
Development of a Novel Heart Failure Risk Tool: The
Barcelona Bio-Heart Failure Risk Calculator (BCN Bio-HF
Calculator)
Josep Lupón1,2, Marta de Antonio1,2, Joan Vila3,4, Judith Peñafiel3,4, Amparo Galán5, Elisabet Zamora1,2,
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Abstract

Background: A combination of clinical and routine laboratory data with biomarkers reflecting different pathophysiological
pathways may help to refine risk stratification in heart failure (HF). A novel calculator (BCN Bio-HF calculator) incorporating
N-terminal pro B-type natriuretic peptide (NT-proBNP, a marker of myocardial stretch), high-sensitivity cardiac troponin T
(hs-cTnT, a marker of myocyte injury), and high-sensitivity soluble ST2 (ST2), (reflective of myocardial fibrosis and
remodeling) was developed.

Methods: Model performance was evaluated using discrimination, calibration, and reclassification tools for 1-, 2-, and 3-year
mortality. Ten-fold cross-validation with 1000 bootstrapping was used.

Results: The BCN Bio-HF calculator was derived from 864 consecutive outpatients (72% men) with mean age 68.2612 years
(73%/27% New York Heart Association (NYHA) class I-II/III-IV, LVEF 36%, ischemic etiology 52.2%) and followed for a median
of 3.4 years (305 deaths). After an initial evaluation of 23 variables, eight independent models were developed. The variables
included in these models were age, sex, NYHA functional class, left ventricular ejection fraction, serum sodium, estimated
glomerular filtration rate, hemoglobin, loop diuretic dose, b-blocker, Angiotensin converting enzyme inhibitor/Angiotensin-
2 receptor blocker and statin treatments, and hs-cTnT, ST2, and NT-proBNP levels. The calculator may run with the
availability of none, one, two, or the three biomarkers. The calculated risk of death was significantly changed by additive
biomarker data. The average C-statistic in cross-validation analysis was 0.79.

Conclusions: A new HF risk-calculator that incorporates available biomarkers reflecting different pathophysiological
pathways better allowed individual prediction of death at 1, 2, and 3 years.
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Introduction

Risk stratification of heart failure (HF) is a challenge, and as

guidelines acknowledge, new accurate scoring models are needed.

Several models have been developed [1–10], of which the Seattle

HF model [6] has had the most visibility. Nevertheless, this scoring

model is derived from a cohort of patients carefully selected for a

randomized clinical trial over 20 years ago, with its inclusion and

exclusion criteria. Serum biomarkers for patient risk stratification

were not available. However, in recent times a number of

biomarkers reflective of different pathophysiological pathways

have been identified in HF [11]. Therefore, we developed a

calculator for HF stratification that, in addition to classical risk

factors, includes N-terminal pro B-type natriuretic peptide (NT-

proBNP), a marker of myocardial stretch; high-sensitivity cardiac

troponin T (hs-cTnT), a marker of myocyte injury; and high-

sensitivity soluble ST2 (ST2), which is reflective of myocardial

fibrosis and remodeling.

The Barcelona Bio Heart Failure risk calculator (BCN Bio-HF

calculator), which is derived from a real-life cohort of contempo-

rary treated HF patients, is a web-based calculator allowing quick
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and easy interactive calculations of individual mortality at 1, 2,

and 3 years and life expectancy.

Methods

Derivation Study Population
The study population, samples, and biomarker assays were

described elsewhere [12]. In summary ambulatory patients treated

at a multidisciplinary HF unit were consecutively included in the

study in an outpatient setting. Patients were referred to the unit by

cardiology or internal medicine departments and, to a lesser

extent, from the emergency or other hospital departments. The

principal referral criterion was HF according to the European

Society of Cardiology guidelines irrespective of etiology, at least

one HF hospitalization, and/or reduced LVEF. Etiologies of HF

were: ischemic heart disease 52.2%, dilated cardiomyopathy 10%,

hypertensive 9.4%, alcoholic cardiomyopathy 5.7%, drug-related

cardiomyopathy 2.5%, valvular disease 11.4% and others 8.8%.

All participants provided written informed consent, and the

local ethics committee approved the study. All study procedures

were in accordance with the ethical standards outlined in the

Helsinki Declaration of 1975 as revised in 1983. The regular

visitation schedule was reported elsewhere [12–15]. Death from all

causes was the main outcome. Fatal events were identified from

clinical records, family contact or by reviewing the electronic

clinical history at the Catalan and Spanish Institute of Health.

Physicians and nurses of the HF Unit identified adverse events (JL,

M de A, AU, BG, RC, LC).

Model Making
A selection of 23 well-known mortality-related variables from

the literature and from previous own studies was first evaluated,

and 11 of them were included in eight Cox proportional hazard

regression models due to their significance in the multivariate

analysis or because considered of clinical significant relevance: one

model without biomarkers (‘clinical model’) and seven additional

models with all possible combinations of the three biomarkers.

Proportional assumptions needed to use Cox proportional

hazard regression models were tested for all variables. Variables in

which the non-linear component achieved significance were

transformed according to what the figure of time vs. hazard

suggested until non-significance of the non-linear component was

achieved, as reported elsewhere [12,14,15]. In summary, to fulfill

the assumption of linearity for the co-variables hs-cTnT, ST2, and

NT-proBNP, the logarithmic functions of both NT-proBNP and

hs-cTnT, the quadratic term of the logarithmic function of hs-

cTnT, and the quadratic term of ST2 were used in the Cox

proportional hazard regression models. In the ‘clinical model’,

variables were removed one-by-one in a backward manner to

assess whether their exclusion significantly reduced the likelihood

of the model. When two variables were collinear in predicting

outcome, the one with the better likelihood was included. All two-

variable interactions were also tested. Some variables were

dichotomized (such as New York Heart Association (NYHA)

functional class or left ventricular ejection fraction (LVEF) for

better performance).

Model Performance
We used different measures of performance to test the potential

incremental prognostic value of the three biomarkers as follows:

Discrimination. The ability of the model to discriminate

between patients who will have and will not have the event along

all follow-up was measured by means of the C-statistic obtained

from a generalization of Somers ‘Dxy’ rank correlation, which

equals 26(c21/2), where c is the concordance (discrimination)

probability [16], which already incorporates information from

censored data.

Calibration. How well the observed incidence rate fit the

predicted risk was measured by Nam-D’Agostino statistics using

the Hosmer and Lemeshow test for censored survival [17].

Calibration using this method was calculated for one-, two- and

three-year mortality.

Accuracy. The integrated Brier score for censored observa-

tions was used to measure the accuracy of probabilistic predictions

[18]. A lower score represents higher accuracy. This score takes

values between 0 and 1 and was calculated for one-, two- and

three-year mortality.

Best prediction. The Bayesian information criterion (BIC)

and the Akaike information criterion (AIC), measures of the

relative goodness-of-fit of a statistical model, were used to compare

non-nested models. Lower values indicate a better model along all

follow-up. Both indicators take into account the events along all

follow-up.

Reclassification. We used the method described by Pencina

et al. [19]. Integrated discrimination improvement (IDI) considers

changes in the estimated mortality prediction probabilities as a

continuous variable. Net reclassification improvement (NRI)

requires a previous definition of meaningful risk categories; we

used tertiles for the risk of death: ,18.5%, 18.5–41%, and .41%.

NRI considers changes in the predicted probabilities of estimated

mortality that imply a change from one category to another.

Reclassification was evaluated for one-, two- and three-year

mortality.

Generalization or validation. To assess how the results of

the models can be generalized to an independent data set, a 10-

fold cross-validation technique was used [20]. Using a boot-

strapping technique, we created 1000 samples (allowing repetition)

equal in size to the present cohort. One by one, each of the 1000

samples was split into 10 distinct blocks roughly equal in size. We

left out the first block (the testing set) and fit a model with the

remaining blocks (the training set) to predict the held-out-block.

We continued this process until the model predicted all 10 held-

out-blocks. The mean C-statistic was calculated and the process

repeated for all 1000 samples.

Calculator algorithms
Mortality. The calculator was designed to run with the

availability of none, one, two, or three of the chosen biomarkers,

using the best model for each available combination. To calculate

the probability of developing an event at a specific time, the

following formula was applied:

p̂p(Tvtj~xxi)~1{ŜS(t)exp( b
!
�xi
!

){( b
!
� �xx
!

)

Where:

N p̂p(Tvtj~xxi) = probability to develop the event at time ‘‘T’’

before time ‘‘t’’ (e.g., 3 years) giving a combination ‘‘~xxi’’ of

patient characteristics (i.e., age, sex, etc.);

N ŜS(t) = estimated survival at time ‘‘t’’;
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N ( b
!� xi
!) = the vector of beta coefficients (natural log of the

hazard ratio (HR)) multiplied by the vector of patient

characteristics;

N ( b
!� �xx
!

) = the vector of beta coefficients multiplied by the

vector of mean covariates;

Life expectancy. To get an estimate of life expectancy we

refitted all Proportional Hazard Cox-Regression models in

parametric Weibull models [21]. In those models the mean

survival, ‘‘E(T)’’, is estimated by:

E(T)~ exp (m̂mzb̂b0x)C(1zŝs)

where,

m̂m is the estimated intercept obtained from the model

Table 1. Demographic, clinical and analytical characteristics of patients.

NO EVENT EVENT Univariate analysis
Multivariate analysis
without biomarkers

Multivariate analysis with
biomarkers

N = 559 N = 305

HRCox P-value HRCox P-value HRCox P-value

Age, years 64.6 (12.3) 74.4 (9.23) 1.07 [1.06;1.08] ,0.001 1.04 [1.03;1.06] ,0.001 1.04 [1.02;1.06] ,0.001

Female Gender 149 (26.7%) 93 (30.5%) 1.07 [0.84;1.36] 0.590 0.66 [0.5;0.89] 0.005 0.77 [0.57;1.03] 0.078

BMI, Kg/m2 28.0 (4.95) 27.0 (5.15) 0.96 [0.93;0.98] ,0.001 1.00 [0.97;1.02] 0.724 1.01 [0.98;1.04] 0.695

NYHA III–IV 91 (16.3) 144 (47.2) 3.25 [2.59;4.07] ,0.001 1.87 [1.45;2.42] ,0.001 1.67 [1.29;2.17] ,0.001

LVEF,% 35.6 (13.0) 36.5 (15.0) 1.00 [0.99;1.01] 0.801

LVEF .45% 122 (21.8%) 76 (24.9%) 0.98 [0.75;1.28] 0.905 0.76 [0.54;1.06] 0.108 0.95 [0.67;1.34] 0.770

Ischemic etiology of HF 286 (51.2%) 165 (54.1%) 1.06 [0.84;1.32] 0.633 1.22 [0.92;1.6] 0.162 1.14 [0.86;1.5] 0.365

Systolic Blood Pressure, mmHg 127 (23.1) 127 (22.9) 1.00 [0.99;1.00] 0.775 1.00 [0.99;1.00] 0.605 1.00 [0.99;1.01] 0.872

Heart rate, bpm 68.9 (13.5) 70.7 (13.7) 1.01 [1.00;1.02] 0.004 1.00 [0.99;1.01] 0.469 0.99 [0.9;1] 0.115

Diabetes mellitus 181 (32.4%) 129 (42.3%) 1.42 [1.14;1.79] 0.002 1.26 [0.98;1.63] 0.070 1.2 [0.93;1.55] 0.166

Atrial fibrillation 82 (14.7%) 63 (20.7%) 1.49 [1.13;1.97] 0.004 1.09 [0.8;1.48] 0.583 0.96 [0.7;1.32] 0.796

Hypertension 327 (58.5%) 200 (65.6%) 1.31 [1.04;1.66] 0.024 0.97 [0.74;1.27] 0.836 0.89 [0.68;1.16] 0.388

Sodium, mmol/L 139 (3.22) 139 (3.79) 0.94 [0.90;0.97] ,0.001 0.94 [0.91;0.97] ,0.001 0.96 [0.93;1] 0.03

COPD 71 (12.7%) 73/23.9%) 1.69 [1.30;2.20] ,0.001 1.11 [0.83;1.5] 0.480 1.08 [0.79;1.47] 0.633

eGFR, ml/min/1.73m2 52.0 (24.2) 35.8 (16.7) 0.97 [0.96;0.97] ,0.001 0.99 [0.98;1] 0.019 1 [0.99;1.01] 0.800

Hemoglobin, g/dl 13.3 (1.72) 12.3 (1.81) 0.77 [0.72;0.82] ,0.001 0.90 [0.84;0.97] 0.008 0.92 [0.85;0.99] 0.035

Iron defficiency 260 (46.8%) 174 (57.2%) 1.42 [1.13;1.79] 0.002 1.06 [0.83;1.36] 0.627 0.98 [0.76;1.26] 0.847

ACEI or ARB 523 (93.6%) 251 (82.6%) 0.35 [0.26;0.47] ,0.001 0.69 [0.49;0.95] 0.024 0.91 [0.63;1.31] 0.601

Beta-Blocker 523 (93.6%) 233 (76.4%) 0.35 [0.27;0.45] ,0.001 0.58 [0.42;0.79] ,0.001 0.61 [0.44;0.84] 0.003

Statins 420 (75.1%) 172 (56.4%) 0.50 [0.40;0.63] ,0.001 0.57 [0.43;0.74] ,0.001 0.61 [0.46;0.81] ,0.001

Loop diuretic dose:

0 (no loop diuretic) 107 (19.1%) 26 (8.52%) Ref. Ref. Ref. Ref. Ref. Ref.

Dose 1{ 361 (64.6%) 172 (56.4%) 1.81 [1.20;2.73] 0.005 1.27 [0.81;2] 0.291 1.26 [0.69;1.16] 0.384

Dose 2` 91 (16.3%) 107 (35.1%) 3.73 [2.43;5.73] ,0.001 1.75 [1.07;2.97] 0.025 1.5 [0.9;2.48] 0.119

Spironolactone/eplerenone 225 (40.3%) 115 (37.7%) 1.03 [0.82;1.30] 0.780 1.02 [0.79;1.32] 0.864 0.89 [0.82;1.30] 0.780

CRT 31 (5.55%) 16 (5.25%) 0.84 [0.50;1.38] 0.483 0.92 [0.53;1.59] 0.761 0.85 [0.49;1.47] 0.558

ICD 66 (11.8%) 26 (8.52%) 0.69 [0.46;1.04] 0.074 1 [0.64;1.55] 0.988 0.96 [0.62;1.5] 0.867

Cystatin-C, mg/L 1.09 [0.90;1.39] 1.48 [1.15;1.93] 2.69 [2.21;3.28] ,0.001 1.15 [0.68;1.96] 0.602

Hs-cTnT, ng/L 15.7 [7.90;30.7] 34.1 [20.5;53.6] 11.6 [5.46;24.8] ,0.001 3.79 [1.62;8.85] 0.002

ST2, ng/mL 35.5 [29.4;45.5] 44.7 [33.9;60.0] 1.48 [1.34;1.65] ,0.001 1.23 [1.09;1.38] ,0.001

NTproBNP, ng/L 975 [361;2376] 2215 [935;5193] 1.61 [1.48;1.75] ,0.001 1.13 [0.99;1.29] 0.073

Data are expressed as mean (standard deviation), median [percentiles 25th–75th] or absolute number (percentage).
ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin II receptor blocker; BMI = body mass index; COPD: Chronic obstructive pulmonary disease; eGFR =
estimated glomerular filtration rate; HF, heart failure; hs-cTnT, high-sensitivity circulating troponin T; ST2 = high-sensitivity soluble ST2; LVEF = left ventricular ejection
fraction; NT-proBNP = N-terminal pro-brain natriuretic peptide; NYHA = New York Heart Association. CRT = cardiac resynchronization therapy; ICD = implantable
cardiac defibrillator.
Ref. = Reference.
{Loop diuretic dose 1: Furosemide-equivalent dose up to 40 mg/day or Torasemide up to 10 mg/day.
`Loop diuretic dose 2: Furosemide-equivalent dose .40 mg/day or Torasemide.10 mg/day.
The logarithmic functions of NTproBNP, hs-cTnT and cystatin C, the quadratic term of the logarithmic function of hs-cTnT, ST2 as ST2/10 and the quadratic term of ST2/
10 were used in the Cox models. P value for (ST2/10)2,0.001 in the univariate analysis and 0.006 in the multivariate analysis; P value for log(hs-cTnT)2,0.001 in the
univariate analysis and 0.015 in the multivariate analysis.
doi:10.1371/journal.pone.0085466.t001
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b̂b0x is the product of the coefficients and patient’s characteristics

C(1zŝs) is call the gamma function of the 1 plus the estimated

‘‘scale’’ parameter obtained from the model.

Statistical analyses were performed using R software version

2.15.2. (http://www.R-project.org/).

Results

After an initial evaluation of 23 variables, eight models (one

without biomarkers and seven with combinations of the three

studied biomarkers) were finally included in the risk calculator

tool.

Table 1 provides the evaluated demographic, clinical, and

biochemical characteristics of the studied patients with univariate

and multivariate Cox regression analysis. During a median follow-

up of 3.4 years (25th-75th percentiles 1.8–5.0 years) 305 deaths

occurred. The follow-up for alive patients was 4.4 years (25th–75th

percentiles 2.7–5.2). The following variables emerged as significant

in at least one of the models: age, sex, NYHA functional class,

LVEF, estimated glomerular filtration rate (eGFR), serum sodium,

hemoglobin, daily loop diuretic dose, beta-blocker, angiotensin

converting enzyme inhibitor (ACEI)/angiotensin-2 receptor block-

er (ARB), statin treatment and hs-cTnT, ST2, and NTproBNP

levels. No pair-wise interaction between variables achieved

significance. Variables excluded from the models due to the lack

of statistical improvement in the model were: ischemic etiology of

HF, diabetes mellitus, body mass index, blood systolic pressure,

heart rate, atrial fibrillation, chronic obstructive pulmonary

disease, hypertension, iron deficiency, cystatin-C, spironolac-

tone/eplerenone treatment, cardiac resynchronization therapy

(CRT), and implantable cardiac defibrillator (ICD).

In the ‘clinical model’ (Model 1), LVEF (HR 0.69, P = 0.016),

eGFR (HR 0.99, P = 0.017), and ACEI/ARB treatment (HR 0.67,

P = 0.014) were significant outcome predictors. In the other

models, these variables often lost significance after the addition of

biomarkers. In Model 8, in which the predictors were adjusted for

the three biomarkers, age (HR 1, P,0.001) and NYHA functional

class (HR 1.67, P,0.001) remained strong risk factors, whereas

female sex (HR 0.75, P = 0.029), statin treatment (HR 0.67,

P = 0.001), serum sodium (HR 0.96, P = 0.036), plasma hemoglo-

bin (HR 0.91, P = 0.006), and beta-blocker treatment (HR 0.60,

P,0.001) showed a significant protective effect. The three

biomarkers exhibited a relationship with mortality, but in model

8, NTproBNP only showed a prognostic trend (Log(hs-TnT): HR

3.38, P = 0.002; ST2/10: HR 1.23, P,0.001; and Log(NT-

proBNP): HR 1.11, P = 0.078).

To calculate the probabilities to develop an event at specific

time for a particular covariates combination, beta coefficients,

survival at the mean of covariates and the sum of the product of

coefficients per covariates mean are needed. Survival at the mean

of covariates was 94.2% at 1 year, 87.5% at 2 years and 80.2% at

3 years. The remaining values are shown in Table S1 in File S1.

When a covariate added no increased prognostic accuracy, it was

not included in the risk calculation. An example of calculator

functioning is shown in the appendix. Table 2 shows the C-statistic

for the ‘clinical model’ and all of the models containing biomarkers

(alone or in combination) in the derivation sample. The model

with the three biomarkers had a C-statistic of 0.794 (95% CI

0.77;0.817). Calibration for 1-, 2-, and 3-year mortality was good

(non-significant in the Hosmer and Lemeshow test) (Fig. 1).

Reclassification for 1-, 2-, and 3-year mortality was better in the

models containing more than one biomarker, with the highest

found using the combination of ST2 and hs-cTnT (Model 7;

Table 2). The best overall performance was observed with models

7 and 8 (Table 2).

A web-based calculator (Fig. 2) (www.BCNBioHFcalculator.cat)

has been developed, allowing interactive calculation of estimated

individual probability. A graphic with monthly mortality proba-

bilities is also available. Risk of death was found to be largely

influenced by biomarkers’ results. As a practical exemple a 68

year-old male in NYHA class III, LVEF 30%, sodium 130 mmol/

L, eGFR 45 ml/min/m2, hemoglobin 12 g/dl, taking 60 mg of

furosemide and on treatment with statins, ACEI and betablockers

had a risk of death of 22%, 42% and 60% at 1,2 and 3 years,

respectively. When adding the following biomarker levels: hs-

cTnT 14 ng/L, ST2 40 ng/mL and NTproBNP 900 ng/L, the

risk fell to 10%, 21% and 32%. However, if biomarker data had

been hs-cTnT 70 ng/L, ST2 140 ng/mL, and NTproBNP

2500 ng/L the risk would rise to 35%, 62% and 80%, respectively

(Fig. S1).

In the 10-fold cross-validation analysis with 1000 bootstrapping,

the average C-statistic for the model with all combined biomarkers

was 0.79 (Fig. 3), suggesting that the results may be generalized

safely to independent data sets.

Mean (95% confidence interval) life expectancy for the entire

cohort was 11.8 years (11.1212.4) and expected mean age (95%

confidence interval) for death was 80.2 years (79.7280.7) using

clinical model; and 11.4 years (10.7212.0) and 79.8 years

Figure 1. Observed and predicted mortality according to risk deciles (Hosmer and Lemeshow test) at 1-year (A), 2-year (B), and 3-
year (C) follow-up for model 8 (with the three biomarkers).
doi:10.1371/journal.pone.0085466.g001
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(79.3280.3) with Model 8 (containing the three biomarkers),

respectively. Beta-coefficients of the different Weibull models used

to calculate life expectancy are shown in Table S2 in File S1.

Discussion

HF risk prediction is a cornerstone of HF management. The

development of an accurate HF risk calculator has the potential for

tailored management. The BCN Bio-HF calculator reported here

was derived from a real-life contemporarily treated consecutive

cohort and includes, in addition to conventional prediction factors,

three serum biomarkers (NTproBNP, ST2, and hs-cTnT) that are

highly accurate for cardiac malfunction.

Mortality risk prediction models specific to the HF population

have been developed with broad variation in the degree of

validation and concretion of prognostic output, from classification

into risk groups (low-high risk, low-medium-high risk, risk deciles)

[225], to life expectancy [6] or individual mortality at a certain

time point [3,527,10]. Most of these models have not included a

substantial proportion of patients taking evidence-based treat-

ments, including ACEI/ARBs, beta-blockers, and spironolactone/

eplerenone, or were developed only for patients admitted to the

hospital [8,9]. In the Seattle HF Model, the relative effect for HF

medications could not be obtained from the derivation cohort and

benefits were estimated from published trials or meta-analyses. In

our cohort of ambulatory patients, 87% were on beta-blockers,

90% on ACEI/ARBs, and 40% on spironolactone/eplerenone.

Independent of the causality of the risks and benefits of treatments,

taking evidence-based HF drugs clearly reduces the risk of death,

and they merit inclusion in a risk calculator. In fact, the estimated

risk can be very significantly modified by treatment, both in the

model without biomarkers and in the model containing biomark-

ers where treatment can also modify their level and the calculated

risk of death would consequently change.

Some scores [426] have the advantage of a large derivation

cohort. Their limitation is that all of the subjects in their derivation

and validation samples were participating in a clinical trial and

how well they represent those in routine clinical practice is

unknown. In addition, all of the samples were obtained over a

decade ago, and none included biomarker testing. The very recent

3C-HF score [7] did include contemporary treatment but not

biomarkers in a mixed population of in- and outpatients included

both prospectively and retrospectively. Also the even more recent

MAGGIC score, derived from a metaanalysis of 30 studies [10]

Figure 2. The Barcelona Bio-HF calculator has been implemented as an interactive program that employs the eight developed
models to estimate 1-, 2-, and 3-year mortality for an individual patient. This tool is available at www.BCNBioHFcalculator.cat.
doi:10.1371/journal.pone.0085466.g002
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did not include biomarkers. In the discussion, however, the

authors of this score state: ‘‘Any new risk score’s success depends

on the patient variables available for inclusion. Current knowledge

of biomarkers in HF is inevitably ahead of what data are available

across multiple cohort studies… but could not be included in our

model. In principle, its inclusion would enhance further the

excellent prognostic discrimination we achieved with routinely

collected longestablished predictors.’’ The inclusion of B-type

natriuretic peptide in the Valsartan-Heart Failure Trial to the

Seattle HF Model increased AUC by < 0.03 [6]. In the BCN Bio-

HF Calculator, we included three commercially available com-

plementary biomarkers that provide information about myocyte

necrosis (hs-cTnT), fibrosis, remodeling, and inflammation (ST2),

and chamber strain (NTproBNP). Other biomarkers are in the

pipeline for the HF field, but some of them are not yet

commercially available (i.e. growth differential factor-15) and

others reflect pathways that overlap those used here. We and

others previously reported on the prognostic utility of these three

biomarkers [12,14,15]. This calculator was developed with eight

models that include none, one, two, or the three biomarkers,

allowing its use with any combination of biomarkers. This

characteristic is unique to this new tool, which in combination

with the use of state-of-the-art statistics for biomarker values,

which include C-statistic, as well as calibration and reclassification,

makes it more robust.

The Seattle HF Model [6] is probably the most extensively used

model. It was prospectively validated in several trials. The

validation AUC varied from 0.68 to 0.81 in these diverse

populations, with an overall AUC of 0.73 and an AUC of less

than 0.70 in the three biggest cohorts [6]. AUC from other studies

rank from 0.75 (CHARM two-year mortality [4]) to 0.83 in the

validation cohort of the 3C-HF score (one-year mortality with

logistic regression analysis [5]). The use of Somers ‘Dxy’ rank

correlation in the C-statistic analysis, which already incorporates

information from censored data, is more correct from the survival

point of view rather than determination of C-statistic for death at

one fixed point with logistic regression models. The C-statistic

analysis using logistic regression model in our population was 0.82

for 1-year, 0.82 for 2-year and 0.83 for 3-year mortality. We

evaluated both the Seattle HF Model and the 3C-HF score in our

population. Taking into account the inherent limitations (default

values of Seattle HF for percentage of lymphocytes as well as

‘‘diabetes’’ instead of ‘‘diabetes with organ damage’’ for 3C-HF)

the C-statistic using Somers ‘Dxy’ rank correlation in such models

were 0.71 (95% CI 0.678-0.79) for the Seattle HF model and 0.73

(95% CI 0.68-0.73) for the 3C-HF score.

The validation obtained in our 10-fold cross-validation analysis

with 1000 bootstrapping was substantially higher, averaging 0.79.

Cross-validation is useful, especially when additional samples are

hazardous, costly, or impossible to collect. The resulting average

accuracy is likely somewhat of an underestimate for the true

accuracy when the model is trained on all data and tested on

external data (the optimal way for validation), but in most cases

this estimate is reliable, particularly if the amount of available data

is sufficiently large and the external data follows the same

distribution as the available data [22]. Both the Seattle HF Model

and the BCN Bio-HF calculator provide the individual risk of

death at several points of time without the necessity of a physician

calculating the score as an intermediate step. Also, as an added

value to other scores, both allow predicting life expectancy,

although using different statistical methods.

A number of the clinical variables in our calculator are also

included in the Seattle HF Model, though the former has fewer

variables. Some variables that may be considered clinically

important, such as devices, aldosterone blockers, and systolic

blood pressure, were excluded from our model due to the absence

of significance in the multivariable model. In the case of devices,

particularly ICD and CRT, the lack of significance could be

influenced by the limited number of patients with such devices.

Remarkably other variables such as blood pressure, ischemic

Figure 3. Ten-fold cross-validation with 1000 bootstrapping.
doi:10.1371/journal.pone.0085466.g003
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etiology and diabetes did not achieve statistical significance in the

multivariate analysis and did not improve the model prediction of

risk, and were not included in the calculator.

Recently, Ky et al.[23] showed that adding a more complex

biomarker panel consisting of high-sensitivity C-reactive protein,

myeloperoxidase, B-type natriuretic peptide, soluble fms-like

tyrosine kinase receptor-1, troponin I, ST2, creatinine, and uric

acid to the Seattle HF Model improves the predictive accuracy for

1-year all-cause death, with a C-statistic up to 0.8. In contrast,

both of our clinical and biomarker additive models were less

complex but performed similarly. Choosing the panel of

biomarkers to deploy in clinical practice will depend on factors

such as cost and ease of assay, among others.

Limitations
Our population was a general HF population treated at a HF

unit in a tertiary hospital. Most patients were white and referred

from the cardiology department and, thus, relatively young men

with HF of ischemic etiology and reduced LVEF. As such, risk

prediction is more accurate in these patients. The risk calculator is

based on ambulatory patients with chronic HF and may require

extensive adjustments when applied to an inpatient population,

some of whom have acute decompensated HF. Absence of

external validation represents an acknowledged limitation, al-

though we overcame it using 10-fold cross-validation analysis with

1000 bootstrapping as already discussed.

Conclusion

We developed a new HF risk calculator that incorporates

available biomarkers reflecting different pathophysiological path-

ways and allows quick and easy prediction of death at 1, 2, and 3

years.

Supporting Information

Figure S1 Graphic with monthly mortality probabilities in the

same patient (68 year- old male in NYHA class III, LVEF 30%,

sodium 130 mmol/L, eGFR 45 ml/min/m2, hemoglobin 12 g/

dl, taking 60 mg of furosemide and on treatment with statins,

ACEI and betablockers) according to model without biomarkers

(continuous line) and with biomarkers (dashed line). Left panel

biomarker values: hs-cTnT 14 ng/L and ST2 40 ng/mL and

NTproBNP of 900 ng/L. Righ panel biomarker values: hs-cTnT

70 ng/L, ST2 140 ng/mL and NTproBNP 2500 ng/L.

(TIF)

File S1 Supporting tables.

(DOC)
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