
HAL Id: hal-01499963
https://hal.inria.fr/hal-01499963

Submitted on 1 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security properties of typed applets
Xavier Leroy, François Rouaix

To cite this version:
Xavier Leroy, François Rouaix. Security properties of typed applets. POPL 1998: 25th sym-
posium Principles of Programming Languages, Jan 1998, San Diego, United States. pp.391-403,
�10.1145/268946.268979�. �hal-01499963�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132067197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01499963
https://hal.archives-ouvertes.fr

Security properties of typed applets

Xavier Leroy François Rouaix
INRIA Rocquencourt∗

Abstract

This paper formalizes the folklore result that strongly-typed
applets are more secure than untyped ones. We formulate
and prove several security properties that all well-typed ap-
plets possess, and identify sufficient conditions for the ap-
plet execution environment to be safe, such as procedural
encapsulation, type abstraction, and systematic type-based
placement of run-time checks. These results are a first step
towards formal techniques for developing and validating safe
execution environments for applets.

1 Introduction

What, exactly, makes strongly-typed applets more secure
than untyped ones? Most frameworks proposed so far for
safe local execution of foreign code rely on strong typing,
either statically checked at the client side [13, 34], stati-
cally checked at the server side and cryptographically signed
[28], or dynamically checked by the client [4]. However, the
main property guaranteed by strong typing is type sound-
ness: “well-typed programs do not go wrong”, e.g. do not
apply an integer as if it were a function. While violations
of type soundness constitute real security threats (casting a
well-chosen string to a function or object type allows arbi-
trary code to be executed), there are many more security
concerns, such as integrity of the running site (an applet
should not delete or modify arbitrary files) and confiden-
tiality of user’s data (an applet should not divulge personal
information over the network). The corresponding security
violations do not generally invalidate type soundness in the
conventional sense.

If we examine the various security problems identified
for Java applets [8], only few of them cause a violation of
Java type soundness [15]; the others correspond to malicious,
but well-typed, uses of improperly protected functions from
the applet’s execution environment [3]. Another typical ex-
ample is the ActiveX applet doing a Trojan attack on the
Quicken home-banking software described in [6]: money gets
transferred from the user’s bank account to some offshore
account, all in a perfectly type-safe way.

On these examples, it is intuitively obvious that secu-
rity properties must be enforced by the applet’s execution

∗Authors’ address: INRIA Rocquencourt, projet Cristal, B.P. 105,
78153 Le Chesnay, France. E-mail: Xavier.Leroy@inria.fr, Fran-
cois.Rouaix@inria.fr. This work has been partially supported by GIE
Dyade under the “Verified Internet Protocols” project.

To appear in the 25th ACM conference on Principles of
Programming Languages, January 1998.
Copyright c©1998 by the Association for Computing Ma-
chinery.

environment. It is the environment that eventually decides
which computer resources the applet can access. This is
the essence of the so-called “sandbox model”. Strong typ-
ing comes in the picture only to guarantee that this envi-
ronment is used in accordance with its publicized interface.
For instance, typing prevents an applet from jumping in the
middle of the code for an environment function, or scan-
ning the whole memory space of the browser, which would
allow the applet to abuse or bypass entirely the execution
environment.

The purpose of this paper is to give a formal foundation
to the intuition above. We formulate and prove several se-
curity properties that all well-typed applets possess. Along
the way, we identify sufficient conditions for the execution
environment to be safe, such as procedural encapsulation,
type abstraction, and systematic type-based placement of
run-time checks. These results are a first step towards for-
mal techniques for developing and validating safe execution
environments for applets.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces a simple language for applets and their
environment, and formalizes the security policy that they
must obey. Section 3 proves a security property based on
the notion of lexical scoping, then extends it to take pro-
cedural abstraction into account. In section 4, we equip
our language with a simple type system, which is used in
section 5 to prove three type-based security properties, two
relying on run-time checks and the other on a combination
of run-time checks and type abstraction. After a brief paral-
lel with object-oriented languages in section 6, related work
is discussed in section 7, followed by concluding remarks in
section 8.

2 The language and its security policy

2.1 The language

The language we consider in this paper is a simple lambda-
calculus with base types (integers, strings, . . .), pairs as the
only data structure, and references in the style of ML. The
syntax of terms, with typical element a, is as follows:

Terms:
a ::= x identifiers

| b constant of base type (integer, . . .)
| λx.a function abstraction
| a1(a2) function application
| (a1, a2) pair construction
| fst(a) | snd(a) pair projections
| ref(a) reference creation
| !a dereferencing
| a1 := a2 reference assignment

References are included in the language from the beginning
not only to account for imperative programming (all kinds

1

of assignment on variables and mutable data structures such
as arrays can easily be modeled with references), but also
to provide easily observable criteria on which we base the
security policy.

2.2 The security policy

The security policy we apply to applets is based on the no-
tion of sensitive store locations: locations of references that
an applet must not modify during its execution, or more
generally references that can be modified during the applet
execution, but whose successive contents must always satisfy
some invariant, i.e. remain within a given set of permitted
values.

The first motivation for this policy is to formalize the
intuitive idea that an applet must not trash the memory of
the computer executing it. In particular, the internal state
of the browser, the operating system, and other applications
running on the machine must not be adversely affected by
the applet.

This security policy can also be stretched to account for
input/output behavior, notably accesses to files and sim-
ple cases of network connections. A low-level, hardware-
oriented view of I/O is to consider hardware devices such
as the disk controller and network interface as special loca-
tions in the store; I/O is then controlled by restricting what
can be written to these locations. For a higher-level view,
each file or network connection can be viewed as a refer-
ence, which can then be controlled independently of others.
Here, the file system, the name service and the routing tables
become dictionary-like data structures mapping file names
and network addresses to the references representing files
and connections.

(By concentrating on writes to sensitive locations, we fo-
cus on integrity properties of the system running the applet.
It is also possible to control reads from sensitive locations,
thus establishing privacy properties. We will not do it in this
paper for the sake of simplicity, but the results of section 3
also extend to controlled reads.)

2.3 The instrumented semantics

To enforce the security policy, we give a semantics to
our language that monitors reference assignments, and re-
ports run-time errors in the case of illegal writes. We use
a standard big-step operational semantics in the style of
[25, 30, 18]. Source terms are mapped to values, which are
terms with the following syntax:

Values:
v ::= b values of base types

| λx.a[e] function closures
| (v1, v2) pairs of values
| ` store locations

Results:
r ::= v/s normal termination

| err write violation detected

Environments:
e ::= [x1 ← v1 . . . , xn ← vn]

Stores:
s ::= [`1 ← v1 . . . , `n ← vn]

The evaluation relation, defined by the inference rules in
figure 1, is written ϕ, e, s ` a → r, meaning that in evalua-
tion environment e, initial store s, and store control ϕ, the
source term a evaluates to the result r, which is either err

if an illegal write was detected or a pair v/s′ of a value v for
the source term and a modified store s′.

The only unusual ingredient in this semantics is the ϕ
component, which maps store locations to sets of values: if
ϕ(`) is defined, values written to the location ` must belong
to the set ϕ(`), otherwise a run-time error err is generated
(and propagated by rules 12–21); if ϕ(`) is undefined, any
value can be stored at `. (See rules 10 and 11.) For instance,
taking ϕ(`) = ∅ prevents any assignment to `.

The rules for propagating the err result and aborting
execution (rules 12–21) are the same rules as for propa-
gating run-time type errors (wrong) in [30]; the only dif-
ference is that we have no rules to detect run-time type
errors, thus making no difference between run-time type vi-
olations and non-terminating programs (no derivations exist
in both cases): the standard type soundness theorems show
that type violations cannot occur at run-time in well-typed
source terms.

An unusual aspect of our formalism is that the store
control ϕ must be given at the start of the execution. The
reason is that, with big-step operational semantics, it does
not suffice to perform a regular evaluation e, s ` a → v/s′

and observe the differences between s and s′ to detect illegal
writes. For one thing, we would not observe temporary as-
signments, where a malicious applet writes illegal values to
a sensitive location, then restores the original values before
terminating. Also, we could not say anything about non-
terminating terms: the applet could perform illegal writes,
then enter an infinite loop to avoid detection. By provid-
ing the store control ϕ in advance, we ensure that the first
write error will be detected immediately and reported as
the err result. Unfortunately, this provides no way to con-
trol stores to locations created during the evaluation (rule 8
chooses these locations outside of Dom(ϕ), meaning that
writes to these locations will be free): only preexisting loca-
tions can be sensitive. (This can be viewed as an inadequacy
of big-step semantics, and a small-step, reduction-based se-
mantics would fare better here. However, there are other
features of big-step semantics that are crucial to our study:
the clean separation between browser-supplied environment
and applet-supplied source term, and the ability to interpret
abstract type names by arbitrary sets of values.)

3 Reachability-based security

3.1 Simple reachability

The first security property for our calculus formalizes the
idea that an applet can only write locations that are reach-
able in the initial environment in which it executes, or that
are created during the applet’s execution. For instance, if
the references representing files are not reachable from the
execution environment given to applets, then no applet can
write to a file.

Reachability, here, is to be understood in the garbage col-
lection sense: a location is reachable if there exists a path
in the memory graph from the initial environment to the lo-
cation, following one or several pointers. More formally, we
define the set RL(v, s) of locations reachable from a value v
in a store s by the following equations:

RL(b, s) = ∅
RL(λx.a[e], s) = RL(e, s)

RL((v1, v2), s) = RL(v1, s) ∪ RL(v2, s)

RL(`, s) = {`} ∪ RL(s(`), s)

2

Normal rules:

ϕ, e, s ` x → e(x)/s (1) ϕ, e, s ` b → b/s (2) ϕ, e, s ` λx.a → λx.a[e]/s (3)

ϕ, e, s ` a1 → λx.a′[e′]/s1 ϕ, e, s1 ` a2 → v2/s2 ϕ, e′{x ← v2}, s2 ` a′ → r

ϕ, e, s ` a1(a2) → r
(4)

ϕ, e, s ` a1 → v1/s1 ϕ, e, s1 ` a2 → v2/s2

ϕ, e, s ` (a1, a2) → (v1, v2)/s2

(5)

ϕ, e, s ` a → (v1, v2)/s′

ϕ, e, s ` fst(a) → v1/s′
(6)

ϕ, e, s ` a → (v1, v2)/s′

ϕ, e, s ` snd(a) → v2/s′
(7)

ϕ, e, s ` a → v/s′ ` /∈ Dom(s′) ∪Dom(ϕ)

ϕ, e, s ` ref(a) → `/s′{` ← v} (8)
ϕ, e, s ` a → `/s′

ϕ, e, s ` !a → s′(`)/s′
(9)

ϕ, e, s ` a1 → `/s1 ϕ, e, s1 ` a2 → v2/s2 ` /∈ Dom(ϕ) or v2 ∈ ϕ(`)

ϕ, e, s ` (a1 := a2) → ()/s2{` ← v2}
(10)

ϕ, e, s ` a1 → `/s1 ϕ, e, s1 ` a2 → v2/s2 ` ∈ Dom(ϕ) and v2 /∈ ϕ(`)

ϕ, e, s ` (a1 := a2) → err
(11)

Error propagation rules:

ϕ, e, s ` a1 → err

ϕ, e, s ` a1(a2) → err
(12)

ϕ, e, s ` a1 → v1/s1 ϕ, e, s1 ` a2 → err

ϕ, e, s ` a1(a2) → err
(13)

ϕ, e, s ` a1 → err

ϕ, e, s ` (a1, a2) → err
(14)

ϕ, e, s ` a1 → v1/s1 ϕ, e, s1 ` a2 → err

ϕ, e, s ` (a1, a2) → err
(15)

ϕ, e, s ` a → err

ϕ, e, s ` fst(a) → err
(16)

ϕ, e, s ` a → err

ϕ, e, s ` snd(a) → err
(17)

ϕ, e, s ` a → err

ϕ, e, s ` ref(a) → err
(18)

ϕ, e, s ` a → err

ϕ, e, s ` !a → err
(19)

ϕ, e, s ` a1 → err

ϕ, e, s ` (a1 := a2) → err
(20)

ϕ, e, s ` a1 → v1/s1 ϕ, e, s1 ` a2 → err

ϕ, e, s ` (a1 := a2) → err
(21)

Figure 1: Evaluation rules

RL(e, s) =
⋃

x∈Dom(e)

RL(e(x), s)

The definition above is not well-founded by induction on v,
since in the fourth case the value s(`) is arbitrarily large
and may contain ` again. It should be viewed as a fixpoint
equation RL = F (RL), where F is an increasing operator;
RL is, then, the smallest fixpoint of that operator.

If p is a set of sensitive locations, we define Prot(p) as the
store control that maps locations ` ∈ p to ∅, thus disallowing
all writes on `, and is undefined on locations ` /∈ p. We can
now formulate the first security property:

Security property 1 Let p be a set of sensitive loca-
tions. If p ∩ RL(e, s) = ∅, then for all applets a, we have
Prot(p), e, s ` a 6→ err.

In other words, if none of the locations in p is reachable
from the initial environment e and store s, then no applet a
can trigger an error by writing to a location in p: the applet
will either terminate normally or loop. The proof of this
property is a simple inductive argument on the evaluation
derivation, using the following proposition as the induction
hypothesis:

Proposition 1 If p ∩ RL(e, s) = ∅ and Prot(p), e, s ` a →
r, then r 6= err. Instead, r = v/s′ for some v and s′.
Moreover, p ∩ RL(v, s′) = ∅, and for all values w such that
p ∩ RL(w, s) = ∅, we have p ∩ RL(w, s′) = ∅.

It is important to remark that even if property 1 makes
no hypothesis about applet a being well-typed, it is crucial
that a be well-typed in some type system, in order to guar-
antee that its evaluation on an actual processor adheres to
the rules given in figure 1. In particular, the actual eval-
uation of a must never use the bit pattern representing an
integer as if it were a store location; otherwise, the applet
could write to arbitrary locations. We rely on a being well-
typed in any sound type system (such as the one presented
below in section 4) to ensure that this cannot happen.

Property 1, though simple and already well-known in
the field of garbage collection [19], establishes a number of
properties without which no security is possible at all. First,
our language has safe pointers: locations cannot be forged
by casting well-chosen integers. Second, automatic memory
management (garbage collection) is feasible and does not
weaken security: a location that becomes unreachable re-
mains unreachable; moreover, newly allocated locations are
always initialized; therefore, unreachable locations can be

3

reused safely. Third, the language enforces lexical scoping:
the execution of the applet depends only on the environment
in which it proceeds; the applet does not have access to the
full execution environment of the browser — as would be
the case in a dynamically-scoped language, such as Emacs
Lisp, or a language with special constructs to access the
environment of the caller, such as Tcl.

3.2 Reachability and procedural abstraction

In defining reachable locations, we have treated closures like
tuples (as garbage collectors do): the locations reachable
from λx.a[e] are those reachable from e(y) for some y. There
is, however, a big difference between closures and tuples. Tu-
ples are passive data structures: any piece of code that has
access to the tuple can then obtain pointers to the compo-
nents of the tuple. Closures are active data structures: only
the code part of the closure can access directly the data part
of the closure (the values of the free variables); other code
pieces can only apply the closure, but not get at the data
part directly. In other words, the code part of a closure
mediates access to the data part. This property is often
referred to as procedural abstraction [27].

For instance, consider the following function, similar to
many Unix system calls, where uid is a reference holding
the identity of the caller (applet or browser):

λx. if !uid = browser
then do something with high privileges
else do something with low privileges

Assume this function is part of the applet environment, but
not the reference uid itself. Then, there is no way that the
applet can modify the location of uid, even though that
location is reachable from the environment.

A less obvious example, where the reference uid is not
trivially read-only, is the following function in the style of
the Unix setuid system call:

λnewid. if !uid = browser
then uid := newid
else raise an error

Assuming uid is not initially browser, an applet cannot
change uid by calling this function.

Procedural abstraction can be viewed as the foundation
for access control lists and similar programming techniques
where resources are systematically encapsulated inside func-
tions that check the identity and credentials of the caller be-
fore granting access to the requested resources. For instance,
a file opening function contains the whole data structure rep-
resenting the file system in its closure, but grants access only
to files with suitable permissions. Thus, while all files are
reachable from the closure of the open function, only those
that have suitable permissions can be modified by the caller.

To formalize these ideas, we set out to define the set of
locations ML(v, s) that are actually modifiable (not merely
reachable) from a value v and a store s, and show that if a
location ` is not in ML(e, s), then any applet evaluated in
the environment e does not write to `. This result is stronger
than property 1 because the location ` that is not modifiable
from e in s can still be reachable (via closures) from e in s.

For passive data structures (locations, tuples), modifia-
bility coincides with reachability: a location is modifiable
from v/s if a sequence of fst, snd, and ! operations ap-
plied to v in s evaluates to that location. The difficult case
is defining modifiable locations for a function closure. The
idea is to consider all possible applications of the closure to

an argument: a location ` is considered modifiable from the
closure only if one of those applications writes to the loca-
tion, or causes the location to become modifiable otherwise.

More precisely, let eapi be the execution environment
given to applets, and let c = λx.a[e] be one of the closures
contained in eapi. A location ` is modifiable from c in store
s if there exists a value v such that the following conditions
hold:

Condition 1. The application of the closure to v causes `
to be modified, i.e. {` 7→ ∅}, e{x ← v}, s ` a → err.

Example: Let e be the environment [r ← `]. Then, ` is
reachable from (λx. r := x + 1)[e] in any store, since any
application of the closure causes ` to be assigned.

Condition 2. Alternatively, the application of c to v does
not modify `, but returns a result value and a new store
from which ` is modifiable.

Example: With e as in the previous example, ` is reachable
from (λx. (r, 1))[e], since any application of that closure re-
turns a pair with ` as first component. An applet can thus
write to ` by applying the closure, extracting ` from the
returned result, and assigning ` directly.

Condition 3. Alternatively, the application of c to v mod-
ifies a reference accessible to the applet in such a way that
` becomes modifiable from that reference.

Example: Consider c = (λp. p := r)[e], where e = [r ← `]
as usual. Applying c to a location `′, we obtain a modified
store s′ such that s′(`′) = `, i.e. ` is modifiable from `′ in s′

and can be modified by the applet.

Condition 4. Alternatively, the application of c to v assigns
references internal to the browser functions in such a way
that ` becomes modifiable from the environment eapi in the
store s′ at the end of the application.

Example: Consider the following environment eapi:

eapi(f) = (λx. n := !n + 1)[n ← `n]

eapi(g) = (λx. if !n ≥ 1 then r := 0)[n ← `n; r ← `]

In a store s such that s(`n) = 0, the location ` is not mod-
ifiable from eapi(g). However, ` is modifiable from eapi(f)
in s, since one application of that closure returns a store s′

such that s′(`n) = 1, and in that store s′, ` is modifiable
from eapi(g): any application of eapi(g) with initial store s′

writes to `.

Condition 5. In conditions 1–4 above, it must be the case
that the location ` found to be modifiable from the closure c
is not actually modifiable from the argument v passed to the
closure. Otherwise, we would not know whether the location
really “comes from” the closure c, or is merely modified by
the applet-provided argument v.

Example: Consider the higher-order function c =
(λf. f(0))[∅]. If we apply c to (λn. r := n)[r ← `],
we observe a write to location `. However, ` should not be
considered as modifiable from c, since it is also modifiable
from the argument given to c.

As should now be apparent from the conditions 1–5
above, the notion of modifiability raises serious problems,
both practical and technical. On the practical side, the set
of modifiable locations ML(v, s) is not computable from

4

v and s (unlike RL(v, s)): in the closure case, we must
consider infinitely many possible arguments. Thus, we need
general proof to determine ML(v, s).

Moreover, modifiable locations cannot be determined lo-
cally. As condition 4 shows, the modifiable locations of a
closure depend on the modifiable locations of all functions
from the applet environment eapi. Thus, if we manage to
determine ML(eapi, s), then add one single function to the
applet environment, we must not only determine the mod-
ifiable locations from the new function, but also reconsider
all other functions in the environment to see whether their
modifiable locations have changed. This is clearly impracti-
cal. Hence, the notion of modifiability is not effective and is
interesting only from a semantic viewpoint and as a guide
to derive decidable security criteria in the sequel.

On the technical side, the conditions 1–5 above do not
lead to a well-founded definition of the sets of modifiable
locations ML(v, s). The problem is condition 5 (the require-
ment that the location must not be modifiable from the
argument given to the closure): viewing conditions 1–4 as
a fixpoint equation for some operator, that operator is not
increasing because of the negation in condition 5.

In appendix B, we tackle this problem and show that
non-modifiable locations are indeed never modified in the
particular case where the applet’s environment eapi is well-
typed and its type Eapi does not contain any ref types,
so that no references are exchanged directly between the
applet and its environment. In the remainder of this paper,
we abandon the notion of modifiability in its full generality,
and develop more effective techniques to restrict writes to
reachable locations, relying on type-based instrumentation
of the browser code.

4 The type system

We now equip our language with a simple type system. The
type system is based on simply-typed λ-calculus, with the
addition of named, user-defined types. Despite its simplicity,
this type system does not restrict drastically the expressive-
ness of our language. In particular, recursive functions can
still be defined using references [30]. The type algebra is:

Types: τ ::= ι base type (int, string, etc.)
| t named type
| τ1 → τ2 function type
| τ1 × τ2 product type
| τ ref reference type

Conversely, we enrich the syntax of terms with two new
constructs: explicit coercions to and from named types, and
run-time validation of values of named types.

Terms: a ::= . . . (as before)
| τ(a) coercion to type τ
| OKt(a) run-time validation at type t

The typing rules for the calculus are shown in figure 3, and
the extra evaluation rules for the new constructs in figure 2.

4.1 Named types

The overall approach followed in section 5 is to identify
groups of references having the same type, and apply them a
given security policy. However, types from the simply-typed
λ-calculus are too coarse for this purpose: references of type
string ref can hold many different kinds of data, such as

messages, filenames, and cryptographic keys; clearly, differ-
ent security restrictions must be applied to these different
kinds of strings.

To this end, we introduce named types t, defined by
a mapping TD for type names to type expressions, stat-
ing that the type t is interconvertible with its implementa-
tion type TD(t). For instance, we could introduce a type
filename, defined to be equal to string. An expression e of
type string cannot be used implicitly with type filename;
an explicit injection into filename, written filename(e), is
required. Conversely, accessing the string underlying an ex-
pression e′ of type filename is achieved by string(e′). (See
rules 35 and 36.) In this respect, our named types behave
very much like the is new type definition in Ada, and un-
like type abbreviations in ML. Making the coercions explicit
facilitates the definition of the program transformations in
section 5, ensuring in particular that each term has a unique
type.

The mapping TD of type definitions is essentially global:
type definitions local to an expression are not supported.
Still, it is possible to type-check some terms against a set
of type definitions TD ′ that is a strict subset of TD , thus
rendering the named types not defined in TD ′ abstract in
that term. We will use this facility in section 5.2 and 5.3 to
make named types abstract in the applet.

4.2 Run-time validation of values

The other unusual feature of our type system is the family
of operators OKt (one for each named type t) used to per-
form run-time validation of their argument. For each named
type t, we assume given a set PV (t) of permitted values for
type t. (We actually allow PV (t) to be undefined for some
types t, which we take to mean that all values of type t are
valid.) The expression OKt(e) checks whether the value of e
is in PV (t); if yes, it returns the value unchanged; if no, it
aborts the execution of the applet and reports an error. In
the evaluation rules, the “yes” case corresponds to rule 23;
there is no rule for the “no” case, meaning that no evalua-
tion derivation exists if an OKt test fails. In effect, we do
not distinguish between failure of OKt and non-termination.
At any rate, we must not return the err result when OKt

fails: no write violation occurred.
By varying PV (t), we can control precisely the values

of type t that will pass run-time validation. For instance,
PV (filename) could consist of all strings referencing files
under the applet’s temporary directory /tmp/applet.x, a
new directory that is created empty at the beginning of the
applet’s execution. Combined with the techniques described
in section 5, this would ensure that only files in this tempo-
rary directory can be accessed by the applet. Similarly, the
set PV (widget) could consist of all widget descriptors refer-
ring to widgets that are children of the applet’s top widget,
thus preventing the applet from interacting with widgets
belonging to the browser. Other examples of run-time val-
idation include checking cryptographic signatures on data
structures that the applet must carry around without tam-
pering with.

In practice, validation OKt(e) involves not only the value
of its argument e, but also external information such as the
identity of the principal, and possibly user replies to dialog
boxes. A typical example is the Java SecurityManager class,
which determines the identity of the principal by inspection
of the call stack. For simplicity, we still write OKt as a
function of the value of its argument.

The evaluation rule for OKt assumes of course that mem-

5

ϕ, e, s ` a → r

ϕ, e, s ` τ(a) → r
(22)

ϕ, e, s ` a → v/s′ t ∈ Dom(PV) implies v ∈ PV (t)

ϕ, e, s ` OKt(a) → v/s′
(23)

ϕ, e, s ` a → err

ϕ, e, s ` OKt(a) → err
(24)

Figure 2: Extra evaluation rules for coercions and run-time checks

E ` x : E(x) (25) E ` b : Typeof (b) (26)

E{x ← τ ′} ` a : τ

E ` λx.a : τ ′ → τ
(27)

E ` a1 : τ ′ → τ E ` a2 : τ ′

E ` a1(a2) : τ
(28)

E ` a1 : τ1 E ` a2 : τ2

E ` (a1, a2) : τ1 × τ2

(29)
E ` a : τ1 × τ2

E ` fst(a) : τ1

(30)
E ` a : τ1 × τ2

E ` snd(a) : τ2

(31)

E ` a : τ

E ` ref(a) : τ ref
(32)

E ` a : τ ref

E ` !a : τ
(33)

E ` a1 : τ ref E ` a2 : τ

E ` (a1 := a2) : unit
(34)

E ` a : τ τ = TD(t)

E ` t(a) : t
(35)

E ` a : t τ = TD(t)

E ` τ(a) : τ
(36)

E ` a : t

E ` OKt(a) : t
(37)

Figure 3: Typing rules

bership in PV (t) is decidable. This raises obvious difficul-
ties if t stands for a function type, at least if the domain
type is infinite. Difficulties for defining PV (t) also arise
if t is a reference type: checking the current contents of the
references offers no guarantees with respect to future mod-
ifications; checking the locations of the references against
a fixed set of locations is very restrictive. For those rea-
sons, we restrict ourselves to types t that are defined as
algebraic datatypes: type expressions obtained by combin-
ing base types with datatype constructors such as list or
tuples, but not with ref nor the function arrow.

4.3 Type soundness

To relate the typing rules to the dynamic semantics, we
define a semantic typing relation S |= v : τ saying whether
the value v is semantically a correct value for type τ . The
S component is a store typing, associating types to store
locations. We simultaneously extend the |= relation to stores
and store typings (|= s : S), and to evaluation environments
and typing environments (S |= e : E). The definition of |=
is shown below, and is completely standard [30, 17].

• S |= b : ι if Typeof (b) = ι

• S |= v : t if S |= v : TD(t)

• S |= λx.a[e] : τ1 → τ2 if there exists a typing environ-
ment E such that S |= e : E and E ` λx.a : τ1 → τ2

• S |= (v1, v2) : τ1 × τ2 if S |= v1 : τ1 and S |= v2 : τ2

• S |= ` : τ ref if τ = S(`)

• S |= e : E if Dom(e) = Dom(E) and for all x ∈
Dom(e), S |= e(x) : E(x)

• |= s : S if Dom(s) = Dom(S) and for all ` ∈ Dom(s),
S |= s(`) : S(`).

Using the semantic typing relations defined above, we
then have the familiar strong soundness property below for
the type system. We say that a store typing S′ extends S
if Dom(S′) ⊇ Dom(S), and for all ` ∈ Dom(S), we have
S′(`) = S(`). Remark that semantic typing is stable under
store extension: if S |= v : τ and S′ extends S, we also have
S′ |= v : τ .

Proposition 2 (Type soundness) Assume E ` a : τ and
|= s : S and S |= e : E. If ϕ, e, s ` a → v/s′, then there
exists a store typing S′ extending S such that S′ |= v : τ and
|= s′ : S′.

Proof: The proof is a simple inductive argument on the
evaluation derivation; see [17, prop. 3.6] for details. 2

5 Type-based security properties

The type-based security properties developed in this sec-
tion are based on a common idea: assuming all sensitive
references have types of the form t ref, we instrument the
functions composing the execution environment by inserting
OKt run-time checks at certain program points, in order to
prevent illegal writes to references of type t ref. The ap-
plets themselves are not instrumented, of course, since their
source code is generally unavailable. All we know about
the applet is that it is well typed in a given typing envi-
ronment and set of type definitions. It is the combination
of this well-typing with the instrumented environment func-
tions that guarantees security.

5.1 Instrumentation of writes and procedural abstraction

The first transformation we consider inserts an OKt

check before any write to a reference of type t ref with
t ∈ Dom(PV). This way, we are certain that if a sensitive
reference has type t ref, the environment functions will
always store in it values that belong to PV (t). Formally,

6

we define the instrumentation scheme IW , operating on
terms aτ annotated with their type τ , as follows:

IW ((at ref := bt)unit) = IW (at ref) := OKt(IW (bt))

if t ∈ Dom(PV)

On other kinds of terms, IW is a simple morphism, e.g.
IW ((λx.aτ)σ→τ) = λx.IW (aτ), etc.

It is easy to show that write errors cannot happen inside
instrumented terms. Given the permitted values PV and a
store typing S, we define Prot(PV, S) as the store control
that restricts references of type t ref, t ∈ Dom(PV) to val-
ues in PV (t), and allows arbitrary writes to other references:
Prot(PV, S)(`) = PV (t) if S(`) = t and t ∈ Dom(PV), and
Prot(PV, S)(`) is undefined otherwise.

Proposition 3 Assume E ` (aτ ref := bτ) : unit and
S |= e : E and |= s : S. Write ϕ = Prot(PV, S). If
ϕ, e, s ` IW (aτ ref) 6→ err and ϕ, e, s ` IW (bτ) 6→ err,
then ϕ, e, s ` IW (aτ ref := bτ) 6→ err.

Proof: If τ = t for some named type t ∈ Dom(PV), then
by definition of the instrumentation scheme, the right-hand
side of the assignment is of the form OKt(b

′) for some b′,
which can only evaluate to an element of PV (t) by rule 23.
Hence, the assignment is valid with respect to Prot(PV, S).
If τ is not a t type or is outside Dom(PV), by proposition 2,
IW (a) evaluates to a location ` which does not have a type
of the form t ref, t ∈ Dom(PV), and therefore such that
Prot(PV, S)(`) is undefined; hence, no write error occurs
either. 2

Proposition 3 only provides half of the security property:
it shows that writes in instrumented code are safe, but only
the execution environment contains instrumented code; the
applet code is not instrumented and could therefore perform
illegal writes to sensitive locations, if it could access those lo-
cations. In other terms, we must make sure that all sensitive
locations are encapsulated inside functions, as in section 3.2.
To this end, we will restrict the type Eapi of the applet’s ex-
ecution environment eapi to ensure that sensitive references
cannot “leak” into the applet, and be assigned illegal values
there. There are several ways by which a sensitive reference
of type t ref could leak into an applet:

• The reference is exported directly in the environment,
e.g. Eapi(x) = t ref or Eapi(x) = int× (t ref).

• The reference is returned by one of the functions of the
environment, e.g. Eapi(f) = int→ t ref.

• The environment contains a higher-order function such
as Eapi(h) = (t ref→ int) → int. The applet could
get access to a sensitive reference if h passes one to
its functional argument, which can be provided by the
applet.

• The environment contains a function taking as
argument an applet-provided reference to a t ref,
e.g. Eapi(f) = t ref ref → unit. The environment
function f could then store a sensitive location into
that t ref ref, from which the applet can recover
the sensitive location later.

We rule out all these cases by simply requiring that no type
t ref occurs (at arbitrary depths) in Eapi. This leads to the
following security property:

Security property 2 Assume S |= eapi : Eapi and |= s :
S. Further assume that Eapi contains no occurrence of t ref
for any t, and that all function closures in e and s have
been instrumented with the IW scheme (that is, e and s
are obtained by evaluating source terms instrumented with
IW). Then, for every applet a well-typed in E, we have
Prot(PV, S), s, e ` a 6→ err.

Proof: We consider all assignments to references that oc-
cur in the evaluation derivation for a. By proposition 3, as-
signments performed by environment functions cannot cause
a write error, since the right-hand side has been instru-
mented by IW . For assignments performed by the applet,
we use a containment lemma developed in appendix A to
show that the reference being assigned cannot belong to
Dom(Prot(PV, S)). More precisely, we apply appendix A
with T being the set of all type expressions where t ref
occurs, Lapp being the set of locations with types in T allo-
cated by the applet, and Lenv being the set of locations with
types in T allocated by environment functions or initially
present in eapi. The containment lemma (proposition 7)
then shows that the location being assigned does not belong
to Lenv. Moreover, by construction of Prot and Lenv, we
have Dom(Prot(PV, S)) ⊆ Lenv. Thus, assignments per-
formed by the applet do not cause write violations either.
Hence, the applet cannot evaluate to err. 2

The requirement that no t ref occurs in Eapi is clearly
too strong: nothing wrong could happen if, for instance, one
of the environment functions has type t ref → unit (the
t ref argument is provided by the applet). We conjecture
that it suffices to require that type t ref does not occur in
Eapp at a positive occurrence nor under a ref constructor.
However, our proof of property 2, and in particular the cru-
cial containment lemma 7, does not extend to this weaker
hypothesis.

5.2 Instrumentation of coercions and type abstraction

Instead of putting run-time checks on writes to references
of type t ref, we can ensure that all values of type t ∈
Dom(PV) that flow through the applet’s execution environ-
ment always belong to PV (t). This way, values stored in
a t ref will automatically satisfy PV (t) as well. This is
achieved by adding checks to all creations of values of type
t ∈ Dom(PV) in the execution environment, i.e. to coer-
cions of the form t(a), following the instrumentation scheme
IC below:

IC(t(a)) = OKt(t(IC(a))) if t ∈ Dom(PV)

Of course, this is not enough: the applet could forge
unchecked values of type t, by direct coercion from t’s
implementation type, and pass them to environment func-
tions. Hence, we also need to make the types t ∈ Dom(PV)
abstract in the applet, by type-checking it with a set of
type definitions TD ′ obtained from TD by removing the
definitions of the types t ∈ Dom(PV). Then, for any
t ∈ Dom(PV), the only values of type t that can be
manipulated by the applet have been created and checked
by the environment.

To capture the run-time behavior of instrumented terms,
we introduce a variant of the semantic typing predicate,
written PV, S |= v : τ , which is similar to the predicate
S |= v : τ introduced in section 4.3, with the difference that
a value v belongs to a named type t only if v ∈ PV (t) in
addition to v belonging to the definition TD(t) of t:

7

• PV, S |= b : ι if Typeof (b) = ι

• PV, S |= v : t if PV, S |= v : TD(t) and t ∈ Dom(PV)
implies v ∈ PV (t)

• PV, S |= λx.a[e] : τ1 → τ2 if there exists a typing
environment E such that PV, S |= e : E and E `
λx.a : τ1 → τ2

• PV, S |= (v1, v2) : τ1 × τ2 if PV, S |= v1 : τ1 and
PV, S |= v2 : τ2

• PV, S |= ` : τ ref if τ = S(`)

• PV, S |= e : E if Dom(e) = Dom(E) and for all x ∈
Dom(e), PV, S |= e(x) : E(x)

• PV |= s : S if Dom(s) = Dom(S) and for all ` ∈
Dom(s), PV, S |= s(`) : S(`).

We then have the following characterization of the the be-
havior of terms instrumented with IC:

Proposition 4 Assume E ` a : τ and PV, S |= e : E and
PV |= s : S. Further assume that all closures contained
in e and s have function bodies instrumented with IC. If
Prot(PV, S), e, s ` IC(a) → r, then r 6= err; instead, r is
of the form v/s′, and there exists a store typing S′ extending
S such that PV, S′ |= v : τ and PV |= s′ : S′.

Compared with proposition 2, we now use the more re-
strictive interpretation of named types PV , and require that
all terms occurring in the evaluation derivation have been
instrumented with IC. The proof is essentially identical to
that of proposition 2.

Notice that an applet a well-typed within the restricted
set TD ′ of type definitions contains no coercions t(a) for
any t ∈ Dom(PV), hence is equal to IC(a). Thus, propo-
sition 4 applies not only to the terms from the execution
environment, but also to the applet itself. In a sense, this
proposition can be viewed as a parametricity result, in that
it shows soundness for arbitrary interpretations PV of the
types left abstract in TD ′. From this remark, we immedi-
ately obtain the following security property:

Security property 3 Let e be the execution environment
for applets, and s the initial store. Assume that all func-
tion closures in e and s have been instrumented with the IC
scheme (that is, e and s are obtained by evaluating source
terms instrumented with IC). Assume PV |= s : S and
PV, S |= e : E. Then, for every applet a well-typed in E
and in the restricted set TD ′ of type definitions, we have
Prot(PV, S), s, e ` a 6→ err.

One practice that property 3 formally justifies is systems
based on capabilities: by making the type of capabilities ab-
stract to the applets, run-time security checks are necessary
only at points where new capabilities are constructed and
returned to the applet; capabilities presented by the applet
can then be trusted without further checks.

Unlike property 2, property 3 does not require that types
t ref do not occur in the typing environment E. Indeed,
once t is made abstract, it is perfectly safe to make refer-
ences of type t ref accessible to the applet: the applet can
then write to them, but only write safe values of type t.
Hence, sensitive references no longer need to be systemati-
cally wrapped inside functions. As Reynolds points out [27],
type abstraction and procedural abstraction are two orthog-
onal ways to protect data.

Another advantage of the approach described in this sec-
tion over the instrumentation of writes described in sec-
tion 5.1 is that it often leads to fewer run-time checks. In
particular, checks at coercions can sometimes be proven re-
dundant and therefore can be eliminated. Consider the fol-
lowing function that adds a .old suffix to a file name:

λf.OKfilename(filename(concat(string(f),".old")))

With the definition of PV (filename) given in section 4.2, it
is easy to show that if f belongs to PV (filename), then so
does the concatenation of f and .old. Hence, the OK test
can be removed.

Of course, not all run-time tests can be removed this way:
consider what happens if the suffix was given as argument:

λf.λs.OKfilename(filename(concat(string(f),s)))

and the applet passes a suffix s starting with “../”.

5.3 Instrumenting coercions without type abstraction

In some cases, the types t ∈ Dom(PV) cannot be made ab-
stract in the applet, e.g. because it would make writing the
applet too inconvenient, or entail too much run-time over-
head. We can adapt the approach presented in section 5.2
to these cases, by reverting to procedural abstraction and
putting checks not only at coercions, but also on all values
of types t ∈ Dom(PV) that come from the applet. (This
matches current practice in Unix kernels, where parameters
to system calls are always checked for validity on entrance
to the system call.)

This is achieved by a standard wrapping scheme applied
to all functions of the execution environment, inserting OKt

coercions at all negative occurrences of types t ∈ Dom(PV).
For instance, if the execution environment needs to export
a function f : t → t, it will actually export the function
λx.f(OKt(x)), which validates its argument before passing
it to the original function.

We formalize these ideas in a slightly different way, in
order to build upon the results of section 5.2. Start from
an applet environment defined by top-level bindings of the
form

let fi : τi = ai

We assume given a set TD ′ of type definitions against which
the ai and the applets are type-checked, and a valuation PV ′

assigning permitted values to named types in TD ′.
We first associate a new named type t̂ to each sensitive

type t ∈ Dom(PV ′). The type t̂ is defined as synonymous
with t, and is intended to represent those values of type t
that have passed run-time validation. We define the t̂ types
by taking

TD = TD ′ ⊕ [t̂ 7→ t | t ∈ Dom(PV ′)]

and restrict the values they can take using the valuation
PV defined by PV (t̂) = PV ′(t) and PV undefined on other
types.

Let Σ be the substitution {t ← t̂ | t ∈ Dom(PV ′)}.
We transform the bindings for the applet environment as
follows:

let fi : τi = W+(IC(Σ(ai)) : τi)

That is, we rewrite the terms ai to use the type t̂ instead
of t for all t ∈ Dom(PV ′); then apply the IC instrumen-
tation scheme to it, thus adding an OKt̂ check to each co-
ercion t̂(a); finally, apply the W+ wrapping scheme to the
instrumented term, in order to perform both validation and

8

coercion from t to t̂ on entrance, and the reverse coercion
from t̂ to t on exit. Wrapping is directed by the expected
type for its result, and is contravariant with respect to func-
tion types. We thus define both a wrapping scheme W+ for
positive occurrences of types and another W− for negative
occurrences.

W+(a : ι) = W−(a : ι) = a

W+(a : t) = t(a) if t ∈ Dom(PV)

W−(a : t) = OKt̂(t̂(a)) if t ∈ Dom(PV)

W+(a : t) = W−(a : t) = a if t /∈ Dom(PV)

W+(a : τ1 × τ2) = (W+(fst(a) : τ1), W
+(snd(a) : τ2)

W−(a : τ1 × τ2) = (W−(fst(a) : τ1), W
−(snd(a) : τ2)

W+(a : τ1 → τ2) = λx.W+(a(W−(x : τ1)) : τ2)

W−(a : τ1 → τ2) = λx.W−(a(W+(x : τ1)) : τ2)

W+(a : τ ref) = W−(a : τ ref) = a

if no t ∈ Dom(PV) occurs in τ

Wrapping is not defined on reference types containing a
t ∈ Dom(PV) because there is no way to validate these
references so that they are protected against future modifi-
cations.

It is easy to see that the transformed bindings are well-
typed: Σ(ai) has type Σ(τi); the IC instrumentation pre-
serves typing; the W+ wrapping applied to a term of type
Σ(τi) returns a term of type τi, as shown by a simple induc-
tion over τi.

Moreover, the right-hand sides of the bindings always
perform an OKt̂ check before each coercion to a type t̂: this
is ensured by the IC instrumentation for the coercions ini-
tially in Σ(ai), and by definition of the wrapping scheme for
the coercions introduced by the wrapping.

Finally, the applets themselves are still type-checked in
the original set TD ′ of type definitions, in which the types t̂
are not defined, and thus abstract for the applet.

We are therefore back to the situation studied in sec-
tion 5.2: the types t̂ are abstract in the applets and all
coercions to t̂ are instrumented in the applet environment.
Thus, by property 3, we obtain that the values of references
with types t̂ ref always remain within PV (t̂) = PV ′(t)
during the execution of any well-typed applet.

Security property 4 Let e be the execution environment
for applets and s the initial store. Assume that e and s are
obtained by evaluating a set of transformed bindings let fi :
τi = W+(IC(Σ(ai)) : τi) as described above. Assume PV |=
s : S and PV, S |= e : E. Then, for every applet a well-typed
in E and in the initial set TD ′ of type definitions, we have
Prot(PV, S), s, e ` a 6→ err.

6 Connections with object-oriented languages

Although the language used for this work is functional,
the techniques developed here translate reasonably well
to object-oriented languages. Procedural abstraction
as presented in section 3.2 corresponds most closely to
Smalltalk-style private instance variables: just as variables
in a closure environment can only be accessed by the code
associated with that closure, private instance variables of
a Smalltalk object can only be accessed by the methods
of that object. Java does not offer a strictly equivalent
mechanism: the private modifier makes instance variables
accessible not only to the methods of the object, but also

to methods of other objects of the same class. Still, the
visibility rules associated with the package mechanism and
the private and protected modifiers also ensure some
degree of procedural abstraction, since they restrict the set
of methods that can access a given instance variable.

Similarly, type abstraction as exploited in section 5.3 cor-
responds most closely to final classes in Java. A final class
containing only private fields and having a private con-
structor offers the same level of guarantees as our abstract
types: the applet cannot create directly an object of that
class, nor tamper with the fields of an existing object. In
non-final classes, the visibility rules might still ensure some
degree of type abstraction, though it is unclear how much is
guaranteed. Subtype polymorphism in systems such as F<:

[7] also provide some amount of type abstraction, but this
is not so in Java because the actual type of an object can
be tested at run-time (downcasts).

7 Related work

7.1 Type systems for security

The work most closely related to ours is the recent formu-
lations of Denning’s information flow approach to security
[10, 9] as non-standard type systems by Palsberg and Ørbaek
[24], Volpano and Smith [31, 32], and Heintze and Riecke
[14]. The main points of comparison with our work are listed
below.

Information flow vs. integrity: The type systems de-
veloped in previous works all focus on flow of information
between high-security and low-security parts of a program.
In particular, they allow high-security data to be exposed as
long as no low-security code uses this data. In the context
of applets, we have no control over the low-security code
and are therefore forced to ensure that high-security data
is never exposed directly. Thus, our work does not concen-
trate on information flow proper, but mainly on protecting
sensitive data via procedural or type abstraction.

Imperative vs. purely functional programs: [24] and
[14] consider purely functional languages in the style of the
λ-calculus. This makes formulating the security properties
delicate: [24] proves no security property properly speaking,
only a subject reduction property that shows the internal
consistency of the calculus, but not its relevance to security;
[14] does show a non-interference property (that the value
of a low-security expression is independent of the values of
high-security parameters), but it is not obvious how this re-
sult applies to actual applet/browser interactions, especially
input/output. Instead, we have followed [31, 32] and formu-
lated our security policy in terms of in-place modifications
on a store, which provides a fairly intuitive idea of what
constitutes a security violation.

Run-time validation of data: Only [24] and our work
consider the possibility of checking low-security data
at run-time and promoting them to high security. In
[31, 32, 14], once some data is labeled “low security”, it
remains so throughout the program and causes all data it
comes in contact with to be marked “low security” as well.
We believe that, in a typical applet/browser interaction,
this policy leads to rejecting almost all applets as insecure.
Run-time validation of untrusted data is essential in
practice to allow a reasonable range of applets to run.

Subtyping vs. named types and coercions: All pre-
vious works consider type systems with subtyping, which

9

provides a good match for the flow analysis approach they
follow [23]. In contrast, we only use type synonyms with
possibly checked coercions between a named type and its
implementation type. However, the connections between
subtyping and explicit coercions are well known [5], and we
do not think this makes a major difference.

7.2 Security of applets

Concerning the security issues raised by applets in general,
we are aware of case studies of security flaws [8], as well
as informal descriptions of current and proposed security
architectures for applets [12, 34, 28, 33]. Our work seems to
be one of the first formal studies of applet security.

On the Java side, considerable effort has been expended
in proving the soundness of the Java type system [11, 22]
and of the JVM bytecode verifier [26]. Other aspects of
Java that are equally important for security, such as formal-
izing the visibility rules and the encapsulation guarantees
they provide, have only recently started to receive attention
[16]. We are not aware of any formal description of security
policies for Java applets.

Proof-carrying code [20, 21] provides an elegant frame-
work to establish the safety of mobile code, but requires
general proof from the applet’s developer. Our approach
lies at the other end of the complexity spectrum: all we re-
quire from the applet is that it is well typed in a simple,
standard type system.

8 Concluding remarks

We have identified three basic techniques for enforcing a
fairly realistic security policy for applets: lexical scoping,
procedural abstraction, and type abstraction. These pro-
gramming techniques are of course well known, but we be-
lieve that this work is the first to characterize precisely their
implications for program security.

The techniques proposed here seem to match relatively
well current practice in the area of Web applets. In partic-
ular, they account fairly well for Rouaix’s implementation
of safe libraries in the MMM browser [28]. Some aspects of
MMM are still unaccounted for, such as the necessity of tak-
ing copies of mutable objects before validating them. Also,
MMM applets have the ability to install functions in various
stages of the browser (HTML display machine, document
decoding), and this requires validation of these functions at
times other than those suggested by our framework.

Our techniques put almost no constraints on the applets,
except being well-typed in a simple, completely standard
type system. The security effort is concentrated on the ex-
ecution environment provided by the browser. Typing the
applets in a richer type system, such as the type systems
for information flow of [24, 31, 32, 14] or the effect and re-
gion system of [29], could provide more information on the
behavior of the applet and enable more flexible security poli-
cies in the execution environment. However, it is probably
impractical to rely on rich type systems for applets, because
these type systems are not likely to be widely accepted by
applet developers. Whether these rich type systems can be
applied to the execution environment only is an interesting
open question.

On the technical side, the proofs of the type-based secu-
rity properties are variants of usual type soundness proofs.
It would be interesting to investigate the security content
of other classical semantic results such as representation in-
dependence and logical relations. Given the importance of

communications between the applet and its environment, it
could be worthwhile to reformulate our security results for
a calculus of communicating processes [2, 1].

References

[1] M. Abadi and A. D. Gordon. Reasoning about crypto-
graphic protocols in the Spi calculus. In CONCUR’97:
Concurrency Theory, volume 1243 of Lecture Notes in
Computer Science, pages 59–73. Springer-Verlag, July
1997.

[2] J.-P. Banâtre and C. Bryce. A security proof system for
networks of communicating processes. Research report
2042, INRIA, Sept. 1993.

[3] J.-P. Billon. Security breaches in the JDK 1.1
beta2 security API. Dyade, http://www.dyade.fr/fr/
actions/VIP/SecHole.html, Jan. 1997.

[4] N. S. Borenstein. Email with a mind of its own: the
Safe-Tcl language for enabled mail. In IFIP Interna-
tional Working Conference on Upper Layer Protocols,
Architectures and Applications, 1994.

[5] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and
A. Scedrov. Inheritance as implicit coercion. Infor-
mation and Computation, 93(1):172–221, 1991.

[6] K. Brunnstein. Hostile ActiveX control demonstrated.
RISKS Forum, 18(82), Feb. 1997.

[7] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov.
An extension of system F with subtyping. Information
and Computation, 109(1–2):4–56, 1994.

[8] D. Dean, E. W. Felten, and D. S. Wallach. Java secu-
rity: from HotJava to Netscape and beyond. In 1996
IEEE Symposium on Security and Privacy. IEEE, 1996.

[9] D. E. Denning and P. J. Denning. Certification of pro-
grams for secure information flow. Commun. ACM,
20(7):504–513, 1977.

[10] D. E. Denning. A lattice model of secure information
flow. Commun. ACM, 19(5):236–242, 1976.

[11] S. Drossopoulou and S. Eisenbach. Java is type safe –
probably. In Proc. 11th European Conference on Object
Oriented Programming, June 1997.

[12] M. Erdos, B. Hartman, and M. Mueller. Security ref-
erence model for the Java Developer’s Kit 1.0.2. Java-
Soft, http://java.sun.com/security/SRM.html, Nov.
1996.

[13] J. Gosling and H. McGilton. The Java language
environment – a white paper. JavaSoft, http://
java.sun.com/docs/white/langenv, May 1996.

[14] N. Heinze and J. G. Riecke. The SLam calculus: pro-
gramming with secrecy and integrity. Draft, available
electronically, Mar. 1998.

[15] D. Hopwood. Java security bug (applets can load native
methods). RISKS Forum, 17(83), Mar. 1996.

[16] T. Jensen, D. Le Métayer, and T. Thorn. A formalisa-
tion of visibility and dynamic loading in Java. Technical
Report 1137, IRISA, Oct. 1997.

10

[17] X. Leroy. Polymorphic typing of an algorithmic lan-
guage. Research report 1778, INRIA, 1992.

[18] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The
definition of Standard ML (revised). The MIT Press,
1997.

[19] G. Morrisett, M. Felleisen, and R. Harper. Abstract
models of memory management. In Functional Pro-
gramming Languages and Computer Architecture 1995,
pages 66–77. ACM Press, 1995.

[20] G. C. Necula and P. Lee. Safe kernel extensions without
run-time checking. In Proc. Symp. Operating Systems
Design and Implementation, 1996.

[21] G. C. Necula. Proof-carrying code. In 24th symposium
Principles of Programming Languages, pages 106–119.
ACM Press, 1997.

[22] T. Nipkow and D. von Oheimb. JavaLight is type-safe
— definitely. In 25th symposium Principles of Program-
ming Languages ACM Press, 1998.

[23] J. Palsberg and P. O’Keefe. A type system equiva-
lent to flow analysis. In 22nd symposium Principles of
Programming Languages, pages 367–378. ACM Press,
1995.

[24] J. Palsberg and P. Ørbaek. Trust in the λ-calculus.
In Symposium on Static Analysis ’95, volume 983 of
Lecture Notes in Computer Science, pages 314–329.
Springer-Verlag, 1995.

[25] G. D. Plotkin. A structural approach to operational se-
mantics. Technical Report DAIMI FN-19, Aarhus Uni-
versity, 1981.

[26] Z. Qian. A formal specification of a large subset of Java
Virtual Machine instructions. Draft, available electron-
ically, Sept. 1997.

[27] J. C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data ab-
straction. In C. Gunter and J. Mitchell, editors, The-
oretical aspects of object-oriented programming, pages
13–23. MIT Press, 1994.

[28] F. Rouaix. A Web navigator with applets in Caml. In
Proceedings of the 5th International World Wide Web
Conference, Computer Networks and Telecommunica-
tions Networking, volume 28, pages 1365–1371. Else-
vier, May 1996.

[29] J.-P. Talpin and P. Jouvelot. The type and effect disci-
pline. Information and Computation, 111(2):245–296,
1994.

[30] M. Tofte. Type inference for polymorphic references.
Information and Computation, 89(1), 1990.

[31] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. Journal of Computer
Security, 4(3):1–21, 1996.

[32] D. Volpano and G. Smith. A type-based approach to
program security. In Proceedings of TAPSOFT’97, Col-
loqium on Formal Approaches in Software Engineering,
1997.

[33] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Fel-
ten. Extensible security architectures for Java. Tech-
nical report 546-97, Department of Computer Science,
Princeton University, Apr. 1997.

[34] F. Yellin. Low level security in Java. In Proceedings of
the Fourth International World Wide Web Conference.
O’Reilly, 1995.

A Appendix: the containment lemma

In this appendix, we formalize the intuition that if the type
of the applet environment does not contain certain ref
types, then references of those types cannot be exchanged
between the applet and the environment, and remain
“contained” in one of them.

We annotate each source-language term a as coming ei-
ther from the execution environment (aenv) or from the ap-
plet (aapp). We let m, n range over the two “worlds” env and
app, and write m for the complement of m, i.e. env = app
and app = env .

Let T be a set of type expressions satisfying the following
closure property: if τ ∈ T , then all types τ ′ that contain τ
as a sub-term also belong to T . (In section 5.1, we take T to
be the set of all types containing an occurrence of t ref; in
appendix B, T is the set of all types containing an occurrence
of any ref type). We partition the set of locations into three
countable sets:

• Lapp is the set of locations with type τ ref ∈ T that
have been allocated by the applet;

• Lenv is the set of locations with type τ ref ∈ T that
have been allocated by the environment (i.e. either ini-
tially present in the applet environment, or allocated
by environment functions);

• Lshared is the set of locations whose type τ ref does
not belong to T .

To ensure that locations allocated during evaluation are
drawn from the correct set, we assume all source terms aτ

m

annotated with their static type τ and their world m and
replace the evaluation rule for reference creation (rule 8) by
the following rule:

ϕ, e, s ` aτ
m → v/s′ ` /∈ Dom(s′) ∪Dom(ϕ)

` ∈ Lenv if τ ref ∈ T and m = env
` ∈ Lapp if τ ref ∈ T and m = app

` ∈ Lshared if τ ref /∈ T

ϕ, e, s ` ref(a)τ ref
m → `/s′{` ← v}

(8’)

It is easy to see that the modified rule produces the same
evaluation derivations as the initial rule, up to a renaming of
fresh locations: if ϕ, e, s ` a → r with the initial rule, then
ϕ, e, s ` a → r′ with the modified rule, where r′ is identical
to r up to a renaming of locations not in Dom(s)∪Dom(ϕ).

We say that a value v in a store s is contained in world m,
and we write Cm(v, s), if any source term operating on v in s
can directly access only locations that are in Lm or Lshared,
but not locations in Lm. Formally, Cm(v, s) is defined by
case analysis on v, as follows:

• Cm(b, s) is always true

• Cm(λx.an[e], s) if Cn(e, s)

• Cm((v1, v2), s) if Cm(v1, s) and Cm(v2, s)

11

• Cm(`, s) if l /∈ Lm and Cm(s(`), s)

• Cm(e, s) if Cm(e(x), s) for all x ∈ Dom(e).

Notice that for closures, it’s the world n of the function
body an that determines the containment of the closure en-
vironment, not the world m in which the closure value is
being used. The reason is that the environment values can
only be accessed by the function body, not arbitrary terms
of world m. This is characteristic of procedural abstraction
in the sense of section 3.2.

As usual, the definition of C above is not well-founded
by induction on v. We view the equations above as fixpoint
equations for an operator, which is increasing, and define
C as the greatest fixpoint of that operator. (The smallest
fixpoint is always false on value/store pairs that contain a
cycle, which is not what we want; it’s the greatest fixpoint
that gives the expected behavior for C. See [30] for detailed
explanations.)

Here are two important lemmas on the C predicate.
First, assigning a value contained in world m to a location
which is not in Lm preserves the containment of all other
values.

Proposition 5 Assume either ` ∈ Lm and Cm(v, s), or ` ∈
Lshared and Capp(v, s) and Cenv(v, s). Then, for all values
w and worlds n, Cn(w, s) implies Cn(w, s{` ← v}).
Proof: The proof is a standard argument by coinduction,
close to the proof of lemma 4.6 in [30]. The only non-
trival case is w = ` (the modified location). By hypothe-
sis Cn(w, s), we have ` /∈ Ln and Cn(s(`), s). Write s′ =
s{` ← v}. Notice that s′(`) = v. If n = m, we have Cn(v, s)
by assumption, hence Cn(v, s′) by the coinduction hypoth-
esis, from which it follows that Cn(`, s′). If n = m, since
` /∈ Ln, we have ` /∈ Lm and thus it must be the case that
` ∈ Lshared and Capp(v, s) and Cenv(v, s) to comply with
the assumptions of the proposition. Thus, we have Cn(v, s)
and we conclude as in the previous case. 2

Second, values that belongs to a type τ /∈ T can be
exchanged between the app and env worlds without breaking
containment.

Proposition 6 Assume S |= v : τ and |= s : S. If τ /∈ T ,
then Cm(v, s) implies Cm(v, s) for all worlds m.

Proof: By structural induction on τ . If τ is a base type or
a function type, then v is a base value or a closure, and the
containment of v is independent of the world m. If τ is a
product type τ1×τ2, the closure condition over T guarantees
that τ1 /∈ T and τ2 /∈ T ; the result follows from the induction
hypothesis. Finally, if τ is a ref type, we have v = ` and
τ = S(`) ref. Since τ /∈ T , it follows that ` belongs to
Lshared, but neither to Lapp nor Lenv. Hence, l /∈ Lm.
Moreover, S(`) /∈ T by the closure condition on T , hence
Cm(s(`), s) by application of the induction hypothesis. It
follows that Cm(`, s). 2

We can now show that containment is preserved at each
evaluation step:

Proposition 7 (Containment lemma) Let Eapi be the
type of the execution environment for applets. Assume
Eapi(x) /∈ T for all x ∈ Dom(Eapi). Further assume
E ` am : τ and S |= e : E and |= s : S and Cm(e, s). If
ϕ, e, s ` am → v/s′, then Cm(v, s′), and for all values w
and worlds n such that Cn(w, s), we have Cn(w, s′).

Proof: The proof is by induction on the evaluation deriva-
tion and case analysis on a. Notice that by proposition 2,
we have the additional result that there exists a store typing
S′ extending S such that S′ |= v : τ and |= s′ : S′. This
makes the semantic typing hypotheses go through the in-
duction. The interesting cases are assignment and function
application; the other cases are straightforward.

Assignment: a is (aσ ref
1 := aσ

2). We apply the induction
hypothesis twice, obtaining

ϕ, e, s ` a1 → v1/s1 ϕ, e, s1 ` a2 → v2/s2

Cm(v1, s2) Cm(v2, s2)

Cn(w, s) implies Cn(w, s2) for all n, w

S2 |= v1 : σ ref S2 |= v2 : σ |= s2 : S2.

Hence, v1 is a location `, and since v1 is contained in m, we
have ` /∈ Lm. Therefore, either ` ∈ Lm or ` ∈ Lshared. But
in the latter case, σ /∈ T by construction of Lshared, hence
Cm(v2, s2) implies Cm(v2, s2) as well by proposition 6. In
both cases, the hypotheses of proposition 5 are met. Writing
s′ = s2{` ← v2}, we obtain the expected result: Cn(w, s)
implies Cn(w, s′) for all n, w. The other expected result,
Cm((), s′), is trivial.

Application: a is aσ→τ
1 (aσ

2). By applying the induction
hypothesis twice, we obtain

ϕ, e, s ` a1 → v1/s1 ϕ, e, s1 ` a2 → v2/s2

Cm(v1, s2) Cm(v2, s2)

Cn(w, s) implies Cn(w, s2) for all n, w

S2 |= v1 : σ → τ S2 |= v2 : σ |= s2 : S2.

Hence, v1 is a closure λx.a′n[e′], and the last evaluation rule
used is rule 4.

If n = m (intra-world call), we have Cm(e′{x ← v2}, s2)
as a consequence of Cm(v1, s2) and Cm(v2, s2), and the two
conclusions follows easily from the induction hypothesis ap-
plied to the evaluation of a′n.

If n = m (cross-world call), then the type σ → τ of the
function must occur as a sub-term of the typing environ-
ment Eapi. Hence, σ /∈ T and τ /∈ T . Since the type of v2 is
not in T , by proposition 6 it follows that Cn(v2, s2). Hence,
Cn(e′{x ← v2}, s2), and we can apply the induction hypoth-
esis to the evaluation of a′n: ϕ, e′{x ← v2}, s2 ` a′n → v/s′.
The resulting value v is contained in world n and has type τ ;
applying again proposition 6, we get Cm(v, s′), which is the
expected result. 2

B Appendix: modifiable locations in the case of system-
atic procedural encapsulation

In this appendix, we formalize the notion of modifiable lo-
cations, as introduced in section 3.2, in the particular case
where the applet environment eapi is well-typed and its type
Eapi does not contain any ref types. This is not to say that
eapi is purely functional: the functions it provide may very
well have side-effects and use references internally. Only, all
those internal references must be encapsulated inside func-
tions and never handed to the applet directly. This system-
atic procedural encapsulation does not reduce expressiveness
in any significant way, and at any rate is a reasonable thing
to do given that our goal is to characterize semantically pro-
cedural encapsulation.

12

ML(b, s) = ∅
ML((v1, v2), s) = ML(v1, s) ∪ML(v2, s)

ML(λx.a[e], s) = {` | there exists v1, s1, v2, s2 such that

Capp(v1, s1) and s1(`) = s(`) for all ` ∈ Lenv, and either

{` ← ∅}, e{x ← v1}, s1 ` a → err, or

∅, e{x ← v1}, s ` a → v2/s2 and ` ∈ ML(v2, s2) ∪ML(eapi, s2)}
ML(e, s) =

⋃
x∈Dom(e)

ML(e(x), s)

Figure 4: Definition of the set ML(v, s) of locations modifiable from value v in store s

From the technical side, requiring that no ref types oc-
cur in the applet’s interface Eapi has an interesting conse-
quence: only source terms from the browser can operate di-
rectly on locations allocated by the browser, and only terms
from the applet can operate directly on locations allocated
by the applet. Thus, all references are contained (in the
sense of appendix A, taking T to be the set of all types
where the ref constructor occurs) either in the browser or
in the applet, but never go from one world to the other.

We then rely on the notion of containment to define the
set ML(v, s) of locations modifiable from value v in store s
as the smallest fixpoint of the equations shown in figure 4.
The case for closures follows conditions 1 and 4 in the in-
formal discussion from section 3.2. For condition 5, we
use the condition Capp(v1, s1) instead of the more natural
` /∈ ML(v1, s1), so that the equations remain increasing in
ML and the existence of the smallest fixpoint is guaranteed.
The typing hypothesis (that Eapi contains no ref types) ren-
ders condition 3 vacuous, and also dispenses us with defining
ML over locations.

The following lemma show that modifiable locations are
indeed the only locations modified during the application of
a closure.

Proposition 8 Let p be a set of locations, with p ⊆ Lenv.
Let λx.aenv[e] be a closure of an environment func-
tion. Assume p ∩ ML(λx.a[e], s) = ∅ and Capp(v, s).
If Prot(p), e{x ← v}, s ` a → r, then r 6= err. In-
stead, r = v′/s′, and moreover p ∩ ML(v′, s′) = ∅ and
p ∩ML(eapi, s

′) = ∅.
Proof: Assume, by way of contradiction, that r = err.
Given the evaluation rules, there must exist ` ∈ p such that
{` ← ∅}, e{x ← v}, s ` a → err. By definition of ML,
this means that ` ∈ ML(λx.a[e], s). This contradicts the
hypothesis p ∩ ML(λx.a[e], s) = ∅. Hence, r 6= err. We
therefore have Prot(p), e{x ← v}, s ` a → v′/s′ for some v′

and s′. Given the evaluation rules, this implies that we can
also derive ∅, e{x ← v}, s ` a → v′/s′. Hence, by definition
of ML, any ` belonging to ML(v′, s′) or ML(eapi, s

′) also be-
longs to ML(λx.a[e], s). It follows that p ∩ ML(v′, s′) = ∅
and p ∩ML(eapi, s

′) = ∅. 2

Using the notion of modifiable locations instead of reach-
able locations, we finally obtain a security property similar
to property 1: the execution of an applet cannot write to
locations that are not modifiable from the initial execution
environment.

Security property 5 Assume S |= eapi : Eapi and |= s :
S. Further assume that Eapi contains no ref types. If p ⊆

Dom(s) and p ∩ML(eapi, s) = ∅, then for all applets a, we
have Prot(p), eapi, s ` a 6→ err.

The property follows from the inductive proposition be-
low.

Proposition 9 Assume S |= eapi : Eapi and |= s : S and
Eapi contains no ref types. Further assume p ⊆ Lenv and
p ∩ML(eapi, s) = ∅. Assume E ` aapp : τ and S |= e : E
and Capp(e, s). If Prot(p), e, s ` aapp → r, then r 6= err.
Instead, r = v′/s′ and we have p ∩ML(eapi, s

′) = ∅

Proof: The proof is by induction on the evaluation deriva-
tion. We rely on propositions 2 and 7 to ensure that the se-
mantic typing and containment hypotheses go through the
induction. The two non-obvious cases are assignment and
application of a closure of a browser function. We write
ϕ = Prot(p).

Assignment: a is a1 := a2. Applying the induction hy-
pothesis twice, we obtain ϕ, e, s ` a1 → v1/s1 and ϕ, e, s1 `
a2 → v2/s2, with Capp(v1, s2) and Capp(v2, s2) and S2 |=
v1 : σ ref and S2 |= v2 : σ and p ∩ ML(eapi, s2) = ∅.
Hence, v1 is a location `, and since v1 is contained in app,
we have ` ∈ Lapp. Thus, ` /∈ p and the evaluation of the
assignment does not result in err. Moreover, by definition
of ML, we have ML(eapi, s) = ML(eapi, s

′) if s(`) = s′(l)
for all ` ∈ Lenv. In the present case, the store s′ at the
end of the evaluation is s2{` ← v2}, with ` /∈ Lenv by
containment, hence ML(eapi, s

′) = ML(eapi, s2) and thus
p ∩ML(eapi, s

′) = ∅ as expected.

Application: a is a1(a2). By induction hypothesis, we
have ϕ, e, s ` a1 → v1/s1 and ϕ, e, s1 ` a2 → v2/s2, with
Capp(v1, s2) and Capp(v2, s2) and S2 |= v1 : σ → τ and
S2 |= v2 : σ and p ∩ ML(eapi, s2) = ∅. Hence, v1 is a
closure λx.a′m[e′]. If m = app (the function comes from
the applet), the result follows from the induction hypothesis
applied to the evaluation of a′. If m = env (the function
comes from the applet environment), the closure λx.a′m[e′]
can only be obtained by looking up a variable bound in eapi,
then possibly performing some function applications or fst
and snd operations. Thus, we have ML(λx.a′m[e′], s2) ⊆
ML(eapi, s2), and the result follows by proposition 8. 2

13

