are, respectively, the
conservation laws of mass, momentum and energy, therefore their productions vanish. There are two
parallel series in the balance equations; the one starts from the balance equation with the mass density
(F-hierarchy) and the other from the balance equation with the energy density (G-hierarchy). In each
series, the flux in one equation becomes the density in the next equation.
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In the case of 14 moments it is possible to deduce using the previous hierarchy (56) the closure of the
system also for dense gas [100].

In the case of rarefied polyatomic gases, with the thermal and caloric equations of state

p =
k
m
ρT and ε =

D
2

k
m

T, (D = 3 + φ) (57)

where D is related to the degrees of freedom of a molecule given by the sum of the space dimension
3 for the translational motion and the contribution from the internal degrees of freedom (φ ≥ 0) (for
monatomic gases, D = 3), the structure of the balance Equation (56) emerges naturally for the moments
defined in the kinetic theory [33]. In the present case the idea is to consider an additional parameter in the
distribution function f (t, x, ξ, I) defined on extended domain [0,∞)×R3×R3× [0,∞). Its rate of change
is determined by the Boltzmann equation which has the same form as for monatomic gas but collision
integral Q( f ) takes into account the influence of internal degrees of freedom through collisional cross
section (Bourgat, Desvillettes, Le Tallec and Perthame [109], see also Borgnakke and Larsen [108]).
Pavić, Ruggeri and Simić [33] proved the agreement with the binary hierarchy (56) and the KT, provided
we choose the moments

F
Fi1

Fi1i2

 =

∫
R3

∫ ∞

0
m


1
ξi1

ξi1ξi2

 f (t, x, ξ, I) Iα dI dξ

(58) Gpp

Gppk1

 =

∫
R3

∫ ∞

0
m

 |ξ|2 + 2 I
m(

|ξ|2 + 2 I
m

)
ξk1

 f (t, x, ξ, I) Iα dI dξ

where
α =

D − 5
2

The closure with both the method of Entropy Principle and MEP, leads to the following differential
system for polyatomic rarefied gas

ρ̇ + ρ∂kvk = 0

ρv̇i + ∂i p + ∂iΠ − ∂ jS 〈i j〉 = 0

Ṫ +
2

D kB
m ρ

(p + Π) ∂kvk −
2

D kB
m ρ

∂kviS 〈ik〉 +
2

D kB
m ρ

∂kqk = 0

Ṡ 〈i j〉 + S 〈i j〉∂kvk − 2Π∂〈 jvi〉 + 2∂kv〈iS 〈 j〉k〉 −
4

D + 2
∂〈 jqi〉 − 2p∂〈 jvi〉 = −

1
τS

S 〈i j〉 (59)

Π̇ +
5D − 6

3D
Π ∂kvk −

2(D − 3)
3D

∂〈kvi〉S 〈ik〉 +
4(D − 3)

3D(D + 2)
∂kqk +

2(D − 3)
3D

p∂kvk = −
1
τΠ

Π

q̇i +
D + 4
D + 2

qi ∂kvk +
2

D + 2
qk∂ivk +

D + 4
D + 2

qk∂kvi

+
kB

m
T∂iΠ −

kB

m
T∂kS 〈ik〉 + Π

− kB
m T
ρ
∂iρ +

D + 2
2

kB

m
∂iT −

1
ρ
∂iΠ +

1
ρ
∂kS 〈ik〉


−S 〈ik〉

− kB
m T
ρ
∂kρ +

D + 2
2

kB

m
∂kT −

1
ρ
∂kΠ +

1
ρ
∂pS 〈pk〉

 +
D + 2

2

(
kB

m

)2

ρT∂iT = −
1
τq

qi
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The entropy density and the entropy flux are expressed as

h = ρs −
3D

4(D − 3) kB
m ρT 2

Π2 −
1

4 kB
m ρT 2

S 〈i j〉S 〈i j〉 −
1

(D + 2)
(

kB
m

)2
ρT 3

qiqi + O(3) (60)

ϕk =
1
T

qk −
D2 + 6D − 12

(D − 3)(D + 2) kB
m ρT 2

Πqk +
2

(D + 2) kB
m ρT 2

qiS 〈ik〉 + O(3) (61)

and concavity of the entropy density is ensured in equilibrium provided D > 3. The modified Gibbs
equation arises a posteriori by differentiating (60).

Remarks

(1) The previous results are very similar to the ones of the EIT but now all the coefficients in the
system (59) and in the entropy density (60) and entropy flux (61) are explicitly determined.

(2) The limit D→ 3 of monatomic gas is a singular limit but it is possible to prove that the 14 equations
and the solutions of the system (59) converge to the 13 equations and solutions of monatomic
gas (49) with Π = 0, provided the initial data are chosen compatible with the monatomic gas, i.e.,
Π(x, 0) = 0, [101].

(3) Using the procedure of Maxwellian iteration the Navier Stokes equations emerge as limit case
of (59)4,5, while Equation (59)6 reduces to the Fourier law. These results together with similar
ones obtained for Fick’s and Darcy’s law convinced one of us (T. R.) that equations that are non
local in space are not real constitutive equations but approximations of balance laws equations (as
the present case) and the real constitutive equations are local and, as consequence, the differential
systems of mathematical physics are hyperbolic rather than parabolic [29]. A further consequence
of this conjecture is that these non local equations do not need to satisfy the so called objectivity
principle because are approximation of balance laws and the objectivity principle still continues
to be valid only for the “authentic” local constitutive equations. However these limit non-local
equations are useful not only because they are used in normal physical situations but also because
they permit to obtain the evaluation of non-observable quantities such as the velocity or the
temperature of each constituent of a mixture.

(4) Although the differential system of RET is very complex, it is possible to give some qualitative
analysis. In fact, not only every nesting theories of RET are governed by symmetric hyperbolic
systems with the property of well posedness of local (in time) Cauchy problem (see Section 5) but
there can exists also global smooth solutions due to the overlap between the first 5 conservation
laws and the remaining dissipative ones. In fact, for generic hyperbolic systems of balance
laws (121), endowed with a convex entropy law, and dissipative, the so called Kawashima-Shizuta
K-condition [110] becomes a sufficient condition for the existence of global smooth solutions,
provided the initial data are sufficiently smooth (Hanouzet and Natalini [111], Wen-An Yong [112],
Bianchini, Hanouzet and Natalini [113], see also the Dafermos book [114]).
Theorem[Global Existence]. Assume that the system of balance laws is strictly dissipative and
the K-condition is satisfied. Then there exists δ > 0, such that, if ‖u(x, 0)‖2 ≤ δ, there is a unique
global smooth solution, which verifies

u ∈ C0
(
[0,∞); H2(R) ∩ C1

(
[0,∞); H1(R)

))
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Moreover Ruggeri and Serre have proved, in the one-dimensional case, that the constant states are
stable [115].
Theorem[Stability of Constant State]. Under natural hypotheses of strongly convex entropy, strict
dissipativeness, genuine coupling and “zero mass” initial for the perturbation of the equilibrium
variables, the constant solution stabilizes

‖u(t)‖2 = O
(
t−1/2

)
Recently Lou and Ruggeri [116] have observed that there exists a weaker K-condition that is a
necessary (but unfortunately not sufficient) condition for the global existence of smooth solutions.
It was proved that the assumptions of the previous theorems are fulfilled in both classical [117] and
relativistic [118], [119] RET and also in the case of mixture of gas with multi-temperatures [120].

5. Exploitation of the Entropy Principle

5.1. The Entropy Principle in RT: Coleman-Noll and Liu Procedures

Let us consider a local state spaceZ spanned by ω scalar fields zα

Z = {zα, ∂izα}, α = 1, . . . , ω (62)

We suppose that the evolution of the basic fields zα is ruled by the set of balance equations [8,14]

∂tzα + ∂kΦ
α
k = rα (63)

with Φα
k as the components of the flux of zα, and rα as either the productions of zα or the source terms.

The dissipation inequality reads [8,14]

ρ∂ts + ∂kJk = σ ≥ 0 (64)

with s the entropy density, Jk the components of the entropy flux and σ the entropy production density,
which has to be nonnegative.

Thus, the set of governing equations, evaluated on the state space, reads

∂tzα +
∂Φα

k

∂zα
∂kzα +

∂Φα
k

∂∂izα
∂2

ikzα = rα (65)

In Equation (64), the entropy density s and the entropy flux density J are constitutive quantities so
that, by taking into account the state space (62) we obtain the dissipation inequality

ρ
∂s
∂zα

∂tzα +
∂Jk

∂zα
∂kzα +

∂Jk

∂∂izα
∂2

ikzα ≥ 0 (66)

The inequality above is linear in the ω time derivatives ∂tzα and on the 6ω space derivatives ∂2
ikzα.

We call these 7ω quantities higher derivatives. In an arbitrarily fixed point (x0, t0), let us introduce the
vector y ∈ Rn, n = 7ω, given by

y = (∂tzα, ∂2
ikzα)(x0, t0) (67)



Entropy 2014, 16 1782

We call y process-direction vector. That way, in (x0, t0) we can write the balance equations and the
entropy inequality as follows

A(Z0)y = C(Z0) (68)

B(Z0) · y ≥ D(Z0) (69)

where A is a matrix, B and C are vectors and D is a scalar. All these quantities depend on the elements
of the state space evaluated in (x0, t0), so thatZ0 should be understood in this sense.

Theorem 1. [14]. In any point (x0, t0) of the space-time, the process-direction vectors can take
arbitrary values.

Proof. Since Equation (65) is a system of differential equations of first order in time, suitable (global)
initial conditions

zα(x, t0) = Λα(x) (70)

must be assigned. By successive differentiations with respect to space, from Equation (70) the relations

∂2
ikzα(x, t0) = ∂2

ikΛα(x) (71)

ensue.
From Equation (71), we argue that 6ω of the 7ω higher derivatives (67) follow by the initial

conditions z(x, t0). The remaining ω higher derivatives ∂tzα(x, t0) are determined by the balance
Equation (65). Now, let us evaluate Equations (70) and (71) in an arbitrary but fixed point (x0, t0).
We get so

zα(x0, t0) = Λα(x0) (72)

∂2
ikzα(x0, t0) = ∂2

ikΛα(x0) (73)

The 7ω real numbers in Equations (72) and (73) can be arbitrarily chosen, changing the global initial
conditions (70), and the 6ω of them in (73), (the higher derivatives), can be changed without influencing
the coefficients of the higher derivatives in the system (65), since these quantities depend on the elements
of the state space only. This is enough to prove your assertion �

The problem now is to exploit the new dissipation inequality obtained by the inequality (66) after
having taken the balances (65) into account.

In the light of the previous result, it is worth investigating if, for arbitrary initial conditions, A, B, C
and D allow only solutions y of Equation (68) leading to a nonnegative entropy production density or
whether there are solutions giving rise to a negative entropy production.

We have two possibilities, each of them excluding the other one:

(1) in (x0, t0) all (local) solutions of the balance equations have to satisfy the second law, i.e.,

{y| Ay = C} =⇒ {B · y ≥ D} (74)

(2) in (x0, t0) there are (local) solutions of the balance equations which satisfy the second law and
others which do not, i.e.,

{y| Ay = C} =⇒ {B · y ≥ D} (75)

∧

{y| Ay = C} =⇒ {B · y < D} (76)
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In (x0, t0) a process-direction vector y is said
reversible if

σ(y) = B(Z0) · y − D = 0 (77)

admitted if

σ(y) = B(Z0) · y − D ≥ 0 (78)

forbidden if

σ(y) = B(Z0) · y − D < 0 (79)

Axiom 1. [14]. Except in equilibria, reversible process-direction vectors do not exist.
Theorem 2. [14]. If Axiom 1 is true, then the entropy inequality

σ(y) = B(Z0) · y − D ≥ 0 (80)

is necessarily a restriction on the constitutive equations and not on the processes.
Proof. Let us suppose that in nonequilibrium second law represents a restriction on the processes,

i.e., that there exist nonequilibrium solutions of the balance equations which satisfy the second law and
others which do not. Let us denote by y1 and y2 an admitted process-direction vector and a forbidden
one, and let us prove that, in such a case, there exists a process-direction vector

y3 = αy1 + (1 − α)y2 (81)

with

0 < α =
D − B · y2

B · (y1 − y2)
≤ 1 (82)

which is reversible.
In fact, let us evaluate Equation (68) first in y1 and multiply them by a scalar α, and then in y2 and

multiply them by the scalar β = 1 − α. Thus,

Aαy1 = αC (83)

Aβy2 = βC (84)

Moreover, since y1 is an admitted process-direction vector while y2 is a forbidden one, the entropy
production densities σ1 and σ2 in correspondence of them will be

σ1 = B · y1 − D ≥ 0 (85)

σ2 = B · y2 − D < 0 (86)

It is worth observing that y3 satisfies the system of balance laws (68). In fact, by addition of (83) to (84),
we obtain

A(αy1 + βy2) = (α + β)C = C (87)
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On the other hand, the entropy production density corresponding to y3, namely

σ3 = ασ1 + βσ2 = α(B · y1 − D) + β(B · y2 − D) = B ·
[
αy1 + (1 − α)y2

]
− D (88)

has not definite sign, and therefore nothing prevents that y1 and y2 are such that

σ3 ≤ 0 (89)

However, since σ3 < 0 characterizes processes which do not exist in nature, for real ones we have
σ3 = 0, so that y3 is a reversible process-direction, contradicting so Axiom 1.

Moreover, the following relation, corresponding to reversible processes, holds

B ·
[
αy1 + (1 − α)y2

]
= D (90)

Equation (90) yields the following value of α

α =
D − B · y2

B · (y1 − y2)
(91)

As a direct consequence of the admissibility of y1 we infer α ≤ 1. Moreover, by inequalities (85)
and (86), it follows that D − B · y2 > 0 and B · (y1 − y2) > 0, from which we conclude that α is positive.

Due to the result above, presupposing the validity of Axiom 1, we are forced to conclude that in
correspondence of nonequilibrium states, the process-direction vectors are either all admissible or all
forbidden. On the other hand, since the real processes are necessarily admissible, the second hypothesis
is false. As a consequence, in nonequilibrium second law cannot exclude forbidden process-direction
vectors (since they do not exist) but it may only restrict the constitutive equations. This completes
the proof. �

In rational thermodynamics (RT) the sole balance equations are the balances of mass, linear
momentum, angular momentum and energy [1–3], which locally read

ρ̇ + ρ∂ jv j = 0 (92)

ρv̇i − ∂ jTi j = ρbi (93)

ρε̇ − Ti j∂ jvi + ∂ jq j = ρr (94)

where bi are the components of the specific external force and r is the specific heat supply. The system
above is closed by assigning suitable constitutive equations for Ti j and qi. The state space can be either
local or weakly nonlocal. The local unbalance of entropy is postulated in the form (1), and the entropy
flux is assumed either in the Coleman-Noll form [2] J =

q
T

, or in the Müller’s one [7] J =
q
T

+ k (see
Section 1). In this more general case, in virtue of the balance of energy, the local entropy inequality reads

− ρ
(
ψ̇ + sṪ

)
+ Ti j∂ jvi + T∂iki −

1
T

qi∂iT ≥ 0 (95)

with the Helmholtz free energy ψ given by the Legendre transformation ψ = ε − T s [3]. The relation
above is referred to as Clausius-Duhem inequality [1].

Alternative approaches introduce an additional rate of supply of mechanical energy, the interstitial
working, engendered by long–range interactions among the molecules [18], or by diffusion of matter
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through the system [121], which results in an energy extra–flux u into the local balance of energy. In this
case, the Clausius-Duhem inequality becomes

− ρ
(
ψ̇ + sṪ

)
+ Ti j∂ jvi − ∂iui −

1
T

qi∂iT ≥ 0 (96)

Without loss of generality we can pursue our analysis under the hypothesis that the relation (95) holds.
For a system at rest with the state space (62), it reads

− ρ

(
∂ψ

∂zα
+ s

∂T
∂zα

)
∂t zα +

(
T
∂ki

∂zα
−

1
T

qi
∂T
∂zα

)
∂i zα +

(
T

∂ki

∂∂ jzα
−

1
T

qi
∂T
∂∂ jzα

)
∂2

i j zα ≥ 0 (97)

Thus, it is easy to verify that in an arbitrary but fixed point (x0, t0) the inequality above may be
rewritten as

(
B̃ − Ã

)
· y ≥ D̃ (98)

where B̃ and Ã are vectors and D̃ is a scalar, all depending onZ0.
Theorem 3. [3]. Let B̃ ∈ Rn, Ã ∈ Rn and D̃ ∈ R two given vectors (independent of y), and a given

scalar, respectively. Then, the inequality

(B̃ − Ã) · y ≥ D̃ (99)

is satisfied for arbitrary y ∈ Rn if, and only if,

B̃ = Ã, D̃ ≤ 0 (100)

Proof. The proof is straightforward. It is clear that the conditions (100) are sufficient to satisfy (99).
On the other hand, should B̃ − Ã be different from 0, being y arbitrary, it could be chosen in such a
way that the inequality (99) could be easily violated. Thus, it is necessary that B̃ − Ã = 0, and, as a
consequence, D̃ ≤ 0 �

Equations (100) constitute a set of a priori constraints, to be satisfied by the constitutive equations
in (x0, t0), to ensure that the entropy inequality is fulfilled for arbitrary process-direction vectors.
On the other hand, since (x0, t0) is arbitrary, we can write the relations (100) in any point (x, t),
getting so a set of global conditions ensuring that the entropy inequality is fulfilled along arbitrary
thermodynamic processes.

The technique illustrated so far is known in literature as Coleman-Noll procedure. Since the form
of B̃, Ã and D̃ depends on the way in which Equations (68) are substituted into the inequality (69), the
restrictions (100) can take different form, depending on the type of substitution. This problem motivated
Liu [4] to develop an alternative method, which is known as Liu procedure, based on earlier results of
linear programming [6]. The Liu procedure is based on the following algebraic lemma.

Theorem 4. [4]. Let

S = {y ∈ Rn |Ay − C = 0} , ∅

Then the following statements are equivalent:
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(1)
B · y − D ≥ 0, ∀y ∈ S (101)

(2) there exists Λ ∈ Rn, with Λ , 0, such that

B · y − D − Λ · (Ay − C) ≥ 0, ∀y ∈ Rn (102)

(3) there exists Λ ∈ Rn, with Λ , 0, such that

B − ΛA = 0 (103)

Λ · C − D ≥ 0 (104)

Proof. It is trivial that 2 implies 1. To see that 2 and 3 are equivalent, let us observe that the
inequality (102) can be rearranged as follows

(B − ΛA) · y + (Λ · C − D) ≥ 0, ∀y ∈ Rn (105)

Being y arbitrary, Equation (105) is true if, and only if, Equation (103) and Equation (104) hold. Thus,
to complete the proof, it is sufficient to show that 1 implies 3. Then, let

H = {y ∈ Rn |B · y − D ≥ 0}

H0 = {x ∈ Rn |B · x = 0}

H⊥0 = {z ∈ Rn | z · x = 0 ∀x ∈ H0}

Similarly, let
S 0 = {x ∈ Rn |Ax = 0}

S ⊥0 = {z ∈ Rn | z · x = 0 ∀x ∈ S 0}

Observe that H0, H⊥0 , S 0 and S ⊥0 are all linear subspaces of Rn. Then, if x ∈ S 0, for any y ∈ S we have
x + y ∈ S . By definition, 1 implies S ⊂ H, and we claim that this implies S 0 ⊂ H0. In fact, if we suppose
that S 0 1 H0, then there exists x ∈ S 0 such that x < H0, i.e., Ax = 0 and B · x , 0. Since S 0 is a linear
subspace of Rn, for any a ∈ R it follows that ax ∈ S 0, which implies, for any y ∈ S , that y + ax ∈ S . But

B · (y + ax) − D = B · y + aB · x − D (106)

Since x < H0, i.e., B · x , 0, there exists a ∈ R such that B · (y + ax) − D < 0, which allows to
conclude that y + ax < H.. Hence, S 1 H, which contradicts our initial assumption. Therefore, we
must have S 0 ⊂ H0. That implies H⊥0 ⊂ S ⊥0 , because if z ∈ H⊥0 then z · x = 0∀z ∈ S 0 ⊂ H0. Observe
that, by definition, B ∈ H⊥0 and also the n vectors of Rn formed by the elements of the columns of A,
let us call them u1, . . .un, belong to H⊥0 . On the other hand, since we know from linear algebra that
dimS ⊥0 = rankA, S ⊥0 is spanned by u1, . . .un. Thus, there exists Λ ∈ Rn, with Λ , 0, such that B = ΛA,
which is Equation (103). Finally, for any y ∈ S , i.e., such that Ay = C we get B · y − D = ΛA · y − D =

Λ · Ay − D = Λ · C − D ≥ 0 by definition. This completes the proof �

A simple but meaningful application of this procedure can be seen in Section 2, and the results are
shown in Equations (18)–(21). More refined applications are illustrated in Section 4.
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For the sake of simplicity all the results above have been proved for a system at rest, in the case that
only the first-order gradients of the unknown quantities enter the state space. It is worth noting that the
proofs may be given in more general situations, i.e., for moving systems, with the higher-order gradients
of the zα to enter the state space. The readers interested to this problem are referred to the original
papers by Muschik and Ehrentraut [14] for Theorem 2, by Coleman and Gurtin [3] for Theorem 3, and
by Liu [4] for Theorem 4.

Although Coleman-Noll and Liu procedures are quite different, it can be proven that for some class
of materials they lead to the same results [122].

5.2. Thermodynamics with Internal Variables: The Onsager Procedure

An interesting situation arises when the state pace is spanned by ω internal variables aα, i.e.,

Z = {aα}, α = 1, . . . , ω (107)

The internal variables of state constitute an important tool in dealing with nonequilibrium processes
involving complex thermodynamical systems. This is the case in the inelastic behavior of solids or
in the relaxation effects in thermo-viscous fluids [123,124]. These non-equilibrium parameters, whose
nature depends on the phenomenon at hand, are introduced through ordinary differential equations, called
kinetic equations, on the basis of physical experiments. The entropy principle can help to determine the
form of the kinetic equations, which can be written as

∂taα = fα(aα) (108)

where the fα are supposed to be regular functions of their arguments. In this case, the entropy inequality
on the state space reads

ρ
∂s
∂aα

∂taα +
∂Jk

∂aα
∂kaα ≥ 0 (109)

Both the ω quantities ρ
∂s
∂aα

and the 3ω quantities ∂kaα are referred to as generalized thermodynamic

forces while the ω time derivatives ∂taα are called thermodynamic rates and the 3ω elements
∂Jk

∂aα
generalized thermodynamic fluxes, [24,72]. Thus, the inequality above can be put in the form

x · y + X : Y ≥ 0 (110)

where x and y are vectors of Rω whose components are the ω thermodynamic forces ρ
∂s
∂aα

and the ω

thermodynamic rates ∂taα, respectively, while X and Y are ω × 3 matrices, whose components are the

3ω thermodynamic fluxes
∂Jk

∂aα
, and the 3ω thermodynamic forces ∂kaα, respectively.

In the inequality above, the time and space derivatives of aα can be regarded as unknown functions
of the elements of the state space. Thus, in a linear approximation, we are allowed to express these
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quantities as linear functions of the thermodynamic forces ρ
∂s
∂aα

, and of the thermodynamic fluxes

∂Jk

∂aα
[24], namely,

y = Lx + MX (111)

Y = Nx + PX (112)

with L, M, N, and P as suitable tensors defined on the state space.

Theorem 5. For isotropic systems, if L and P are positive semidefinite, the linear relations (111)
and (112) are sufficient to ensure that the local entropy production is nonnegative along arbitrary
thermodynamic processes.

Proof. As first observed by Truesdell [1], the theory of representation of isotropic tensor
functions [125] implies that for isotropic systems the linear relationships (111) and (112) hold if, and
only if, M = N = 0. Thus, the inequality (110) becomes

x · Lx + X : PX ≥ 0 (113)

which is always satisfied if L and P are positive semidefinite �

Remarks.

(1) It is worth noting that the vanishing of M and N for isotropic materials was known for a long time
in classical irreversible thermodynamics, and referred to as Curie Principle, [24,53,54]. It asserts
that for isotropic systems the thermodynamic forces and fluxes of different tensorial character do
not couple. Truesdell, [1], was the first to observe that this statement does not correspond to any
physical principle but is a straightforward consequence of the theory of representation of isotropic
tensor functions [125]. Due to the result above, the linear relationship (111) reduces to

y = Lx (114)

which represents the set of ordinary differential equations we are looking for. That way, the form
of the kinetic equations is determined by the constitutive equation of the specific entropy [126].
Such a method is often referred to as the Onsager procedure.

(2) Since x and X are not independent, as both are functions of the elements of the state space, the
positive semi-definiteness of L and P is not necessary to ensure that the entropy production is
always nonnegative. More precise information can be obtained by the Coleman-Noll analysis of
the Clausius-Duhem inequality, which reads now

− ρ

(
∂ψ

∂aα
+ s

∂T
∂aα

)
∂t aα +

(
T
∂ki

∂aα
−

1
T

qi
∂T
∂aα

)
∂i aα ≥ 0 (115)

The necessary and sufficient conditions to satisfy (115) along arbitrary thermodynamic
precesses are [3]

∂ki

∂aα
=

1
T 2 qi

∂T
∂aα

,

(
∂ψ

∂aα
+ s

∂T
∂aα

)
fα ≤ 0 (116)
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Thus, we conclude that the Onsager procedure is capable to provide less information with respect
to Coleman-Noll and Liu ones. However, it is the sole method which can lead to a set of differential
equations as thermodynamic restrictions, since the Coleman-Noll procedure restricts the functions
fα only by the unilateral differential constraint (116)2.

5.3. Quasi-Linear First Order Hyperbolic Systems and Discontinuity Waves

In continuum physics the systems of governing equations often my be also put in the first-order
quasi-linear form

A0(u)∂tu + Ai(u)∂iu = f (u) (117)

with the unknown N-column vector u(x, t) = (u1, u2, . . . uN)T , where A0 and Ai are real N × N matrices
and f is a N-column vector too. The most important consequence of nonlinearity is that non regular
solutions may occur and propagate through the medium as waves.

A wave is a moving surface Σ represented mathematically by the equation

Φ(xi, t) = 0 (118)

which defines the wave front. The unit normal n on Σ and the normal speed V of Σ, are given by

n =
grad Φ

|grad Φ|
, V = −

∂Φ
∂t

|grad Φ|
(119)

Weak waves have a continuous velocity across the front but a jump of the acceleration. Meantime, the
unknown fields uα, α = 1, . . .N, are continuous across the front but their gradients are discontinuous,
with the jump pointing in the normal direction. The symbols F+ and F− will denote the limits of F
on the side of Σ with positive and negative normal, respectively. The quantities Πα =

[
∂iuα

]
ni, where

[F] = F+ − F− is the jump of F along the normal, are called amplitudes of the acceleration wave, and
their evolution is ruled by a Bernoulli equation [127–129]. The wave speeds and the amplitudes of the
acceleration waves are given, respectively, by the eigenvalues λ and the eigenvectors r of the following
eigenvalue problem

(Aini − λA0)r = 0 (120)

The system (117) is said hyperbolic in the t-direction if detA0 , 0, and the problem (120) has only
real eigenvalues (characteristic speeds) and N independents right eigenvectors. The system (117) is said
symmetric if A0 is positive definite and Ai = Ai

T . Any symmetric system is hyperbolic.
A remarkable consequence of the symmetry is the well-posedness of the Cauchy problem under very

general conditions [30]. In fact, for any symmetric system, the Cauchy problem with initial data in
a Sobolev space W p,2 with p ≥ 4, has a unique solution u ∈ W p,2 in the neighborhood of the initial
manifold [130].

5.4. Balance Laws and Entropy Principle

A particular case of the quasi-linear first order system (117) is the system of balance laws

∂βFβ(u) = f (u), β = 0, 1, 2, 3 (121)
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compatible with a supplementary balance law

∂βhβ(u) = Σ ≤ 0 (122)

with h0 = −ρs and hk = −Jk − ρsvk.

Theorem 6. [92,131,132]. The constitutive equations for the system of balance laws (121) compatible
with the entropy inequality (122) are those and only those for which there exist four potentials h′β, called
generators, and a privileged field u′, called main field, such that

Fβ =
∂h′β
∂u′

(123)

h′β = u′ ·
∂h′β
∂u′
− hβ (124)

Σ = u′ · f ≤ 0 (125)

Moreover, if h0 is a convex function of u, then the field equations form a symmetric hyperbolic system
and the Cauchy problem is well-posed under suitable smooth initial data.

Proof. The compatibility of (123) with (124) implies the existence of a particular set of Lagrange
multiplier u′ such that [132]:

u′ ·
(
∂βFβ − f

)
− ∂βhβ ≥ 0 (126)

As the system (121) is quasi-linear and the entropy inequality must be valid for any solutions
we have: [4,92]

u′ ·
∂Fβ

∂u
=
∂hβ
∂u

(127)

u′ · f ≤ 0 (128)

The condition (127) may be written as

u′ · dFβ = dhβ (129)

Supposing that the map (u ⇐⇒ u′) is invertible, we may choose the multipliers u′ as new field
variables. Therefore, from (129) we obtain

du′ · Fβ = dh′β, (130)

where we have put
h′β = u′ · Fβ − hβ (131)

From (130) we have

Fβ =
∂h′β
∂u′

(132)

and we conclude that the entropy principle implies that the vectors Fβ are gradients of the four potentials
h′β with respect to the components of the new field u′. This was not the case for the field u and therefore
u′ will henceforth be called the main field [132].
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Moreover, the production term F is admissible, if and only if it satisfies the residual inequality (128).
If we insert (132) into the original system (121), it becomes

∂β

(
∂h′β
∂u′

)
= f (u′) (133)

or, equivalently
Aβ(u′)∂βu′ = f (u′) (134)

where the matrices Aα are the Hessian matrices of h′β(u
′) with respect to the components of u′, namely

Aβ =
∂2h′β
∂u′∂u′

(135)

Obviously they are all symmetric. Now we choose the components of the field u to coincide with the
densities F0, which we may do without essential loss of generality, and we assume that h0 is a strictly
convex function of u. In this case it is granted that it is possible to choose u′as field. Indeed from (129),
when β = 0, we obtain

u′ =
∂h0

∂u
(136)

and therefore the Jacobian matrix
∂u′

∂u
=
∂2h0

∂u∂u
(137)

is positive definite and the map from u to u′ is globally invertible. Moreover from (131), evaluated for
β = 0, we observe that h′0 is the Legendre transformation of h0 and therefore h′0 is also a convex function
of u′. Indeed we have

δ2h0 = δ

(
∂h0

∂u

)
· δu = δu′ · δu = δu′ · δ

(
∂h′0
∂u′

)
= δ2h′0 > 0 (138)

Thus, by (135) it follows that the matrix A0 is positive definite. We have in this case that all matrices
Aβ are symmetric and A0 is also positive definite. Consequently our system (134) is a symmetric
hyperbolic system in the sense of Friedrichs and Lax [133] �

5.5. Generalization of the Classical Exploitation Procedures

New mathematical problems arise when dealing with higher-grade materials, namely those materials
with higher-order gradients in the state space. In such a case, since the number of balance laws is smaller
than that of the state variables, we have some time derivatives that appear into the entropy inequality but
not in the system of balance laws. As a consequence, in the inequality (99) the dimension of B̃ and y is,
in general, higher than that of Ã. Hence, it may be rearranged as follows

(B̃A − Ã) · yA + B̃B · yB ≥ D̃ (139)

where yA includes the higher derivatives which appear into the entropy inequality as well as in the
balance equations, while yB includes the higher derivatives which enter the entropy inequality but not the
balance laws. The vectors B̃A and B̃B are formed consequently. By (139), the following thermodynamic
restrictions ensue (see Theorem 3)
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B̃A = Ã, B̃B = 0, D̃ ≤ 0 (140)

Since the components of the vector B̃B are the partial derivatives of the specific free energy with
respect to some of its arguments, the second of the restrictions (140) results in the independence
of the thermodynamic potentials with respect to some state variables, and this fact may lead to the
thermodynamic incompatibility of important classes of materials. A meaningful example is constituted
by Korteweg fluids. Capillarity effects in fluids can be modeled through the presence of density gradients
in the elastic part of the Cauchy stress tensor. Such an idea has been introduced in 1901 by the Dutch
physicist D. J. Korteweg, who proposed the following constitutive equation for the elastic part of the
Cauchy stress

Ti j =
(
−p + α̃ ∂2

kk ρ + β̃ ∂k ρ∂k ρ
)
δi j + γ̃ ∂i ρ∂ j ρ + δ̃ ∂2

i j ρ (141)

where p is the pressure of the fluid, while α̃, β̃, γ̃ an δ̃ are suitable material functions of ρ and the
temperature T , [134]. The hypothesis above requires the second derivatives of the mass density to
enter the state space. However, if we investigate the thermodynamic compatibility of Equation (141) by
the Coleman-Noll procedure, from one side, by the first of the restrictions (140) we get that the stress
can be calculated by partial derivation of the free energy, from the other side, by the second of the
restrictions (140) it follows that the free energy cannot depend on the gradients of ρ. As a consequence,
Equation (141) results to be incompatible with second law, i.e., it does not exist in nature. Since such
a result does not comply with the experimental evidence, it is necessary to deal with more general
situations, allowing the thermodynamic compatibility of Equation (141). We already observed that there
are different approaches which allow this compatibility by modifying in different ways either first or
second law of thermodynamics, so that we have a non uniform approach with respect to the classical
structure of continuum theories.

However, it is possible to regard this problem from a purely mathematical point of view, by
considering a wider set of governing equations, some of them not in the balance form, by taking the
gradients of the basic balance laws up to the order of the gradients entering the state space. That
way, the number of differential constraints to be taken into account is always equal to the number
of thermodynamic variables. Moreover, since both the Coleman-Noll and Liu procedures reduce the
exploitation to an algebraic problem in an arbitrary point of the space-time (see Theorems 1–4 above),
and since in a fixed point a function and its derivatives are independent quantities, the additional
constraints are independent of the original ones. Thus, it is worth investigating:

(1) what is the form of the entropy inequality once the gradients of the balance laws have been taken
into account;

(2) what is the new set of thermodynamic restrictions implied by this new, generalized,
entropy inequality.

From now on, we pursue our analysis by considering the Liu procedure only. Similar conclusions
may be achieved for the Coleman-Noll one [20]. For the sake of simplicity, we will limit to analyze
first-order non locality only, so that

Z = {zα, ∂kzα}, α = 1, . . . , ω; k = 1, . . . , 3 (142)
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In the classical Liu procedure, the obtained entropy inequality (Liu inequality) is linear with respect to
those time derivatives which cannot be expressed through the balance laws as functions of the elements of
the state space. Moreover, it is linear also with respect to the spatial gradients which are one order higher
with respect to the order of the gradients entering the state space. In the extended procedure, instead,
gradients which are two orders higher with respect to the order of the gradients in the state space, enter
the entropy inequality [19,21]. Moreover, the obtained entropy inequality, (extended Liu inequality), is
no longer linear with respect to the spatial gradients which are one order higher than that one of the
gradients in the state space. Hence, in what follows, we distinguish between higher derivatives and
highest derivatives [20,21]. The higher derivatives are the spatial derivatives whose order is higher than
that one of the gradients entering the state space. The highest derivatives are both the time derivatives of
the elements of the state space which cannot be expressed through the governing equations as functions
of the basic fields, and the higher derivatives whose order is the highest one.

Let us introduce in (x0, t0) the vector of the highest derivatives

X =
(
∂t zα, ∂t ∂ jzα, ∂3

jkl zα
)

(x0, t0) (143)

which, in the present case, is an element of Rm, with m = 14ω. We call X higher-order process-direction
vector. Let us define further the new process-direction vector, which is given by

Y =
(
∂2

jk zα
)

(x0, t0) (144)

and is an element of Rn, with n = 6ω. The answer to the questions 1. and 2. above is given in the
propositions below. For the proofs, let us refer to [21] the readers interested.

Theorem 7. [21]. In any point (x0, t0) of the space-time the vectors Y and Y take arbitrary values.

Theorem 8. [21]. In any point (x0, t0) of the space-time the set of governing equations i.e., the
fundamental balance laws and their gradient extensions, and the extended Liu inequality take the form

E(Z0)X = F (145)

H(Z0) · X ≥ G (146)

where the p×m matrix E and the vector H ∈ Rm depend on the elements of the state spaceZ0, while the
vector F ∈ Rp and the scalar G ∈ R, depend on the elements of the state space as well as on the higher
derivatives, but do not depend on the highest derivatives.

Theorem 9. [135]. If Axiom 1 is true, then second law of thermodynamics in the form (146) is
necessarily a restriction on the constitutive equations and not on the processes.

Theorem 10. [21]. The inequality (146) may be rewritten as

(h − e) · X + yT · ay + (b − d) · y + c ≥ 0 (147)

where a is a n × n matrix, the vectors h and e belong to Rm, the vectors b and d are elements of Rn and
c ∈ R. Moreover, such a relation holds for arbitrary X ∈ Rm and y ∈ Rn if, and only if,

h = e (148)



Entropy 2014, 16 1794

b = d (149)

c ≥ 0 (150)

and a is positive semidefinite.
The result above does not prevent the constitutive equations to depend on the whole set of the

thermodynamic variables. However, particular solutions of Equations (148) and (149) can result in
the independence by some of the variables.

That way, the thermodynamic compatibility of higher-order nonlocal theories can be achieved without
any change of first or second law of thermodynamics.

Let us consider now an initial value problem with non-regular data. In particular, let us focus
our attention on initial conditions suffering jump discontinuities across a surface, which could lead to
non-regular solutions. They can be written as [135,136]

z+
α(x, t0), x ∈ Ω+

0 (151)

z−α(x, t0), x ∈ Ω−0 (152)

where Ω0 is the discontinuity surface at a fixed instant t0, Ω+
0 is the side of Ω0 with positive normal and

Ω−0 is the side with the negative one. As a consequence, the up-scripts + and − will denote the value of
the fields on Ω+

0 and Ω−0 respectively.
Finally, let us consider the following projections of the state space

Z = {zα, ∂t zα, ∂ j zα}, α = 1, . . . , ω (153)

onto Ω+
0 and Ω−0 , respectively

Z+ = {z+
α, ∂t z+

α, ∂ j z+
α}, α = 1, . . . , ω (154)

Z− = {z−α, ∂t z−α, ∂ j z−α}, α = 1, . . . , ω (155)

On the other hand, the balance equations and the entropy inequality in an arbitrary point of Ω+
0 and Ω−0 ,

respectively, and at an arbitrary time t0, read [136]

Â+(Z+
0 )Z+ = Ĉ+(Z+) (156)

B̂+(Z+
0 )Z+ ≥ D̂+(Z+

0 ) (157)

Â−(Z−0 )Z− = Ĉ−(Z−0 ) (158)

B̂−(Z−0 )Z− ≥ D̂−(Z−0 ) (159)

where Z+ and Z− denote the process directions in an arbitrary point of Ω+
0 and Ω−0 , respectively, and at

an arbitrary time t0, whileZ+
0 andZ−0 denote the the state spacesZ+ andZ−, respectively, evaluated in

the aforementioned points. Since we have assumed that all the partial derivatives of the unknown fields
exist (but are different) on Ω+

0 and Ω−0 , both the systems of balance Equations (156) and (158) may be
closed by assigning the initial conditions (151) and suitable constitutive equations defined on Z+ and
Z−, respectively. Then, we may reformulate Axiom 1 on the discontinuity surface as follows
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Axiom 2. [136]. Except in equilibria, reversible process directions in an arbitrary point of Ω+
0 and

Ω−0 , and at an arbitrary time t0, do not exist.

The meaning of Axiom 2 is straightforward. Since Axiom 1 expresses the well-known experimental
evidence that reversible thermodynamic transformations inZ can only be realized through states of local
equilibrium, Axiom 2 requires that such a physical situation is valid also in the state spacesZ+ andZ−.

The main consequence of the axiom above, is the following.

Theorem 11. [136]. If Axiom 2 is true, then, on Ω+
0 and Ω−0 , second law of thermodynamics is

necessarily a restriction on the constitutive equations and not on the processes.

6. Conclusions and Perspectives

We have examined different approaches to non-equilibrium thermodynamics starting from different
applications of the entropy principle in different thermodynamic theories. We have pointed out that, in
spite of the apparent differences, the theories present several similarities.

We reviewed the methods of exploitation of the entropy inequality and showed that they are robust
from the mathematical point of view, unless in CIT, in which some methodologies are rather heuristic
and not based on rigorous mathematical proofs (see [1], Lecture 7, for an extensive discussion).

In RT (Rational Thermodynamics) the entropy principle is characterized by the following properties:
The entropy inequality in postulated in the form (1). The dissipative fluxes are constitutive quantities.
The entropy current density is given by the heat flux divided the local-equilibrium temperature. The
entropy inequality is exploited by the Coleman-Noll or Liu procedures.

In CIT (Classical Irreversible Thermodynamics), it is characterized by the following properties:
Local equilibrium, usually given in the form of a classical Gibbs relation or, equivalently, by a local
entropy function. Heuristic state spaces. Entropy current density as in RT. Solution of the entropy
inequality in the form of thermodynamic fluxes and forces. Balance form of evolution equations.

In TIP (Thermodynamics of Irreversible Processes):
Gibbs relation is not necessary, but possible. The state spaces are extended including weak nonlocality.
Entropy current density is calculated. A solution of the entropy inequality is obtained in the form of
thermodynamic fluxes and forces. Balance form of evolution equations is not required.

The entropy principle in EIT (Extended Irreversible Thermodynamics) is characterized by:
Generalized Gibbs relation, with the dissipative fluxes as new variables. Generalized entropy current.
Solution of the entropy inequality either in the form of thermodynamic fluxes and forces or by
Coleman-Noll or Liu procedures. Balance form of evolution equations. Compatibility with the structure
of kinetic theory, with transport coefficients not necessarily calculated.

The entropy principle in RET (Rational Extended Thermodynamics) has the following distinguishing
properties: Rigorous compatibility with moment series expansion of kinetic theory, e.g., transport
coefficients are calculated. Gibbs relation as consequence of the general mathematical structure.
Balance form of evolution equations, and generalized entropy current density. Entropy inequality
(beyond H-theorem) used in the closure and also in the construction of a symmetric system of
governing equations.
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In general, we can say that with more compatibility with kinetic theory the continuum theories
loose from their universality, because they can be applied for a restricted class of materials, but gain
in predictability, because the mathematical structure becomes more rigorous and material quantities can
be calculated.

6.1. Comparison of the Various Approaches

All the presented theories are able to reproduce important physical phenomena. Moreover, also local
and nonlocal theories seem to be not so far as it could appear at a first sight. For instance, although the
Guyer-Krumhansl Equation (24) cannot be directly obtained in RET [11], since its derivation requires
that the gradient of the heat flux enters the constitutive equations, one can obtain it through a suitable
approximation of the system of RET. In fact, according to the point of view expressed by one of us (T. R.)
in Section 4, the nonlocal constitutive equations should be considered as balance equations in truncated
form. Furthermore, although the presence of the spatial gradients into the constitutive equations makes
the nonlocal theories parabolic, so that finite speeds of propagation, in a classical mathematical sense,
cannot be expected, all the theories are capable to satisfy the causality requirement.

As we pointed out in Section 4, in RET the requirements of causality and predictability are achieved
by applying the entropy principle to find the main field which symmetrizes the system of field equations.

In weakly nonlocal theories (RT, EIT, TIP) instead, finite speeds of propagation can be obtained in
generalized sense, by observing that a correct estimation of the speed of propagation of the perturbations
requires to compare the order of magnitude of the solution of the system of balance equations with
that of the error affecting the experimental data which the theory aims to fit [137]. Thus, if in a
finite interval of time the solution of the system of balance laws is bigger than the experimental error
only in a compact domain, then such a solution is experimentally zero outside this domain. As a
consequence, it has propagated with finite speed, because not all the points of the space have been
reached in a finite time [138]. This point of view complies with a classical result proved by Fichera in
his celebrated defense of Fourier theory [139], whose meaning is that the measurements of temperature
and heat flux are valid only within the limits of observation, which, in turn, depend on the sensitivities of
measuring instruments.

In his article Fichera also commented an observation made by Maxwell [140], namely that the sensible
propagation of heat, so far from being instantaneous, is instead a very slow process, and that the time
taken for the bulk of the heat to propagate is proportional to the square of the distance.

This idea suggests a second line of defense of Fourier theory [141], which has been provided with a
rigorous measure-theoretic foundation by Day [141,142] and Day and Saccomandi [143,144].

Of course, the arguments above loose their validity in a relativistic context, where the experimental
evidence—always confirmed until now—imposes the speed of light as upper bound for the velocity
of propagation of thermomechanical disturbances. Thus, in this case the system of balance laws must
be necessarily hyperbolic. A generalized constitutive principle, which is compatible with parabolic
theories in the classical case but also forces the theories to be hyperbolic in the relativistic one, has been
proposed in [138].
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In RT memory effects, as those arising in heat conduction with finite speed, are often modeled
through integral constitutive equations [145]. In such a case the balance equations are difficult to solve,
and sometime the well posedness of the relevant Cauchy problem is not guaranteed [146]. Another
possibility, used both in RT [147–149] and in CIT [150] is to introduce internal state variables [123,126].
Such an approach leads to more simple systems of equations. Nonetheless, although internal variables
are always measurable, in the sense that one can always manage to detect and to measure them [123],
they are in general “not controllable”, i.e., their value on the boundary cannot be conditioned through
the direct action of external forces [123,124]. Hence it is difficult to assign appropriate boundary
conditions, [151,152]. The determination of suitable boundary conditions is a serious problem also
in extended theories, since often the physical meaning of the higher order fluxes is not clear [153].
Moreover, since in these theories the number of field equations is not fixed, an important problem is the
determination of the appropriate number of equations, i.e., of the step at which the system of balance
laws should be truncated [154].

Some final comments are in order.
First we observe that, according to the results of kinetic theory, extended thermodynamics is not a

single theory, but a family of theories, each of which is extracted by an hierarchy of infinite balance
equations. Nonetheless, each theory has a finite number of equations, which is determined according
to a general criterion established in [154]. Such a criterion, which requires to evaluate, by physical
considerations, the steepness of the rapid thermodynamic changes in the nonequlibrium processes at
hand, can be formulated as follows: If one expects that a process is “steep of O(n)”, then all the terms of
higher order must be cancelled by the system of field equations [154].

When the boundary value of higher order fluxes cannot be determined by direct measurements, one
can use the so called fluctuation principle, according to which the systems on the boundary adjust
naturally to the mean values of the fluctuating boundary values [153]. On the other hand, the information
obtained by this principle should be merged with the consideration that the boundary conditions do not
depend only on the properties of the system, and on external forces or fluxes, but also on particular
features of the walls (smooth or rough, polar or non-polar, rigid or elastic, electrically charged or neutral,
and so on). These characteristic should be taken into account in calculating the mean of the fluctuating
boundary values.

There are subtle differences between EIT and RET, the most important one being the choice of the
state space. A further difference is the starting point of the theories, since EIT assumes a modified Gibbs
equation and does not require balance laws a priori, while RET starts from the balance structure dictated
by kinetic theory. The first approach is more general while the second approach is well-suited for a
restricted class of materials (e.g., rarefied monoatomic gases, polyatomic and dense gases). However,
it provides more accurate models of these materials, determining all the material properties from the
thermal and caloric equations of state. Also, it leads to a satisfactory qualitative analysis of shock
wave propagation.

Some authors consider CIT with internal variables the real counterpart of EIT and RET [123,124].
In this respect the fluxes are regarded as special extensive internal variables with a kinetic equation in
the balance form [123,124]. Moreover, internal variables seem to work also for solids, while for these
materials is more difficult to develop extended thermodynamics models. Although internal variables
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are, “in general”, not controllable, often we can control them. This is the case, for instance, of the
Ginzburg-Landau theory, in which the value of the phase-field on the boundary can be obtained by
physical considerations on the properties of the phase transition [69,70]. In other cases the values of the
internal variable on the boundary are dictated by second law of thermodynamics [152].

A comparative analysis of the main properties of the different thermodynamic theories is resumed
in the tables below. In Table 1 we compare the different thermodynamic theories on the base of
their properties of predictability, causality and agreement with kinetic theories. In Table 2, instead,
a comparison is made by taking into account the number of equations, the type of constitutive equations
and the way in which boundary conditions can be assigned.

Table 1. Comparison of the different thermodynamic theories: Predictability, Causality,
Agreement with kinetic theories.

Predictability Causality Agreement with kinetic theories

CIT Yes, to be proved case by case Yes, in the generalized sense Not considered
EIT Yes, to be proved case by case Yes, in the generalized sense Yes
RET Yes, in general Yes, in general Yes
RT Yes, to be proved case by case Yes, in the generalized sense Not considered

Table 2. Comparison of the different thermodynamic theories: Number of field equations,
Constitutive equations, Boundary conditions.

Number of field equations Constitutive equations Boundary conditions

CIT Finite Weakly nonlocal Experiments
EIT Finite, from an infinite hierarchy Weakly nonlocal Experiments or fluctuation theory
RET Finite, from an infinite hierarchy Local Experiments or fluctuation theory
RT Finite Weakly nonlocal Experiments

It is worth observing that what we presented above is only a first tentative scheme of comparison. The
detailed comparison and classification of the different theories with respect to the properties mentioned
above could be the subject of a future separate review.

At this point, it seems natural to investigate if there exists a more general approach to non-equilibrium
thermodynamics which encompasses all the previous ones. This important problem, which still remains
to be solved, is left to the young generations of thermodynamicists.
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