
HAL Id: inria-00529489
https://hal.inria.fr/inria-00529489v2

Submitted on 14 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Key-Study to Execute Code Using Demand Paging and
NAND Flash at Smart Card Scale

Geoffroy Cogniaux, Gilles Grimaud

To cite this version:
Geoffroy Cogniaux, Gilles Grimaud. Key-Study to Execute Code Using Demand Paging and NAND
Flash at Smart Card Scale. 9th IFIP WG 8.8/11.2 International Conference on Smart Card Research
and Advanced Applications (CARDIS), Apr 2010, Passau, Germany. pp.102-117, �10.1007/978-3-642-
12510-2_8�. �inria-00529489v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132071343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00529489v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Key-study to Execute Code Using Demand

Paging and NAND Flash at Smart Card Scale

Geoffroy Cogniaux and Gilles Grimaud

LIFL, CNRS UMR 8022, University of Lille I. INRIA, Nord-Europe, France.

Abstract. Nowadays, the desire to embed more applications in systems
as small as Smart Cards or sensors is growing. However, physical lim-
itations of these systems, like very small main memory, and their cost
of production make it very difficult to achieve. One solution is to ex-
ecute code from a secondary memory, cheaper, denser, but slower, as
NAND Flash. Solutions based on Demand Paging and using a cache in
main memory, began to be proposed and implemented in the domain of
mobile phones, but consume too much RAM yet, compared to what a
Smart Card can provide. In this paper, we show that we can dramat-
ically increase performance by reducing the size of pages in the cache.
This solution then allows a more intelligent access to the NAND. We also
show that our solution allows to use Demand Paging within the limits
of Smart Cards memories, where a conventional approach, offering too
low bandwidth, makes code execution impossible from this kind of sec-
ondary memory. Finally, we present important future keys to optimize
our proposal even more, and specially off-line code specialization aware
of NAND characteristics and advanced cache properties.

1 Introduction

Nowadays, the desire to embed more applications in systems as small as Smart
Cards or sensors is growing. However, challenges are not the same between a
mobile phone and a Smart Card. Beyond the extreme physical constraints, as
only a few kilobytes of RAM and not much more storage space for code, a
Smart Card also has an extremely restrictive specification in regard to costs of
production or energy consumption. It is not conceivable in these targets to run
programs more expensive in space or energy only by inflating the hardware. The
possible solution is to replace or at least extend the code storage capacity with
another hardware with lower cost per bit of storage.

Generally, NOR flash is used as code storage space on systems such as Smart
Cards. The NAND flash is another type of flash memory with different proper-
ties. This memory is also nonvolatile, has greater density, and therefore allows to
embed more data than the NOR on a same silicon size, near 60%. The tempta-
tion is then huge to replace NOR by NAND. Unfortunately, the NAND, although
coming with faster writings, is much slower to perform readings, and is not ac-
cessible byte per byte as NOR interface but per pages. This access mode causes
incompressible latency and a priori excludes random accesses. NAND is then



most often used to support a file system and so far, its development has mainly
been driven for this purpose.

Executing code from memories such as NAND is made possible by the intro-
duction of a cache in main memory or the use of SRAM buffers added directly
into the NAND. This new category is called hybrid Flash. However, the presence
of a dedicated RAM space is not sufficient to close the gaps between NAND and
NOR. A cache manager will then have to be smart enough to hide the latency
of the NAND and ensure fluidity when providing instructions to a processor or
a virtual machine. In this context of paged memory, the Demand Paging is the
most popular caching strategy because it offers the best balance between overall
performance and reduced cache space. The idea of this method is to access slow
hardware only in cases of extreme necessity and try to keep in cache as much
data as possible, generally sorted by relevance of future uses. Of course, knowing
if a cached data will be finally useful or not, is a non-trivial problem.

If hardware researches are working to provide more efficient device to reduce
the latency of the NAND, at software level, greater efforts are usually done on
the optimization of the page replacement policy in the cache. But in systems
with tiny main memory, it remains to be seen how many bytes to sacrifice for a
cache, in addition to the vital needs of the system. But beyond that, the main
problem with these systems will be to know if this sacrifice will be enough to
perform code execution from this slow memory.

The remaining of this paper is organized as follow: Section 2 describes re-
search motivations and issues. Section 3 lists related works. Section 4 discusses
a new way to use Demand Paging and NAND flash memory to use it in Smart
Card too. Section 5 presents experimental results on reading performance. Fi-
nally, section 6 will discuss about best cache page size and its direct interactions
with page content for future optimizations.

2 Motivations around Smart Card and Flash Memories

Characteristics

In this paper, we focus on very small embedded systems such as Smart Cards
or sensors. This kind of devices has very restrictive specifications and hardware
constraints aiming to reduce production cost and energy consumption dramati-
cally. Despite their size, industrial trends would like to embed more applications
and bigger programs in those targets.

Smart Card and sensors are mainly built around an 8 or 16 bits processor
and generaly between 1 and 8KB of RAM. Code is then executed from flash
memory such as NOR, reserving RAM for volatile data such as execution stack
and variables. Thus, executing bigger applications will require more NOR, which
would also be too expensive in energy, size and production cost. As an alterna-
tive, read-only code could be executed from a cheaper and denser flash memory
such as NAND.

NOR is byte-wise and has a good and constant performance in random read-
ings. With these properties, NOR can support XIP (execute-In-Place), to run



programs directly, without any intermediate copy in main memory. The NAND
flash has better writing performance and is cheaper and denser. It can store more
informations on same die size and thus has a lower cost per bit. But NAND is
much more slower in readings. NAND is block-wise [1]. The smallest read and
write unit is the page that can store 512 or 2048 bytes. To read a byte ran-
domly, the corresponding page must be first completly loaded in the hardware
NAND data register. Only after this long time consuming operation, bytes can
be fetched sequentially from the register until the wanted one is reached. In those
conditions (Random worst case column of Table 2), NAND is not designed to
support intensive random readings and is widely used to support file systems,
designed with a per-block logic and almost always accessed sequentially.

Device Page Size Latency Byte Fetch Page Fetch Min1 Max2

K9F1208Q0B 3 512 bytes 15µs 50ns 25.6µs 0.02 12.03
MT29F2G08A-
ACWP 4

2048 bytes 25µs 40ns 81.94µs 0.01 18.27

NOR Flash - - 40ns - - 23.84

Table 1: NAND characteristics aligned on a bus at 33MHz and 8bits
wide

Device Page Size Latency Byte Fetch Page Fetch Min1 Max2

K9F1208Q0B 3 512 bytes 15µs 50ns 25.6µs 0.02 12.03
MT29F2G08A-
ACWP 4

2048 bytes 25µs 20ns 40.9µs 0.01 29.61

NOR Flash - - 9ns - - 108

Table 2: NAND characteristics aligned on a bus at 54MHz and 16bits
wide

a Worst Case: random reading bandwidth in MB/s
b Sequential reading Bandwidth in MB/s
c http://www.samsung.com
d http://www.micron.com

3 Related Works

The studies of code execution from NAND flash can be classified in four cate-
gories. In the first place, we can distinguish pure hardware solutions since NAND
is not a well-adapted device to do random readings, and so far XIP [2, 3, 4, 5].
[6, 7, 8, 9, 10, 11, 12, 13] proposed software solutions using already available
NAND, even if software is often limited to firmware here.

Besides, we can split both categories into two others: one aiming to propose
an universal solution working with any program, and another one aiming to find
best performance dedicating solutions to one program or one type of programs
such as multimedia streaming.

In systems with limited SRAM size, copying the entire program in main
memory is not possible. Instead, hardware and software researchers have worked



on solutions using a cache managed by the Demand Paging strategy. It can be
either in existing main memory or in SRAM integrated directly in the NAND
device [2], resulting in a new one, now called hybrid NAND.

Generally, hardware based solutions are coming with a local SRAM cache
managed by new circuits but many parts of the implementation are performed
by the firmware. The main purpose to introduce a SRAM and a cache in the
NAND device is to provide an interface similar to the NOR one, which is byte-
wise and randomly accessible. But as explained in [10], in already available
hybrid NAND such as OneNANDTM by Samsung[14], the integrated SRAM
is not a cache yet, and doesn’t offer enough performance to actually execute
code1. If OneNAND offers a double buffers mechanism to access stored data
more randomly by overlapping some internal NAND accesses and their latency,
it doesn’t hide all of them. [11, 15] propose a software-based solution to use this
buffer as a true but secondary cache in relation with a higher level cache in main
memory. When a NAND page is accessed more often than a static threshold,
this page is promoted from in-NAND cache to main memory cache which allows
faster accesses.

Most of the time, solutions aim at improving or adapting the replacement
policy needed by the Demand Paging strategy because researches [16] showed
that a gap always exists up to the theoretical best one, known as MIN [17]. When
a cache is full and when the CPU tries to read instructions not present in cache
yet, the new page loaded from the NAND must overwrite an existing one in
the cache. Then, the replacement policy must decide which one to erase, hoping
that this choice will be relevant for the future execution of the program. In the
studied works, this choice may be based on priorities [2], pinning [9, 12], derived
from well-known policies like LRU (Least Recently Used) [8, 9, 11],... , or using a
completely new approach [4] by embedding a trace-based prediction tree within
the NAND device, with good performance (being close to MIN behaviour) but
with a RAM overhead, and universality lost.

All of these proposals have mobile phones as smallest devices. In this paper,
we take an interest in extreme constraints of Smart Cards-sized devices with very
small SRAM space to manage a cache (less than 4KB). We also want to evaluate
performance behind very slow bus (33MHz, 8bits wide). Because in such devices,
reserving SRAM bytes for a dedicated process represents a strong sacrifice, and
buses are well-known bottlenecks. To successfully execute code from NAND-like
memory, we will have to tune implementation to reduce this sacrifice, but as a
first issue, it remains to be seen whether this sacrifice will be enough to reach
abilities, before performance.

4 Demand Paging at Smart Card Scale

4.1 Conventional Demand Paging issue in Smart Card

In conventional Demand Paging used in literature, a page in the cache has the
same size that a physical NAND page, since reading a NAND page has a very

1 Though it can execute a boot loader



high cost, due to long access latency. An efficient Demand Paging and its replace-
ment policy are aware of this problem and access the managed slow memory as
less as possible.

Smart Cards, mobile sensors, and other small embedded systems have con-
straints that make conventional Demand Paging unusable in their context be-
cause of low performance. For instance, if we consider a system with only 2KB
of RAM available for a cache, and a NAND with a page size of 2KB, there will
be only one page in the cache. With this assumption, a replacement policy is
useless, and the read bandwidth will be close to worst case of Table 2, unless
executed program is only 2KB.

It can be said that the main problem with NAND is its long access latency.
But, in our context, hiding latencies is not enough. We have explained there
are two steps for bytes reading from NAND : a load phase and a sequential
fetch phase. If the load phase has a good attention in research and industry, the
second topic has not been well investigated yet, since, in mobile phone, authors
considered good clock and bandwidth for buses. But, even if we have a NAND
claiming to have a 108MB/s bandwidth and hiding all latencies, we will not have
a real bandwidth faster than the bus one and copying a complete NAND page
into SRAM cache may take a long time too (5th column of table 2).

4.2 Performance is under influence

A parameter may influence another and an accurate assessment must take these
interactions into account. Into a graph of influence (Fig. 1), we listed and put
physical and logical parameters face to intermediate results that are necessary
for a proper assessment of our study. They can be classified into 4 categories:

– physical parameters related to hardware (rectangle boxes)

Fig. 1: Parameters influence graph



– logical parameters configuring the cache (inversed house boxes)
– development toolkit, languages, compilers, ... (ellipse boxes)
– intermediate statistics influencing the overall bandwidth (rounded boxes)

As shown in Fig. 1, page fault or MISS causes a series of transactions that affect
the overall throughput. To make an instruction not present in cache available,
the cache manager must load the new page into the hardware NAND data reg-
ister, read the content of this register through the bus, then copy this page into
the cache and finally actually read the requested instruction. (For short, in the
remaining of this paper, we will refer to these four steps as load, fetch, write,
and read steps). A MISS is itself influenced by the cache size (in pages count),
the size of a cache page, the content of this page and of course the replacement
policy. The Demand Paging is not only dependent on the way it is managed.
If a replacement policy follows locality principle [18], only page size and page
content create conditions for a better locality.

A compiled program is not a random series of instructions but follows some
patterns of instructions and controls flows. The analysis of these patterns shows
that a program has two interesting features grouped under the concept of the
locality principle [18]. A program tends to use instructions located in the same
memory area. This is the principle of spatial locality and this area is therefore
strongly related to the size of a page. A program also tends to reuse instructions
that have already served in the recent past, typically in a loop. This is the tem-
poral locality. To help a replacement policy to use more efficiently the temporal
principle, blocks of code should be grouped by affinity, and therefore in the same
page of NAND to avoid or reduce page faults.

Fig. 2: Conventional approach of Demand Paging

4.3 Performance improvement without replacement policy change

or redesign

Regardless of the manner in which it is implemented and which policy is used, if
we analyse the behaviour of the Demand Paging using NAND with small pages
compared to NAND with big pages, we can see that the smallest achieves best



Fig. 3: A new approach using reduced cache page size

performance. First because it has shorter access latency, and second because at
the same cache size we can store more pages in it, for instance within 4KB of
SRAM, we will store 8 pages of 512 bytes versus 2 pages of 2048. Using small
pages, the changes applied to the content of the cache by the replacement policy
are more relevant and efficient. It then speaks in favour of smaller cache pages.

If we reduce the size of a cache page, the number of bytes fetched from NAND,
put on the bus, and then written into the SRAM cache decreases because there
is no need to retrieve complete pages of NAND, but only smaller inner-block.
The number of pages loaded into the data register of the NAND also decreases
for two reasons:

1. The replacement policy tends to keep in cache only needed code blocks in-
stead of full pages of NAND with potentially unnecessary methods. (The
smaller the methods are, the more this probability increases).

2. Reducing the size of a cache page can increase its number into same con-
sumed SRAM space, and thus improve the relevance of the cache content.

Reducing the cache page size introduces another advantage, completely use-
less until now if a page of cache and a page of NAND have the same size. Without
hardware changes, we can now consider the data register as a real buffer. We
have seen that for a conventional NAND (non-hybrid), it was sequentially ac-
cessible. Let us consider now a page of NAND with 512 bytes, a data register
with the same capacity and a page cache size of 64 bytes, which divides the data
register into 8 consecutive logical blocks. Three cases may arise after the fetch
of the block number i of page number P and following a new page fault:

1. the page fault requests another page than P: we have to load the new page
in the NAND register

2. the page fault requests block i+j of P, then in that case there is no need to
reload data register, we can fetch this block

3. the page fault requests the block i -j of P, which causes a reload of the
register, because we cannot turn back

j is here the number of block to skip to reach the wanted one. (We notice
that all blocks between i and j will have to be fetched too)



Storing in memory the page number that is currently in the NAND register
and the current block number is enough to distinguish the case (1) of the cases
(2) and (3), and up to avoid unnecessary register reloads which slow down overall
performance.

5 Experiments

We investigated cache configurations independently of replacement policies and
cache manager implementations, and different contexts such as native programs
or Java programs. Our goal is to find solutions in case that replacement policies
are useless, as described in Section 4.1, instead of redesigning a new one. Thus,
we used LRU and MIN as references (which are the most common boundaries
in cache studies), to instead investigate more specially NAND characteristics,
cache configurations and crtitical Smart Card’s hardware constraints such as
the external bus frequency.

5.1 Experimental setup

The results are from a new dedicated simulator based on the parameters de-
scribed in Fig. 1. The simulation process happens in two stages. After providing
the physical parameters to build a simulated architecture, a trace is replayed
against it by applying the desired replacement policy, and then counting the
MISS and HIT as well as collecting the necessary informations to compute the
overall bandwidth in MB/s. We wanted to analyse and characterize the impact
of pages sizes. Results are thus presented with the assumption that the simula-
tor knew with a null cost if an instruction was already in the cache or not. It
assumes a negligible overhead executing cache lookups since we will use finally a
limited number of cache pages here. But it will be investigated in future works.

Traces of C programs (like Typeset from the MiBench benchmark suite)
were obtained using Callgrind on Linux. The traces of Java programs have been
generated by JITS (Java In The Small [19]), an instrumental JVM developed
and maintained by the INRIA-POPS team2. Regarding the storage in NAND,
we consider only what would be in the NOR: the .text section of ELF binaries,
and raw bytecode arrays of Java class files. They are in consecutive pages of
NAND (if necessary, the same function can be distributed among several pages)
as if they were copied by a programmer, in the order of the binary produced by
the compiler.

5.2 Event-driven Java Applications

We also needed a true Smart Card scale use-case, because most of benchmark
programs come with big loops and/or deep dependencies on external libraries.
At the same time, existing embedded systems benchmarks do not provide similar

2 http://www.inria.fr/recherche/equipes/pops.en.html



environment to those used in today’s Smart Card. Systems such as JavaCard are
based on event-driven multi-applicative environment (like Cardlets processing
APDU).

The JITS platform is also one of them, when configured for sensors or Smart
Cards. This suite of tools allows off-board code specialization to reduce the total
memory footprint to strictly necessary Java classes and methods. Different from
other embedded JVM, JITS allows the use of standard Java API instead of being
limited to a specific subset, like in JavaCard. We then use the on-board JITS
bytecodes interpreter, working in events fashion, which enables us to simulate
parallel execution of several Java applications without the need to have a per-
thread execution stack.

In our simulation, the JITS platform is configured for applications running on
a Crossbow MicaZ target: 4KB of RAM, 128KB of NOR Flash. The applications
deployed on the target then contain 56 classes and 119 methods for 6832 bytes
of Java bytecodes, and requires 2.1 KB of RAM for volatile data such as stack,
some basic Java objects and critical sections of code like the event manager.
It leaves only 1.9 KB of RAM to physically store a cache on-board. In the
simulator, we will consider that the JVM is in NOR, and Java bytecodes stored
in a simulated NAND. The results reproduced here are from a trace of 1,534,880
Java bytecodes through 172,411 calls/returns of methods during the execution of
3 parallel event-driven applications, sampling data at different frequencies and
then forwarding samples over the air network.

5.3 Experimental results

Impact of NAND pagesize and buses constraints As a starting point, we
explored conventional Demand Paging with cache page size aligned on NAND
page size. Fig. 4(up) reports reading performance of the MiBench-Typeset appli-
cations after simulations of caches between 2 and 16KB, and using NAND flash
with 512 or 2048 bytes per page. It shows that small pages outperforms large
pages, even if it is no more an industrial trend to provide NAND with small
pages. If we look at Fig. 4(bottom), with hardware reduced to Smart Card abili-
ties (see Table 2), we are further from NOR performance. Code caching seems to
require much RAM to hide weaknesses of NAND and buses, which is impossible
in our targets.

Impact of cache page size Aiming at giving power back to replacement policy
with another way, we investigated reduction of cache page size, discovering a new
way to manage the NAND register. Fig. 5a shows, using a cache of 2KB, that
performance is becoming closer to NOR. Fig. 5a reproduces simulations of our
JITS sample with cache page size reduced by 2 each time. The first consequence
is that cache page count increases. As described in Section 4.3, Fig. 5b shows
with the same configurations as Fig. 5a, the impact on each page fault step : a
decrease of write (due to reduction), and then a decrease of fetch and load (due
to reduction and new register management).

With this new configuration, the gain is double:



Fig. 4: Impact of NAND page size and bus speed on read Bandwidth, on a bus @54MHz-
16bits (up) and on a bus @33MHz-8bits (bottom)

– Either, at same cache size, we are improving reading performance.
– Or, at same reading performance, we are reducing dramatically the size of

the cache.

If we take a look at our JITS application side (Fig. 6a for a 512 bytes NAND
page size, Fig. 6b for a 2048 bytes NAND), we can show another very interesting
advantage. These figures report reading performance using a cache page size of
64 bytes. With a cache of 2KB (32 pages of 64 bytes), reading performance out-
performs conventional Demand Paging, and even more, it makes code execution
from a NAND with Demand Paging strategy possible (see Section 4.3). We are
closer to NOR performance.

6 Discussion about the best cache page size

As shown in Fig. 5a, tuning the cache page size can improve overall performance.
Unfortunately, the best cache page size is not unique, and may differ from pro-
grams to programs, and what is more, it may differ in a same program. For
instance, the best cache page size for our JITS Java sample is 64 bytes when



(a) JITS - Cache page reduction (b) JITS - Reduction’s effect

Fig. 5: Reduction of cache page size

using LRU, though it is 32 when using MIN. To understand this difference, we
have to distinguish two concurrent phenomenons, both getting better each other,
but with some limits we will discuss here.

6.1 Buffer effect

The first phenomenon, the buffer effect, has already been described above and
refers to the new management of the NAND register. Based on it, a good page
replacement policy is able to specialize the code on the fly, while searching and
keeping only what it needs, without loading unnecessary instructions. Never-
theless, the limit to this specialization cannot be the instruction itself (ie, a
cache page size of one byte), mainly because performance bottleneck would be
transferred to lookups and indexing phases of the replacement policy algorithm.

6.2 Matching code granularity

The second phenomenon is based on code granularity concept and can set the
limit of the first one, while explaining for example why a small cache page size
can be better than another smaller one. In fact, a simple code specialization is
already done by the page replacement policy. It means that finally, the policy
splits code into two distinct categories: used and unused code. Following this, to
keep efficiently data in cache, it will access NAND only to find useful code. If
we help it with doing this distinction, overall performance will be improved.

At sources level, a program consists of classes and methods, or functions,
depending on the programming languages. Once compiled, it then consists in
series of basic blocks. A basic block is a group of several instructions, which
will always be executed sequentialy because being between two jumping instruc-
tions (call/return, conditional jumps). With these bounds and to be efficient,



(a) JITS - NAND 512

(b) JITS - NAND 2048

Fig. 6: Conventional Demand Paging compared to a cache with reduced page size

a replacement policy should load an entire basic block when accessing its first
instruction for the first time. Reducing cache page size to match the average
size of a basic block as close as possible then gives better chance to the replace-
ment policy to find more quickly useful sub-parts in a program, that may be



Fig. 7: MiBench-MAD - LRU and cache page reduction in a cache of 2KB

spread over many pages into the NAND. For instance, the average basic block
size (among only used basic blocks during simulation) of our JITS Java sample
is about 60 bytes. That is the reason why the best cache page size for this sam-
ple is between 32 and 64 bytes. At this point, we can understand the impact of
the noticed concurrent phenomenons. The best cache page size for LRU is 64
bytes, with the average code size aligned up to the cache page size. But MIN,
having a better prediction mecanism than LRU, can take more advantage of the
previously described buffer effect, and continue to have better performance with
smaller and smaller cache page size. Its limit will be now the number of pages
to maintain in cache and the time consumed by the replacement algorithm for
looking up or indexing.

The MiBench-MAD benchmark (Fig. 7) shows that in fact the average basic
block size is dominating the search for the best cache page size. MAD is a MP3
decoder calling, 90% of the time, two big functions. It puts the average size to
220 bytes. As shown in Fig. 7, best cache page size is still around this value.
Nevertheless, with a higher value we see that we don’t have the positive buffer
as expected any more. Code granularity is thus as important as other cache
parameters to tune an efficient cache system.

6.3 Toward a better in-binary organization

We noticed in section 4.3 that a page fault can request a new block in the page
already present in the NAND register. It results in a block jump (from block i

to j ). Getting j smaller than i is not an optimal situation because it causes the
page to be reloaded. On the other hand, getting j greater than i+1 is neither
a good situation because unnecessary bytes between block i and block i+j will
have to be fetched. Fig. 8 shows a spectrum of distance between i and j during



Fig. 8: JITS sample - Distance between two consecutive block requests using a cache
of 2KB (32 pages of 64B)

our JITS sample (cases 2 and 3 described in section 4.3). A negative distance
means that the same page had to be reloaded int the NAND register to read a
block towards. A distance of 0 means that whereas the replacement has choosen
to replace a block, it has finally needed the same block again resolving the next
page fault. A distance of 31 means that the full NAND page had to be loaded
and fetched, only to access its last logical block. Only 11.5% are in the optimal
case where j=i+1, the only one without useless fetches.

In-binary organization is conditioned either by language, by compiler, or
both. Fig. 8 speaks in favour of a control-flow analysis to group blocks by affinity
of calls or sequences, directly in the binary.

7 Conclusion

We presented a new approach to parameterize the Demand Paging strategy to
cache a slow secondary memory such as NAND flash in the context of Smart
Card or embedded systems with the same size and the same constraints, such
as slow buses and tiny main memory. Combined with an intelligent access to
the NAND data register, reducing cache page size dramatically improves per-
formance where conventional approach was close to worst case in term of band-
width. We discussed about the optimality of our proposal, showing that the best
cache page size were close to average size of used basic blocks. We noticed that
this value could differ from programs to programs, and then may not always
be shared between them to optimize all in once. We also pointed that the page
replacement policy acted almost naturally as a on-the-fly code specializer. It
means that running already Demand Paging-specialized code on this kind of
targets may represent another interesting opportunity of gains.



References

[1] : Micron Technical Note 29-19: NAND Flash 101. (2006)
[2] Park, C., Seo, J., Bae, S., Kim, H., Kim, S., Kim, B.: A low-cost memory architec-

ture with nand xip for mobile embedded systems. In: CODES+ISSS ’03: Proceed-
ings of the 1st IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, New York, NY, USA, ACM (2003) 138–143

[3] Lee, K., Orailoglu, A.: Application specific non-volatile primary memory for em-
bedded systems. In: CODES/ISSS ’08: Proceedings of the 6th IEEE/ACM/IFIP
international conference on Hardware/Software codesign and system synthesis,
New York, NY, USA, ACM (2008) 31–36

[4] Lin, J.H., Chang, Y.H., Hsieh, J.W., Kuo, T.W., Yang, C.C.: A nor emulation
strategy over nand flash memory. In: Embedded and Real-Time Computing Sys-
tems and Applications, 2007. RTCSA 2007. 13th IEEE International Conference
on. (2007) 95–102

[5] Lee, J.H., Park, G.H., Kim, S.D.: A new nand-type flash memory package with
smart buffer system for spatial and temporal localities. In: Journal of Systems
Architecture: the EUROMICRO Journal. (2005)

[6] Lin, C.C., Chen, C.L., Tseng, C.H.: Source code arrangement of embedded java
virtual machine for nand flash memory. (2007) 152–157

[7] In, J., Shin, I., Kim, H.: Swl: a search-while-load demand paging scheme with nand
flash memory. In: LCTES ’07: Proceedings of the 2007 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for embedded systems, New York,
NY, USA, ACM (2007) 217–226

[8] Lachenmann, A., Marrón, P.J., Gauger, M., Minder, D., Saukh, O., Rothermel,
K.: Removing the memory limitations of sensor networks with flash-based virtual
memory. SIGOPS Oper. Syst. Rev. 41 (2007) 131–144

[9] Kim, J.C., Lee, D., Lee, C.G., Kim, K., Ha, E.Y.: Real-time program execution on
nand flash memory for portable media players. In: RTSS ’08: Proceedings of the
2008 Real-Time Systems Symposium, Washington, DC, USA, IEEE Computer
Society (2008) 244–255

[10] Hyun, S., Lee, S., Ahn, S., Koh, K.: Improving the demand paging performance
with nand-type flash memory. In: ICCSA ’08: Proceedings of the 2008 Interna-
tional Conference on Computational Sciences and Its Applications, Washington,
DC, USA, IEEE Computer Society (2008) 157–163

[11] Joo, Y., Choi, Y., Park, C., Chung, S.W., Chung, E., Chang, N.: Demand paging
for onenandTM flash execute-in-place. In: CODES+ISSS ’06: Proceedings of the
4th international conference on Hardware/software codesign and system synthesis,
New York, NY, USA, ACM (2006) 229–234

[12] Park, C., Lim, J., Kwon, K., Lee, J., Min, S.L.: Compiler-assisted demand paging
for embedded systems with flash memory. In: EMSOFT ’04: Proceedings of the
4th ACM international conference on Embedded software, New York, NY, USA,
ACM (2004) 114–124

[13] Kim, S., Park, C., Ha, S.: Architecture exploration of nand flash-based multimedia
card. In: DATE ’08: Proceedings of the conference on Design, automation and
test in Europe, New York, NY, USA, ACM (2008) 218–223

[14] http://www.samsung.com: (OnenandTM clock application note)
[15] Joo, Y., Choi, Y., Park, J., Park, C., Chung, S.W.: Energy and performance

optimization ofdemand paging with onenand flash. In: Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on , vol.27, no.11, pp.1969-
1982. (2008)



[16] Al-Zoubi, H., Milenkovic, A., Milenkovic, M.: Performance evaluation of cache
replacement policies for the spec cpu2000 benchmark suite. In: ACM-SE 42:
Proceedings of the 42nd annual Southeast regional conference, New York, NY,
USA, ACM (2004) 267–272

[17] Belady, L.A.: A study of replacement algorithms for virtual storage computers.
In: IBM Systems Journal, vol. 5, no. 2, pp. 78–101. (1966)

[18] Denning, P.J.: The locality principle. (2005)
[19] Courbot, A.: Efficient off-board deployment and customization of virtual ma-

chine based embedded systems. In: ACM Transactions on Embedded Computing
Systems. (2010)


