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Abstract

Gene targeting is progressively becoming a realistic therapeutic
alternative in clinics. It is unknown, however, whether this tech-
nology will be suitable for the treatment of DNA repair deficiency
syndromes such as Fanconi anemia (FA), with defects in homology-
directed DNA repair. In this study, we used zinc finger nucleases
and integrase-defective lentiviral vectors to demonstrate for the
first time that FANCA can be efficiently and specifically targeted
into the AAVS1 safe harbor locus in fibroblasts from FA-A patients.
Strikingly, up to 40% of FA fibroblasts showed gene targeting
42 days after gene editing. Given the low number of hematopoi-
etic precursors in the bone marrow of FA patients, gene-edited FA
fibroblasts were then reprogrammed and re-differentiated toward
the hematopoietic lineage. Analyses of gene-edited FA-iPSCs
confirmed the specific integration of FANCA in the AAVS1 locus in
all tested clones. Moreover, the hematopoietic differentiation of
these iPSCs efficiently generated disease-free hematopoietic
progenitors. Taken together, our results demonstrate for the first
time the feasibility of correcting the phenotype of a DNA repair
deficiency syndrome using gene-targeting and cell reprogramming
strategies.
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Introduction

The progressive development of engineered nucleases has markedly

improved the efficacy and specificity of targeted gene therapy, open-

ing new possibilities for the treatment of inherited and acquired

diseases in the clinics (Tebas et al, 2014). In contrast to conven-

tional gene therapy with integrative vectors, targeted gene therapy

enables the insertion of foreign sequences (i.e., therapeutic genes or

small oligonucleotides) in specific sites of the cell genome. Thus,

depending on the genetic etiology of the disease, the gene-targeting

approach may pursue the correction of a specific mutation or, alter-

natively, the insertion of the therapeutic transgene into safe loci of

the genome, often referred to as ‘safe harbors’ (Naldini, 2011).

In spite of the advances in the field, the question of whether or

not targeted gene therapy will be applicable to diseases where

homology-directed repair (HDR) is affected has never been explored.

Taking into account that Fanconi anemia (FA) proteins participate in

HDR (Taniguchi et al, 2002; Yamamoto et al, 2003; Niedzwiedz

et al, 2004; Yang et al, 2005; Nakanishi et al, 2011) and coordinate

the action of multiple DNA repair processes, including the action of

different nucleases and homologous recombination (see reviews in

Kee & D’Andrea, 2010; Kottemann & Smogorzewska, 2013; Moldo-

van & D’Andrea, 2009), we aimed to investigate for the first time the

possibility of conducting a targeted gene therapy strategy in FA cells.

Genetically, FA is a complex disease where mutations in sixteen

different genes (FANC-A, -B, -C, -D1/BRCA2, -D2, -E, -F, -G, -I, -J/

BRIP1, -L –M, –N/PALB2, -O/RAD51C; -P/SLX4; -Q/ERCC4/XPF) have

been reported (Bogliolo et al, 2013). Among all these genes, muta-

tions in FANCA account for about 60% of total FA patients (Casado

et al, 2007; Auerbach, 2009). Importantly, while few recurrent

mutations (i.e., truncation of exon 4 in Spanish gypsies or mutations
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in exons 13, 36, and 38) have been observed in FA-A patients,

FANCA mutations are generally private mutations, which include

point mutations, microinsertions, microdeletions, splicing mutations

and large intragenic deletions (Castella et al, 2011). Thus, consider-

ing the large number of genes and mutations that can account for

the FA disease, the insertion of a functional FA gene in a ‘safe

harbor’ locus would lead to the generation of a targeted gene addi-

tion platform with a broad application in FA, regardless of the

complementation group and mutation type of each patient.

Recent studies by our group and others aiming at the identifica-

tion of ‘safe harbor sites’ in the human genome have shown robust

and stable expression of transgenes integrated in the human

PPP1R12C gene, a locus also known as AAVS1, across different cell

types (Smith et al, 2008; Lombardo et al, 2011). Additionally, no

detectable transcriptional perturbations of the PPP1R12C and its

flanking genes were observed after integration of transgenes in this

locus, indicating that AAVS1 may represent a safe landing path for

therapeutic transgene insertion in the human genome (Lombardo

et al, 2011). These observations, together with the development of

artificial zinc finger nucleases (ZFNs) that efficiently and selectively

target the AAVS1 locus, have facilitated gene editing strategies

aiming at inserting therapeutic transgenes in this locus, not only in

immortalized cell lines but also in several primary human cell types,

including induced pluripotent stem cells (hiPSCs; Hockemeyer et al,

2009; DeKelver et al, 2010; Lombardo et al, 2011; Zou et al, 2011b;

Chang & Bouhassira, 2012).

Because a defective FA pathway not only predisposes FA patients

to cancer (Rosenberg et al, 2008) but also to the early development of

bone marrow failure due to the progressive extinction of the HSCs

(Larghero et al, 2002; Jacome et al, 2006), our final aim in these stud-

ies was the generation of gene-edited, disease-free FA-HSCs, obtained

from non-hematopoietic tissues of the patient. Thus, in our current

studies, we firstly pursued the specific insertion of the therapeutic

FANCA gene in the AAVS1 locus of FA-A patients’ fibroblasts. There-

after, gene-edited FA cells were reprogrammed to generate self-

renewing disease-free iPSCs and finally re-differentiated toward the

hematopoietic lineage, as previously described with FA cells corrected

by conventional LV-mediated gene therapy (Raya et al, 2009).

Our goal of conducting a combined approach of gene editing and

cell reprogramming in FA cells was particularly challenging taking into

account the relevance of the FA pathway both in HDR (Taniguchi

et al, 2002; Yamamoto et al, 2003; Niedzwiedz et al, 2004; Yang et al,

2005; Moldovan & D’Andrea, 2009; Kee & D’Andrea, 2010;

Nakanishi et al, 2011; Kottemann & Smogorzewska, 2013) and cell

reprogramming (Raya et al, 2009; Muller et al, 2012; Yung et al,

2013). In spite of these hurdles, the strong selective growth advan-

tage characteristic of corrected FA cells allowed us to establish a new

approach for the efficient generation of FA HPCs harboring specific

integrations of the therapeutic FANCA gene in a safe harbor locus.

Results

Efficient gene-targeting-mediated complementation of
fibroblasts from FA-A patients

To promote insertion of a FANCA expression cassette into the

AAVS1 locus, an integrase-defective lentiviral vector (IDLV) harboring

the EGFP and FANCA transgenes flanked by AAVS1 homology arms

(donor IDLV) was generated (Fig 1A top). In this donor IDLV,

FANCA is under the transcriptional control of the human PGK

promoter. In addition, a promoterless EGFP cDNA preceded by a

splice acceptor (SA) site and a translational self-cleaving 2A

sequence was also included upstream of the FANCA cassette. Upon

targeted-mediated insertion into AAVS1, the EGFP cassette will be

placed under the transcriptional control of the promoter of the ubiq-

uitously expressed PPP1R12C gene, thus allowing the FACSorting of

gene-targeted cells (Fig 1A). Besides the donor IDLV, an adenoviral

vector expressing a ZFN pair (AdV5/35-ZFN), designed to induce a

DNA double-strand break in the AAVS1 locus, was used to enhance

the efficiency of gene targeting in this locus (Hockemeyer et al,

2009).

To investigate the feasibility of performing gene targeting in FA-

A cells, skin fibroblasts from four FA-A patients with different muta-

tions in FANCA were transduced either with the donor IDLV alone,

or with the donor IDLV and the AdV5/35-ZFNs simultaneously.

Fourteen days after transduction, cells were analyzed by flow

cytometry to measure the proportion of EGFP+ fibroblasts. While

<0.05% of the cells transduced with the donor IDLV alone were

positive for EGFP, 0.2–1.1% of FA fibroblasts that had been co-

transduced with the donor IDLV and the ZFNs-AdV were EGFP+

(See Fig 1B and representative analyses in Supplementary Fig S1).

Strikingly, the percentage of EGFP+ cells markedly increased during

the in vitro culture of these cells, reaching levels between 5.5 and

13.4% (Fig 1B), showing the proliferation advantage of gene-edited

FA-A fibroblasts.

Because the prolonged in vitro culture of FA fibroblasts results in

increased rates of cell senescence (Muller et al, 2012), in a new set

of experiments, fibroblasts from three FA patients (FA-52, FA-123

and FA-644) were transduced with an excisable hTERT-expressing

LV (Salmon et al, 2000) prior to performing the gene-targeting

procedure. Transduction of FA fibroblasts with hTERT-LVs resulted

in a marked increase in telomerase activity (see representative data

in Supplementary Fig S2). Significantly, the proportion of EGFP+

cells was markedly increased (3–4-fold) in hTERT-transduced versus

untransduced FA fibroblasts from FA patients (Fig 1C), indicating

that hTERT improved the efficacy of gene targeting in FA-A fibro-

blasts. Consistent with data obtained with non-immortalized fibro-

blasts, when immortalized gene-edited FA fibroblasts were

maintained in culture, a progressive increase in the proportion of

EGFP+ cells was also observed (see data from geFA-52T in Fig 1D).

Strikingly, around 40% of treated FA-A fibroblasts were EGFP+

after 42 days in culture in the absence of any selectable drug

(Fig 1D).

PCR analyses with two pairs of primers that amplify, respec-

tively, the 50 and the 30 integration junctions between the EGFP/

FANCA cassette and the endogenous AAVS1 locus evidenced the

insertion of the EGFP/FANCA cassette into the AAVS1 locus of

sorted EGFP+ geFA-52T fibroblasts (Fig 1E). In these gene-edited

FA fibroblasts, the activity of hTERT was also confirmed (Supple-

mentary Fig S2).

To investigate whether the insertion of the therapeutic hFANCA

cassette in the AAVS1 locus of FA-A fibroblasts corrected the cellu-

lar phenotype of the disease, the functionality of the FA pathway in

FA-52T fibroblasts was tested both before (negative control) and

after the gene-targeting procedure. As a positive control, healthy
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Figure 1. Efficacy of gene targeting of FANCA in the AAVS1 locus of primary hFA-A fibroblasts.

A Top: schematic representation of the donor integrase-defective lentiviral vector (IDLV) used to promote insertion of the EGFP/FANCA cassette into the AAVS1 locus.
Middle: AAVS1 locus with the zinc finger nucleases (ZFNs) target site. Bottom: AAVS1 locus upon ZFN-mediated targeted insertion of the EGFP/PGK-FANCA cassette.
Black arrow shows transcription of the EGFP from the endogenous PPP1R12C promoter. HA, homology arm; SD, splice donor; SA, splice acceptor; BGHpA, bovine
growth hormone polyadenylation signal; SV40pA, simian virus 40 polyadenylation signal. Constituents of the LTR (U5-R-DU3) are also indicated.

B Proliferation advantage of targeted Fanconi anemia (FA) fibroblasts (EGFP+ cells) during in vitro incubation.
C Comparative analysis of gene targeting in FA-A fibroblasts, untransduced or transduced with a lentiviral vector expressing hTERT. Analyses were performed 14 days

after gene targeting.
D In vitro proliferation advantage of targeted FA fibroblasts (EGFP+) previously transduced with hTERT (FA-52T fibroblasts).
E Targeted integration analysis of the EGFP/PGK-FANCA cassette into the AAVS1 site by PCR using primers specific for the 50 or 30 integration junctions (red arrows in the

top schematic) defined as 50 TI or 30 TI, respectively.
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donor fibroblasts (H.D. Fib) were analyzed in parallel. The presence

of nuclear FANCD2 foci, fully dependent on the expression of all the

FA core complex proteins, including FANCA (Garcia-Higuera et al,

2001), was determined in these samples after DNA damage induced

by mitomycin C (MMC). In contrast to uncorrected FA-52T fibro-

blasts (FA-52T Fib.), which did not generate FANCD2 foci even after

MMC exposure, a significant proportion of the geFA-52T fibroblasts

generated FANCD2 foci, mainly after treatment with MMC, thus

mimicking the response of H.D. fibroblasts (Fig 2A). Because the

main characteristic of FA cells is the increased chromosomal

instability upon exposure to DNA inter-strand cross-linking (ICL)

drugs, we also investigated the response of both uncorrected and

gene-edited FA-A fibroblasts to diepoxybutane (DEB). While in

FA-52T fibroblasts DEB induced a significant increase in the number

of chromosomal aberrations per cell (from 0.05 � 0.05 to

1.7 � 0.46 aberrations/cell)— including chromatid breaks and
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Figure 2. Phenotypic correction of the gene-edited FA-A fibroblasts.

A Top: histogram showing the percentage of FA-A fibroblasts, unstransduced or co-transduced with the donor integrase-defective lentiviral vector (IDLV) and the AdV5/
35-ZFNs (geFA-52T Fib), showing FANCD2 foci in the absence or the presence of mitomycin C (MMC). Bottom: representative images of FANCD2 foci (red) in cells
shown in the top histogram, after MMC treatment.

B Chromosomal instability induced by diepoxybutane (DEB) in untreated (FA-52T) and gene-edited FA fibroblasts (geFA-52T Fib). Left: representative FISH analysis was
performed by staining telomeres (in green), centromeres (in pink) and chromosomes (in blue). Right: histogram showing the number of chromosomal aberrations per
cell.

Data information: Values are shown as mean � s.e. from three independent experiments (A) or analysis of twenty different metaphases per group (B). All P-values were
calculated using two-tailed unpaired Student’s t-test.
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radial chromosomes, typically found in FA patients0 cells—the same

DEB treatment did not induce any increase in the number of chro-

mosomal aberrations in geFA-52T fibroblasts (Fig 2B).

Taken together, these results show the feasibility of correcting

the phenotype of FA cells using gene targeting strategies, in particu-

lar by promoting the insertion and expression of FANCA in the

AAVS1 safe harbor locus of fibroblasts from FA-A patients.

Efficient generation of disease-free iPSCs from FA fibroblasts
corrected by gene targeting

To generate disease-free FA-iPSCs, FA fibroblasts subjected to gene

editing (geFA-123, geFA-52 and geFA-52T) were first enriched for

EGFP+ cells by cell sorting and then reprogrammed using a poly-

cistronic excisable LV expressing the human SOX2, OCT4, KLF4,

and cMYC transgenes from the EF1A promoter (STEMCCA vector;

Somers et al, 2010). Consistent with previous observations (Raya

et al, 2009), uncorrected FA fibroblasts did not generate iPSCs after

reprogramming, even after transduction with the TERT-LV (data

not shown). Although several iPSC-like colonies were generated

from gene-edited FA-123 fibroblasts (115 AP+ cells/100,000 fibro-

blasts), no stable iPSC lines could be generated from FA fibroblasts

simply subjected to gene editing, most probably because of the

pro-senescence nature of these cells. In marked contrast to these

observations, the reprogramming of FA fibroblasts that were first

transduced with the hTERT-LV and then subjected to gene editing

generated 230 iPSC-like clones, most of which could be maintained

after serial in vitro passages (Supplementary Fig S3). Twelve iPSC

clones generated from geFA-52T fibroblasts were further expanded

and differentiated into fibroblasts to perform additional studies to

confirm the integration site of the EGFP/FANCA construct. First,

qPCR analyses were conducted to determine the mean copy

number per cell of the EGFP/FANCA cassette. As shown in Supple-

mentary Table S1, 11 out of the 12 geFA-iPSC clones analyzed

were positive for EGFP integration and contained an average of

0.98 � 0.44 EGFP copies per cell. The only iPSC clone that did not

harbor any EGFP copy (clone 5) did not progress more than six

passages in culture.

To investigate whether the EGFP/FANCA cassette was specifically

integrated in the AAVS1 locus of all these iPSC clones, 30 primers

previously used in analyses of Fig 1E were used. As shown in

Supplementary Table S1, all iPSC clones that were positive for inte-

gration of the cassette were also positive for the PCR band corre-

sponding to the specific insertion in the AAVS1 locus.

Three geFA-iPSC clones (clones 16, 26 and 31) were selected

for further characterization. The pluripotency of these gene-

corrected clones was first analyzed both by alkaline phosphatase

(AP) staining and immunohistochemistry staining of different

pluripotency genes. Representative pictures in Fig 3A and Supple-

mentary Fig S4A showed that all tested geFA-iPSCs clones were

highly positive for AP, NANOG, TRA-1-60, OCT4, and SSEA-4

expression. RT-qPCR analyses of the expression of endogenous

pluripotency genes NANOG, OCT4, SOX2, KLF4, and cMYC were

consistent with the pluripotent nature of these clones (Supplemen-

tary Fig S4B). In all cases, a very low expression of the ectopic

reprogramming transgenes was found, indicating substantial

inactivation of the EF1A promoter present in the reprogramming

vector. As expected for bona fide iPSC clones, OCT4 and NANOG

promoters were hypomethylated in gene-corrected FA-iPSC clones,

in clear contrast to the high level of methylation observed in H.D.

fibroblasts (Supplementary Fig S4C). To further demonstrate the

pluripotency of geFA-iPSC16 cells in vivo, cells were subcutane-

ously inoculated in NSG mice. Characteristic teratomas containing

complex structures representing the three embryonic germ layers

were observed 8–10 weeks after implantation. Immunofluores-

cence staining confirmed the expression of definitive endoderm

markers (Fox2A), neural structures that expressed neuroectoder-

mal markers (ß-III-tubulin) and the generation of mesoderm

(Brachyury) and mesoderm derivatives tissue such as muscle

(a-SMA; Fig 3B).

To confirm the insertion of the FANCA cassette into the AAVS1

locus in the gene-corrected FA-iPSC clones, Southern blot analyses

were performed on genomic DNA extracted from gene-edited geFA-

iPSC clones 16, 26, and 31. Blots hybridized with probes for the

exogenous EGFP and the endogenous AAVS1 genes confirmed the

monoallelic integration of the EGFP/FANCA cassette into the AAVS1

locus and the absence of random integration in any of the three

tested clones (Fig 3C,D).

Once demonstrated the generation of bona fide gene-edited FA-

iPSCs, in the next set of experiments, we aimed to verify whether

these geFA-iPSCs were disease free, as shown for their parental

gene-edited FA fibroblasts (Fig 2). First, we verified by qRT-PCR

that hFANCA mRNA levels corresponding to the three tested geFA-

iPSC clones were very similar to levels observed in the control ES

cell line and markedly higher when compared to uncorrected FA-

52T fibroblasts (Fig 4A). Western blot analysis confirmed the

expression of FANCA in all the three tested clones (Fig 4B). Even

more, since FANCA is necessary for the relocation of FANCD2 to

damaged DNA sites, we investigated the presence of nuclear

FANCD2 foci in three geFA-iPSC clones exposed to MMC. As shown

in Fig 4C, these analyses further confirmed the expression and func-

tionality of FANCA in the three tested geFA-iPSC clones. Consistent

with the restored FA pathway of gene-edited FA-iPSCs, DEB did not

induce a significant increase in the number of chromosomal aberra-

tions in FA-corrected cells. Remarkably, the number of chromo-

somal aberrations in geFA-iPSCs (0.2 � 0.1 aberrations/cell;

Fig 4D) was ten times lower to the number observed in their paren-

tal uncorrected fibroblasts (see Fig 2B).

To assure the identity of the different geFA-iPSC clones, the

presence of the original pathogenic mutations described in patient

FA-52 (c.710-5T>C and c.3558insG) was investigated by Sanger

sequencing both on FA-52T fibroblasts and geFA-iPSC clones 16, 26,

and 31 (Supplementary Fig S5). The confirmation of both patho-

genic mutations in the three tested geFA-iPSCs, together with our

observations showing that all stable iPSC clones contained the

AAVS1-targeted FANCA gene (Supplementary Table S1) and had a

functional FA pathway, demonstrates that the disease-free nature of

gene-edited FA-iPSCs is a consequence of the functional insertion of

FANCA within the AAVS1 safe harbor site of these reprogrammed

FA cells.

Aiming to excise the STEMCCA vector from the genome of

geFA-iPSCs, cells from clone 16 were transduced with an IDLV

co-expressing the Cre recombinase and the Cherry fluorescence

marker (Papapetrou et al, 2011). Thereafter, individual colonies

were isolated to select those clones with a lower number of copies

of the STEMCCA provirus. Two clones were selected: Excised clones
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Figure 3. Pluripotency characterization and insertion site analyses of gene-edited FA-A iPSCs.

A Expression of TRA1-60, SSEA-4, OCT4, and NANOG pluripotency markers by immunofluorescence staining of gene-edited FA-iPSCs (geFA-iPSCs; clone 16).
B Immunofluorescence analysis of ectoderm (b-II-tubulin), endoderm (Fox2A), and mesoderm (a-SMA and Brachyury) in teratomas generated from geFA-iPSCs

(clone 16).
C Southern blot analysis of genomic DNA extracted from the indicated gene-corrected FA iPSC clones (geFA-IPSCs) and from parental fibroblasts, either unmanipulated

(FA) or after gene editing (ge-FA iPSCs, clones 16, 26 and 31). Genomic DNA was digested with BglI and hybridized with a probe for PPP1R12C. The band of 9.6 kb
corresponds to the targeted integration in PPP1R12C, while the 3.3 kb correspond to the untargeted allele.

D Southern blot analysis of samples shown in (C) digested with BstXI and hybridized with a probe (P) for EGFP. One single band of 5.1 kb is expected for specific
integrations in PPP1R12C.
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16.1 and 16.2, with a number of 0.35 � 0.10 and <0.05 copies/cell,

respectively. In clone 16.2, the excision of the hTERT provirus was

also confirmed (<0.05 copies as deduced from q-PCR analyses).

RT-qPCR analysis performed in these two subclones showed the

persistent expression of endogenous pluripotency genes (SOX2,

OCT4, KLF4, NANOG, and cMYC) and the absence of ectopic transg-

enes expression (Supplementary Fig S6A). As expected from bona fide

pluripotent iPSC clones, these two clones generated teratomas with

structures characteristics of the three germ layers (Supplementary

Fig S6B).
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Figure 4. Disease-free Fanconi anemia phenotype of corrected geFA-iPSCs.

A Histogram showing the levels of hFANCA expression in gene-edited FA-iPSC clones and human ES (H9) relative to untreated FA-52T fibroblasts. Data are shown as
mean � s.e. of three different analyses.

B Western blot analysis showing FANCA expression in geFA-iPSC clones in comparison with fibroblasts from HD and a FA-A patient.
C Representative immunofluorescence analysis of FANCD2 foci in geFA-iPSCs after DNA damage with mitomycin C (MMC).
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Analysis of the genetic stability of gene-edited FA fibroblasts
and iPSCs

Because of the chromosomal instability of FA cells, we investigated

by means of karyotype analyses and aCGH analyses whether the

different manipulations of FA-52 fibroblasts and their corresponding

iPSCs induced chromosomal instability. As shown in Table 1, no

evident karyotype or aCGH abnormalities were observed in

expanded FA-52 parental fibroblasts when compared with a

reference human DNA sample. Even more, the transduction with

hTERT-LV and the gene-editing process did not induce evident

chromosomal abnormalities in these cells. Reprogrammed geFA-52

iPSCs also had a normal karyotype, although a deletion in the

16p12.2p12.1 locus was noted in the aCGH analysis. After excision

with the Cre recombinase, in addition to the 16p deletion, a mosaic

trisomy in chromosome 5 was observed (See Table 1 and Supple-

mentary Fig S7).

Generation of disease-free hematopoietic progenitors from
gene-edited FA-A iPSCs

In experiments corresponding to Fig 5 and Supplementary Figs S8

and S9, we investigated whether hematopoietic progenitor cells

derived from gene-edited FA-iPSCs were disease-free. To conduct

these experiments, embryoid bodies from geFA-iPSCs were incu-

bated with hematopoietic cytokines as described in Materials and

methods. As shown in representative analyses from Supplementary

Fig S8A, the hematopoietic differentiation of geFA-iPSCs after

21 days of in vitro stimulation was demonstrated by the presence of

hematopoietic precursors (CD43+/CD34+), committed hematopoi-

etic progenitors (CD34+/CD45+) and also mature hematopoietic

cells (CD34�/CD45+). When the hematopoietic differentiation of

excised and non-excised iPSC clones was compared, the proportion

of CD45+ and CD34+/CD45+ was consistently increased in the case

of the excised vs the non-excised clones (see data from two indepen-

dent experiments in Fig 5A and Supplementary Fig S8). Consistent

with the flow cytometry data, granulo-macrophage and erythroid

colonies were generated by geFA-iPSC-differentiated cells in methyl-

cellulose. As it was observed in the flow cytometry studies, higher

numbers of hematopoietic progenitors were generated by excised

versus non-excised geFA-iPSC (Fig 5B). In all instances, colonies

derived from geFA-iPSC were almost as resistant to MMC as healthy

cord blood progenitor cells, in contrast to the MMC hypersensitivity

observed in BM progenitors from FA patients (Fig 5C).

Finally, to investigate whether gene-edited FA-iPSCs were also

able to differentiate toward the hematopoietic lineage in vivo, one of

the teratomas generated by the excised geFA-52 iPSCs (clone 16.2)

was analyzed for the presence of human hematopoietic markers. As

shown in Supplementary Fig S9, 3% of the cells present in this tera-

toma consisted on hCD45+/mCD45� cells. Within this population,

3.5% corresponded to hCD34+ cells, thus revealing the in vivo

differentiation potential of this clone.

Discussion

Thanks to the development of artificial nucleases capable of generat-

ing DNA double-strand breaks (DSBs) in pre-determined sequences

of the genome (Porteus & Baltimore, 2003; Urnov et al, 2010; Cong

et al, 2013; Joung & Sander, 2013), targeted gene therapy is entering

into the clinics (Tebas et al, 2014). Whether these approaches will

be amenable to the treatment of DNA repair deficiency syndromes

such as FA is, however, uncertain. In this respect, it is currently

known that FA proteins participate in maintaining the genomic

stability of the cell and coordinate the actions of multiple repair

processes, including HDR (Kottemann & Smogorzewska, 2013),

making these cells particularly appropriate for investigating the

feasibility of performing targeted gene therapy in syndromes associ-

ated with DNA repair defects and genome instability. Although the

mechanisms explaining how the FA pathway promotes HDR are still

unclear, most evidence suggests that the monoubiquitination of

FANCD2—which is critically dependent on the presence of all the

FA core complex proteins, including FANCA—is essential for the

recruitment of several HDR factors (such as BRCA1, BRCA2, and

RAD51) to damaged chromatin (see review in Kee & D’Andrea,

2010).

To investigate whether gene targeting was feasible in FA cells we

focused on the most frequent FA complementation group, FA-A

(Casado et al, 2007; Auerbach, 2009), and investigated the possibil-

ity of inserting the therapeutic transgene in a safe harbor locus of

the human genome—the AAVS1 locus (Lombardo et al, 2011).

Strikingly, our first results in Fig 1 clearly demonstrate the

feasibility of performing gene targeting in FA-A cells with signifi-

cant efficacies (up to 4%), comparable with efficacies reported in

primary cells competent for DNA repair (DeKelver et al, 2010;

Lombardo et al, 2011; Sebastiano et al, 2011; Soldner et al, 2011;

Zou et al, 2011a). The feasibility of performing gene targeting in

FA-A cells could be explained by different hypotheses. First, as

previously described in other systems (Matrai et al, 2011; Peluffo

et al, 2013), a transient though early expression of FANCA may be

induced by the donor IDLV, thus facilitating the insertion of the

exogenous therapeutic cassette through a HDR process. Besides

Table 1. aCGH analysis in FA-52 fibroblasts prior to and after gene
editing and in gene-edited IPSCs-derived clones

Cells

aCGH result

KaryotypeAlteration Locus
OMIM
GENES

FA-52
fibroblastsa

– – – 46 XY

geFA-52T fibr.b – – – 46 XY

geFA-52T iPSC clones

Clone 16c Deletion 16p12.2p12.1 * 46 XY

Clone 16 Exc Deletion 16p12.2p12.1 * 46 XY

Mosaic
trisomy

5 – 46 XY

*EEF2K, CDR2, HS3ST2, SCNN1G, SCNN1B, COG7, GGA2, EARS2, NDUFAB1,
PALB2, DCTN5, PLK1, ERN2, PRKCB, CACNG3, RBBP6.
aComparison analyses between expanded fibroblasts from patient FA-52 (FA-
52 fibroblasts) and a reference male DNA sample.
bComparison analyses between expanded, TERT-transduced, and gene-edited
FA-52 fibroblasts (geFA-52T fibr.) with respect to FA-52 fibroblasts.
cComparison analyses between geFA-52T iPSCs clone 16 and clone 16 Ex
(after excision of the reprogramming cassette) and FA-52 fibroblasts.
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this hypothesis, we should contemplate the possibility that the

limited HDR activity of FA-A cells (Nakanishi et al, 2005, 2011)

could be sufficient to facilitate the ZFN-mediated integration of

our donor IDLV in the AAVS1 site. Finally, although the integra-

tion of the therapeutic cassette in the AAVS1 locus might have

occurred through an HDR-independent process, as reported in

other models (Anguela et al, 2014), PCR and Southern blot analy-

ses showed the expected amplicons and band length for targeted
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A Analysis of the percentage of CD43+CD34+, CD45+CD34+, and CD45+ cells generated by unexcised and excised geFA-iPSCs (clones 16 and Ex 16.1).
B Left: Representative pictures of hematopoietic colonies generated by geFA-iPSCs. Right: Analysis of the clonogenic potential of unexcised and excised ge-FAiPSCs
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integration of the cassette, strongly suggesting that AAVS1 target-

ing took place through a HDR mechanism. In this respect, while

the specificity of gene targeting might be reduced in FA cells, our

data clearly show that all the FA-iPSC clones harbored one single

copy of FANCA specifically integrated in the PPPR12C target gene

(Table 1). Consequently, this result further supports the efficacy

and the specificity of our gene targeting approach.

With the main objective of preventing the predisposition to

senescence of FA cells (Muller et al, 2012), the transduction of

hTERT-LV in FA-A fibroblasts induced an unexpected effect in these

cells, which consisted of a significant increase in the efficacy of gene

editing (Fig 1). Whether or not this effect is specific for FA cells or

whether it is simply mediated by the enhanced proliferation rate of

TERT-transduced FA cells is currently unknown. Nevertheless, to

the best of our knowledge, the improved gene targeting mediated by

hTERT observed in our experiments constitutes a new finding that

has not been previously reported in any other experimental model.

The observation that transduction with hTERT also facilitates the

generation of gene-edited FA-iPSCs is consistent with previous data

showing the relevance of hTERT in cell reprogramming (Batista

et al, 2011; Pomp et al, 2011; Winkler et al, 2013). In safety terms,

even though the hTERT provirus could be efficiently excised from

transduced cells with the Cre recombinase, further approaches

based on the transient expression of hTERT during gene editing

and/or cell reprogramming would constitute safer approaches to

limit potential genomic insults during the ex vivo manipulation of

the samples.

Interestingly, EGFP analyses in gene-edited FA fibroblasts

showed that in the absence of any artificial selection process, a

progressive increase in the proportion of targeted cells (up to 40%

after 42 days in culture) was observed, mimicking the improved

growth proliferation properties of FA precursor cells in mosaic

patients (Waisfisz et al, 1999; Gregory et al, 2001; Gross et al,

2002) or in experimental models of FA gene therapy (Rio et al,

2008). Consistent with previous observations in FA cells corrected

by LV-mediated gene therapy (Raya et al, 2009), this proliferation

competence of FA-corrected cells was particularly remarkable when

samples were subjected to cell reprogramming, confirming the rele-

vance of the FA pathway during the process of iPSC generation.

Similar conclusions were obtained in two additional studies (Muller

et al, 2012; Yung et al, 2013), although these studies showed that

reprogramming of FA cells can occur, albeit with a very low effi-

ciency compared to gene-complemented FA cells.

Studies in Figs 2 and 4 showing the generation of nuclear

FANCD2 foci and the chromosomal stability of gene-edited FA

fibroblasts and iPSCs upon exposure to ICL drugs demonstrate

that the specific targeting of FANCA in the AAVS1 locus has

completely corrected the phenotype of FA-A fibroblasts and bona

fide iPSCs. Although transduction of FA fibroblasts with the

hTERT-LV might have had consequences upon the genetic insta-

bility of FA cells, our karyotype and aCGH studies indicate that

neither the expansion nor the transduction with hTERT-LV or the

gene-editing processes induced evident chromosomal abnormali-

ties in FA fibroblasts. In contrast to these results, data in Table 1

and Supplementary Fig S7 showed the presence of chromosomal

abnormalities in reprogrammed and excised geFA-iPSCs. Impor-

tantly, different genetic defects have also been reported in non-

FA-iPSCs (Mayshar et al, 2010; Gore et al, 2011; Laurent et al,

2011; Cheng et al, 2012; Ruiz et al, 2013) that were associated

with the generation of the iPSCs (Mayshar et al, 2010; Gore et al,

2011; Hussein et al, 2011; Laurent et al, 2011) and/or with muta-

tions that pre-existed in the somatic population of origin (Young

et al, 2012). This indicates that the presence of chromosomal

abnormalities in our iPSCs is not exclusive of their FA genetic

background and that the different mechanisms accounting for

mutations in non-FA-iPSCs would be applicable to our geFA-

iPSCs.

Consistent with the previous study showing the generation of

disease-free FA-iPSCs through conventional gene therapy

approaches (Raya et al, 2009; Muller et al, 2012), our new study

shows the efficient hematopoietic differentiation of gene-edited FA-

iPSCs. Moreover in the current study, we observed the generation of

increased numbers of hematopoietic progenitors from geFA-iPSCs

subjected to excision of the reprogramming cassette, confirming

previous observations showing that the residual expression of repro-

gramming genes limits the iPSC differentiation potential (Ramos-

Mejia et al, 2012). The hematopoietic differentiation observed in

these experiments and the robust expression of FANCA targeted into

the safe harbor AAVS1 locus should account for the generation of a

high number of hematopoietic progenitors with normalized

response to MMC.

In summary, our study demonstrates for the first time the possi-

bility of conducting efficient and precise targeted-mediated gene

therapy in HDR-deficient cells. Moreover, we show the feasibility of

reprogramming these cells to generate iPSC-derived gene-edited

hematopoietic progenitors characterized by a disease-free pheno-

type. Our approach thus constitutes a new proof-of-concept with a

potential future clinical impact to optimize the generation of gene-

corrected HSCs from non-hematopoietic tissues of patients with

inherited diseases, including DNA repair deficiency and genetic

instability syndromes, like FA.

Materials and Methods

Cell lines and primary fibroblasts from FA-A patients

293T and HT1080 cells (ATCC: CRL-11268 and ATCC: CCL-121)

were used for the production and titration of the LVs, respec-

tively. Cells were grown in Dulbecco’s modified medium

GlutaMAXTM (DMEM; Gibco) supplemented with 10% fetal bovine

serum (FBS, Biowhitaker) and 0.5% penicillin/streptomycin solu-

tion (Gibco). Skin fibroblasts were obtained from FA-5, FA-123,

FA-664, and FA-52 patients and were maintained in DMEM (Invi-

trogen) supplemented with 20% FBS (Biowhitaker) and 1% peni-

cillin/streptomycin solution (Gibco) at 37°C under hypoxic

conditions (5% of O2) and 5% of CO2. Patients were classified as

FA-A patients as previously described (Casado et al, 2007). The

ES4 and H9 (NIH Human Embryonic Stem Cell Registry, http://

stemcells.nih.gov/research/registry/) lines of hES cells were main-

tained as originally described (Raya et al, 2008). FA patients and

healthy donors were encoded to protect their confidentiality, and

informed consents were obtained in all cases according to Institu-

tional regulations of the CIEMAT. All studies conformed the prin-

ciples set out in the World Medical Association Declaration of

Helsinki.
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Vectors

pCCL.sin.cPPT.AAVS1.loxP.SA.2A.GFP.pA.loxP.PGK.FANCA.pA.Wpre

donor transfer LV (donor IDLV) was generated using elements

from the backbones pCCL.PGK.FANCA.Wpre* (Gonzalez-Murillo

et al, 2010) and pCCLsin.cPPT.AAVS1.2A.GFP.pA (Lombardo

et al, 2011). The integrase-defective third-generation packaging

plasmid pMD.Lg/pRRE.D64Vint was used to produce IDLV parti-

cles (Lombardo et al, 2007). pLM.CMV.Cherry.2A.Cre (Papapetrou

et al, 2011) and pLox.TERT.ires.TK vectors (Salmon et al, 2000)

were provided by Addgene. For reprogramming experiments,

the EF1a STEMCCA lentiviral vector kindly provided by

Dr Mostoslavsky was used (Sommer et al, 2010). This vector

contains the cDNAs for OCT4, SOX2, c-MYC, and KLF4 flanked by

loxP sequences for their subsequent excision. ZFNs targeting

intron 1 of the PPP1R12C gene were expressed from an Adenoviral

Vector (AdV5/35) under the control of the CMV promoter (Lom-

bardo et al, 2011).

Cell transduction

For gene editing experiments, fibroblasts from FA-A patients were

transduced either with donor IDLV alone (150 ng HIV Gag p24/ml)

or together with AdV5/35-ZFNs (multiplicity of infection (MOI)

200). Fourteen days post-transduction, the proportion of EGFP+

cells was determined by flow cytometry (BD LSRFortessa cell

analyzer, Becton Dickinson Pharmingen). To immortalize fibro-

blasts from FA-52 to FA-123 patients, 105 cells were transduced at

MOI 1 with the pLox.TERT.ires.TK LV (Salmon et al, 2000) for

24 h. To excise the reprogramming cassette and hTERT from estab-

lished hiPSCs, single cell suspensions were generated by incubation

with accutase (Gibco) and transduced for 10 h with the IDLV

pLM.CMV.Cherry.2A.Cre. Immediately after transduction,

2 × 104 cells/10 cm2 dish, expressing Cherry protein, were sorted

and new subclones of the parental geFA-IPSCs were generated.

Hematopoietic differentiation

iPSC colonies were detached using colagenase type IV (Gibco) for

30 min at 37°C, washed and centrifuged at 200× g, resuspended in

differentiation media composed by KO-DMEM (Gibco) supple-

mented with 20% non-heat-inactivated FBS (Biowhitaker), 1%

NEAA (Lonza; Biowhitaker), L-Glu (1 mM; Invitrogen), b-mercap-

toethanol (0.1 mM; Gibco) and hrBMP4 (0.5 ng/ml; Prepotech)

and plated in ultra-low attachment plates (Costar). After 2 days,

media were replaced by Stempro 34 (Invitrogen) supplemented

with 0.5% pen/streptomicin, L-Glu (2 mM; Invitrogen), MTG

(40 mM; Sigma), ascorbic acid (50 lg/ml; Invitrogen), hrSCF,

hrFlt3 ligand and TPO (100 ng/ml; EuroBioSciences), hrIL3

(10 ng/ml; Biosource), hrIL6 (10 ng/ml; Prepotech), hrBMP4

(50 ng/ml; Prepotech), Wnt11 (200 ng/ml; R&D), and rhVEGF

(5 ng/ml; Prepotech). Media were changed every 3–4 days. At

day 7, media were replaced by fresh media where rhWnt-11 was

substituted by rhWnt-3a (200 ng/ml; R&D). Media were changed

every 3–4 days. At day 14 and 21, immunophenotypic analysis of

the differentiated cells was performed by flow cytometry, and

colony-forming unit assays were conducted (See Supplementary

Methods).

Flow cytometry

Transduction with the AdV5/35-ZFNs and the donor IDLV, was

analyzed by flow cytometry analysis (FACSCalibur; Becton

Dickinson Pharmingen). Immunophenotypic analysis of the hemato-

poietic differentiated cells was performed using the following anti-

bodies according to the manufacturer’s instructions: phycoerythrin

(PE)-Cy7-conjugated anti-human CD34 (BD Pharmingen), PE-conju-

gated anti-human CD31 (eBiosciences), allophycocyanin (APC)-

conjugated anti-human CD45 (BD), and fluorescein isothiocyanate

(FITC)-conjugated anti-human CD43 (BD). Fluorochrome-matched

isotypes were used as controls. 40,6-Diamidino-2-phenylindole

(DAPI; Roche)-positive cells were excluded from the analysis.

Analysis was performed using FlowJo software.

Inmunofluorescence and Western blot of Fanconi
anemia proteins

Analyses of FANCD2 foci were performed by immunofluorescence

of primary fibroblasts or iPSCs treated for 16 h with 200 nM of

MMC. After MMC treatment, cells were stained with rabbit poly-

clonal anti-FANCD2 (Abcam, ab2187-50) as previously described

(Hotta & Ellis, 2008; Raya et al, 2009). Cells with more than ten

foci were scored as positive. FANCA expression was analyzed by

Western blot (Raya et al, 2009) using the following antibodies:

hFANCA (ab5063 Abcam) and anti-beta Actin to mouse antibody

(ab6276, Abcam) as control. Goat polyclonal antibody to rabbit

IgG (HRP; ab6721-1; Abcam) and sheep polyclonal antibody to

mouse IgG—H&L (HRP; ab 6808, Abcam) were used as secondary

antibodies. Protein quantification was done with Image J soft-

ware.

FANCA expression by qRT-PCR

The expression of human FANCA mRNA was analyzed in the differ-

ent clones of geFA-iPSCs by real-time quantitative reverse transcrip-

tase-polymerase chain reaction (qRT-PCR; Gonzalez-Murillo et al,

2010) using primers described in Supplementary Methods. Parental

fibroblasts from FA-52 and ES H9 were used as controls.

Gene targeting analysis: PCR and Southern blots

For PCR analysis, genomic DNA was extracted with DNeasy Blood

& Tissue Kit (Qiagen). To detect the targeted integration of the HDR

cassette in the AAVS1 locus, two different pair of primers for the 30

or the 50 integration junction (50 TI and 30 TI, respectively) were

used (Supplementary Table S2). PCR was conducted as follows:

2 min at 94°C, 40 cycles of 30 s at 94°C, 30 s at 58°C (50 TI) and

59°C (30 TI), 1 min at 72°C and one final step for 5 min at 72°C. The

proper target integration amplified a 1195 pb amplicon for the 50 TI
and a 1314 pb fragment for the 30 TI that were resolved in agarose

gel at 2%. For Southern blot analyses, genomic DNA was extracted

and digested either with BstXI enzyme or with BglI (both from New

England Biolabs). Matched DNA amounts were separated on 0.8%

agarose gel, transferred to a nylon membrane (Hybond XL, GE

Healthcare) and probed either with the 32P-radiolabeled sequence of

a fragment of EGFP to detect specific (5.1 kb) and non-specific inte-

grations or with a probe of AAVS1 gene located outside of the
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homology arm (in the 30 region) to detect specific integration in the

proper target locus (9.6 kb) and the unmodified AAVS1 locus

(3.3 kb). To detect the radiolabel signal, auto-radiographic films

were used (Amershan Hyperfilm ECL, GE Healthcare) and they were

exposed in an automatic reveal machine Curix60 (AGFA).

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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