Montana Tech Library Digital Commons @ Montana Tech

2017 Undergraduate Research

Other Undergraduate Research

Summer 2017

Application of Carbon Nanotubes to Kevlar Fabric for Use in Body Armor

Curtis Baker Montana Tech of the University of Montana, cbaker1@mtech.edu

Dario Prieto Montana Tech of the University of Montana, dprieto@mtech.edu

Follow this and additional works at: http://digitalcommons.mtech.edu/urp_aug_2017

Recommended Citation

Baker, Curtis and Prieto, Dario, "Application of Carbon Nanotubes to Kevlar Fabric for Use in Body Armor" (2017). 2017 Undergraduate Research. 1. http://digitalcommons.mtech.edu/urp_aug_2017/1

This Book is brought to you for free and open access by the Other Undergraduate Research at Digital Commons @ Montana Tech. It has been accepted for inclusion in 2017 Undergraduate Research by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact sjuskiewicz@mtech.edu.

Application of Carbon Nanotubes to Kevlar Fabric for Use in Body Armor

Will Carbon Nanotubes **Strengthen Kevlar Body Armor?**

Hypothesis: Carbon nanotubes (CNTs) will greatly increase the strength of Kevlar body armor if chemically bonded directly to the fabric

Background and Theory

- **CNTs have immense tensile strength but are** extremely brittle
- If CNTs were bonded to Kevlar, they would entangle the fibers and make it more difficult for a bullet to pass through.
- This could allow armor makers to design \bullet body armor that was lighter but offered the same protection as heavier vests.

SEM photo of CNTs on the surface of a Kevlar fiber

Single wall carbon nanotube¹

Curtis Baker (Montana Tech) and Dario Prieto (Montana Tech)

Results

- The Kevlar with CNTs was more intact after being shot with a .177 caliber air rifle The yarn was significantly more difficult to
- pull out of the weave
- The fabric had less back-face deformation

Bullet Impacts

Kevlar after being shot with .177 caliber air rifle. Left: Kevlar with CNTs Right: Neat Kevlar

Yarn Pullout Test

Ballistic and Tensile Test

	ΔE (J)	σ (ksi)
Neat	6.2	85.5
Treated	7.4	90.2
Percent Increase	19.3%	5.5%
Standard Deviation	0.5,0.5	3.7 , 2.9

and TDI)

lacksquare

 \bullet

1.0

Conclusions The CNTs did improve the Kevlar's performance in ballistic tests The weave of the fabric didn't break up as much as in normal Kevlar This leads to less back-face deformation and increased protection for multiple high velocity impacts

Future Work

- **Continue ballistic testing using .22** caliber subsonic rounds.
- **Try different weaves of Kevlar Analyze different treatments of Kevlar** oxidation
- **Produce larger panels of Kevlar for use** in hard armor plates

Acknowledgements

This research was sponsored and inspired by Hugh Craig. Huge thanks to Dr. Dario Prieto who designed much of the experimental methods.

Photo References **1.** Suraj.viswanathan. "Carbon Nanotubes Better than Carbon Fiber." *Motoroids*. N.p., 18 Mar. 2015. Web. 28 July 2017

Kevlar after being shot with .177 caliber air rifle still in sample holder. Note: lack of damage to weave