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Abstract: This paper reviews the recent progress in the analysis and applications of the 

symmetry-related electromagnetic properties of transmission lines loaded with symmetric 

configurations of resonant elements. It will be shown that the transmission characteristics of 

these reactively loaded lines can be controlled by the relative orientation between the line 

and the resonant elements. Two main types of loaded lines are considered: (i) resonance-based 

structures; and (ii) frequency-splitting structures. In resonance-based transmission lines,  

a line is loaded with a single resonant (and symmetric) element. For a perfectly symmetric 

structure, the line is transparent if the line and resonator exhibit symmetry planes of different 

electromagnetic nature (electric or magnetic wall), whereas the line exhibits a notch 

(resonance) in the transmission coefficient if the symmetry planes behave as either electric 

or magnetic walls (symmetric configuration), or if symmetry is broken. In frequency-splitting 

lines, paired resonators are typically loaded to the transmission line; the structure exhibits a 

single notch for the symmetric configuration, whereas generally two split notches appear 

when symmetry is disrupted. Applications of these structures include microwave sensors 

(e.g., contactless sensors of spatial variables), selective mode suppressors (of application in 

common-mode suppressed differential lines, for instance) and spectral signature barcodes, 

among others. 

Keywords: symmetry properties; transmission lines; microwave sensors; differential sensors; 

balanced lines; electrically small resonators; metamaterials; common-mode rejection 
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1. Introduction 

Transmission lines loaded with electrically small resonant elements, such as stepped impedance 

resonators (SIRs) [1], split ring resonators (SRRs) [2–5], spiral resonators [6], and other resonators 

related to the previous ones, including the complementary (or slotted) counterparts [7–11], have been 

applied to the implementation of planar microwave filters [1,8,12,13], spurious suppression [14], 

metamaterial-inspired devices [15,16], microwave sensors [17–21], radiofrequency barcodes [22,23], 

etc. In most of these applications, the resonator is electrically and/or magnetically coupled to the line, 

providing a notch at the fundamental resonance frequency of the resonant element. However, the fact 

that the resonant elements are etched close to the line does not guarantee that (effective or net)  

line-to-resonator coupling arises. Indeed, the relative orientation between the line and the resonant 

element is a key factor to determine whether coupling is present or not, and the nature (electric, magnetic 

or mixed) of such coupling. For instance, it was demonstrated in [24] that in coplanar waveguide (CPW) 

transmission lines loaded with pairs of SRRs symmetrically etched in the slot regions, mixed coupling 

(electric and magnetic) arises unless the SRRs are etched with their symmetry planes orthogonally 

oriented to the line axis (in that case, the coupling between the line and the SRRs is only magnetic). 

Similarly, in microstrip lines loaded with complementary split ring resonators (CSRRs), the  

line-to-resonator coupling is electric for orthogonal orientation, and mixed coupling appears for any 

other particle orientation (see Figure 1). Both SRRs and CSRRs are bianisotropic particles [25] that can 

be excited by either a time-varying electric or magnetic field (conveniently oriented), and for that reason 

particle orientation with regard to the line is fundamental to control the nature of coupling. 

 

Figure 1. (a) CPW (Coplanar waveguide) transmission line loaded with a pair of SRRs  

(split ring resonators) with the symmetry plane orthogonally oriented to the line axis;  

(b) Microstrip transmission line loaded with a CSRR (complementary split ring resonator) 

with the symmetry plane orthogonally oriented to the line axis. If the particles are rotated  

(ϕ ≠ 0), mixed coupling arises. 

However, resonator orientation and position are not only important to control the coupling 

mechanism, but also to control the presence and level of coupling in certain lines loaded with single 

symmetric resonant particles [19], or to control the number of notches in the transmission coefficient in 

transmission lines loaded with pairs of resonant elements [26]. In this work, it will be shown that particle 
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orientation and symmetry are fundamental to control the transmission properties of resonator loaded 

lines. Moreover, an exhaustive analysis, on the basis of lumped element equivalent circuit models of the 

considered structures, is carried out. Moreover, some applications derived from the symmetry related 

electromagnetic properties of these lines mainly based on selective mode suppression [27–29] or 

symmetry disruption [19,30] will be pointed out, including common-mode suppressed balanced lines, 

microwave sensors for spatial (angular) measurement, and microwave differential permittivity sensors 

(actually comparators).  

The work is organized as follows. In Section 2, the symmetry-related electromagnetic properties that 

lead us to the control of the transmission characteristics in transmission lines loaded with symmetric 

configurations of resonant elements are explained in detail. In Section 3, the circuit models of certain 

representative structures are presented. The considered structures are differential microstrip lines loaded 

with CSRRs, CPW transmission lines loaded with electric LC (ELC) resonators, and CPWs loaded with 

pairs of SRRs. Section 4 is devoted to the applications. Finally, the main concluding remarks are 

summarized in Section 5. 

2. Theory and Principle 

Let us now focus on the transmission characteristics of resonator loaded lines and the role of 

symmetry. The two types of structures considered are: (i) lines loaded with a single resonator, where a 

single notch (resonance) may appear or not depending on particle orientation and position; and (ii) lines 

loaded with a pair of resonant elements, where disruption of symmetry leads to frequency splitting.  

2.1. Lines Loaded with a Single Symmetric Resonator (Resonance-Based Structures) 

In general, if a planar resonant element is etched in close proximity to a transmission line, coupling 

between the line and the resonator arises, and the line prevents the transmission of signals at the 

fundamental resonance frequency and at higher-order resonance frequencies. Depending on the line and 

resonator topology, orientation, and position, the line-to-resonator coupling may be electric, magnetic, 

magneto-electric (or mixed), or it may be cancelled (in this case providing total transmission at the 

resonance frequency). From now on, we will focus the attention only on frequencies in the vicinity of 

the fundamental resonance frequency of the resonant element. In lines loaded with a single and 

symmetric resonant element, and assuming that the resonator is under the influence of the field generated 

by the line, a necessary condition to prevent line-to-resonator coupling is a perfect alignment  

between the line axis and the symmetry plane of the resonator. Under these circumstances, if the 

symmetry planes of the line and resonator are of different electromagnetic nature (one an electric wall 

and the other one a magnetic wall), then net coupling is cancelled, the resonator is not excited, and the 

line is transparent [19,27]. Conversely, if the symmetry planes are of the same electromagnetic nature 

(either an electric wall or a magnetic wall) the resonator is driven and the transmission coefficient 

exhibits a resonance (notch). Note that certain lines support more than one fundamental mode of 

propagation (e.g., differential microstrip lines may propagate even- and odd-modes), and hence the 

electromagnetic nature of the symmetry plane depends on the considered propagating mode. This means 

that in such lines, selective mode suppression is possible [27], as will be discussed later. If the symmetry 

planes of the line and resonator are misaligned, then, in general, line-to-resonator coupling arises.  
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Note that in the context of this paper an electric/magnetic wall is a virtual plane with an  

anti-symmetric/symmetric charge distribution at both sides. Besides, even- and odd-modes are 

symmetric and anti-symmetric modes, respectively, that propagate in symmetric structures, such as in a 

symmetric pair of coupled lines. In summary, the line-to-resonator coupling may be controlled or 

modulated, which in turn modulates the associated resonance. According to this feature, a possible 

designation for such structures may be coupling-modulated resonance-based structures or simply 

resonance-based structures. 

To clarify the previous assertions related to the coupling (resonance) prevention, consider as an 

illustrative example a CPW transmission line (see Figure 2). The fundamental CPW mode is an even 

mode and hence the transmission line exhibits a magnetic wall at its symmetry plane. If we align with 

such a line an SRR (it exhibits an electric wall at its symmetry plane at the fundamental resonance),  

the resonator will not be excited (Figure 2a). In terms of fields, for this configuration there is a perfect 

cancellation of magnetic fields in the inner region of the SRR, and the resonator is not excited because 

there is no net magnetic field penetrating the SRR [19]. However, for the slot (odd) mode of the CPW, 

the resonator will be excited, since the symmetry plane of the line is an electric wall for that mode  

(Figure 2b), and a net magnetic field in the SRR, able to induce electric currents in the particle, arises. 

Thus, selective mode suppression in the vicinity of the SRR fundamental resonance is possible [28].  

It will be shown later (Section 4) that selective mode suppression in balanced microstrip lines is possible 

by using CSRRs, and particularly useful for common-mode suppressed balanced lines. 

  
(a) (b) (c) 

Figure 2. CPW transmission line loaded with a single SRR. (a) Line and resonator aligned 

and excitation with the fundamental (even) mode; (b) line and resonator aligned and 

excitation with the slot (odd) mode; (c) line and resonator misaligned and excitation with the 

fundamental (even) mode. The cross and dot point to the direction of the magnetic field axial 

to the SRRs. 

Finally, if the resonator is not aligned with the line, i.e., rotated or laterally displaced (Figure 2c), 

perfect cancellation of fields in the particle is not possible and a notch in the transmission coefficient 

emerges (exceptionally, the structure may be still transparent when only a small amount of field lines 

illuminates the resonator). Due to symmetry disruption, the resonator is effectively coupled to the line, 

the coupling level (and hence the notch magnitude) being intimately related to the level of asymmetry. 
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From the previous words, it follows that transmission lines loaded with movable symmetric resonators 

can be used for sensing linear and angular displacements and velocities. Obviously, the line and resonator 

geometry need to be optimized in order to achieve optimum sensor performance (linearity, sensitivity, 

dynamic range, etc.). This depends on the specific type of measurement and is left for Section 4,  

where various examples are reported. Since the symmetry is not affected by changes in environmental 

conditions, these sensors based on symmetry properties are robust against variable ambient conditions 

(temperature, moisture, etc.) [30–33]. It should be highlighted that these sensors are especially suited to 

detecting the lack of alignment between the resonator and the line, and are therefore useful as alignment 

sensors. Symmetry disruption can also be achieved by means of different mechanisms (not only by linear 

or angular displacements), for instance, by asymmetric loading of additional inclusions. Thus, these 

structures may be of interest as comparators or sensors for dielectric measurements [33], where small 

samples of dielectric materials are loaded to the structure. Figure 3 illustrates the different possibilities 

concerning discrete loading, where it can be appreciated that symmetry rupture generates a notch in the 

transmission coefficient. Lastly, it is also worth pointing out that frequency-domain barcodes 

implemented by multi-resonating structures [22] and using the resonance-based approach have also been 

reported [33].  

 

Figure 3. Illustration of symmetry rupture by square-shaped inclusions in the approach 

based on a single resonator, where a CPW is loaded with a symmetrically oriented SRR. 

2.2. Lines Loaded with a Pair of Resonators (Frequency-Splitting Structures) 

In lines loaded with a pair of resonant elements (e.g., Figure 1a), the symmetric configuration leads 

to a single transmission zero, since the fundamental resonance frequencies of the two resonators 

degenerate to the same one. However, if the whole structure is asymmetric, in general there are two 

transmission zeros because two different resonances arise. This is here referred to as frequency splitting, 

meaning that the electromagnetic structure exhibits two split or separated resonance frequencies.  

It should be also stressed that the two resonance frequencies depend on the resonance frequencies of the 

two resonators, as well as on the coupling between the resonators, if present. It should be noted that in 

transmission lines loaded with pairs of resonators (transversally arranged), line-to-resonator coupling 

for both resonators cannot be canceled simultaneously. Therefore, resonance condition always occurs 

(as long as the resonator is in close proximity to the transmission line, which is obvious). 



Appl. Sci. 2015, 5 93 

 

 

 

Figure 4. Illustration of symmetry rupture by square-shaped inclusions in the approach based 

on pairs of resonators, where a CPW is symmetrically loaded with a pair of SRRs. Note that 

the symmetry planes of the SRRs are not required to be parallel to the longitudinal  

x-direction, preventing mixed coupling. 

Consequently, in this approach based on pairs of resonators, a high controllability in regard to the 

number and frequency of resonances as a function of symmetry may be achieved (the bandwidth and 

depth of the notches, however, may also depend on symmetry). Figure 4 illustrates the above-mentioned 

assertions where symmetry is disrupted by inclusions. As can be seen, an interesting aspect of  

this approach is that there is no restriction in the orientation of the individual resonators in regards to  

the line. This is important for cancel mixed-coupling effects in certain topologies [24]. For example,  

if symmetric SRRs are considered, their symmetry planes are not needed to be oriented longitudinally 

and the SRRs are coupled only magnetically to the line. 

Like in the strategy based on single resonators, symmetry rupture by adding inclusions to the  

structure using paired resonators may be useful for the implementation of differential sensors and 

comparators [34]. Potential applications are dielectric characterization, quality control (e.g., defect 

detection in samples by comparison to a reference), biosensors, etc. It is also possible to use this sensing 

principle based on frequency splitting for the implementation of spatial sensors [35].  

3. Circuit Models 

In this section, the circuit models of some representative structures of resonance-based and frequency 

splitting structures are provided and validated. As is well known, the accuracy of the models is subjected 

to the electrical size of the considered resonant elements. 

3.1. Differential Microstrip Lines Loaded with CSRRs 

Differential microstrip lines exhibit two fundamental modes, the even and the odd mode. Hence, the 

symmetry plane is an electrical wall for the odd mode and a magnetic wall for the even mode. This 

means that if a CSRR is symmetrically etched in the ground plane (i.e., with its symmetry plane aligned 

to that of the line), as Figure 5a illustrates, the even mode is expected to be suppressed in the vicinity of 

the fundamental resonance, whereas the line is expected to be transparent for the odd mode. The reason 

is that the CSRR exhibits a magnetic wall at the fundamental resonance frequency. The circuit model of 
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this structure is depicted in Figure 5b [36]. The element L models the inductance of the lines, C accounts 

for the electric coupling between the lines and the resonator (and the line capacitance as well), and the 

CSRR is modeled by the parallel resonant tank, Lc-Cc. Finally, Cm and Lm model the mutual capacitance 

and inductance between the coupled lines, respectively. 

The circuit model of Figure 5b explains that the differential signals are insensitive to the presence of 

the CSRRs, while these resonators prevent the transmission of the common mode at the fundamental 

resonance frequency of the CSRRs. The simplified equivalent circuit model under common-mode 

excitation is depicted in Figure 6a, whereas that for the odd mode is depicted in Figure 6b. For the odd 

mode, the resonator is short circuited to the ground, and the resulting model is the one of a conventional 

transmission line. For the even mode, we obtain the same circuit as the one of a CSRR-loaded line [37], 

but with modified parameters. Thus, a similar stop band behavior for the common mode is obtained. 

 
(a) (b) 

Figure 5. Topology (a) and circuit model (b) (elemental cell) of a differential microstrip line 

loaded with a CSRR. 

 

(a) (b) 

Figure 6. Circuit models for the even mode (a) and odd mode (b). 

To validate the model, we have considered a CSRR unit cell (see the inset in Figure 7) with narrow 

and closely spaced apart slot rings (c = 0.2 mm and d = 0.2 mm). These values are close to the limit of 

the available technology and guarantee that the particle is electrically small. With these values, the model 

of the CSRR reported in [37], and the per-unit length capacitance of the coupled lines (common mode), 

we have estimated the side of the CSRR in order to obtain a transmission zero frequency at fz = 1.4 GHz 

(obviously, optimization has been required since the model reported in [37] is valid under conditions not 

exactly fulfilled in the structure under study). The simulation of the common-mode insertion loss is 

depicted in Figure 7. The circuit simulation of the structure with the parameters extracted according to 

the procedure reported in [38] is also depicted in Figure 7, and good agreement with the electromagnetic 

simulation is noticeable. In order to enhance the rejection bandwidth, an order-three structure with tightly 
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coupled CSRRs has been implemented [36]. The bandwidth is closely related to the level of inter-resonator 

coupling. Therefore, we have separated 0.15 mm the CSRR in order to broaden the bandwidth as much 

as possible. The simulation of the resulting structure is shown in Figure 8, where for comparison 

purposes we have also included the circuit simulation. The simulated circuit is that resulting by cascading 

the elemental cells, but with the addition of coupling capacitances between adjacent resonators.  

The coupling capacitance has been considered to be an adjustable parameter, and we have found that the 

capacitance that provides a better fit is CR = 0.11 pF. The dimensions of the active (slot) region are  

23 mm × 7.6 mm, that is 0.28 λ × 0.09 λ (where λ is the guided wavelength at the central frequency). 

The device is therefore very small, although bandwidth has not been optimized in this structure. It is 

clear that the differential signal is not altered by the presence of the CSRRs (see also Figure 8).  

 

Figure 7. Simulated common-mode insertion loss |Scc21| for the structure shown in the inset. 

CSRR dimensions are: c = 0.2 mm, d = 0.2 mm, W = 1 mm, S = 2.5 mm, and side length of 

7.6 mm. The considered substrate is Rogers RO3010 with thickness h = 1.27 mm and 

dielectric constant εr = 10.2. Extracted parameters are Le = 9.86 nH, C = 1.06 pF,  

Cc = 2.68 pF and Lc = 3.36 nH. From [36]; reprinted with permission from IEEE 2011. 

 

Figure 8. Simulated common-mode and differential-mode insertion loss |Scc21| and |Sdd21| for the 

order-three structure that results by cascading three-unit cells like the one shown in Figure 7. 

Inter-resonator distance is 0.15 mm. From [36]; reprinted with permission from IEEE 2011. 

3.2. CPWs Loaded with ELC Resonators 

The ELC resonator (Figure 9) is a bisymmetric resonant particle [39]. At the fundamental resonance 

frequency, the currents in the two arms flow in opposite directions (one is clockwise and the other one 



Appl. Sci. 2015, 5 96 

 

 

is counterclockwise, as Figure 9 illustrates). The particle can be excited by means of a time-varying 

uniform electric field applied to the direction orthogonal to the electric wall (y-direction), but it cannot 

be excited by means of a uniform magnetic field polarized in the z-direction, since there is not a net 

magnetic dipole in that direction at the fundamental resonance. However, the particle can be excited by 

means of counter-magnetic fields applied to the two loops, as Figure 9 shows. From these assertions,  

it follows that if the particle is etched on the back side of a CPW transmission line (or on top of it),  

it can be excited depending on its relative orientation with regard to the line [40,41]. If the magnetic wall 

of the particle is aligned with the line axis (also a magnetic wall for the fundamental CPW mode),  

the ELC will be excited and a notch in the transmission coefficient is expected. Conversely, the CPW 

will be transparent if the ELC is oriented with the electric wall aligned with the line axis. Obviously for 

intermediate angles, the particle will be coupled to the line and the coupling strength can be controlled 

by the angle. These ELC-loaded lines are therefore useful as rotation sensors for alignment, displacement 

and velocity measurements, as will be shortly discussed. 

 

Figure 9. Bisymmetric ELC (electric-LC) resonator. The electric and magnetic walls at the 

fundamental resonance, as well as a sketch of the distribution of charges and currents,  

are indicated. 

The proposed equivalent circuit model of an ELC-loaded CPW is depicted in Figure 10a [41]. This 

circuit is valid as long as the cell length is electrically small (losses are not considered). The ELC 

resonator is represented by the inductances Le and the capacitance Ce, modeling the inductive loops and 

the capacitive gap, respectively. The CPW is modeled by its inductance and capacitance, L and C, 

respectively, and it is divided into two identical halves for convenience. Finally, each half is magnetically 

coupled to each loop through the mutual inductances Mθ and Mθ, both being dependent on the angle θ 

(different dots are used to distinguish the magnetic coupling sign associated to each of the halves). 

Therefore, the frequency response of the circuit of Figure 10a directly depends on the angle θ. When  

θ = 0°, due to symmetry, Mθ = Mθ ≠ 0, which means that the currents flowing on the CPW induce a pair 

of equal and anti-phase voltages in the loops; no net voltage is induced in the resonator due to an absolute 

cancellation. In other words, there is not a net magnetic coupling, the resonator cannot be magnetically 

driven, and the resulting model is that of a conventional transmission line. On the other hand, as θ 

increases, the magnetic coupling is complementarily distributed; Mθ increases at the expense of a 

decrease in Mθ. Hence for θ > 0°, a net induced voltage arises and the line is indeed capable of 

magnetically exciting the resonator. The larger the angle, the higher the induced voltage. Thus, at the 

upper limit, θ = 90°, Mθ is maximum while Mθ vanishes completely; the magnetic coupling cancellation 

disappears and the resonator is expected to be tightly coupled to the line. 
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Figure 10. (a) Equivalent circuit model of a CPW loaded with an ELC resonator, including 

the different magnetic coupling mechanisms, accounted for through the mutual inductances 

Mθ and Mθ; (b) simplified circuit model; (c) transformed simplified circuit model. 

The circuit of Figure 10a is somewhat complex and has too many parameters for both parameter 

extraction and design purposes. An equivalent and simplified circuit model is the one depicted in  

Figure 10b, where an effective mutual inductance M is defined. Such model is equivalent to that of an 

SRR magnetically coupled to a CPW transmission line, which can be transformed to the circuit model 

of Figure 10c [42,43]. From the latter model, it can be concluded that not only there is a transmission 

zero at f0 = ω0/2π as long as M is different from zero, but also the rejection bandwidth broadens with M 

(the reason is that the susceptance slope of the parallel resonator decreases as the ratio Le’/Ce’ increases). 

Furthermore, the lumped element values of that circuit can be easily extracted from the method  

reported in [43]. 

To deal with different orientations, we will consider a circular-shaped structure as a case study  

(see Figure 11) [41]. The capacitance of the ELC is enhanced by using the semi-circular metallic patches, 

thus resulting in a relatively small electrical size. The results of the electromagnetic simulation for 

different resonator orientations are plotted in Figure 12. The extracted parameters for the circular 

structure (under different orientations) are listed in Table 1. It is remarkable that with the exception of 

the mutual inductance, all the circuit parameters are roughly invariant with the rotation angle.  

The reflection and transmission coefficients inferred from the circuit simulation with the extracted 

parameters are also depicted in Figure 12. Good agreement between the circuit and the electromagnetic 

simulations in the vicinity of the transmission zero frequency (i.e., the region of interest) results,  

thus validating the proposed circuits with arbitrary ELC orientation. 

(a) 

(b) 

(c) 
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Figure 11. Layout of the circular-shaped ELC-loaded CPW structure (for a specific angle  

of 30°). The considered substrate is Rogers RO3010 with h = 1.27 mm and εr = 11.2. The 

dimensions are: for the line, W and G are tapered such that the characteristic impedance is 

50 Ω; for the ELC resonator: mean radius r0 = 8.05 mm, capacitor outer radius r1 = 11 mm, 

w2 = s = 0.2 mm, and w3 = 0.5 mm.  

 

Figure 12. (a) Magnitude and (b) phase of the reflection and transmission coefficients given 

by the lossless electromagnetic simulation for the structure of Figure 11 and by the circuit 

simulation for the models of Figure 10. The circuit parameters are indicated in Table 1.  

From [41]; reprinted with permission from IEEE 2013. 

Table 1. Extracted lumped element values of the circuit of Figure 10b for the structure of Figure 11. 

θ (Degrees) C (pF) L (nH) Ce (pF) Le (nH) M (nH) 

30 5.86 5.95 3.09 25.6 0.94 
60 5.73 6.22 3.09 25.6 1.91 
90 5.55 6.57 3.06 25.6 2.76 

The details of the parameter extraction procedure, the analytical dependence of M with the angle, as 

well as the effects of losses can be found in [41]. 

3.3. CPWs Loaded with Pairs of Coupled SRRs 

CPW transmission lines loaded with pairs of SRRs can be used as sensors based on frequency 

splitting. Typically, the coupling between resonators cannot be neglected due to their close proximity. 

Thus, the modeling of these loaded lines must include not only the coupling between the line and the 
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resonant elements, but also the inter-resonator coupling [26]. A typical CPW loaded with a pair of 

square-shaped SRRs and its lumped element equivalent circuit are depicted in Figure 13 [26].  

Line-to-resonator coupling is accounted for through M1 and M2, and inter-resonator coupling through 

M’. The per-unit-cell inductance and capacitance of the line are L and C, respectively, and the SRRs  

are described by the resonant tanks L1-C1 and L2-C2. The model considers the general case of an 

asymmetric structure. 

 

Figure 13. Typical topology of a CPW loaded with a pair of SRRs (a), and lumped element 

equivalent circuit model, considering magnetic coupling between SRRs (b). The model 

considers the general case of different SRRs, or identical SRRs with different dielectric 

loading (in the latter case, L1 = L2). 

The circuit of Figure 13b is a π-circuit where the shunt branches are purely capacitive. Thus,  

the transmission zeros (or resonance frequencies of the coupled resonators) are given by the poles of  

the series reactance. From Kirchhoff’s equations, including the different mutual couplings, applied to 

the series branch of the circuit of Figure 13b, the impedance of this branch is found to be: 
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where ω1 = (L1C1)−1/2 and ω2 = (L2C2)−1/2 are the resonance frequencies of the isolated resonators.  

By forcing the denominator of the last term to be zero, the notch (or transmission zero) frequencies can 

be derived, namely: 
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Note that these frequencies do not depend on the mutual couplings, M1 and M2, between the line and 

the SRRs, but depend on the mutual coupling, M’, between the SRRs. If inter-resonator coupling is 

negligible (M’ = 0), which is reasonable if the SRRs are separated enough, the solutions of  

Expression (2) are simply ω1 and ω2. In this case, the equivalent circuit is formally identical to the one 

reported in [42], but with two different resonators in the series branch, due to the asymmetry of the unit 

cell with regard to the line axis.  
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If M’ ≠ 0 and the structure is symmetric (M1 = M2 = M, ω1 = ω2 = ω0, L1 = L2 = Lr, and C1 = C2 = Cr), 

the two solutions of (2) are (kM is the magnetic coupling coefficient): 

M
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L

M  1'
1

ωωω ==±

 

(3)

However, one of the solutions, the one with the (−) sign in the radicand of Expression (3) (ω+), is not 

actually a transmission zero frequency. The reason is that this frequency also nulls the numerator of the 

last term in Expression (1). By applying l’Hôpital’s rule, it follows that the series impedance is finite at 

the frequency ω+; hence, we can conclude that only one transmission zero, to the left of ω0 (since M’ > 0), 

appears in the transmission coefficient for symmetric structures with magnetically coupled SRRs [26]. 

The transmission zero frequency for the symmetric case, ω−, can alternatively be obtained by applying 

the magnetic wall concept to the circuit of Figure 13b. Before that, it is necessary to transform the 

magnetically coupled inductors Lr’s of the circuit of Figure 13b to the equivalent T-circuit model  

(see Figure 14) [44]. Notice that the inductance of each resonator at both sides of the symmetry plane 

(magnetic wall) is given by Lr+M’, from which Expression (3) with the (+) sign results. It should be 

mentioned that for the symmetric case, the model of [42] provides the same macroscopic results. 

However, the equivalent inductance of the resonators in the model presented here includes the effects of M’, 

i.e., in [42] M' is inherently included in the SRR inductance.  

 

Figure 14. (a) Circuit model of the structure of Figure 13 for the symmetric case, with the 

inductive coupling between resonators transformed to the equivalent T-model (indicated on 

the left); (b) circuit that results by applying the magnetic wall concept. 

For the asymmetric structure (different coupled SRRs), but considering that their fundamental 

resonance frequencies are identical (L1 ≠ L2 and C1 ≠ C2 where ω1 = ω2 = ω0), Expression (2) gives: 
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Note that Expression (4) is formally identical to Expression (3), but replacing the inductance Lr with 

the geometrical mean of the two inductances L1 and L2 (both expressions can be written in terms of the 

magnetic coupling coefficient, kM). The two frequencies given by Expression (4) null the denominator 

of the last term in (1), but, in general, none of them nulls the numerator, thus providing two transmission 

zeros. However, there is a specific condition: 
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that gives only one transmission zero (at ω−), since the numerator of the last term in (1) is also null at ω+, 

and the impedance of the series branch is finite at this frequency (as the application of l’Hôpital’s  

rule reveals). 

The last analysis corresponds to the asymmetric case with arbitrary resonator frequencies  

(L1 ≠ L2 and C1 ≠ C2 with ω1 ≠ ω2). In this case, the transmission zeros are given by the two solutions of 

Expression (2), and the mutual coupling between resonators (M’) enhances (or splits) the distance 

between the transmission zeros, i.e.,  
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If the resonance frequencies of the isolated resonators (ω1 and ω2) are distant enough (|ω1
2 − ω2

2| >> 0) 

and M’ is small (this later condition is very reasonable in the considered structures), the two solutions of 

Expression (2) can be approximated by: 
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where we have considered that ω1 > ω2, and the positive dimensionless factor R = (ω1
2/ω2

2 − 1) −1 has 

been introduced to simplify expressions (7). The validity of Expression (7) is subjected to large values 

of ω1
2 − ω2

2 (small R) and small values of M’ (or kM), avoiding negative expressions in the square root 

of ω− in Expression (7).  

To validate the proposed model, the symmetric case has been first considered, where SRR and  

CPW dimensions are set to l1 = 4.8 mm, l2 = 3.8 mm, c = d = 0.2 mm, l = 5.6 mm, W = 3 mm, and  

G = 1.01 mm. The lossless electromagnetic simulations (inferred from Agilent Momentum) of the 

structure (S21), considering different values of inter-resonator distance, d’, are depicted in Figure 15  

(the considered substrate is Rogers RO3010 with εr = 11.2 and h = 1.27 mm). The circuit parameters for 

the four considered cases (extracted from the method reported in [43]) are shown in Table 2 (analytical 

models for the SRRs are reported in [16,45,46], but these models are not accurate enough with the 

presence of the CPW). As d’ increases, the mutual coupling M’ decreases, and the resonance frequency 

increases. Note that the other circuit parameters do not significantly vary, and the agreement  

between circuit and electromagnetic simulations in the region of interest is very good, pointing out the 

validity of the model. The measured responses (shown in Figure 15) are also in good agreement  

(slight discrepancies are due to losses and fabrication related tolerances). 

Finally, we have considered an asymmetric structure with different SRR resonance frequencies. The 

geometry is as follows: l = 5.6 mm, W = 3 mm, G = 1.01 mm; upper SRR: l1= 4.8 mm, l2 = 4.6 mm,  

c = d = 0.2 mm; lower SRRs: l1 = 4.8 mm, l2 = 3.8 mm, c = d = 0.2 mm. We have obtained the frequency 

response and the circuit parameters for four different values of d’. The pair of notches (at f− = ω−/2π and 

f+ = ω+/2π) are depicted in Figure 16, and verify that their distance increases as d’ decreases, and f− < f2 

and f+ > f1, in agreement with Expression (7). 
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Figure 15. Frequency response (symmetric case) for different values of d’ (a), and detail of 

one of the fabricated samples (bottom) where the ground planes have been connected 

through vias and strips to avoid the slot mode (b). From [26]; reprinted with permission from 

IEEE 2015. 

 

Figure 16. Variation of the notch frequencies as a function of d’ for the asymmetric  

SRR-loaded CPW (a), and detail of the fabricated sample (bottom face) for d’ = 0.105 mm (b). 

From [26]; reprinted with permission IEEE 2015. 

Table 2. Extracted circuit parameters (symmetric case) for different values of d’. 

d’ (mm) L (nH) C (pF) Cr (pF) Lr (nH) M (nH) M’ (nH) 

0.105 1.82 1.58 0.44 6.85 0.82 1.74 

0.305 1.86 1.58 0.44 6.85 0.82 1.29 

0.505 1.84 1.57 0.43 6.85 0.81 1.02 

0.755 1.85 1.55 0.43 6.85 0.80 0.80 

4. Applications 

In this section, three applications of transmission lines loaded with resonant elements, where the 

symmetry related electromagnetic properties are exploited, are presented.  

4.1. Differential Lines and Balanced Filters with Common-Mode Suppression 

It was already pointed out in Section 3.1 that differential lines loaded with CSRRs suppress the 

common mode whilst the differential mode is kept unaltered. A differential line loaded with CSRRs 
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optimized to enhance the common-mode rejection bandwidth is shown in Figure 17 [36]. To widen the 

rejection bandwidth for the common mode, the CSRRs have been designed with wider rings and  

inter-ring space [27,36]. The target was to achieve at least 20-dB common-mode rejection in the 

frequency range between 1.2 GHz and 1.8 GHz. To this end, three tightly-coupled square-shaped  

CSRRs suffice to achieve the target specifications. Figure 18 shows the simulated and measured  

differential- and common-mode insertion loss of the structure. The dimensions of the active region of 

the structure are 32.8 mm × 10.8 mm, that is 0.43 λ × 0.14 λ. It is remarkable that the measured insertion 

loss for the differential signal is smaller than 0.5 dB in the considered range. 

 

Figure 17. Photograph of the (a) top view and (b) bottom view of the differential line with 

wideband common-mode rejection. Dimensions are: c = 1.2 mm, d = 0.8 mm, W = 1 mm,  

S = 2.5 mm, and CSRR side length of 10.8 mm. The substrate is Rogers RO3010 with  

h = 1.27 mm, εr = 10.2, and loss tangent tanδ = 0.0023. 

 

Figure 18. Common-mode and differential-mode insertion loss |Scc21| and |Sdd21| for the 

structure of Figure 17. From [36]; reprinted with permission from IEEE 2011. 

Other common-mode suppressed differential microstrip lines implemented by loading the line with 

double-slit CSRRs (DS-CSRRs) are reported in [27]. The DS-CSRR is useful to broaden the rejection 

bandwidth for the common mode, since this particle exhibits a lower inductance than the CSRR,  

as required for that purpose. For instance, DS-CSRRs have been demonstrated to be useful for the 

efficient suppression of the common mode in balanced filters [27]. By merely cascading a pair of 

differential lines, each one loaded with a single DS-CSRR, the suppression of the common mode in 

differential filters with intrinsic common-mode suppression can be significantly enhanced. This is 
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illustrated in Figure 19, where a balanced filter consisting of a pair of coupled stepped impedance 

resonators (SIRs) fed by a differential line, is depicted. The filter by itself rejects the common mode due 

to the symmetry of the structure, since the symmetry plane of the resonator exhibits an electric wall at 

the first SIR resonance. Therefore, such resonators cannot be excited by means of common-mode signals, 

and the even mode is reflected back to the source due to the presence of the slots between the pair of 

SIRs. However, the rejection level of the common mode in the region of interest is very limited since it 

depends on the distance between resonators, and such inter-resonator distance is dictated by filter 

specifications. However, by cascading DS-CSRRs, the common-mode suppression is severely enhanced, 

as Figure 20 demonstrates [27]. 

 

Figure 19. Layout (a) and photograph (b) of the designed differential bandpass filter with 

improved common-mode rejection. Dimensions are: for the DS-CSRRs, c = d = 0.2 mm, 

longitudinal side length = 17.6 mm, and transverse side length = 10.8 mm; for the differential 

line, W = 1 mm, and S = 2.5 mm; for the differential filter, SM = 0.5 mm, s = 2 mm, w0 = 1.2 mm, 

w1 = 0.7 mm, w2 = 3.7 mm, l1 = 12.8 mm, l2 = 7.5 mm, l3 = 5.4 mm, and t = 5.5 mm.  

The substrate is Rogers RO3010 with h = 1.27 mm, εr = 10.2, and tanδ = 0.0023. 

The proposed differential filter is a second-order Chebyshev bandpass filter with a central frequency 

of 1.37 GHz, a fractional bandwidth of 10%, and 0.1-dB ripple. The substrate is Rogers RO3010 with  

h = 1.27 mm, and εr = 10.2. With these specifications and substrate, the layout of the filter is that depicted 

in Figure 19a (the design of the filter was done following the procedure described in [44]). The frequency 

response of the filter (differential mode, Sdd21 and Sdd11) is shown in Figure 20. The common-mode 

insertion loss (Scc21), also depicted in the figure, exhibits a rejection level of about 20 dB in the pass band 

region. However, by cascading two identical DS-CSRRs as shown in Figure 19b, the common-mode 

rejection is roughly increased up to 50 dB in the region of interest (see Figure 20). These results point 

out that DS-CSRRs provide an efficient path to enhance the common-mode noise rejection in  

balanced filters. 
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Figure 20. Simulated and measured differential-mode return loss |Sdd11| and insertion loss |Sdd21|, 

and common-mode insertion loss |Scc21| for the structure of Figure 19b with and without the 

presence of the DS-CSRRs. From [27]; reprinted with permission from IEEE 2012. 

4.2. Angular Displacement and Velocity Sensors 

Resonance-based angular displacement and velocity sensors have been reported in [40,41] and [47] 

in CPW and microstrip technology, respectively. In all the cases, a circular-shaped ELC resonator and 

line are used since by this means, linearity is optimized. For the CPW-based sensor, the line is  

non-uniform along the propagation direction. However, matching is preserved provided the central strip 

and slot widths have the appropriate dimensions. With regard to the microstrip-based sensor, the 

transmission line (that behaves like a transducer element) is actually composed of a circular-shaped 

divider/combiner, as depicted in Figure 21. Let us consider that a circular ELC resonator (attached to the 

rotating object) is symmetrically placed above a symmetric pair of microstrip lines propagating a 

common-mode signal. Under these conditions, the symmetry plane (i.e., the midplane) behaves as a 

magnetic wall. As proven in [47], and also according to the discussion of Subsection 2.1, the structure 

is transparent to signal transmission if the ELC electric wall is aligned with the symmetry plane of the 

structure. Contrarily, a transmission zero arises if the alignment is with the ELC magnetic wall. In the 

former situation, the fundamental ELC resonance cannot be excited. By contrast, the resonator is strongly 

coupled (magnetically) to the lines if the magnetic walls are aligned. Such behavior, explained through 

the equivalent circuit models of Subsection 3.2, suggests that rotations with a 90° dynamic range can be 

measured from the common-mode transmission coefficient. 

By feeding the structure with a single-ended signal, the divider acts as a single-ended to  

common-mode signal transition. Conversely, the combiner converts the common-mode signal into a 

single-ended signal. The circular-shaped lines exhibit 50-Ω even-mode characteristic impedance.  

The combiner/divider is implemented with 35.35-Ω impedance inverters (quarter-wavelength lines at 

1.45 GHz) to achieve matching to 50-Ω reference ports. The circular 50-Ω line pair (which is the active 

part of the transducer-like element and hence responsible for resonator coupling) must be arranged  

face-to-face with the ELC external ring in order to enhance electromagnetic coupling. Furthermore,  

the line pair as well as the resonator was circular-shaped to enhance linearity, as mentioned above. 
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Figure 21. Angular displacement sensor. (a) Layout; and (b) photograph. The substrates are 

Rogers RO3010 with εr = 11.2, h = 1.27 mm (microstrip line) and h = 0.635 mm (resonator), 

and tanδ = 0.0023. The line widths W are 2.06 mm and 1.04 mm. In reference to Figure 9, 

ELC mean radius r0 = 8.05 mm, w1 = 6 mm, w2 = l1 = s = 0.2 mm, and w3 = 0.5 mm. 

The displacement measurement was performed using an experimental set-up similar to that reported 

in [41]. The ELC substrate was attached to a step motor through a Teflon slab with 3.5-mm thickness 

and εr = 2.08. The air gap between the ELC and the microstrip lines was set to 0.254 mm. As shown in 

Figure 22, the rotation angle can be sensed from the notch magnitude (and frequency as well),  

the dependence being reasonably linear.  

 

Figure 22. (a) Experimental set-up, and (b) notch magnitude and frequency versus the 

angular displacement. The frequency shift between measured and simulated data is attributed 

to substrate- and fabrication-related tolerances (f0 is very sensitive to the resonator 

parameters). From [47]; reprinted with permission IEEE 2014. 

Let us now consider that the ELC is continuously rotating. To obtain the angular velocity, ωr,  

a harmonic signal tuned at a fixed frequency (e.g., the notch frequency corresponding to θ = 10°,  

f0 = 1.308 GHz) is injected to the input port, whereas an isolator plus an envelope detector are cascaded 

to the output port. For two different angular velocities, the envelope signals at the output (which are 

dependent on the transmission coefficient) are captured by an oscilloscope (Figure 23), and the velocities 

are derived from the time difference between consecutive transmission peaks, Tm = Tr/2 = 1/2fr  

(ωr = 2πfr). By configuring the step motor with fr = 1 Hz and 50 Hz (i.e. nominal values), the measured 
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velocities are fr = 0.998 Hz and 50.251 Hz, respectively, validating the approach. Rotation speeds as 

high as required can be measured by means of this approach since the carrier signal frequency (within 

the microwave region of the electromagnetic spectrum) is much higher than the angular velocity of actual 

rotating systems. Precision can be improved by merely averaging the time between peaks. Other related 

sensors for measuring angular spatial variables are reported in [48–50]. 

 

Figure 23. Angular velocity measurements for an arbitrary initial time t0. From [47]; 

reprinted with permission from IEEE 2014. 

4.3. Differential Permittivity Sensors and Comparators  

The last reported application of this paper concerns frequency splitting sensors for dielectric 

measurements. The idea in these sensors, which are based on a transmission line loaded with a pair of 

resonant elements in a symmetric configuration, is to sense by inspection of the resonance frequencies 

(number and shift). If symmetry is preserved, a single notch in the transmission coefficient appears, as 

discussed in Section 3.3 in reference to CPWs loaded with SRRs. However, if symmetry is disrupted, 

frequency splitting occurs, with the result of two notches. Since symmetry can be perturbed by several 

means (by linear or by angular displacements, by asymmetric dielectric loading, etc.), different physical 

variables can be measured. Thus, this type of frequency-splitting structures can be used as displacement 

sensors [35], or as sensors/comparators for dielectric characterization, among others. In the latter case, 

the one of interest in this section, a pair of dielectric samples is loaded onto the structure (interestingly, 

one of them can be a reference and well-known sample). Using this approach, a differential permittivity 

sensor may be designed. Alternatively, a comparison (differential by definition) between the two samples 

may be readily performed; if these loads are identical, a single notch appears, whereas two separated 

resonances are expected if they are different (note that in a comparator only the number of resonance 

frequencies is of interest). 

These dielectric comparators can be implemented by means of SRR-loaded CPW transmission lines. 

However, the proof-of-concept comparator illustrated in this section, firstly reported in [34], is based on 

a pair of shunt-connected stepped-impedance resonators (SIRs) loaded to a CPW or microstrip 

transmission line. Like in CPWs loaded with pairs of SRRs, there is magnetic coupling between the SIRs 

loaded in pairs [34]. Indeed, the expression providing the resonance frequencies is identical to that 

reported in Section 3.3 (Equation (2)). Nevertheless, there are some differences between the two 

topologies; one is relative to the position of the resonance frequency in the presence of inter-resonator 

coupling (above or below the intrinsic resonance frequency of the resonant element) for the symmetric 

configuration; another is in regard to the fact that under certain conditions a single notch is possible for 

asymmetric structures in SRR-loaded lines, but not in SIR-loaded lines. These details are treated in depth 
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in [26,34,51]. The interest here is thus to present a proof-of-concept comparator for dielectric 

measurements. It was implemented by loading a conductor-backed CPW (CB-CPW) with two identical 

SIRs. The structure was measured through on-wafer microwave probes without any dielectric load, and 

with a piece of glass (εr = 4.6) on top of one of the SIRs (see Figure 24). The appearance of a lower 

transmission zero in the latter case caused by the symmetry perturbation validates experimentally the 

sensing principle indicating that different dielectric loads are present on top of the two SIRs. 

 

Figure 24. (a) Photograph of the proof-of-concept demonstrator without (left) and with 

(right) a piece of glass on the top; (b) measured transmission coefficient. CPW dimensions 

are: W = 350 µm and G = 210 µm. SIR dimensions are: l1 = 90 µm and l2 = 100 µm, and  

w1 = 800 µm, w2 = 20 µm (l and w are the length and width of the sections, respectively). 

The substrate parameters are εr = 4.6, h = 200 µm, and tanδ = 0.0021. From [34]; reprinted 

with permission from IEEE 2014. 

It is worth mentioning that dielectric microwave sensors for analysis of biological cells and organic 

tissue or for the determination of component concentration/composition in aqueous (or other liquid) 

solutions by means of microfluidics, mostly based on frequency shift (i.e., not based on symmetry 

properties), have been proposed recently [18,21,52–62].  

5. Conclusions 

In conclusion, it has been shown in this paper that symmetry can be exploited for the design of 

microwave components, such as common-mode suppressed differential lines, and different types of 

sensors. Specifically, the considered devices are based on transmission lines loaded with planar resonant 

elements. Two types of structures have been utilized: resonance-based structures and frequency-splitting 

structures. In resonance-based structures, the lines are loaded with a single resonant element, and the 

line is transparent if the structure is fully symmetric and the symmetry plane of the line and resonator 

are of distinct electromagnetic structure (namely, one an electric wall and the other one a magnetic wall). 

Accordingly, the coupling between the line and the resonator is cancelled, and the resonator is not 
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excited. However, when symmetry is perturbed, the resonator is effectively coupled to the line and a 

notch in the transmission coefficient appears. On the other hand, in frequency-splitting structures, where 

the line is loaded with two identical resonators, the resonance frequency is split into two frequencies 

when symmetry is disrupted. Otherwise, a single notch in the transmission coefficient appears.  

The circuit models of several illustrative structures of these types of resonator-loaded lines have been 

presented and discussed. Finally, some representative applications have been reported, including 

differential lines and filters with common-mode suppression, and sensors for measuring angular 

displacements and velocities as well as for differential permittivity measurements. 
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