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ABSTRACT

The fundamental frequency is one of the prosodic parame-
ters, and many algorithms have been developed for estimat-
ing the fundamental frequency of speech signals. Most of
them provide good results on good quality speech signals, but
their performance degrades when dealing with noisy signals.
Moreover, although some provide a probability for the voic-
ing decision, none of them indicate how reliable the estimated
fundamental frequency is. In this paper, we investigate the
computation of a confidence (or reliability) measure on the
estimated fundamental frequency values. A neural network
based approach is proposed for computing the posterior prob-
ability that the estimated fundamental frequency is correct.
Experiments are conducted on the PTDB-TUG pitch-tracking
database, using three fundamental frequency estimation algo-
rithms.

Index Terms— Pitch, fundamental frequency, estimation,
confidence measures.

1. INTRODUCTION

Fundamental frequency (also called F0) is one of the prosodic
parameters, along with energy and phone duration. Prosody
reflects various characteristics of the speaker and/or of the ut-
terance, such as the emotional state of the speaker, the modal-
ity of the utterance (question, statement, . . . ), as well as em-
phasis on some words. Prosodic features are also involved in
marking lexical stress. Hence, the determination of the funda-
mental frequency is required in many applications including
computer assisted language learning, and in the development
of automatic speech synthesis systems, especially for expres-
sive speech synthesis.

Numerous algorithms have been developed in the past
for computing the fundamental frequency of speech signals.
On good quality speech signals, the various algorithms work
quite well. However there exists some mis-detections (F0
value associated with an unvoiced frame, or F0 not detected

for a voiced frame), as well as wrong estimations of the F0
values. Moreover, errors become more frequent on lower
quality speech data and on noisy speech data; sometimes,
intrinsic voicing quality is also a problem. All algorithms
provide a voiced/unvoiced decision, as well as F0 values on
voiced portions of the signal, but, although a few algorithms
provides a probability for the voicing decision, none of them
indicate if the estimated F0 values are reliable or not.

Some F0 estimation algorithms operate in the time do-
main relying on autocorrelation methods (e.g., [1]), while
some other methods operate in the frequency domain, for
example the spectral comb approach [2] and the Sawtooth
Waveform Inspired Pitch Estimator (SWIPE) method [3].
Many variants have been developed, and some of them com-
bine processing in the time and in the frequency domains
(e.g., [4]). As this study does not aim to compare various F0
estimation algorithms, we do not introduce nor discuss other
F0 detection algorithms. Indeed, the goal of this study is to
investigate the computation of confidence measures on the
estimated F0 values, and in this preliminary study, we limit
our investigation to three F0 estimation algorithms (based
on [1], [2] and [3]) as implemented in the JSnoori toolkit [5].

Confidence measures have been studied for a long time
in automatic speech recognition. As detailed in [6], confi-
dence measures can be based on a combination of predictor
features that have different distribution between correctly and
incorrectly recognized words, or based on hypothesis testing
(i.e., utterance verification) or defined as a posterior probabil-
ity of the word. The later is currently the most often used in
speech recognition systems. In this study we choose to rely
on the posterior probability for defining a confidence mea-
sure on the estimated pitch values. For computing such pos-
terior probability we rely on a neural network based classifier,
which, when trained with a squared error or a cross-entropy
cost function provides Bayesian probabilities [7, 8].

The goal of the proposed study is to develop and evaluate
an approach that estimates the reliability of the fundamental
frequency values provided by a F0 detection algorithm. As



a support for the evaluations we rely on a reference speech
database, namely the Graz University of Technology Pitch-
Tracking Database (PTDB-TUG) [9]. This data is then arti-
ficially corrupted by adding different types of noise signals
(from the NOISEX-92 corpus [10]) at various signal to noise
ratios. The analysis of the F0 results provides insight into the
robustness of the various algorithms. Various features (com-
puted on the signal and/or used in the estimation of the fun-
damental frequency) are also extracted and are given as input
to the neural network for computing the posterior probability
that the F0 estimate is correct.

The paper is organized as follows. Section 2 provides an
overview of the experimental framework. Section 3 gives an
insight into the performance of the various F0 detection algo-
rithms. Section 4 presents the main contribution of the paper,
i.e., the computation of confidence measures on the estimated
F0 values, and analyzes the performance of the corresponding
classifier. A conclusion ends the paper.

2. EXPERIMENTAL FRAMEWORK

A speech database with reference F0 values is used, and in
order to study the behavior of the F0 detection algorithms
with respect to the speech signal quality, noise recordings are
added to the clean speech data at various signal to noise ratios.

2.1. F0 detection algorithms

Keeping in mind that our goal is not to compare in details the
performance of various F0 detection algorithms, but rather to
elaborate a method for computing confidence measures indi-
cating the reliability of the estimated F0 values, we consider
the following F0 detection algorithms for this study.

The first algorithm is based on Martin’s algorithm [2]. It is
a spectral based method which detects fundamental frequency
by maximizing the intercorrelation between the power spec-
trum and a spectral comb. The implementation used is an en-
hanced version which takes into account energy histograms
and voicing jumps in post-processing steps, and which was
optimized for processing clean speech signals.

The second is Sawtooth Waveform Inspired Pitch Estima-
tor (SWIPE) [3], which takes into account the fact that peaks
in the spectrum are separated by valleys; hence the algorithm
finds the F0 candidates by maximizing the average peak-to-
valley energy distances. The algorithm also includes blurring
and weighting of the harmonics, as well as spectrum warping.

The third algorithm is the YIN approach [1] which is basi-
cally a correlation-like method in the time domain. YIN finds
the fundamental period by minimizing a criterion based on
the time difference function which is much less sensitive to
amplitude changes than the auto-correlation function. Some
post-processing is also carried out for improved performance.

Note that, in the following experiments, there was no tun-
ing of the configuration parameters of each algorithm.

2.2. Speech corpus

The Graz University of Technology Pitch-Tracking Database
(PTDB-TUG) is used for the reported experiments. This
database contains microphone and laryngograph signals of
20 English native speakers reading out sentences from the
TIMIT corpus [11]. The speakers are gender balanced (10
female, 10 male) and their ages vary from 22 to 48 years.
Overall, a total of 4720 sentences were recorded.

Both microphone and laryngograph signals were recorded
at 48 kHz sampling rate, with 16 bit signed PCM encoding.
The database also provides reference pitch trajectories that
were extracted from the laryngograph signals using the Ro-
bust Algorithm for Pitch Tracking (RAPT) [12]. Reference
F0 values are provided at 10 ms intervals.

The speech signal was downsampled to 16 kHz prior to
computing the F0 values every 10 ms with the three algo-
rithms described in Section 2.1.

2.3. Noise data

As the PTDB-TUG corpus contains only clean speech signals
recorded in a studio environment, in most of the following
experiments, some noise is added to the clean speech signals.
Noise recordings are taken from the NOISEX-92 corpus [10],
which is often used in the field of automatic speech recogni-
tion. The following noise types have been considered: bab-
ble (people speaking in a canteen), factory1 (sound recorded
near plate-cutting and electrical welding equipment in a fac-
tory), factory2 (sound recorded in a car production hall), pink
(acquired by sampling a high-quality analog noise generator
(Wandel & Goltermann), yielding equal energy per 1/3 oc-
tave), and white (acquired by sampling the same analog noise
generator, with equal energy per Hz bandwidth).

All these noise signals were downsampled to 16 kHz be-
fore being added to the clean speech signal at different signal-
to-noise ratios (SNRs) using the Filtering and Noise adding
Tool (FaNT) [13, 14] toolkit. This tool has been used for the
creation of artificially distorted speech data inside the eval-
uations of the ETSI working group Aurora [15]. It allows
adding noise at a given signal-to-noise ratio, and it was used
here for adding the noise recordings at 20 dB, 15 dB, 10 dB,
5 dB, 0 dB and −5 dB SNR levels.

3. F0 ESTIMATION PERFORMANCE

For each algorithm, the performance is evaluated by compar-
ing the estimated F0 values to the reference values provided
with the database. According to the evaluation terminology
mentioned in [16] and [17], we consider mainly the F0 frame
error which is the proportion of frames for which either a
voicing decision error or a gross pitch error is observed. A
voicing decision error is observed when a voiced frame is de-
tected as unvoiced, or when an unvoiced frame is detected as
voiced. A gross pitch error corresponds to a voiced frame
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Fig. 1. F0 estimation errors on the reference data corrupted by various types of noise at several signal-to-noise ratios.

which is detected as voiced, but for which the estimated F0
value differs by more than 20 % from the reference F0 value
(this includes errors for which the estimated F0 is doubled or
halved).

In this preliminary study, the performance is evaluated on
one fifth of the data (a random subset containing data from
each of the 20 speakers). This subset is artificially corrupted
by adding each of the five types of noise (babble, factory1,
factory2, pink, and white) at various SNR levels. Figure 1
reports the F0 frame error with respect to the SNR level for
the three F0 detection algorithms and the five types of noise.

As can be expected, the F0 frame error increases when
the quality of the signal is degraded (i.e., when the SNR gets
lower), and for every type of noise. However the degrada-
tion differs among the three algorithms. For the 20 dB and
15 dB SNR, the Martin based approach provides the best re-
sults, whereas its F0 frame error continues to rise for lower
SNR. For the SWIPE and YIN approaches, the F0 frame error
levels off at about 23 %, which corresponds to the percentage
of voiced frames in the data; i.e., for low SNR levels, these
algorithms tends to consider each frame as unvoiced.

4. CONFIDENCE MEASURES ON F0 ESTIMATES

This section details the proposed approach for computing a
confidence measure on the estimated F0 values. Let’s recall
that although some F0 detection algorithms produce a proba-
bility of voicing for each frame, to the best of our knowledge,
no F0 detection algorithm provides a confidence measure as-
sociated with the estimated F0 values.

We treat the prediction of correctness of the estimated F0
values as a classification problem (estimated F0 value correct
vs. incorrect), using neural network based classifiers. Accord-
ing to [7] and [8], when trained with a cross-entropy objective
function, the neural network output is a Bayesian probability.
Hence the output of the neural network provides the posterior
probabilty that the F0 estimated value is correct.

4.1. Neural network based classifiers

Two types of neural networks are considered in the experi-
ments: a multilayer perceptron (MLP) and a recurrent net-
work with long short-term memory (LSTM) cells [18]. Recti-
fied linear units (ReLU) [19] are used for nonlinearities in the
hidden layers; and a sigmoid activation is used for the output
cell. During training, the cross entropy cost function is used,
as well as dropout [20] to prevent overfitting.

For each F0 detection algorithm, the 59 frame features
used as input to the neural network for computing the con-
fidence measure are the energy of the frame, three F0 can-
didates and associated scores resulting from internal compu-
tations of the considered F0 detection algorithm, 40 cepstral
coefficients, and 12 Mel-frequency cepstral coefficients.

The MLP network was designed with two fully connected
hidden layers (each with 128 units) with rectified linear units.
The LSTM network was designed with two LSTM recurrent
layers (each with 128 units). In both cases, the output layer
has a unique output unit with a sigmoid activation.

4.2. Classifier training and global performance

As the F0 detection algorithms works quite well on clean data,
the amount of incorrect estimated values (i.e., negative exam-
ples) on clean data is too small for a proper training of the
neural network. Hence examples associated with the lowest
SNR (−5 dB), for which the F0 frame error rate is very high
(thus leading to many negative examples), were also included
in the training set. Using both the clean and the −5 dB SNR
data helps balance the amount of positive and negative exam-
ples. Overall this leads to about 7 million samples for each
F0 estimation algorithm.

In the first set of experiments, this data set was randomly
split into two parts: 80 % of the data for training and 20 %
for evaluation tests. Note that for the LSTM models, in order
to maintain the temporal order of the samples, and avoid in-
valid sequences across the boundaries of audio files, the split
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Fig. 2. Classification accuracy of the F0 values estimated on the reference data corrupted by various types of noise at several
signal-to-noise ratios. Global classification rate at top, and classification rates on voiced and unvoiced frames at bottom.

is done at the file level. During the training process, 20 % of
the training data is used as a development set. The models are
trained using stochastic gradient descent on mini batches with
cross entropy as objective cost function.

Table 1. Classification accuracy (in percent) of the MLP and
LSTM neural networks for the F0 values estimated by the
three F0 detection algorithms.

Model Martin’s SWIPE YIN

MLP 91.6 87.4 86.3

LSTM (seq. length 2) 92.6 88.0 89.3
LSTM (seq. length 3) 93.2 88.3 90.1
LSTM (seq. length 4) 93.4 88.6 90.2

Table 1 reports the classification accuracy achieved on the
test set for the three F0 detection algorithms and the various
modeling approaches. For the results reported in this table,
the classification threshold was arbitrarily set to 0.5 (i.e., if the
neural network output is greater than 0.5, the corresponding
estimated F0 value is considered to be correct, and incorrect
otherwise). So far, no study has been conducted to analyze the
impact of this classification threshold, nor for optimizing it.
The results show that the LSTM models provide much better
classification accuracy than the MLP model, and this result
holds for all three F0 estimation algorithms. With respect to
the LSTM approaches, increasing the input sequence length
(more time steps) leads to better classification accuracy.

4.3. Discussion

To further analyze the performance of the proposed models,
Figure 2 shows the classification accuracy with respect to the
various SNR levels. In two cases (Martin’s and YIN algo-
rithms), the LSTM approach leads to better classification per-
formance than the MLP approach (solid lines, red triangle vs.

green circle). Although training was carried out using only
clean data and −5 dB noisy data, good classification results
are achieved on this test set ranging from 20 dB to 0 dB SNR
(that is, for SNR levels not present in the training set). We also
display the classification accuracy for voiced and unvoiced
frames; for the sake of legibility, only the LSTM results are
detailed with respect to voiced (red short dash curves) and un-
voiced (red long dash curves) frames. In most cases, the clas-
sification accuracy is much higher on unvoiced frames than
on voiced frames (except for SWIPE at very low SNR). This
may be due to the fact that there are many more unvoiced
than voiced frames in the data (about 77 % unvoiced vs. 23 %
voiced frames), which leads to rather high classification rates
even for medium quality speech (15 dB and 10 dB SNR). We
expect that increasing the training set would further improve
the performance of the approach.

5. CONCLUSION

This paper has presented a neural network based approach for
computing a confidence measure on F0 values estimated by
F0 detection algorithms. With a classification threshold of
0.5, the proposed approach leads to high classification accu-
racy on the estimated F0 values, for various SNR levels.

This preliminary study on the computation of confidence
measures on the F0 estimated values, along with the fact that
various algorithms make different types of errors, opens the
way to optimally combining several F0 detection algorithm to
achieve a precise F0 detection that would be robust to speech
signal quality.
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