
HAL Id: hal-01509314
https://hal.inria.fr/hal-01509314

Submitted on 16 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sheep in wolf’s clothing: Implementation models for
data-flow multi-threaded software

Keryan Didier, Albert Cohen, Adrien Gauffriau, Amaury Graillat, Dumitru
Potop-Butucaru

To cite this version:
Keryan Didier, Albert Cohen, Adrien Gauffriau, Amaury Graillat, Dumitru Potop-Butucaru. Sheep
in wolf’s clothing: Implementation models for data-flow multi-threaded software. [Research Report]
RR-9057, Inria Paris. 2017, pp.31. �hal-01509314�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132065882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01509314
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
90

57
--

FR
+E

N
G

RESEARCH
REPORT
N° 9057
April 7, 2017

Project-Teams AOSTE,PARKAS

Sheep in wolf’s clothing:
Implementation models
for data-flow
multi-threaded software
Keryan Didier, Albert Cohen, Adrien Gauffriau, Amaury Graillat,
Dumitru Potop-Butucaru

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

Sheep in wolf’s clothing: Implementation
models for data-flow multi-threaded software

Keryan Didier, Albert Cohen, Adrien Gauffriau, Amaury
Graillat, Dumitru Potop-Butucaru

Project-Teams AOSTE,PARKAS

Research Report n° 9057 — April 7, 2017 — 28 pages

Abstract: Concurrent programming is notoriously difficult, especially in constrained embedded
contexts. Threads, in particular, are wildly nondeterministic as a model of computation, and
difficult to analyze in the general case. Fortunately, it is often the case that multi-threaded,
semaphore-synchronized embedded software implements high-level functional specifications written
in a deterministic data-flow language such as Scade or (safe subsets of) Simulink. We claim that
in this case the implementation process should build not just the multi-threaded C code, but (first
and foremost) a richer model exposing the dataflow organization of the computations performed by
the implementation. From this model, the C code is extracted through selective pretty-printing,
while knowledge of the data-flow organization facilitates analysis. We propose a language for
describing such implementation models that expose the data-flow behavior (the sheep) hiding
under the form of a multi-threaded program (the wolf). The language allows the representation
of efficient implementations featuring pipelined scheduling and optimized memory allocation and
synchronization. We show applicability on a large-scale industrial avionics case study and on a
commercial many-core.

Key-words: synchronous languages, Kahn process networks, execution platform, semantic
preservation, implementation model, multi-thread, parallelisme, Lustre, Scade

Brebis déguisées en loups : Modèles d’implémentation pour
systèmes parallèles flots de données

Résumé : La programmation concurrente est une discipline difficile, particulièrement dans
un contexte de systèmes embarqués. Les threads, en particulier, sont un modèle de calcul non-
déterministe et difficile à analyser dans le cas général. Heureusement, les logiciels embarqués
multi-threadés synchronisés par sémaphores sont souvent des implémentations de spécifications
fonctionnelles de haut niveau écrites dans un langage flot-de-données déterministe comme Scade
ou (un sous-ensemble sûr de) Simulink. Dans ce cas, le processus d’implémentation devrait, non
seulement construire le code C multi-threadé de l’implémentation, mais avant tout un modèle
plus riche exposant l’organisation du flot-de-données des calculs effectués par le code. De ce
modèle, le code C peut être extrait par du simple pretty printing. En même temps, la structure
flot-de-donnée facilite l’analyse. Nous proposons un langage pour la description de tels mod-
èles d’implémentations qui exposent le comportement flot-de-donnée (la brebis) déguisé en un
programme multi-threadé (le loup). Ce langage permet une représentation d’implémentations ef-
ficaces avec ordonnancement pipeliné et allocation mémoire et synchronisations optimisées. Nous
montrons son application sur un cas d’étude de l’industrie aéronautique et sur une plateforme
many-coeurs commerciale.

Mots-clés : langages synchrones, réseaux de Kahn, plateforme d’exécution, préservation sé-
mantique, modèle d’implémentation, multi-thread, parellèlisme, Lustre, Scade

Implementation models for data-flow multi-threaded software 3

Contents
1 Introduction 4

1.1 Motivating example. 4
1.2 Related work and originality . 7

2 Modifications to Lustre 7
2.1 Synchronous semantics principles . 11
2.2 Kahnian asynchronous interpretation . 11

2.2.1 Preliminary notations . 11
2.2.2 Program state . 12
2.2.3 Semantic rules and semantics preservation 13
2.2.4 Properties ensuring implementability . 14

3 Implementation modeling 14
3.1 Target architectures . 14

3.1.1 API and ABI . 15
3.2 Mapping information . 15
3.3 Platform semantics . 18

3.3.1 State representation . 18
3.3.2 Semantic rules . 20
3.3.3 Correctness and semantics preservation 21

4 Experimental evaluation 21

5 Conclusion 22

A Synchronous semantics of InteLus 23
A.1 State representation . 23
A.2 Notations . 23
A.3 Structural operational semantics rules . 23
A.4 Clocks . 25
A.5 Equation guards . 27

RR n° 9057

4 Didier et al.

1 Introduction

Mastering concurrency is difficult, and yet hardware design resolutely moves towards increasingly
massive parallelism based on the use of chip-multiprocessors. Threads [6] are one of the major
programming paradigms for such multi- and many-core systems. They arguably provide the best
portability and the finest control over resource allocation, which are both essential in the design
of embedded applications that need to get the best guaranteed performance out of resource-
constrained hardware.

But such expressiveness comes at a price. As a model of computation, threads are wildly
non-deterministic and non-compositional [9], making both programming and formal analysis [13]
difficult. This explains why multi-threaded software is often bug-ridden even in the context of
critical systems [8].

But there are also good news: in many industrial contexts (avionics, automotive, etc.) the use
of threads is tightly controlled. We consider in this paper the particular case where the functional
specification of the system is done in a synchronous dataflow language such as Simulink 1 or Scade
2. In this case, multi-threaded implementations have particular structure and properties: The
number of threads is fixed, each one implementing a recurrent task obtained by sequencing a
fixed set of dataflow blocks (or parts thereof, obtained by parallelization).

Such hypotheses, when taken individually, largely facilitate the formal analysis of multi-
threaded systems. But in many cases, the multi-threaded implementation preserves a funda-
mentally dataflow structure, with specific rules on the way platform resources (shared memory,
semaphores) are used. When this happens, the implementation is best represented as a dataflow
synchronous program whose elements are mapped on the platform resources. Ensuring the cor-
rectness of such an implementation consists in ensuring that:

1. The dataflow program (without the mapping) implements the semantics of the functional
specification. This analysis can be performed inside the dataflow model.

2. Once the mapping of program elements onto the platform resources3 is performed, the exe-
cution of the platform (under platform semantics) implements the behavior of the dataflow
program.

Together, the dataflow program and the mapping information form an implementation model.
This model is strictly richer than the multi-threaded C code, which can be obtained through a
pretty-printing of model parts. Exposing the internal data-flow structure of the implementation
facilitates defining and establishing correctness, e.g. the correctness of the synchronization or
memory coherence protocols synthesized during the implementation process. All analyses can be
realized using efficient tools specific to the synchronous model. Finally, if manual inspection of
the C multi-threaded code is required, such a representation can be used to enforce strict code
structuring rules which facilitate understanding.

1.1 Motivating example.
Mapping being necessarily platform-dependent, we shall consider in this paper shared memory
multi-core platforms with a specific memory organization, detailed in Section 3.1. The example
in Fig. 1 provides a simple dataflow program, a very simple C implementation with two threads,
and the corresponding implementation model (in the middle column).

1https://www.mathworks.com/products/simulink.html
2http://www.esterel-technologies.com/products/scade-suite/
3Sequencing of blocks into threads executed by processors; code, stack and data variables to memory locations;

synchronizations to semaphores, etc.

Inria

https://www.mathworks.com/products/simulink.html
http://www.esterel-technologies.com/products/scade-suite/

Implementation models for data-flow multi-threaded software 5

fun Prod:()->(int)
fun Cons:(int)->()
var x:int
let

(x) = Prod()
() = Cons(x)

tel

(a)

fun Prod:()->(int) at 0x20100 1

fun Cons:(int)->() at 0x30200 2

var x:int at 0x22000 on cpu0 3

x_cpu1:int at 0x22000 on cpu1 4

x_ram:int at 0x22000 5

u:event u1:event v:event v1:event 6

p:event q:event r:event s:event 7

let 8

thread on cpu0 at 0x20000 stack 0x30000 9

10

top done(q) [wait:sem_1] (_) = (v1) 11

top wait(q) (x) = Prod() 12

top done(p) [flush:0x22000] (x_ram) = (x) 13

top wait(p) [signal:sem_0] (u) = top 14

15

16

thread on cpu1 at 0x30000 stack 0x40000 17

18

top done(r) [wait:sem_0] (_) = (u1) 19

top wait(r) [inval:0x22000] (x_cpu1) = (x_ram) 20

top done(s) () = Cons(x_cpu1) 21

top wait(s) [signal:sem_1] (v) = top 22

23

semaphore sem_0 (u) (u1) init false on lock_0 24

(u1) = (u) 25

semaphore sem_1 (v) (v1) init true on lock_1 26

(v1) = top fby (v) 27

tel 28

29

30

a
b
extern int x ;
extern int x_cpu1 ;
__attribute__((section(".oncpu0")))
void init() { signal(lock_1) ;}

__attribute__((section(".oncpu0")))
void thread_cpu0() {

init() ; global_barrier() ; for(;;) {
wait(lock_1) ;
Prod(&x) ;
flush(&x) ;
signal(lock_0) ;

}}
__attribute__((section(".oncpu1")))
void thread_cpu1() {

global_barrier() ; for(;;) {
wait(lock_0) ;
inval(&x_cpu1) ;
Cons(&x_cpu1) ;
signal(lock_1) ;

}}
ldscript fragment:

x=0x22000; x_cpu1=0x22000;
stack0=0x30000; stack1=0x40000;
.=0x20000; .bank2:{*(.oncpu0);

. = 0x100 ; *(.Prod) ;}
.=0x30000; .bank3:{*(.oncpu1);

. = 0x200 ; *(.Cons) ;}

(b) (c)

Figure 1: Simple producer-consumer specification (a), two-thread implementation (c), and the
corresponding implementation model (b) providing both the data-flow model of the implemen-
tation (in black) and the mapping information allowing execution on the HW platform (in red).
Line numbering is common between (b) and (c).

RR n° 9057

6 Didier et al.

The specification program follows a simplified Lustre [4] syntax, presented in Section 2, and
defines a simple producer-consumer application with a single communication variable x. The C
implementation is much more complex. While the production and consumption function calls
can still be identified, they are surrounded by calls whose function is to ensure correct execution
on the asynchronous multi-core platform:

• Semaphore wait and signal API calls ensure that production happens before consumption,
and that consumption is completed when a communication variable is reused for production.

• Data cache dflush and dinval API calls implement the memory coherency protocol en-
suring that the consumer uses the correct data.

Note that the multi-threaded implementation consists not only of C code, but also comprises
GCC annotations and the linker script which allow the definition of the memory mapping.

Such tightly-controlled mapping is often employed in critical embedded systems. In avionics
applications like our case study, the worst case execution time must be demonstrated for nor-
mal conditions, but the application must also be robust to “external factors”. The choice of a
semaphore-synchronized implementation helps with the second objective, largely improving ro-
bustness by essentially guaranteeing the respect of the functional semantics. Achieving the first
objective can then be done through tight control of memory allocation and synchronization, and
through the use of hardware with good support for timing predictability (hardware semaphore
implementation, no shared caches, etc.). These design choices, not covered in this paper, reduce
timing variability and facilitate timing analysis.

As explained above, the implementation model of Fig. 1(b) consists in a dataflow program (in
black) extended with annotations defining all the aspects of its mapping (in red). The dataflow
program uses some extensions to Lustre allowing the description of synchronization. These ex-
tensions, defined in Section 2, include the synchronization data type event and the wait and
done constructs that allow the definition of sequencing constraints not implied by data variables.
The dataflow implementation program, endowed with Kahnian asynchronous semantics (defined
in Section 2.2) provides a precise functional model of the execution on platform. For instance,
specification variable x is replaced here with 3 variables x, x_cpu1, and x_ram allowing the repre-
sentation of the various states of the memory system where the value produced on processor cpu0
has not yet been propagated to the RAM or to the cache of processor cpu1. The implementation
model also provides dataflow interpretations for the various API calls. For instance, in line 13
the dataflow interpretation of dflush ensures that the local value of x has been propagated onto
its RAM counterpart x_ram, and in line 14 the dataflow interpretation of signal produces a
token (the special literal top) that can be consumed later by a wait call. The equations in lines
25 and 27 are not part of threads. They provide the semantics of platform semaphores.

Mapping information defines the construction of sequential threads and their allocation to
processors, the allocation of all code, stack and data to memory, and the implementation of
interprocessor synchronization with semaphores that are allocated onto hardware locks. Note
that the C code is obtained through a pretty printing of implementation model elements. For
instance, there exists a line-to-line correspondence between equations of a thread in the imple-
mentation model and function calls in the infinite loop of the corresponding C thread. Also note
that an explicit resource allocation is needed to allow the representation of efficient implemen-
tations. The initial source code could be given a translation into multi-treaded code, but such a
translation would ignore (optimized) resource allocation issues.

Outline. The remainder of the paper will detail the elements of our implementation language,
and show that it can be used to represent efficient implementations of large-scale applications.

Inria

Implementation models for data-flow multi-threaded software 7

Section 1.2 presents related work. Section 2 presents the modifications we bring to the Lus-
tre/Scade language, introduces its less commonly known Kahnian asynchronous semantics, and
presents an efficient implementation of our simple example. Section 3 defines the syntax and
(platform) semantics of the implementation modeling language. Section 4 presents our experi-
mental results, and Section 5 concludes.

1.2 Related work and originality

Most work on parallel application mapping (e.g. [2, 1]) involves a code generation phase that
escapes formal analysis, covering at least some of the aspects we consider here: construction of
threads, synthesis of synchronization and memory consistency protocols, memory allocation, etc.
From this perspective, our work is an attempt at uniform formal modeling of this phase, which
dissociates platform-independent aspects from platform-dependent ones, and which currently
covers shared memory, semaphore-synchronized platforms.

Our formalization effort can also be seen as the first step towards formal proof of correctness
for this code generation phase. This is similar to previous work on formally proved compilation
[11], on static analysis of parallel software [13], and on rigorous systems design using BIP [3]. The
main difference is that we remain solidly attached to a dataflow, deterministic semantic model
even in the description of implementations. We expect this choice will simplify the specification
and proof of correctness results.

Previous work on the compilation and the translation validation for the Signal language
[10, 14] also maintains an end-to-end dataflow formalization. By comparison, our approach
extends dataflow modeling to cover low-level multi-processor implementation issues (semaphore
synchronization, memory consistency, construction of threads).

The objective of reducing the semantic distance between specification and implementation
is also covered in [17]. The difference is the dataflow model with simpler control structure that
we consider, and the fact that we consider aspects such as synchronization, memory consistency,
and memory allocation.

From a more classical modeling point of view our work does not aim for the generality of
UML/MARTE [12], but rather to provide a specific solution to the problem of correct multi-
thread implementation of dataflow synchronous specifications. In this, it joins previous work
that enriches dataflow languages with annotations describing non-functional requirements [2].

2 Modifications to Lustre

This section introduces a dataflow synchronous language for system-level functional specification
and for defining the dataflow part of implementation models. We could define this language as a
strict extension of Lustre [4] or Scade with new constructs for our new modeling needs. However,
the system-level and implementation-oriented perspective makes some major features of these
languages unneeded, and including them would only pollute our presentation. For this reason,
we remove them. We shall not insist here on the syntax and semantics of Lustre, which has been
covered elsewhere. Instead, we focus on the various modifications.

We call the new language InteLus, for Integration Lustre, and its syntax is provided in the
black and blue parts of Fig. 2. Unlike Lustre and Scade, which also allow the programming of
the sequential tasks of an embedded system, InteLus is only designed to allow the system-level
integration of these tasks. For this reason, InteLus does not have a module system. One aspect
of this is that a full-fledged interface definition is not needed at system level. We only identify
input variables, which intuitively correspond to memory-mapped input devices.

RR n° 9057

8 Didier et al.

<prog> ::= <type>∗ <fun>∗ var <var>∗ let <ceq>∗ <thread>+ <sem>∗ tel

<type> ::= type <id> size <int>

<fun> ::= fun <id> (<list(<arg>)>) -> (<list(<arg>)>) <alloc>?

<arg> ::= state? <tid>

<var> ::= input? <id> : <tid> <varalloc>?

<tid> ::= bool | int | <id> | event

<ceq> ::= <guard>? <wait>? <done>? <eq>

<eq> ::= (<nvlist(<lval>)>) = (<nvlist(<sexpr>)>)

| (<list(<lval>)>) = <fid>(<list(<sexpr>)>)

| (<id>) = <k> fby <sexpr>

| (<id>) = <sexpr> when <id>

| (<id>) = merge <id> <sexpr> <sexpr>

<sexpr> ::= <k> | <id>

<k> ::= <lit> | <fid>()

<lit> ::= true | false | <int> | top

<lval> ::= <id> | _
<list(X)> ::= | <nvlist(X)> (list meta-rule)

<nvlist(X)> ::= X | <nvlist(X)>,X (non-void list meta-rule)
<wait> ::= wait(<list(<id>)>)

<done> ::= done(<list(<id>)>)

<guard> ::= top | <id> | <guard> <wait>? <done>? on <id>

<alloc> ::= at <addr>

<varalloc> ::= <alloc> <cpuid>?

<thread> ::= thread on <cpuid> <alloc> stack <addr><teq>∗

<teq> ::= <ceq> | <capi>

<capi> ::= <guard> <wait>? <done>? <api>

<api> ::= | [wait:<id>] (<lval>) =(<id>)

| [signal:<id>] (<id>) = (<sexpr>)

| [dinval:<addr>] (<nvlist(<id>)>) = (<nvlist(<id>)>)

| [dflush:<addr>] (<nvlist(<id>)>) = (<nvlist(<id>)>)

<sem> ::=semaphore <id> (<nvlist(<id>)>) (<nvlist(<id>)>)

on <lockid> <eq>+

Figure 2: Lustre language subset (in black). InteLus extensions (blue). Extension with mapping
information (red).

Inria

Implementation models for data-flow multi-threaded software 9

Furthermore, InteLus assumes that all sequential tasks have already been built, taking the
form of sequential functions4 called from the InteLus program (like Prod and Cons in Fig. 1(a,b)).
All memory used by the functions must be exposed to the memory allocation algorithms. For this
reason, functions cannot contain static variables. To allow the representation of stateful tasks, the
state must be exposed as one or more dataflow variables transmitted from one cycle to the next
using fby constructs. To allow efficient memory allocation of such variables, function inputs and
outputs may be tagged with the state keyword, to identify inputs that are passed through refer-
ence, modified in place and passed on as outputs. Inputs and outputs marked with statemust be
paired and placed at the beginning of the input and output argument lists. The following function
declaration features one state variable: fun myfun (state int, int)-> (state int, bool)

InteLus incorporates the event type of Signal [10], with the difference that its only value
is here top, and not true. Variables of this type carry no information, representing pure syn-
chronization. In Fig. 1(b) we use them to provide the dataflow interpretation of semaphore
operations. We also use them to define control dependencies between equations that do not ex-
change data. This is done through the use of the novel wait and done constructs. When placed
in front of an equation, wait(s1, . . . , sk) will delay the start of the equation until a top value (a
token) can be read on each of the event type variables s1, . . . , sk. When placed in front of an
equation, done(s1, . . . , sk) will write top on each of the variables s1, . . . , sk after the completion
of the execution of the equation.

Sequencing dataflow equations to build threads running in an asynchronous environment
requires a normalization phase. For each equation of a thread, this phase builds a guard, which
is the (possibly empty) cascade of tests needed to determine, at each execution cycle where the
control reaches the equation, if the equation is executed or not, thus allowing giving control in
sequence.5 Guards are placed in front of equations. A guard always starts with a variable of type
event (or the literal top) which identifies the trigger event of the cascade of tests. We require
that all equations of a thread have the same trigger. It represents the event triggering iterations
of the thread body. When the trigger is top, no external event is needed to trigger iterations,
and the thread body is an infinite loop (like in our example). Triggers different from top allow
the representation of interrupt-driven tasks (not present in our examples).

In each guard, the trigger is followed by a sequence of tests, and synchronizations. The
test of Boolean variable C is represented with “on C”. The constructs wait and done allow
the definition of control dependencies at all levels of guard decoding. Consider the following
equation: u on x wait(a) done(b) on y (z) = f(t)
At each cycle where u is present and x=true, a top value is waited for on variable a after the
test on x was performed and before the test on y is executed. During the same cycles, a top
value is written on variable b when the execution of the equation is completed, if y=true, or
just after the test on y, if y=false. Note how, unlike previous uses of guards in synchronous
languages [16], our guards focus on synchronization, clearly representing the flow of control from
trigger to cascade of tests and synchronizations, until passing control in sequence.

An InteLus program featuring non-trivial guards is provided in Fig. 3 (the black, dataflow
part). This program is an optimized, pipelined implementation of the producer-consumer spec-
ification of Fig. 1(a). It contains several features not present in the non-optimized program
of Fig. 1(b). The Boolean variable c is tested by guards to allow the incremental activation
of equations during the prologue of the pipelined implementation. Software pipelining requires
some memory replication, to allow Prod and Cons to work in parallel on different copies of the
specification variable x. The copy used by Prod is located at address 0x20500, and that used by

4Compiled from traditional Lustre nodes, or other C functions.
5The decision not to execute is particularly valuable in an asynchronous environment where absence cannot

be detected.

RR n° 9057

10 Didier et al.

1 fun Prod:()->(int) at 0x20100
2 fun Cons:(int)->() at 0x30200
3 var x:int at 0x20500 on cpu0 x1:int at 0x30500 on cpu0
4 x1_ram:int at 0x30500 x1_ram_fby:int at 0x30500
5 x2:int at 0x30500 on cpu1 x2_ram:int at 0x30500
6 c:bool at 0x30504 on cpu1
7 i:event j:event k:event l:event m:event n:event o:event p:event
8 q:event v:event v0:event v1:event u:event u1:event
9 let

10 (l) = top fby k
11 (q) = top fby p
12 (x1_ram_fby) = 0 fby x1_ram
13 (x2_ram) = x1_ram_fby when c
14 thread on cpu0 at 0x20000 stack 0x30000
15 top wait(l) (x) = Prod()
16 top done(i) [wait:s1] (_) = (u1)
17 top wait(i) (x1) = (x)
18 top done(j) [flush:0x20504] (x1_ram) = (x1)
19 top wait(j) done(k) [signal:s0] (v) = top
20 thread on cpu1 at 0x30000 stack 0x40000
21 top wait(q) done(m) on c [wait:s0] (_) = (v1)
22 top wait(m) on c [inval:0x20504] (x2) = (x2_ram)
23 top done(n) on c () = Cons(x2)
24 top wait(n) done(o) [signal:s1] (u) = top
25 top wait(o) done(p) (c) = false fby true
26 semaphore s0 (v) (v1) init false on lock_0
27 (v0) = top fby v
28 (v1) = v0 when c
29 semaphore s1 (u) (u1) init true on lock_1
30 (u1) = top fby u
31 tel

Figure 3: Efficient pipelined implementation of our example

Inria

Implementation models for data-flow multi-threaded software 11

Cons at address 0x30500. The copy from one location to another is realized at each cycle by the
equation in line 20.

Fig. 3 also features equations not assigned to threads or semaphores. These are equations
that are needed for the completion of the dataflow model, but whose semantic action will either
be implemented by the sequencing of threads (for lines 13 and 14) or whose semantic action
will not require encoding with platform operations. For instance, the equations in lines 15 and
16 need no platform operation due to the allocation of input and output variables on the same
memory locations.

Finally, notation “_” as an lvalue for equation output values of type event whose value is not
needed. This notation reduces the number of variables.

2.1 Synchronous semantics principles

The semantics of InteLus is close to that of Lustre, which is well covered in existing literature [4,
5]. For this reason, and due to space restrictions, we will provide the full synchronous semantics
of InteLus in a separate report. We provide here only the principles of the formalization, used
next.

The semantics of InteLus statements and programs is described through structural operational
semantics (SOS) rules used to derive transitions of the form p′

O
=⇒
I
p′′. Here, p′ and p′′ are terms

describing the input and output state of some statement or program p, I is a valuation of all
input variables of the statement/program, and O is a valuation of all variables that are not
inputs. The transition defines the behavior of p for one execution cycle.

State terms associated to a statement or program p describe the values currently stored by
fby equations. They do so by modifying the constants of fby equations directly in the text of p.
The initial state is p (with the initial fby constants). Values assigned by I and O to variables
are either of the type of the variable, or can be the special value nil representing the absence of
a value. If V is a set of variables, we denote with RV the set of all possible assignments of the
variables in V . For r ∈ RV and v ∈ V we denote with r(v) ∈ Type(v)∪{nil} the value of v in r.

Given a program p, an execution trace is any sequence of transitions starting in the initial
state: p O1=⇒

I1
p1

O2=⇒
I2

. . .
On==⇒
In

pn. We say that a program is correct if a trace exists for every sequence
I1, . . . , In assigning values different from nil to every input variable. We denote the set of
all traces of program p with Traces(p). Given the determinism of the synchronous semantics,
Traces(p) can be seen as a sub-set of R∗V , where V is the set of variables of p.

The full semantics is described in Appendix A.
2.2 Kahnian asynchronous interpretation

The determinism of the InteLus dataflow equations means that we can endow InteLus programs
with asynchronous Kahn process networks (KPN) [7] semantics without losing determinism.
This asynchronous interpretation is important in our case, given the objective of asynchronous
multi-processor implementation. It puts into evidence well-formed properties allowing imple-
mentation on the target execution platforms. A strong semantics preservation property links
the asynchronous interpretation of an InteLus program to its synchronous semantics, and its
small-step operational description facilitates the link with the platform semantics of Section 3.3.
This facilitates the formal characterization of implementation correctness.

2.2.1 Preliminary notations

In our semantics, program equations are deterministic Kahn processes communicating through
infinite lossless FIFO channels corresponding to the variables. The semantics is asynchronous, so

RR n° 9057

12 Didier et al.

∀i ∈ 1,m : adv(h, Yi, k) (x1, . . . , xn) = Ffid(hk(Y1), . . . , hk(Ym))

� (X1, . . . , Xn) = fid(Y k
1 , . . . , Y

k
m), h�→� (X1, . . . , Xn) = fid(Y k+1

1 , . . . , Y k+1
m), hδ(〈Xi 7→ xi | i = 1, n〉)�

(fcall)

adv(h, Y, n)

� X = k fby Y n, h�→� X = hn(Y) fby Y n+1, hδ(〈X 7→ hn(Y)〉)� (fby)

adv(h,C,m) hm(C) = false adv(h,X,m)

� Y = Xm when Cm, h�→� Y = Xm+1 when Cm+1, h� (when-)

adv(h,C,m) hm(C) = true adv(h,X,m)

� Y = Xm when Cm, h�→� Y = Xm+1 when Cm+1, hδ(〈Y 7→ hm(X)〉)� (when+)

adv(h,C,m) hm(C) = true adv(h,X, n)

� Z = merge Cm Xn Y p, h�→� Z = merge Cm+1 Xn+1 Y p, hδ(〈Z 7→ hn(X)〉)� (merge+)

adv(h,C,m) hm(C) = false adv(h, Y, p)

� Z = merge Cm Xn Y p, h�→� Z = merge Cm+1 Xn Y p+1, hδ(〈Z 7→ hp(Y)〉)� (merge-)

� p, h�→� p′, hδ(x)� ∀i : adv(h, Si, k) ∀i, j : (x(Si) = x(Tj) = nil) ∧ (Si 6= Tj)

� r(p, k), h�→� r(p′, k + 1), hδ(x ∪ 〈Ti 7→ top | i = 1, n〉)�
(wait-done)

adv(h,C, k) hm(C) = true � eq, h�→� eq′, hδ(r)�
� on Ck eq, h�→� on Ck+1 eq′, hδ(r)� (on+)

adv(h,C, k) hm(C) = false
� on Ck eq, h�→� on Ck+1 eq, h� (on-)

adv(h, S, k) � eq, h�→� eq′, h′ �
� Sk eq, h�→� Sk+1 eq′, h′ � (grd)

� eqi, h�→� eq′i, h
′ �

� eq1, . . . , eqi, . . . , eqn, h�→� eq1, . . . , eq′i, . . . , eqn, h
′ � (interleave)

Figure 4: Kahn process network semantics. Predicate adv(h,X, k) is defined as len(h(X)) > k.
Term r(p, k) is defined as wait(Sk

1 , . . . , S
k
m) done(T1, . . . , Tn) p

that absence of a variable cannot be reacted upon (only presence). Execution traces are repre-
sented with histories assigning sequences of values different from nil to each variable identifier.
Given a set of variables V , we denote with Hist(V) the set of finite histories h assigning to
each v ∈ V a sequence of values h(v) ∈ Type(v)∗. On Hist(V) we introduce the concatenation
operation, defined pointwise by (h1h2)(v) = h1(v)h2(v) for all v. Operator len(x) provides the
provides the length of a string.

The asynchronous observation of a synchronous trace discards synchronization, retaining for
each variable the sequence of values different from nil. It is defined as δ : RV

∗ → Hist(V)
where δ(t1t2) = δ(t1)δ(t2) for all t1, t2 ∈ RV

∗ and δ(r)(v) = r(v) if r ∈ RV with r(v) 6= nil and
δ(r)(v) = ε (the empty word), if r(v) = nil.

2.2.2 Program state

In the classical definition of Kahn process networks [7], system state is fully determined by
the state of the processes and the state of the communication channels. The state of each
communication channel can be represented with the sequence of messages produced, but not yet
consumed on that channel.

In InteLus, under asynchronous semantics, equations are stateless. This is true even for the
fby equation, whose internal state is naturally conflated with that of the output variable. On
the other hand, point-to-point channels are replaced with multi-cast variables that can be read
by multiple equations. For this reason, we represent states of a program or statement p as pairs
� p′, h� where:

• h ∈ Hist(V), where V is the set of variables of p. It gives the finite (possibly empty)
sequence of values different from nil that were assigned to each variable since the beginning

Inria

Implementation models for data-flow multi-threaded software 13

of the execution. If v is the output of a fby equation, h(v) also contains, on the last position,
the internal state of the fby (its constant).

• p′ is an annotated term over p. The terms are based on those of the synchronous semantics.
In addition, for each equation eq that reads a variable v, the use of v inside the equation is
annotated with a non-negative integer defining the position in h(v) that the equation will
read at its next execution. Indices in h(v) start at 0.

Note that there is some redundancy between the fby constants in the term and the same val-
ues stored in the history of the fby output variables. We keep both for consistency with the
synchronous semantics. The initial state of a program/statement p is � p0, h0 �, where the p0
is obtained from p by annotating each variable read point with 0. If v is defined by equation
v = k fby y then h0(v) = k. For all other variables h0(v) = ε.

We say that a state � p, h � is complete if for every variable v defined by v = k fby y
all read pointers are equal to len(h(v)) − 1, and for all other variable w the read pointers are
equal to len(h(w)). Complete states can be put in direct relation with states of the synchronous
semantics. We denote with strip(� p, h�) the synchronous state term obtained from � p, h�
by removing the history h and the read point annotations.

2.2.3 Semantic rules and semantics preservation

Semantics is presented in Fig. 4, under SOS form. Concurrency is by interleaving. At each
transition, exactly one equation is executed among those that can be executed (cf. rule (inter-
leave)). The rules for guards (on*) and (grd) are optional. Without them, the semantics works
for programs without guards. With the rules, equations can have guards. Input variables are
not considered in the semantics. It is assumed that each input is read by exactly one equation,
and that a fresh value is provided at each execution of that equation.

Predicate adv(h, v, n) determines whether we can read the nth element of h(v) in history h.
It is used to determine if enough input is available to enable the execution of a transition.

The synchronous and Kahnian asynchronous semantics of InteLus are tightly related by the
following result:

Theorem 1 (Semantics preservation) Let p be a correct synchronous program. Then:

• For any r1 . . . rk ∈ Traces(p) there exists a complete asynchronous trace � p0, h0 �→
. . .→� pn, hn � such that: hn = δ(r1 . . . rk)δ(r) (1)

where r(v) = ε if v is not the output of a fby, and r(v) = k if k is the state of the
fby defining v in pn. When this happens, the final state of the synchronous trace is
strip(� pn, hn �).

• For any asynchronous trace � p1, h1 �→ . . .→� pm, hm � of p there exists an extension
� p1, h1 �→ . . . →� pn, hn � (n ≥ m) that is complete, and there exists r1 . . . rk ∈
Traces(p) satisfying property (1) above.

Proof sketch: Direct application of Theorem 4.4 of [15]. The tedious part of the proof consists in
interpreting equations of p as micro-step state transition systems (µSTS) and proving that the
synchronous (resp. asynchronous) composition of the µSTSs associated to equations faithfully
represents the synchronous (resp. asynchronous) semantics of p. Once this is done, Theorem 4.4
can be applied, after noting that the synchronous correctness of the program ensures that the
asynchronous composition of µSTSs is non-blocking.�

RR n° 9057

14 Didier et al.

2.2.4 Properties ensuring implementability

The Kahnian semantics is the natural semantic framework for defining a series of correctness
properties ensuring the implementability of our programs. We briefly present here only 3 such
properties. These properties are amenable to low-complexity verification and synthesis through
the use of sufficient properties defined in the synchronous model.

Boundedness. When the program of Fig. 1(a) is executed under Kahnian semantics, the
producer may be executed an indefinite number of times before the consumer is executed once.
Such a behavior requires infinite storage, and is not amenable to static resource allocation. It
must be prohibited through the introduction of wait/done dependencies. Our objective is that
implementations require the storage of at most one value at a time for each variable. Semantically,
this amounts to requiring that the dataflow part of the implementation program satisfies the
following property:

Definition 1 (1-boundedness) An InteLus program p is called 1-bounded if in any reachable
state � p′, h′ � of the Kahnian semantics, for every variable v that is not an input and for
every read point annotation x of v, we have: len(h′(v))− x ≤ 1.

Implementation of fby with no internal memory. The general translation of fby into C
code requires the use of internal storage. However, all memory must be exposed to optimization,
so we always impose scheduling constraints (through wait/done dependencies) ensuring that
internal storage is not needed.6

Explicit synchronization. Under dataflow semantics, data accesses are synchronizing. Under
machine semantics, they are not. Assume that a variable v is used for communication between
equations eq1 and eq2 that will be mapped on different threads. Then, variables of type event,
later mapped onto semaphore operations, must be used to represent the synchronization asso-
ciated to these data accesses. The completeness of the synchronization can be checked on the
dataflow implementation model. Indeed, if enough synchronization has been added, then the
Kahnian semantic transitions of eq2 do not need to perform the synchronization tests on v (the
adv conditions in Fig. 4).

3 Implementation modeling

This section starts with a presentation of the architectures we target, including a precise descrip-
tion of their API and of the desired implementation structure. Based on this description, we can
introduce the implementation model: its syntax, intuitive and formal semantics.

3.1 Target architectures

For the scope of this paper, we shall consider multi-core shared memory architectures without
shared caches and without hardware cache coherency between L1 caches. This definition covers
classical multi-core processors when their shared caches are disabled (often the case in embedded
contexts), or parts of larger architectures, such as the computing tiles of the Kalray MPPA 256

6Even stricter rules can be imposed, to reduce memory consumption or enforce internal coding rules. In our
avionics case study we ensure that the input and output variables of a fby can share the same memory location,
which also means that no code is needed in the implementation for fby equations. Such stricter rules must be
used with care, because they can introduce deadlocks.

Inria

Implementation models for data-flow multi-threaded software 15

many-core7, which we use as test platform. Due to presentation size restrictions, we do not cover
here issues related to the interaction between the shared memory (sub-)system we consider and
its environment (communication buses, on-chip networks, DMA units, etc.), or to the use of a
memory management unit (MMU). We assume that our platforms have a single address space
with physical addressing and no protection.

3.1.1 API and ABI

We assume that our target architectures provide a minimal set of services, and we standardize
access to them by means of a simple API. Similarly, we make a number of assumptions on the
way software is deployed. These assumptions can be seen as an extended application binary
interface (ABI). The definition of the semantics of our implementations heavily relies on the API
and ABI defined next. Modifications on any of the two may require changes to the operational
semantics defined next.

Cache consistency. Software running on one CPU core can enforce consistency between its L1
data cache and the shared RAM using 2 primitives. Primitive inval(addr) invalidates the cache
line containing address addr. The next access to an address in this cache line is guaranteed to
be a cache miss, which forces loading from the shared RAM. Primitive flush(addr1, . . . , addrk)
forces the writing of the words at addresses addr1, . . . , addrk to the shared RAM, and enforces a
memory barrier afterwards. When the execution of flush completes, all the words have already
been written to shared RAM.

Semaphores. Synchronization between threads is done using binary semaphores. A fixed,
finite set of semaphores is provided. The state of all semaphores is initially false. Synchro-
nization is done using 2 primitives. Primitive signal(l) should only be called when the state of
sempahore l is false (otherwise, the behavior is undefined). It changes the state of l to true.
Primitive wait(l) waits until the state of semaphore l is true and changes the state to false.
When multiple wait(l) statements are waiting when signal(l) sets the semaphore to true, then
only one of them is non-deterministically chosen and executed. Our implementations will ensure
that no concurrency exists between wait(l) calls.

ABI We shall consider in this paper only statically scheduled, bare metal implementations.
Like in our example of Fig. 1, each CPU is assigned one sequential thread – a function that never
terminates. An initialization function is called by one of the threads when execution starts. A
global synchronization barrier (function global_barrier) separates initialization from the rest
of the execution. We assume the software is already deployed, meaning that we do not cover
here boot-related issues. Each thread is loaded at a fixed address along its local data (if any).
The same is true for functions called by threads. For each thread, the stack base is statically
defined.

3.2 Mapping information
This section provides the description of the red syntax elements of Figures 2, 1, and 3, which
define the mapping of the data-flow variables and equations onto resources of the target platform.
Mapping annotations have 3 functions. First, they partition the data-flow equations in 3
classes: equations sequenced into threads, equations describing the behavior of platform devices
(in our case semaphores), and equations that do not need sequencing into threads due to specific

7www.kalray.eu/kalray/products/#processors

RR n° 9057

16 Didier et al.

L([s]) = true
•[wait : [s]]eq,M,L −→

p
[wait : [s]]eq•,M,wait(L, [s])

(wait)

L([s]) = false
•[signal : [s]]eq,M,L −→

p
[signal : [s]]eq•,M, signal(L, [s])

(sig)

L([s]) = true
•[signal : [s]]eq,M,L −→

p
Err

(sig-err)

•[dinval : adr] eq,M,L −→
p

[dinval : adr] eq•, dinval(M,p, adr), L (dinval)

•[dflush : adr] eq,M,L −→
p

[dflush : adr] eq•, dflush(M,p, adr), L (dflush)

M([C]) = (R (_ , (D true))) M([Y]) = (R (_ , (D y))) M([X]) = (R (0,_))

• (X) = Y when C,M,L −→
p

(X) = •X=y
Y,C Y when C, enter(M,p, {X}, {C, Y }), L

(when+)

M([C]) = (R (_ , (D false)))
• (X) = Y when C,M,L −→

p
(X) = •C Y when C , enter(M,p, {}, {C}), L

(when-)

conditions of (when+) or (when-) not satisfied
• (X) = Y when C,M,L −→

p
Err

(when-err)

M([C]) = (R (_ , (D true))) M([Y1]) = (R (_ , (D y))) M([X]) = (R (0,_))

• (X) = merge C Y1 Y2,M,L −→
p

(X) = •X=y
C,Y1

merge C Y1 Y2, enter(M,p, {X}, {C, Y1}), L
(merge+)

M([C]) = (R (_ , (D false))) M([Y2]) = (R (_ , (D y))) M([X]) = (R (0,_))

• (X) = merge C Y1 Y2,M,L −→
p

(X) = •X=y
C,Y2

merge C Y1 Y2, enter(M,p, {X}, {C, Y2}), L
(merge-)

conditions of (merge+) or (merge-) not satisfied
• (X) = merge C Y1 Y2,M,L −→

p
Err

(merge-err)

conditions of (fcall) not satisfied
• (X1, . . . , Xn) = fid(Y1, . . . , Ym),M,L −→

p
Err

(fcall-err)

∀i : M([Yi]) = (R (_ , (D yi))) ∀i : M([Xi]) = (R (0,_)) (x1, . . . , xn) = fid(y1, . . . , ym)

• (X1, . . . , Xn) = fid(Y1, . . . , Ym),M,L −→
p

(X1, . . . , Xn) = •X1=x1,...,Xn=xn
Y1,...,Ym

, enter(M,p, {X1, . . . , Xn}, {Y1, . . . , Ym}), L
(fcall)

M([Y]) = (R (_ , (D y))) M([X]) = (R (0,_)) k 6= nil [X] 6= [Y]

• (X) = k fby Y ,M,L −→
p

(X) = •X=y
Y y fby Y , enter(M,p, {Y }, {X}), L

(fby)

conditions of (fby) not satisfied
• (X) = k fby Y ,M,L −→

p
Err

(fby-err)

(X1, . . . , Xn) = •X1=x1,...,Xn=xn
Y1,...,Ym

expr,M,L −→
p

(X1, . . . , Xn) = expr •, exit(M,p, {X1, . . . , Xn}, {Y1, . . . , Ym}), L (eq-exit)

Figure 5: Platform semantics, part 1. Rules for API call equations (top), rules for dataflow
equations (bottom). Error rules in gray.

Inria

Implementation models for data-flow multi-threaded software 17

M([C]) = (R (_ , l)) with l.cache(p) = (D true)
•on C aeq,M,L −→

p
on C • aeq,M,L

(on+)

M([C]) = (R (_ , l)) with l.cache(p) = (D false)
•on C aeq,M,L −→

p
on C aeq•,M,L

(on-)

conditions of (on+), (on-) not satisfied
•on C aeq,M,L −→

p
Err

(on-err)
aeq,M,L −→

p
aeq′,M ′, L′

on C aeq,M,L −→
p

on C aeq′,M ′, L′
(on-comp)

aeq,M,L −→
p
Err

on C aeq,M,L −→
p
Err

(on-comp-err)

aeq,M,L −→
p
aeq′,M ′, L′

top aeq,M,L −→
p

top aeq′,M ′, L′
(grd-comp)

aeq,M,L −→
p
Err

top aeq,M,L −→
p
Err

(grd-comp-err)

•top aeq,M,L −→
p

top • aeq,M,L (grd)

thread eq1 . . . eqk•,M,L −→
p

thread • eq1 . . . eqk,M,L (seq-loop)

eqi,M,L −→
p
eq′i,M

′, L′

thread eq1 . . . eqi . . . eqk,M,L −→
p

thread eq1 . . . eq′i . . . eqk,M ′, L′
(seq)

eqi,M,L −→
p
Err

thread eq1 . . . eqi . . . eqk,M,L −→
p
Err

(seq-err)

ti,M,L −→
p
t′i,M

′, L′

t1 . . . ti . . . tk,M,L −→
p
t1 . . . t′i . . . tk,M

′, L′
(interleave)

ti,M,L −→
p
Err

t1 . . . ti . . . tk,M,L −→
p
Err

(interleave-err)

Figure 6: Platform semantics, part 2. Rules for guards (top), rules for sequential and parallel
composition (bottom). Error rules in gray

RR n° 9057

18 Didier et al.

mapping choices. Such are the fby equations satisfying the conditions of Section 2.2.4. The
latter are always placed first in an implementation program, like that of Fig. 3. Partitioning
annotations also include mapping information such as the allocation of threads to CPUs, the
name and configuration of semaphores, etc.

Second, mapping annotations define memory allocation. In our mapping approach, these
annotations cover functions, variables, and threads. For functions that are not inlined, we define
the base address where both code and data are allocated. It is assumed that the entry point of
the function is at that address. For threads, annotations define the addresses for code (and local
data) and stack. Variables of type event are not allocated memory locations. All other variables
are. Allocation annotations distinguish between variables viewed through different processor
caches (which carry the on annotation) and those representing the state of the RAM.

Third, mapping annotations provide the API implementation of various dataflow
equations.

The only platform-specific devices used in this paper are semaphores. They represent token-
passing protocols where the only way to create a token is by a call to signal, and the only way
to consume a token is by a call to wait (no token can be lost). It is also required that at most one
token can traverse a semaphore at a given time. It can be verified that the dataflow equations
of a semaphore satisfy these properties. When this happens, a platform implementation using
instead the signal and wait API primitives will function correctly and preserve the dataflow
semantics. The platform semantics will only consider the semaphore declaration, not the dataflow
description of the protocol. This declaration includes its name, the event type variables that
bring tokens into the semaphore, the event type variables that take tokens out of the semaphore,
the initialization value of the semaphore, and the platform lock on which the semaphore is
allocated.

3.3 Platform semantics

The platform semantics provides an operational description of the platform execution, once the
application has been mapped on it and once the initialization code has been executed. It is not
meant to be a semantics for general multi-threaded implementations. Instead, it only covers the
very restricted control structures of the implementations we target. Furthermore, when compared
to classical cycle-accurate simulation semantics, it already includes elements of abstraction meant
to hide timing aspects8 and to isolate the semantics of the well-formed code synthesized from
the implementation model from the semantics of the potentially more general C code of external
functions (such as Prod or Cons in our example). This isolation means that we cannot know
the exact position of control (the program counter) during execution of a function, nor the way
the function manipulates data during computations. For space reasons, the platform semantics
presented here covers only dataflow programs where the guard triggers are top.

3.3.1 State representation

In the platform semantics, states provide an abstract view of the state of the execution platform
components, including CPUs, memory hierarchy, and semaphore status. They have the following
structure (for clarity, we use an OCaML syntax for its definition):

8This form of abstraction was also employed in the concrete semantics of [13].

Inria

Implementation models for data-flow multi-threaded software 19

type mach_state = Err
| Norm of ctrl_state*mem_state*lock_state

type mem_state = addr -> mem_loc_state
type mem_loc_state = W | R of posint*loc_value ;
type loc_value = { ram:value; cache:processor -> value; }
type value = D of word | U
type lock_state = lock -> bool

The remainder of this section details the 3 components of the machine state and defines state
manipulation functions.

Control flow state. It is represented through annotation of the implementation program. The
program counters of each CPU are represented with bullets (•) placed in the body of threads. To
allow the identification of all possible memory access or synchronization interferences between
threads, bullets can take the following positions:

• Between guarded equations of the thread, to represent the state where the execution of
one equation is finished, but the next (including possible guard tests) has not yet started.
When control loops back after the execution of the last equation of a thread, the bullet if
first placed after the last equation, and then before the first equation of the thread.

• Before a guard test “on C”, to represent the state where the execution has reached, but not
executed, the associated variable test.

• After all guard and synchronization annotations, to represent the state where the guard
has been successfully traversed, but the equation execution has not started.

• Inside the equation, to represent the state where its execution has started, but is not
completed. When inside an equation, the token is annotated with the memory locations
corresponding to variables in use by the equation execution (read or written). These values
are annotated by the transition entering the equation, and removed by the equation exit
transition.

In the initial state, in each thread, the bullet is placed before the first equation. The set of all
possible such state representations obtained by bullet annotations is denoted ctrl_state.

Memory system state. It includes the state of the RAM and that of the L1 data caches of
the CPUs. We denote with addr the set of memory addresses that can be used by data-flow
variables. At each instant, a memory location can be either written by some equation (as an
output variable), or read by zero or more equations, as an input variable. Performing a read
access on a variable that is currently written by another equation, or a write access on a variable
that is currently written or read by another equation is an error. In the definition of type
mem_loc_state, variant W corresponds to the write state, and posint gives the non-negative
number of readers in the read access case.

In the case where a location is read, its value can be undefined (U) or defined (D) with a word
value. The U value represents a state where the value of the memory location is unknown.

In a given state, read accesses from different processors to the same memory location may
produce different values. To allow reasoning on this memory consistency issue, we need to store,
for each memory location, not one, but proc+1 values, where proc is the number of CPU cores.
Type loc_value structures the storage of these proc+1 values. The value stored on record field
ram is that stored in RAM. The value stored on cache(p) is the one that the an access from
CPU core p to its L1 cache would return.

RR n° 9057

20 Didier et al.

The initial memory state is determined by the initial value of fby equations of the program:
All locations are in state (R (0,v)), where v.cache(p)=U for all p. Memory locations not
corresponding to fby output variables also have have v.ram=U. For the output of a fby equation
initialized with d, the initial state sets v.ram=(D d).

The semantics updates memory state using 4 functions whose prototypes are given below (in
OCaML syntax). The first two correspond to the dflush and dinval API calls. The remaining
2 implement the semantic actions taken upon entering and exiting an equation.

dinval: mem_state*processor*addr -> mem_state
dflush: mem_state*processor*addr -> mem_state
enter : mem_state*processor*(addr list)*(addr list)

-> mem_state
exit : mem_state*processor*((addr*word) list)*(addr list)

-> mem_state

We call dinval(M,p, addr), resp. dflush(M,p, addr), upon execution of the corresponding
API primitive in memory state M , on processor p, and with argument addr. The functions can
only be applied whenM(addr) = (R (n, v)). Their action changes v as follows: dinval(m, p, addr)
sets v.cache(p) to v.ram; dflush(M,p, addr) sets v.ram to v.cache(p) and v.cache(q) to U for
all q 6=p.

We denote with [X] the memory location of variable X. Function
enter(M,p, {X1, . . . , Xn}, {Y1, . . . , Ym}) is called when starting the execution of an equation
that reads variables Y1, . . . , Ym and writes variables X1, . . . , Xn. The call sets the memory state
of the locations [Xi] to W, and increments the read counter of the locations [Yi] whenever [Yi] is
not also the location of an output variable Xj .

Function exit(M,p, {(X1, x1), . . . , (Xn, xn)}, {Y1, . . . , Ym}) is called when completing the ex-
ecution of an equation that reads variables Y1, . . . , Ym and writes variables X1, . . . , Xn, when the
final values for the written variables are respectively xi, i = 1, n. The call decrements the read
counter of the locations [Yi] whenever [Yi] is not also the location of an output variable. For each
of the locations [Xi], it sets its state to (R (0, v)) where v.cache(p) = (D xi), v.cache(q) = U for
all q 6= p, and v.ram = U.

For simplicity, like in the Kahnian case, platform semantics does not fully consider input
variables. Each input variable is given a memory location different from all other variables, it is
read by only one equation, and its value is assumed ready upon reading.

Semaphore state. The binary semaphores provided by the execution platform are called locks.
Their state is represented with Boolean values. We update lock_state objects using 2 functions
corresponding to the wait and signal API calls:

signal: lock_state*lock -> lock_state
wait : lock_state*lock -> lock_state

Function signal(L, l) can be called only when L(l) = false. It sets L(l) to true. Conversely,
wait(L, l) can be called only when L(l) = true. It sets L(l) to false.

3.3.2 Semantic rules

Platform semantics is also provided under SOS form. Transitions have the form s1 −→
p
s2, where

s1 and s2 are objects of type mach_state and p is the processor performing the state transition
(recall that it is an interleaving semantics). Figures 5 and 6 provides the SOS rules. States
si = Norm(ctrl,mem, locks) are represented here as ctrl,mem, locks.

Inria

Implementation models for data-flow multi-threaded software 21

3.3.3 Correctness and semantics preservation

An implementation program is correct in the platform semantics when it satisfies two properties:
it does not block or enter Err state, regardless of the values read from input variables, and its
execution under platform semantics preserves the semantics of its dataflow part under Kahnian
semantics. Semantics preservation is defined as the preservation of the sequences of values taken
as input (as guards or actual equation inputs) and produced as output by the execution of the
various equations (which can be represented with histories, introduced in Section 2.2.2).

To be correct, an implementation program must satisfy the properties mentioned in Sec-
tion 2.2.4 and, in addition, must satisfy properties ensuring the correct use of the (sequential)
resources of the platform (not presented here for lack of space).

4 Experimental evaluation

This paper introduces a language, not a mapping tool. From this perspective, we have already
provided the elements showing that we can model implementations featuring optimized resource
allocation. As a supplementary element of proof, this section shows that our language allows
the representation of the optimized implementation of a real-life case study, produced by an
automatic mapping tool.

The case study is a complex piece of critical avionics software, including more than 6000
unique dataflow nodes and 36000 variables. Its current implementation is sequential and time-
triggered. Periodically, a sequence of 24 non-preemptive sequential tasks (built out of nodes)
are triggered at fixed time intervals. Our first objective was to parallelize each of the 24 tasks,
taken separately, and demonstrate the correctness of the implementations. Each task has been
transformed into an InteLus specification and an automatic mapping tool performed allocation,
scheduling, memory allocation, and the synthesis of the synchronization and memory coherency
protocols. Implementation programs were synthesized, from which C/ldscript code allowing
compilation was generated. Using the results of this paper, the correctness of implementation
can be formulated.

The following table shows various characteristics of the largest 6 tasks (in number of nodes)
and averages on the 24 tasks. The first important figure concerns memory allocation (Mem),
where reuse allows a 71% reduction over the number of specification variables. We exclude
input variables from this table, because they are currently excluded from optimization (work in
progress).

Task Specification Implementation
Nodes Vars∗ Mem∗ Sema Locks Speed-up

T1 1511 6077 1951 (32.1%) 1040 96 (9.2%) 10.45x
T17 1115 5008 1603 (32%) 958 108 (11%) 9.85x
T9 1090 4813 1537 (31.9%) 907 120 (13%) 11.72x
T8 1289 5239 1351 (25.8%) 1291 115 (8.9%) 13.28x
T24 1313 5894 1294 (22%) 1370 118 (8.6%) 12.49x
T16 1258 4945 1247 (25.2%) 1296 118 (9.1%) 12.97x
Avg. 28.8% 10% 10.52x

∗Input variables not included.

The number of semaphores (Sema) representing point-to-point thread synchronizations is
large, because very fine grain synchronization is used to allow efficient resource allocation. How-
ever, the cost of these synchronizations is very low (a few CPU cycles each) and, most important,
very efficient reuse of the 127 hardware locks of the platform allows the implementation of the

RR n° 9057

22 Didier et al.

semaphores. The speed-up figures are produced by an off-line scheduling model not taking into
account memory interferences, and thus are not safe. However, they provide insight into applica-
tion structure, and our implementation method should preserve functional semantics regardless
of timing imprecision.

5 Conclusion
We have provided proof of our initial claim: Dataflow specifications can be given efficient multi-
threaded implementations that preserve an internal dataflow structure. The dataflow structure
of such implementations can be exposed using new language constructs. Doing so facilitates
formulating the correctness of implementations, and also proving it, through the use of results
such as Theorem 1, or through the use of analysis techniques specific to the dataflow domain.

Work will continue along two axes. We will enrich the implementation modeling language to
incorporate new features. The first steps will be to include real-time capabilities and to diversify
the target architectures by considering communication devices (DMAs, networks, external RAMs,
etc.). The second objective is to develop a formally proven translation validation tool covering
the transformation of functional specifications into implementation programs. This tool needs to
be complemented later with the validation of the translation from implementation programs to
code running on the platform, and with the validation of the translation from Lustre to InteLus.

Acknowledgments
The authors would like to thank Xavier Leroy, François Irigoin, and Jean Souyris for having
provided significant feedback on early versions of this work.

Inria

Implementation models for data-flow multi-threaded software 23

A Synchronous semantics of InteLus

To simplify the definition of the semantics, and without affecting generality, we shall assume that
literals only appear as the first argument of a fby statement, that no identity equations “x=y”
exist, nor “_” lvalues, and that the input and output variables of a fby statement are different.
This can be achieved through the use of constant and identity functions. We also make the
hypothesis that each equation has (possibly empty) wait and done constructs.

A.1 State representation

The fby statements are the state elements of a InteLus program, each of them holding either
last value of the input variable (if any) or the initial constant of the fby statement. The current
state of a program can be represented by replacing the constants of the fby statements by their
current state. If we consider the fragment on the left:

(y) = add(x,x) (y) = add(x,x)
(z) = 10 fby y (z) = 6 fby y

then its initial state is the fragment itself. After one cycle where x has value 3, the new state is
the fragment on the right. Note that the all program states are identical upto a constant change
in fby equations.

A.2 Notations

Recall, from Section 2.1, that RV is the set of all mappings r assigning to each v ∈ V a value
r(v) ∈ Type(v)∪{nil}. We extend this notation. We denote withRV the set of partial valuations
over V . Given r ∈ RV we define its support supp(r) as the set of identifiers to which r assigns
a value (possibly nil). We also define r as the (partial) mapping that retains of r only the
valuations different from nil. Note that RV ⊂ RV .

We introduce a simple notation for (partial) mappings from variable identifiers to variable
values. We denote with 〈Xi 7→ xi | i = 1, n〉 or 〈X1 7→ x1, . . . , Xn 7→ xn〉 a (partial) mapping
assigning value xi to identifier Xi, i = 1, n. The empty mapping is denoted 〈〉. The notation is
ambiguous, as the domain of the mappings is not explicit.

If I ⊆ V and r ∈ RV , then r |I∈ RI is the restriction of r to the identifier set I. Note that if
r ∈ RV , then r |I∈ RI . If I ⊆ V, then RI is naturally injected in RV . By abuse of notation, we
shall say that RI is included in RV .

If r1, r2 ∈ RV such that all the bindings of r1 are also bindings of r2, then we write r1 ≤ r2.
Relation ≤ is a partial order on RV . We denote with ∪ the partially defined least upper bound
operator associated with ≤ on RV . The completely defined greatest lower bound operator is
denoted ∩. If r ∈ RV and I ⊆ V , then we define r \ I = 〈X 7→ x ∈ r | X 6∈ I〉.

A.3 Structural operational semantics rules

We present the behavior of statements, code fragments, and full programs under the form of
transitions defining the new state and variables assigned in one cycle for given input state and
input variable assignments:

eqs
O
=⇒
I
eqs′

Here, code fragments eqs and eqs′ define the input and result program states, obtained by
changes in the fby constants. If I is the set of variables taken as input by eqs, then I ∈ RI

RR n° 9057

24 Didier et al.

x 6= nil

Z = merge C X Y
〈Z 7→x〉

===============⇒
〈C 7→true,X 7→x,Y 7→nil〉

Z = merge C X Y
(merge+)

y 6= nil

Z = merge C X Y
〈Z 7→y〉

===============⇒
〈C 7→false,X 7→nil,Y 7→y〉

Z = merge C X Y
(merge-)

Z = merge C X Y
〈Z 7→nil〉

===============⇒
〈C 7→nil,X 7→nil,Y 7→nil〉

Z = merge C X Y (merge-nil)

x 6= nil

Y = X when C
〈Y 7→x〉

==========⇒
〈C 7→true,X 7→x〉

Y = X when C
(when+)

x 6= nil

Y = X when C
〈Y 7→nil〉

==========⇒
〈C 7→false,X 7→x〉

Y = X when C
(when-)

Y = X when C
〈Y 7→nil〉

==========⇒
〈C 7→nil,X 7→nil〉

Y = X when C (when-nil)

(y1, . . . , ym) = Ffid(x1, . . . , xn)

(Y1, . . . , Ym) = fid(X1, . . . , Xn)
〈Yi 7→yi|i=1,m〉
=========⇒
〈Xi 7→xi|i=1,n〉

(Y1, . . . , Ym) = fid(X1, . . . , Xn)

(fun)

(Y1, . . . , Yl) = fid(X1, . . . , Xk)
〈Yi 7→nil|i=1,m〉
==========⇒
〈Xi 7→nil|i=1,n〉

(Y1, . . . , Yl) = fid(X1, . . . , Xk) (fun-nil)

(Y) = k fby X
〈Y 7→k〉
=====⇒
〈X 7→k′〉

(Y) = k′ fby X (fby) (Y) = k fby X
〈Y 7→nil〉
=====⇒
〈X 7→nil〉

(Y) = k fby X (fby-nil)

p
O
=⇒
I
p′ I ∪O 6= 〈〉 ∀i, j : Si, Tj 6∈ supp(I ∪O) ∀i, j : Si 6= Tj

wait(S1, . . . , Sk) done(T1, . . . , Tl) p
O∪〈Ti 7→top|i=1,l〉
===========⇒
I∪〈Si 7→top|i=1,k〉

wait(S1, . . . , Sk) done(T1, . . . , Tl) p′
(wait-done)

p
O
=⇒
I
p I ∪O = 〈〉 ∀i, j : Si, Tj 6∈ supp(I ∪O) ∀i, j : Si 6= Tj

wait(S1, . . . , Sk) done(T1, . . . , Tl) p
O∪〈Ti 7→nil|i=1,l〉
===========⇒
I∪〈Si 7→nil|i=1,k〉

wait(S1, . . . , Sk) done(T1, . . . , Tl) p

(wait-done-nil)

pi
Oi=⇒
Ii

p′i, i = 1, 2 supp(O1) ∩ supp(O2) = ∅ supp(O2) ∩ supp(I1) = ∅

shuffle(p1, p2)
O1∪O2===========⇒

I1∪(I2\supp(O1))
shuffle(p′1, p

′
2)

(compose-acyclic)

pi
Oi=⇒
Ii

p′i, i = 1, 2 strip(p2) = “Y = k fby X ′′ supp(O1), supp(O2), {Y } mutually disjoint

supp(O2) ∩ supp(I1) = ∅ Y 7→ k′ ∈ I1

shuffle(p1, p2)
O1∪O2∪〈Y 7→k′〉
===========⇒
I1∪(I2\supp(O1))

shuffle(p′1, p
′
2)

(compose-fby)

body(p)
O
=⇒
I

body(p′) (I ∪O) maximal in the sense of ≤

p
O
=⇒
I
p′

(program-closure)

Figure 7: Operational semantics of InteLus’ subset without guards. Each rule implicitly requires
that the support of input and output in the inferred transition are exclusive. The shuffle operator
takes in two equation lists and can output any equation list obtained by shuffling the two initial
ones.

Inria

Implementation models for data-flow multi-threaded software 25

with supp(I) = I. Similarly, if O is the set of variables assigned by eqs, then O ∈ RO with
supp(O) = O. Causal correctness requires that I ∩ O = ∅.

The structural operational semantics rules allowing to derive transitions are provided in
Fig. 7. Note that, according to rule (program-closure), program transitions are transitions
of the program body with maximal activity, which amounts to an ASAP (as soon as possible)
scheduling policy. To understand the importance of this rule, consider the following input-less
program, which encodes a counter that increments x by 1 at each cycle.

var x:word y:word
let

x = 1 fby y
y = add(x,1)

tel

Semantic rules (fun-nil) and (compose-fby-nil) allow the construction of a program body tran-
sition where both variables are assigned value nil. However, rule (program-closure) forbids it,
forcing the counter to advance at each cycle.

A.4 Clocks

In synchronous languages, clocks are used to represent activation conditions. Clocks represent
sets of execution cycles, and can be seen as predicates over the state and inputs of the program.

Clocks can be compared. We say that ck1 and ck2 are equal, denoted ck1 = ck2 if they rep-
resent the same execution cycles, i.e. if the associated predicates are true at the same execution
cycles. We say that ck1 is a sub-clock of ck2, denoted ck1 ≤ ck2 if whenever the predicate of ck1
is true in a cycle, the predicate of ck2 is true, too. The least upper bound and greatest lower
bound are fully defined and denoted ∨ and ∧, respectively. The empty clock is denoted ∅, and
the clock that is always present, known as the base clock, is denoted . in formulas.

Typically, clocks are use to represent cycles where some variable is present, or where some
function is executed. We denote with clk(v) the clock representing the cycles where variable v is
present. Consider, for instance, the following code fragment:

(a,b) = f(y)
(x) = y when c
(z) = y whenot c

The following clock relations will hold:

• clk(a) = clk(b) = clk(y) = clk(c)

• clk(x) ≤ clk(c) and clk(z) ≤ clk(c).

• clk(x) ∧ clk(z) = ∅ and clk(x) ∨ clk(z) = clk(y)

• clk(z) = clk(y) ∧ c, where c is the current value of variable c.

Such relations are determined through static program analysis, known as clock calculus, and
used to determine the consistency of the constraints imposed by program equations, thus proving
program correctness.

RR n° 9057

26 Didier et al.

eq
O
=⇒
I
eq′ I ∪O 6= 〈〉 ∀i, j : C, si, tj 6∈ supp(I ∪O) ∀i, j : C 6= si 6= tj 6= C

r(eq)
O∪〈si 7→top|i=1,k〉

==================⇒
I∪〈C 7→true〉∪〈ti 7→top|i=1,l〉

r(eq′)

(on+)

eq
O
=⇒
I
eq I ∪O = 〈〉 ∀i, j : C, si, tj 6∈ supp(I ∪O) ∀i, j : C 6= si 6= tj 6= C

r(eq)
O∪〈si 7→top|i=1,k〉

==================⇒
I∪〈C 7→false〉∪〈ti 7→top|i=1,l〉

r(eq)

(on-)

eq
O
=⇒
I
eq I ∪O = 〈〉 ∀i, j : C, si, tj 6∈ supp(I ∪O) ∀i, j : C 6= si 6= tj 6= C

r(eq)
O∪〈si 7→nil|i=1,k〉

=================⇒
I∪〈C 7→nil〉∪〈ti 7→nil|i=1,l〉

r(eq)

(on-nil)

eq
O
=⇒
I
eq′ I ∪O 6= 〈〉

s eq
O

======⇒
I∪〈s 7→top〉

s eq′
(trig-comp)

eq
O
=⇒
I
eq I ∪O = 〈〉

s eq
O

======⇒
I∪〈s7→nil〉

s eq
(trig-comp-nil)

eq
O
=⇒
I
eq′ I ∪O 6= 〈〉

top eq O
=⇒
I

top eq′
(trig-top)

Figure 8: Operational semantics of guards. Rule (trig-top makes reaction to absence (the nil rule)
unneeded. To facilitate rule writing, we denote r(eq)=”wait(t1, . . . , tl) done(s1, . . . , sk) on C eq”

Inria

Implementation models for data-flow multi-threaded software 27

A.5 Equation guards

While clocks provide a logical representation of activation conditions, used for analysis, we also
need an operational representation for them, used to generate the activation code of the imple-
mentation. The constructions used for this purpose are the guards introduced by the syntax of
Fig. 2.

The semantics of the full InteLus language (with guards) is provided as an extension of that
of Fig. 7 with the new rules of Fig. 8. Existing rules remain unchanged.

Under the extended semantics, if an equation has a guard, and if the trigger is present in a
cycle, then the decision to execute the equation is taken by the evaluation of (present) guard
variables (if any), and not by the occurrence (or not) of a present/absent variable configuration
(as it was the case in the semantics without guards). In particular, when the trigger is top, no
absence decision is needed in the execution of the equation.

When all equations of a program have a guard starting with trigger top, rule (program-
closure) is no longer needed. This remains true when every maximal connected part of the
dataflow contains at least one equation triggered by top.

Note that, according to the extended semantics, different guards may represent the same
logical activation condition (the same clock), but a different causality. Consider the following
code fragment:

top (b) = merge a b1 b2
top (c) = and(a,b)
top on a on b1 (x) = f(y)
top on c (x) = f(y)

Here, the last two equations can be equivalently used to define x, as the same value is computed
at the same cycles (on the same clock). However, the two equations do not carry the same data
dependencies due to the way the control (clocks) is computed.

References

[1] The SchedMCore software framework. http://sites.onera.fr/schedmcore/.

[2] The SynDEx methodology and mapping tool. www.syndex.org.

[3] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.H. Nguyen, and J. Sifakis. Rig-
orous component-based system design using the BIP framework. IEEE Software, 28(3),
2011.

[4] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declarative language for
programming synchronous systems. In Proceedings POPL, 1987.

[5] P. Caspi and M. Pouzet. Synchronous Kahn networks. In Proceedings ICFP, 1996.

[6] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufman, 2008.

[7] G. Kahn. The semantics of simple language for parallel programming. In IFIP Congress,
1974.

[8] P. Koopman. A case study of Toyota unintended acceleration and software
safety. https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.
pdf, September 2014.

RR n° 9057

http://sites.onera.fr/schedmcore/
www.syndex.org
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf
https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

28 Didier et al.

[9] Edward A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, May 2006.

[10] P. LeGuernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time appli-
cations with signal. Proceedings of the IEEE, 79(9), 1991.

[11] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–
115, 2009.

[12] F. Mallet and R. de Simone. MARTE: A profile for RT/E systems modeling, analysis. In
Proceedings Simutools, 2008.

[13] A. Miné. Static analysis of run-time errors in embedded real-time parallel C programs.
Logical Methods in Computer Science, 8(1), March 2012. https://arxiv.org/abs/1203.
3724.

[14] Van-Chan Ngo, J.-P. Talpin, T. Gautier, L. Besnard, and P. Le Guernic. Modular transla-
tion validation of a full-sized synchronous compiler using off-the-shelf verification tools. In
Proceedings SCOPES, 2015.

[15] D. Potop-Butucaru and B. Caillaud. Correct-by-construction asynchronous implementation
of modular synchronous specifications. Fundamenta Informaticae, CXXVII:1–27, 2006.

[16] J.P. Talpin, J. Brandt, M. Gemünde, K. Schneider, and S.K. Shukla. Constructive poly-
chronous systems. Sci. Comput. Program., 96:377–394, 2014.

[17] R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler, J. Aguado, S. Mer-
cer, and O. O’Brien. SCCharts: Sequentially constructive statecharts for safety-critical
applications: HW/SW-synthesis for a conservative extension of synchronous statecharts. In
Proceedings PLDI, 2014.

Inria

https://arxiv.org/abs/1203.3724
https://arxiv.org/abs/1203.3724

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Motivating example.
	Related work and originality

	Modifications to Lustre
	Synchronous semantics principles
	Kahnian asynchronous interpretation
	Preliminary notations
	Program state
	Semantic rules and semantics preservation
	Properties ensuring implementability

	Implementation modeling
	Target architectures
	API and ABI

	Mapping information
	Platform semantics
	State representation
	Semantic rules
	Correctness and semantics preservation

	Experimental evaluation
	Conclusion
	Synchronous semantics of InteLus
	State representation
	Notations
	Structural operational semantics rules
	Clocks
	Equation guards

