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Abstract
Apowerfulmodel to evaluate the collectivemagnetic response of large arrays of segmented nanowires
comprising twomagnetic segments of dissimilar coercivity separated by a non-magnetic spacer is
introduced. Themodel captures the essential aspects of the underlying physics in these systemswhile
being at the same time computationally tractable for relatively large arrays. Theminimum lateral and
vertical distances rendering densely packedweakly-interacting nanowires and segments are calculated
for optimizing their performance in applications likemagnetic sensors or recordingmedia. The
obtained results are appealing for the design ofmultifunctionalminiaturized devices actuated by
externalmagneticfields, whose successful implementation relies on achieving a delicate balance
between two opposing technological demands: the need for an ultra-high density of nanowires per
unit area and theminimization of inter-wire and inter-segment dipolar interactions.

Owing to their anisotropic shape and reduced lateral sizes, one-dimensional nanostructures (e.g., nanowires,
nanotubes or nanorods) have boosted awealth of applications in diverse technological areas, such as electronics
and optoelectronics,magneticmemory units, biological sensors, gas sensors, spintronic devices ormicro-/
nano-electro-mechanical systems, amongst others [1–3]. The elongated shape of these nano-objects promotes
mutual interactions along preferential directions when these structures are arranged or assembled together to
form an array, hence leading to physical properties that are highly anisotropic.

An additional advantage of nanowires with respect to isotropic nanoparticles is that it is relatively easy to
sequentially grow and combine various segments of dissimilarmaterials, each exhibiting different physico-
chemical properties, along the length of the nanowire [1, 4, 5]. This rendersmultifunctionality to the obtained
hybridmaterials.Without being exhaustive, some recent examples of this type ofmaterials are: Au
/polypyrrole/Ni nanowires that simultaneously contain a biofunctionalizable segment (Au) and a
ferromagnetic segment (Ni) that allowsmagnetic alignment andwirelessmanipulation [6]; Co/Cu and
FeCoNi/Cumultilayered (barcode)nanowires displaying giantmagnetoresistance (GMR) effect, suitable for
magnetic field sensors and spintronic nanodevices [7–10]; Ag/ZnOnanowires suitable for photocatalysis,
photochemical conversion and hydrogen generation [11]; CdTe/Au/CdTe trilayered nanowires for detection of
DNAmolecules [12]; FeCo/Cubarcode nanowires formagnetic control of biomolecule desorption [13]; Ni/
CoPt exchange coupled patternedmedia [14, 15]; multilevel recording [16, 17] and so on. The progress in all
these applications has been possible due to the tremendous advancement in the various syntheticmethods to
fabricate hybrid nanowires, including electrodeposition inside the pores of hard templates, electrospinning, or
one-dimensional conjugation of building blocks (e.g., nanoparticles) [1, 5].

In terms ofmagnetic applications, the use of arrays ofmulti-segmented nanowires instead ofmultilayered
magnetic continuous films is appealing for several reasons: (i)GMRelements with current-perpendicular-to-
plane geometry can be easily fabricated in high-aspect ratio structures (such as nanowires) [18], minimizing the
variation of the intralayer thicknesses, which is detrimental for theGMR effect; (ii) a large number of segments

OPEN ACCESS

RECEIVED

31August 2015

REVISED

24November 2015

ACCEPTED FOR PUBLICATION

15December 2015

PUBLISHED

11 January 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/1/013026
mailto:Alvar.Sanchez@uab.cat
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/1/013026&domain=pdf&date_stamp=2016-01-11
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/1/013026&domain=pdf&date_stamp=2016-01-11
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


with uniform thickness can be obtained in a fast and inexpensive way using pulse electrodeposition, thus
enhancing theGMR effect by virtue of the increase in the number ofmagnetic layers with antiparallel
orientation; (iii) a high areal density ofmultiplex sensors can be prepared for the simultaneous detection of
several chemical agents, in the formofminiaturized devices. In all these cases, though, it is of upmost
importance to be able to fully control the orientation of the differentmagnetic segments comprising the
nanowires. This is possible by the use of externalmagnetic fields, provided that eachmagnetic segment exhibits a
well-defined, sufficiently different, coercivity value.However, if the inter-wire lateral distance and/or the
separation between themagnetic segments inside each nanowire are exceedingly small, then dipolarmagnetic
interactions are enhanced and can cause undesirablemagnetic switching and concomitant loss in the
functionality of the hybrid nanowires. Dipolar interactions are indeed detrimental for themagnetic stability of
themulti-segmented nanowires, since themagnetic switching of one layer or nanowiremay accidentally switch
the neighboring ones. Hence, a clear understanding of the effects ofmagnetic interactions as a function of the
geometrical arrangement of the hybrid nanowires is indispensable to optimize their performance. However, this
problem is difficult to be theoretically tackled by conventionalmicromagnetic simulations, because the
computation time drastically rises as the number of simulated ferromagnetic elements is progressively increased
[19]. Hence there is an increasing need to develop new, time-saving,models to simulate the collective behavior
large arrays of complex nanowires.

In this article we introduce an efficientmodel to simulate the collectivemagnetic behavior of large arrays of
multi-segmented nanowires with a high aspect-ratio (length-to-diameter ratio, c/a=5). Thismodel is based
on a coarse discretization of the nanowires in boxes, each considered as a singlemagnetic dipole, interacting
magnetostatically with the other boxes. After validating the approximations by comparisonwithmore accurate
calculations (i.e., analytic andmicromagnetics), we study themagnetic response of large arrays of nanowires,
including the case of segmentedwires. The results show that stable, well-defined,magnetization states can be
obtained, provided that thewires are approximately separated in the horizontal direction a distance 1.5–2 times
their diameter and the segments are about one diameter apart in the vertical direction (depending on the
anisotropy of the hard phase).

The reversalmodes of single nanowires have been studiedwidely in the literature [20–25]. Analytical
calculations evidence, depending on the relation between the exchange length (lex) and the length-to-diameter
ratio, twomain reversalmodes, coherent rotation and curling, althoughmore advanced analyses have shown the
possibility of reversal by nucleation of transverse domainwalls [26–28].Moreover,micromagnetic simulations
have demonstrated other reversalmodes like nucleation, propagation and annihilation of 3D vortex
states [29, 30].

In arrays of such nanowires thefield at which themagnetization deviates fromuniformity,Hdu, is
particularly complex to study since itmust be calculated over each of them and taking into account thewhole
ensemble of nanowires. Analytic studies assuming hexagonal arrangement of nanowires have shown the need
for adding an additional term to theHdu of a single nanowire [20, 31]. This termmay be interpreted as an average
of themagnetostatic field and thus it depends linearly on the saturationmagnetization and the density of
nanowires [32] (e.g., the porosity of the template used to fabricate them [33]). Thismagnetostatic field reduces
theHdu predicted for coherent and curlingmodes in single nanowires [20]. Othermethods involve calculating
thefield of neighboring nanowires using accuratemethods, but describing the field of furtherwires as a
continuum [34, 35].Micromagnetic calculations have been performed considering few nanowires [36] or
applying periodic conditions to the algorithm [37]. In spite of these efforts, reliable tools to systematically scale
up to a representative large number of nanowires are still lacking.

Wefirst consider a nanowire with the shape of a prismwith square base of side a and length c (see inset in
figure 1(a)). The nanowire is divided into cubic boxes of side a, with a dipole ofmagnitudeMSa

3 in themiddle of
each box, whereMS is the saturationmagnetization of thematerial.We assume that thewhole nanowire is
uniformlymagnetized either in the positive or negative z direction (along the c direction) andwe evaluate the
totalfield at the center of each box, that is the sumof the appliedfield andmagnetostatic fields created by all
other boxes in the same nanowire and in neighboring nanowires. Themagnetization of the nanowire switches
when themaximum (in absolute value) of the z component of the totalfield is opposed to the overall nanowire
magnetization and is larger than a certain thresholdHcrit. This criterion can bemathematically formulated as
follows. All boxes have the samemagnetization M M z MzS=  =


ˆ ˆ and thefield created by the j box at the

center of the i box is H H z z,ij ij
Ma
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If k is the boxwhere Hi| | ismaximum for all i, then themagnetization of the nanowire switches when
H Hk crit>| | and H Msign signk = -( ) ( ).

When this criterion is fulfilled, all the boxes of the nanowire switch together. The parameterHcrit takes
implicitly into account the anisotropy of the involvedmaterials. In the case of ideally soft (i.e., nomagneto-
crystalline anisotropy)nanowires, for simplicity, we assumeHcrit=0. For the case of hard (largemagneto-
crystalline anisotropy)nanowires this threshold is taken of the order of saturationmagnetizationMS,Hcrit∼MS

(similar to [38] for hardmagneticmaterials). One could choose Fe andCoPt as soft and hard ferromagnetic
materials, respectively, as examples of actualmaterials.

Theweakermagnetostatic field (in absolute value) is at thewire edges [39] (having less neighboring boxes),
soHdu of an isolated soft nanowire is equal to themagnetostatic field at a box at the tip of thewire. This can be
calculated as the sumof themagnetostatic fields that all the cells (with amagnetic dipole each one) create to the
one at the edge, which can be analytically calculated as
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wherewe have chosen the origin of coordinates at the center of the top box of the nanowire, so the each box is
placed at r z z i az1i i= = - -

 ˆ ( ) ˆ with i=1,K, c/a, andwheref(x) and ζ(x) are Polygamma function of

Figure 1. (a)Hysteresis loops for a single nanowire with aspect ratio c/a=5 usingmicromagnetic theory (a=4lex) and our
simplified boxmodel withHcrit=0 (soft wires) in black and red curves, respectively. A schematic representation of a nanowirewith
c/a=5 is shown in the inset. (b)NormalizedHdu as a function of the normalized length of the nanowire, c, for the cases:
micromagnetic calculation for a=4lex (black curve), SWmodel for a, c=lex (gray dash–dotted curve), and the boxmodel (solid red
curve).
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second order and theRiemannZeta function, respectively. This expression can be obtained from equation (1) by
settingHa=0 and i=1, where 1 corresponds to the index of the edge box and c/a the number of the boxes in
theNW. Infigure 1we analyze the case of an isolated nanowire. Figure 1(a) compares the results of this simple
boxmodel for soft nanowires (Hcrit=0) having aspect ratio c/a=5with amicromagnetics simulation [40]

(using a=4lex, where l A

Mex
2

0 S
2=

m
andA is the exchange stiffness constant). Note that, althoughwe consider

Hcrit=0, the soft nanowire simulated by the boxmodel has some coercivity due to the shape anisotropy.
Namely, at zero-applied field, the totalfield (nowonly themagnetostatic field created by all the boxes of the
nanowire) has the same direction as themagnetization of nanowire, thus there is no switching despite the
Hcrit=0. Consequently, an extra field of opposite direction is required to overcome the dipolarfield and hence
induce the switching.

As seen infigure 1(a), the hysteresis loops calculated usingmicromagnetics and our simple boxmodel are
rather similar.Moreover, in themicromagnetics case, the deviation fromuniformity fieldHdu and the switching
field (field at which themagnetization switches its direction) are nearly the same. This allows considering only
uniform states during the nanowiremagnetization reversal in the boxmodel, and therefore the only parameter
that characterizes each hysteresis loop isHdu. To further verify the validity of ourmodel, infigure 1(b)we plot
the normalized deviation fromuniformity fieldHdu/MS as a function of the aspect ratio c/a of the nanowire
usingmicromagnetics (assuming a=4lex), and the boxmodel using equation (2). For reference, we also plot the
case c, a=lex, corresponding to the classical Stoner–Wohlfarth (SW) case [41], inwhich themagnetization
remains uniformdue to the large exchange interaction (only valid if the nanowire has very small dimensions).
All calculations converge to the sameHdu=0when the nanowire becomes a cube (c=a), because in this case
themagnetostatic energy does not depend on themagnetization direction (i.e., no shape anisotropy). For larger
c/a,Hdu increases because of the difference inmagnetostatic energy between themagnetization parallel and
perpendicular to thewire, as predicted in [41]. For all aspect ratios, the largest (negative)Hdu corresponds to the
SW limit inwhich not only themagnetization is uniform, as in the boxmodel, but also the demagnetizing field is.
Micromagnetic calculations allow for small deviations of themagnetization (e.g., the formation of 3D flower
states at the edges of thewires), therefore decreasing themagnetostatic energy of the nanowire (with respect to
the uniform case). This results in a reduction of the switching fieldwith respect to the SWmodel. Interestingly,
theHdu obtained from the simpler boxmodel roughly follows the trend of themicromagnetic calculations in the
whole range of c/a, although it shows a slightly smallerHdufield since it only considers thefield at the edges of
the nanowires (where it is weaker). However, the predictedHdu is reasonably similar to the one calculatedwith
micromagnetics for thewhole c/a range. These results justify the use of our simple boxmodel instead of tedious
micromagnetic calculations to undertake the analysis of the switching behavior of large arrays of nanowires.
Actually, the computation time of bothmodels dependsmainly on the evaluation of themagnetostatic field over
all the elements and it is thus proportional to the square of their number.Micromagnetic boxes have a typical
length∼lex (or smaller) [42, 43]. Instead, ourmodel assumes that each box is a cubewith sideΔbox=a.
Therefore, there are (a/lex)

3moremicromagnetic cells than boxes, and as a consequence the calculation time
when using the boxmodel is reduced by a factor (a/lex)

6. This implies that while the boxmodel can treat a very
large number of wires, the same arrangements turn computationally impossible to be treated by
micromagnetics.

Next, we consider regular square arrays ofNx×Ny nanowires, withNx=Ny=N, separated by a distance d
along x and y directions (see sketch infigure 2(b)). Starting from large (positive) appliedfields, all the nanowires
are initiallymagnetized in the same direction. Eachwire experiences a negative field along zdue to the
magnetostatic interactionwith the rest of thewires, whichwill depend on the distance between them. In general,
the overallmagnetostatic field has amaximum (in absolute value) at the central nanowire (assumingN odd);
therefore this wire is the one that switchesfirst and determinesHdu of thewhole array. Infigure 2(b)we show
Hdu for anN=20 arrangement as a function of the inter-wire distance.When the nanowires get closer to each
other (d→0) the switching field is large and positive, in the same direction as the initialmagnetization. As the
distance between nanowires is increased, their interaction becomesweaker and the deviation fromuniformity
field becomes negative, tending to the value for an isolated nanowirewhen d is large (see figure 1(b)). In
particular, themagnetic interaction energy between two identical nanowires decreases with d and follows the
dipole–dipole interaction dependence 1/d3 for d>2c (d>10a) giving negligible long-range interaction values
(see figure 2(c)) in agreementwithfigure 2(b). Similar results were analytically predicted byGuslienko [44] in in-
planemagnetized circular cylindrical dot arrays. Interestingly, the shape of the hysteresis loops of the arrays
changes considerably with d compared to the one of isolated nanowires. The loops are no longer squared but
tilted, as depicted infigure 2(a).

We now consider segmented nanowires with amagnetically soft segment (Hcrit=0) and a hard segment
(Hcrit=3/4MS), bothwith aspect ratio c/a=5. The saturationmagnetization for the hard segment isMS and
for the soft one is 2MS, sowhen thewhole nanowire is uniformlymagnetized its overall saturationmagnetization

4
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isMT=3MS/2. Shown infigure 3(a) is the loop for a single segmentedwire where two segments are infinitely
separated along thewire (dz→∞), so that they do not interactmagnetostatically. The hysteresis loop is simply
theweighted sumof their individual loops, where the first and second jumps correspond to the reversal of the
soft and hard segments, respectively. As can be seen infigure 3(b), for a single segmentedwire when the two
segments are in close proximity but not in contact (i.e., dz→0, interactingmagnetostatically but neglecting
exchange effects), the loop shows a very slightly increase in the switching field of the soft part and an appreciable
decrease in the switching field of the hard part with respect to the non-interacting case (dz→∞). In the
interacting case, when saturated in a positive applied field the box that feels a weaker field in the soft part is the
one away from the interface. Thus, the field at this cell determines the switching field, which increases only
slightly because thefield exerted by the hard segment over it is relatively weak and in the same direction as the
magnetization. In contrast, once the soft segment has switched, theweakermagnetostatic field over the hard

Figure 2. (a)Hysteresis loops for d→0 (blue) and d→∞ (red) forN=20with aspect ratio c/a=5. (b)NormalizedHdu for a
samplewithN=20 as a function of the separation d. Shown in the inset is a schematic representation of the nanowire arrangement.
(c)Normalizedmagnetic interaction energy as a function of the separation d for the cases of two identical uniformly z-magnetized
nanowires withMS (solid red), each one simulated as a pair ofmagnetic pointed charges of value q M aS

2 =  separated a vertical
distance c, and two identicalmagnetic dipoles withmagneticmoment m M a czd S

2=
  ˆ (dashed blue).
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segment is in the interfacial box because of its proximity to the negativelymagnetized soft segment, thus, the soft
segment induces afield opposite to themagnetization of the hard segment therefore reducing itsHdu.

To evaluate the feasibility to obtainmultiple well-defined states using segmentedwires, arrays of nanowires
consisting of a soft and a hard segment (sketched infigure 4(a)) are considered. To optimize the design of the
compositematerial, we analyze in a systematic way the effect of the in-plane distance of thewires in the array, d,
and the distance between the soft and hard segments in each nanowire, dz. As can be seen infigure 4(a), when
their separation is large (d�2a) the loop is almost the same as infigure 3(a), withwell-established states, thus
suitable for applications requiringmultiple-states. However, for very small distances the loop radically changes
as a consequence of the interactions among thewires and their segments, leading to a rounded shape, not useful
formost technological uses. To establish the boundary of d and dz to attain twowell-defined states in each
hysteresis sub-loopwe use thewidth of the plateauΔH in the hysteresis loop as a quality parameter. To
normalize it, we divideΔH by itsmaximumpossible value,ΔHmax, i.e., when all segments are completely
isolated (see figure 3(a)). Infigure 4(b)we showΔH/ΔHmax for different in-plane (d) and out-of-plane (dz)
separations. It can be seen that for inter-wire distances below d/a=1 the loop has no step, i.e.,ΔH/

ΔHmax∼0, thus, unusable formost purposes. If we setΔH/ΔHmax∼0.5 as an indispensable requirement for
a stable state, theminimum d suitable for applications would be about 1.5a (formoderate dz). On the other hand,
the system is less sensitive to the vertical separation dz betweenwires. For example, for d=2awewould need
only dz=0.5a to fulfill theΔH/ΔHmax∼0.5 criterion. These results indicate that themagnetostatic
interaction from vertically separated segments is weaker than that for horizontal ones.

If the anisotropy of the hard segments is increased, for example by increasing the threshold toHcrit=MS, we
obtain afigure similar tofigure 4(b) butwith larger values ofΔH/ΔHmax (not shown). The general trends are
similar tofigure 4(b) although the data is shifted to the left and down, that is, for d=2a and dz=0.5awe obtain
ΔH/ΔHmax∼0.7. Consequently, to fulfillΔH/ΔHmax∼0.5 criterion only d=1.5a and dz=0.25awould
be necessary for this higher anisotropy case. Hence, in principle, designingmulti-level nanowires with higher
anisotropies of the hard counterpart would be desirable to increase themagnetic stability while safely operating
the system.However, themaximfield available from the electromagnetic coils to establish the orientation of the
hard layer would set the limit for themaximumallowable anisotropy.

In conclusion, we have presented a simple but powerfulmodel to describe themagnetization switching of
large arrays of segmented nanowires. Ourmodel is capable of predicting the distances over which nanowires do
not interact appreciably with their neighbors (horizontal separation d>a). At the same timewe demonstrate
that nanowiresmade of segments of different coercivity and saturationmagnetization can be used to attain
antiparallel or parallelmagnetic alignment, as required inmagnetic sensors based on theGMR effect and other
applications based onmultiple-states. Thus, themodel can become a useful tool to efficiently design future
optimized spin-valve like sensors or even other applications, such as high-densitymulti-level recordingmedia or
magnetic encoders.
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Figure 3.Hysteresis loops for a soft and a hard segment (see sketches)with c/a=5, separated (a) an infinite vertical distance
(dz→∞) and (b) at zero vertical distance (dz→0).
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