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ABSTRACT
Floating-point sums and dot products accumulate rounding
errors that may render the result very inaccurate. To address
this, Kulisch proposed to use an internal accumulator large
enough to cover the full exponent range of floating-point.
With it, sums and dot products become exact operations.
This idea failed to materialize in general purpose processors,
as it was considered to slow and/or too expensive in terms of
resources. It may however be an interesting option in recon-
figurable computing, where a designer may use use smaller,
more resource-efficient floating-point formats, knowing that
sums and dot products will be exact. Another motivation of
this work is that these exact operations, contrary to classical
floating point ones, are associative, which enables better
compiler optimizations. This work therefore compares, in
the context of modern FPGAs, several implementations of
the Kulisch accumulator: three proposed by Kulisch, and
two novel ones. These architectures are implemented in
a VivadoHLS-compliant C++ generator that is fully cus-
tomizable. Comparisons targeting Xilinx’s Kintex 7 FPGAs
show improvement over Kulisch’ proposal in both area and
speed. In single precision, compared with a naive use of
classical operators, the proposed accumulator runs at simi-
lar frequency, consumes 10x more resource, but reduces the
overall latency of a large dot product by 25x while vastly
improving accuracy.

1. INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) have demon-

strated their potential as accelerators for many applications.
FPGAs may bypass some of the bottlenecks of general pur-
pose processors, such as instruction decoding, register file
contention, register spilling, parallelism limitation, restricted
datatypes. This freedom of design comes with a more com-
plex programming model, but high-level programming lan-
guages are becoming a reliable option for hardware design
thanks to recent improvements in the High-Level Synthesis
(HLS) tools.

Ironically, the “high level” languages used for these tools
are derivatives of C, which is about the lowest possible lan-
guage for processors, just above assembly code. This entails
all sorts of restriction, in particular when computing with
real numbers. Then the datatypes of choice are the few
IEEE-754 floating-point types [1], and HLS tools strive to

comply with the C11 and IEEE-754 standards. Floating-
point addition is not associative, which leaves a designer with
two choices: either preserve the sequential semantics of the
floating-point program being compiled, which prevents many
optimisations that an HLS compiler could do; or, enable such
optimisations, and obtain numerically different results due
to a different accumulation of rounding errors. This article
addresses this dilemma in the very common case of sums
and sums of products, which is at the core of linear algebra
and can become very inaccurate when the size of the vectors
increases [9].

It is an active research field. Some previous work address
the parallelism issue using standard floating-point adders [14,
7, 16] or modified ones [12, 8, 11]. A variant of the floating-
point adder that outputs the rounding error allows to handle
also the accuracy issue, but in non-deterministic time [10,
3]. A third line of research, which we follow here, is to use
internal formats that depart from traditional floating-point
[2, 15, 13, 6].

The present work revisits in this context the exact accumu-
lator design proposed by Kulisch [4]. Its core idea, detailed
in Section 2, is to remove all sources of rounding errors in
a sum of products. This is achieved thanks to an internal
accumulator that contains the entire floating-point range.
This is quite area-demanding, but the potential benefits are
single-cycle accumulation, more aggressive optimizations,
and guaranteed accuracy.

Several implementations of this idea are possible, each with
several parameters. Section 2 reviews the implementations
initially proposed by Kulisch. Section 3 introduces a novel
technique for managing one-cycle accumulation of signed
numbers that improves both speed and area over Kulisch’
proposal. Section 4 introduces a novel pipelined architec-
ture. Section 5 compares these implementations in a fully
customizable generator, and Section 6 concludes.

2. OVERVIEW OF KULISCH PROPOSAL
The main idea of Kulisch was to remove all sources of

rounding errors in a dot product. First, one needs an exact
multiplier. As reviewed in 2.1 below, it is a classical multiplier
with the rounding and normalization logic removed, so is
actually simpler a classical floating-point multiplier. Then,
the classical floating-point adder is replaced with a very wide
fixed-point accumulator whose bits cover the full exponent
range of a product. For instance, in double-precision, the
weights of the bits in a floating-point mantissa can range
from 2−1022−53 = 2−1075 to 21023. Therefore, the weights of
the bits of the exact product of two such mantissa can range



from 2−2150 to 22046. Kulisch even proposed [4] to add even
more bits to absorbe possible temporary overflows, leading
to 4288 bits of accumulator for double precision.

In the remainder of the article, the accumulator width is
denoted wa. As the previous example shows, the minimum
size of wa can be deduced from the exponent width we and
significand width wf of the input format. Table 1 shows the
minimum size of exact accumulators for mainstream formats.

In his book, Kulish suggested three ways of implementing
the long accumulator [4]. The first uses a long adder and a
long shift, and is reviewed in 2.2. It is impractical but for
very small formats. The second uses only one short adder,
with on-chip RAM containing the segmented accumulator.
It is reviewed in 2.4. The third uses small parallel adders,
and is reviewed in 2.5.

format bmin bmax minwa

binary16 (half) 2−24 215 80 bits
binary32 (single) 2−149 2127 554 bits
binary64 (double) 2−1074 21023 4196 bits

Table 1: Accumulator sizes for the IEEE-754 formats

2.1 Exact floating-point product
The architecture used for the exact multiplier is depicted

in Figure 1. Each floating-point number is input as sign,
exponent and mantissa. The sign of the result is computed
by XORing the input signs. The exponents are added and
the mantissa multiplied.

Subnormal management adds very little overhead: for each
input, if its exponent field is all zeroes, then the implicit bit
in the mantissa is set to 0 (otherwise it is set to 1) and a
correction of 1 has to be added to the exponent sum.

For input exponents of we bits, the exact product requires
w′e = we +1 exponent bits. The implicit bit is added to input
significands of wf bits, leading to mantissas of wf + 1 bits.
The product of two such mantissas fits on w′f = 2×wf +2 bits.
This is the exact product that can be added, unnormalized
(its leading bit may be 0 or 1), to the long accumulator.

A standard floating-point number can trivially be con-
verted to this extended format. Therefore, in all the fol-
lowing, the terms “exponent” and “mantissa” refer to exact
product exponent and mantissa.

2.2 Kulisch 1: Long adder and long shift
In this approach, the architecture contains a register of

wa bits and an adder of wa bits. Every input (floating-
point number or exact product) is shifted, according to
its exponent, to the correct place, then added to the long
accumulator.

This architecture is impractical but for small FP formats,
for two reasons. First, it requires a very large shifter. Second,
it requires the addition of wa bits at each cycle, which will
be either slow due to carry propagation, or expensive if a fast
adder architecture is used. Still, it may be the best choice
for very small formats, especially if the context enables small
exponent ranges.

2.3 Splitting the accumulator into words
All the other architectures split the long accumulator in

words of b bits. There are N = dwa/be such words. This
decomposes the shift operation in two: select the words to
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Figure 1: Exact floating-point multiplier

which send a mantissa, and shift within a word. If b is chosen
as a power of two, b = 2k, the intra-word shift distance is
simply obtained as the k lower bits of the exponent, while
the word address is obtained as the w′e−k leading bits. This
is described in Figure 2.

The shifted mantissa will typically be spread across multi-
ple words: at least two, but possibly more. Precisely, after a
shift of maximum size b− 1, the shifted mantissa is of size

w′f − 1 + b, and is spread over S =
⌈

w′
f−1+b

b

⌉
words.

Such a split has two advantages:

• The two steps of the shift can be executed in parallel;

• Accumulating an input only requires to add it to S
words (Figure 2).

However, there are two issues to address. The first is carry
propagation from one accumulator word to the next. This
potentially actually requires to update all the words above
the S target words. If done naively, this may either require
a long delay, or a variable number of cycles , during which
the accumulator is not available for further inputs.

The second is sign management : as input mantissa may be
signed, they actually need to be either added or subtracted
to the accumulator. In case of subtraction the first issue
becomes an issue of borrow propagation.
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Figure 2: Shifting a mantissa into the sub-words of the long
accumulator (here S = 3)



2.4 Kulisch 2: Split accumulator in RAM
In this variant, the long-accumulator words are stored in

an on-chip RAM.
To address the carry propagation issue, Kulisch uses an

array that stores the state of each accumulator word. The
state can be one of those three: the word only contains
ones (state 1), zeros (state 0) or both (state NA). When a
mantissa is added some word number M , the architecture
also loads from memory the word M ′ such that the state of
M ′ is not 1 and M ′ > M and !∃M ′′, (M ′′ < M ′) ∧ (M ′′ >
M) ∧ state(M ′′ 6= 1). This word M ′ is the one that will
receive a carry if produced, in which case the state of all the
words between M and M ′ switch from 1 to 0. Subtractions
are handled in a similar way, needing borrow bits in addition
to the carry bits.

If the RAM word size is equal to S × b, at most two RAM
words are required for each accumulation, plus one RAM
word for the carry resolution. This requires a three-port
RAM, which is expensive. Note that the three writes always
access three different cells, and can therefore be performed
concurrently without contention.

The main limitation of this architecture is that it cannot be
pipelined. An accumulation consists of RAM reads, additions,
and RAM writes, and the reads of a new accumulation cannot
start before the writes of the previous one are completed.

2.5 Kulisch 3: Sub-adders with carries and
borrows

This architecture, depicted on Figure 3, instantiates one
sub-adder for each accumulator word. These N sub-adders
(SA) can work in parallel. Besides, two registers receive
the carry and borrow values produced by each SA, and
transmit it to the next SA, to be consumed at the next cycle.
Thus, the carry propagation is delayed. Carries are partly
propagated at each cycle, but it takes N cycles at the end
of an accumulation (inputting zeroes) to complete the carry
propagation. The N additional cycles are not a problem
if the number of data to be added is much larger than N .
A more expensive alternative would be to use the SA state
array discussed in 2.4. It has not been investigated here.

In practice, each mantissa part, tagged with its destination
address A, is sent on an accumulator bus (see Figure 3). This
bus spans all the SAs and is composed of S lanes. Each SA
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Figure 3: Kulisch 3 accumulator for S = 3
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Figure 5: Architecture of a two’s complement SA

listens to this bus, and the matching SAs perform their part
of the summation in parallel.

Actually, the S shifted mantissa words are first rotated
to the S lanes of the bus by a bit of modulo-S logic and
multiplexing. This then simplifies each SA, which only has
to listen to one of the S lanes.

This architecture enables accumulation with 1-cycle la-
tency. The loop critical path that limits the frequency is
the subword accumulation. In Kulisch version (depicted Fig-
ure 4) this accumulation adds one mantissa sub-word, one
carry bit, and one (negative) borrow bit. Therefore, each SA
has to perform both one addition and one subtraction in one
cycle.

3. PROPOSED ACCUMULATOR 1: SUB-
ADDERS IN TWO’S COMPLEMENT

We now introduce an improvement to the architecture
described in Section 2.5. Instead of sending the mantissa in
sign+magnitude format as in Kulisch proposal, the idea is
to send it as a two’s complement numbers. This replaces
the borrow and carry bits with a single carry bit. It also
simplifies the SA (Figure 5), which only requires one binary
adder. Essentially, it transfers sign management from the SAs
(where it was replicated N times) to a single unit described
in Figure 6 directly after the exact multiplier.
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In two’s complement, a negative number must have its
sign extended all the way to the most significant bit of the
accumulator. Therefore, when a negative mantissa is sent
on the bus, the S SA’s with the matching addresses add
it to their accumulator sub-word, and all the SA’s with
higher addresses add −1 (a string of ones) to their sub-word.
This performs the sign extension of the two’s complement
mantissa accross the entire floating-point range.

Before recovering the accumulator values, the carries have
to be completely propagated in N cycles as previously. At
that point, the combination of the SAs contains the exact
result of the computation, but in two’s complement.

Therefore, the leading zero counter of the Kulisch proposal
is replaced with a leading sign-bit counter, and then the
result mantissa has to be negated again.

4. PROPOSED ACCUMULATOR 2: TWO’S
COMPLEMENT PIPELINED ARCHI-
TECTURE

This architecture essentially pipelines Kulisch’ bus.
Again,the accumulator is split into multiple SAs, this time
each associated to a pipeline stage. It uses two’s complement
data as per previous section. Figure 7 gives an overview
of this architecture’s principle, and Figure 8 describes one
pipeline stage.

In Figure 7, the pipeline stages are separated by vertical
lines. The horizontal line separates the terms to add and the
result of the summation. The dotted arrows represents the
data propagation between stages at each clock cycle.

The S words of the shifted mantissa are sent to the special
stages to the right (numbered −S + 1 to 0). The pipeline
also transmits the mantissa sign, as well as the stage where
the mantissa needs to be added.

The stages between stage 0 and stage N − S are identical.
They add the S mantissas in the current SA whose stage
match, plus the carry from the previous stage. This carry
does not consists of a single bit. Indeed, the result of the
sum is computed over b + log2(S + 2) bits. The b lower bits
of the results are kept in the current SA, and the log2(S + 2)
higher bits are the carry sent to next stage.

On both ends of the pipelines, there are S − 1 stages that
are not identical. They performs the same computation but
with fewer terms to sum.

Figure 8 gives the details of the central stages. On this
figure, M is the address of the stage. It shows that the
mantissa words are added if their destination stage match,
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Figure 7: Pipelined accumulator for S = 2

otherwise the stage adds 0. It also shows how sign extension
is managed. The stage matching the leading mantissa word,
after adding this mantissa word, replaces it with -1 (all ones
in two’s complement) and transmits it to the remaining
pipeline stages, which will add them to their accumulator
sub-words, thus perform the sign extension.

In order to recover the final result, the same method as in
previous section is used.

5. EVALUATION OF THE PRESENTED
KULISCH ACCUMULATORS

The architectures presented in this paper have as parame-
ters the input/output sizes and the SA size b. Therefore, we
wrote VivadoHLS C++ compliant generators for these archi-
tectures. For comparison purpose, we also implemented the
original Kulisch versions – synthesis results in the litterature
target older VLSI technologies, which would have made a
direct comparison difficult.

All the results are reported for a VivadoHLS program that
computes the accumulation of 1000 numbers, then converts
the final value back to floating point. All the numbers
presented here were obtained with Vivado 2016.3 after place
and route, on a Kintex 7 FPGAs.

For all the split accumulators, a first question was to
determine the optimal SA size b. This study is summarized
in Figure 9. The optimal size is found to be 64 bits in most
cases. More detailed data, including the maximum achieved
frequency, is presented in Table 3. The results of Kulisch 1
and Kulisch 2 accumulators are given in Table 2; As expected,
the Kulisch 2 version as the lowest resource usage but suffers
from a very long latency. The Kulisch 1 accumulator has a
lower latency but a very high LUT usage.

One can see that the Proposed 2 accumulator performs the
worst although it was designed to be the best. The reports
shows that the multiple input sum of this architectures cre-
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ates a long data-path that slows down the entire architecture.
Conversely, the proposed 1 accumulator performs the best,
both in terms of frequency and in terms of resources.

There is also a small trade-off between frequency and
resource consumption when varying the SA size.

Finally, it is interesting to compare the best accumulator
for single precision with the naive alternative of perform-
ing the accumulation in double precision. The Proposed 1
accumulator requires 5x the resources, but brings in a 30x
latency improvement. Techniques from the literature that
attempt to reduce the latency [16] require much more than 5x
resources. Besides, the Kulisch accumulator has guaranteed
accuracy whatever the number of terms to add.

Similarly, computing with half-float becomes much safer
with a long accumulator, actually safer than switching to

Resources DSPs Latency
Kulisch 1 58129L + 59932R 9 9233
Kulisch 2 2814L + 1919R 9 68173
(SA=64)

Table 2: Synthesis results of the Kulisch accumulators from
2.2 and 2.4 for 1000 accumulations with double precision
floating-points as inputs

single precision (as long as the small exponent range is not
a problem), and for a comparable cost.

In the state of the art, only [3] also addresses both accuracy
and performance. Its setup is quite different, but it also
requires floating-point memory covering the whole exponent
range, with many more shift and normalization steps than
in the proposed accumulators. It is therefore even more
expensive. It also requires a lot of control, and its actual
timing is dependent on the inputs. However, it is able to
process in parallel the equivalent of N floating-point numbers
in O(logN) time. Comparing these two approaches in a
realistic setup is quite challenging. We hope to do it in the
future.

6. CONCLUSION
This paper presented several implementations of the

Kulisch accumulator, an expensive but low-latency and highly
accurate implementation of sums of products. These architec-
tures allow to compute exact floating-point sums-of-products,
whatever the size of the data.

The proposed two’s complement implementation of the
split architecture can run at higher frequencies for a lower
resource usage than Kulisch’ original proposal. It is very
competitive in terms of performance/cost/accuracy compared
to naive use of floating-point.

Further work include integrating this work in an easy-to-
use HLS flow. Compressor trees [5] should also be investi-
gated for the pipelined accumulator.

This work could also be evaluated in the context of VLSI
circuits, for inclusion in general purpose processors.
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