
HAL Id: hal-01519831
https://hal.inria.fr/hal-01519831

Submitted on 9 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Towards Formal-based Semantic Interoperability in
Multi-Clouds

Stéphanie Challita, Fawaz Paraiso, Philippe Merle

To cite this version:
Stéphanie Challita, Fawaz Paraiso, Philippe Merle. Towards Formal-based Semantic Interoperability
in Multi-Clouds: The FCLOUDS Framework. 10th IEEE International Conference on Cloud Com-
puting (CLOUD), Jun 2017, Honolulu, Hawaii, United States. pp.710-713. �hal-01519831�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132064359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01519831
https://hal.archives-ouvertes.fr


Towards Formal-based Semantic Interoperability in
Multi-Clouds
The FCLOUDS Framework

Stéphanie Challita, Fawaz Paraiso and Philippe Merle
Inria Lille - Nord Europe / University of Lille / CRIStAL UMR CNRS 9189, France

Email: firstname.lastname@inria.fr

Abstract—Multi-cloud computing has been proposed as a way
to reduce vendor lock-in, to improve resiliency during outages
and geo-presence, to boost performance and to lower costs.
However, semantic differences between cloud providers, as well as
their heterogeneous management interfaces, make changing from
one provider to another very complex and costly. This is quite
challenging for the implementation of multi-cloud systems. In this
paper, we aim to take advantage of formal methods to define
a precise semantics for multi-clouds. We propose FCLOUDS, a
formal-based framework for semantic interoperability in multi-
clouds. This framework contains a catalogue of formal models
that mathematically describe cloud APIs and reason over them.
A precise alignment can be described between their concepts,
which promotes semantic interoperability.

Index Terms—Multi-Clouds; Interoperability; Formal Lan-
guage; Formal Verification

I. INTRODUCTION

Multi-cloud computing describes a paradigm where the
application provisions multiple cloud heterogeneous services
simultaneously. This strategy has been adopted in the cloud
computing industry since a while in order to improve disaster
recovery and geo-presence, to use unique cloud services from
different providers as they are needed, and to ensure unlimited
scalability of cloud applications [1]. Several cloud outages
have taken place in the past [2], which prove that the sentence
“don’t place all your eggs in one basket” is equally applicable
to the cloud ecosystem. Today, there is a variety of cloud
providers like Amazon, Google, Microsoft, etc. who offer
functionalities as services at different levels of abstraction such
as Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS). Even at the same
abstraction level, providers employ varying terminology and
features, which usually do not map directly those of competing
providers [3]. These semantic differences are critical in cloud
computing as they make migrating an application across
providers a very complicated and costly task. In addition,
the management of a potentially large number of cloud ser-
vices with heterogeneous interfaces is a challenge, because of
incompatibility between the different interfaces. Worse still,
the semantics of these interfaces is informally described in
their documentation available at provider websites. It is then
impossible to understand the behaviour of a cloud when the
developer requests a virtual machine for example. For the
above concerns, cloud interoperability is prevented and vendor

lock-in is promoted, which hinders the implementation of a
multi-cloud system.

A considerable number of programming libraries and
model-driven solutions were developed for interoperability in
multi-cloud systems [4]. However, as detailed in Section II,
their abstraction level remains insufficient to overcome se-
mantic differences, and their small formalisation level induces
ambiguities and worsens the problem of heterogeneity. For
complex systems, such as multi-clouds, a more precise and
formal approach is required.

To tackle this issue, we propose FCLOUDS, a formal-
based framework for semantic interoperability in multi-clouds.
FCLOUDS relies on a catalogue of cloud formal models,
i.e., models that mathematically describe cloud concepts and
operations and reason over them by proving several properties.
Interoperability rules can be formally defined in order to
compare different cloud offers and avoid any kind of con-
fusion between them. Our semantic framework represents the
main pillar to build a consistent bridge, with a unified API
implementing mathematical transformations, to promote real-
world interoperability between cloud providers.

The remainder of this paper is structured as follows. In
Section II we outline multi-cloud interoperability and we
explain the motivation behind our contribution. In Section III
we present our framework FCLOUDS, its components and a
usage scenario. Finally, we conclude in Section IV.

II. MULTI-CLOUD INTEROPERABILITY

The cloud market counts numerous cloud solutions at dif-
ferent levels of abstraction, traditionally called service layers.
From our point of view, these solutions can be classified into
four spaces, as shown in Fig. 1. We identify Provider Space,
Programming Space, Modelling Space and Semantic Space.
In the following, we present these spaces and highlight the
heterogeneity problem at each space of the cloud stack.

A. Provider Space

Amazon Web Services (AWS), Google Cloud Platform
(GCP), OpenStack and European Grid Infrastructure Federated
Cloud (EGI FC) are public, private and hybrid cloud providers
respectively. They have emerged during the last ten years
and offer various infrastructure, platform or software services.
Even when they offer the same service, the latter may have



Fig. 1: Multi-Cloud Spaces.

different names [5], characteristics and functionalities. In addi-
tion, cloud providers rely on APIs, i.e., management interfaces
that provide programmatic remote access to their resources.
Each API is based on an architecture and/or a technology
that does not necessarily facilitate their interoperability. For
example, AWS is accessible via a SOAP API, whereas GCP
is based on a REST API, which leads to an incompatibility
between two different APIs. As for semantics, cloud APIs are
defined only informally, i.e., described in natural language in
website pages. The developer would not understand the exact
behaviour of the provider when he/she asks for a VM for
example. This usually leads to vendor lock-in. To address this
problem, the solution in this space would be a broker such as
Rightscale, Kaavo, etc. The broker offers a unique interface to
handle the heterogeneity of different APIs, i.e., to only mask
the problem and not semantically resolve it.

B. Programming Space

In order to allow developers to provision cloud services,
each cloud offers one or several language-specifc Software
Development Kits (SDKs) to hide technical details of APIs.
However, these SDKs are heterogeneous. Therefore, many
libraries like jclouds, libcloud and Fog have emerged to
allow developers to add abstraction between the cloud SDKs
and enable multi-clouds. The multi-cloud libraries are tightly
coupled to their programming languages like Java, Python and
Ruby, so the language compiler is able to check the correctness
of the developer code but does not know how to perform a
verification related to the cloud computing field. The developer
needs to ignore implementation details and focus on general
properties and characteristics. This will help him to avoid
premature commitment to implementation choices.

C. Modelling Space

Meanwhile, there is a need for cloud architects to design
their applications for multi-clouds. For this, model-based solu-
tions are becoming increasingly popular in cloud computing as

they provide domain-specific modeling languages and frame-
works that enable architects to describe/select/adapt multi-
cloud environments. This strategy is summarised as “Model
once, generate anywhere”. We identify some of the notable
model-based solutions for multi-clouds, namely CloudML [4],
TOSCA [6] and OCCIware [7]. Unlike programming libraries,
they work at a high level of abstraction by focusing on
cloud concerns rather than implementation details. We believe
that model-driven engineering brings many benefits for multi-
clouds [8]. However, we notice that existing model-based
multi-cloud solutions lack for a precise semantics in their
specifications. For example, the specifications of CloudML and
TOSCA are informal documents written in English prose and
their behavioural semantics is hidden in their model interpreter.
As for the OCCIware model, despite using OCL constraints for
defining static semantics, OCL syntax is not formal by itself
[9]. In addition, OCCIware model employs only ambiguous
natural language to express dynamic semantics, i.e., the system
behaviour. The lack of formalisation hinders the understanding
of the models, thus complicates the interoperability in multi-
clouds.

D. Semantic Space

A set of common principles that all interoperability solu-
tions adhere to must be agreed on. Accordingly, we argue
in the following for the need to explore the Semantic space
through FCLOUDS framework:

• to provide a programming-language-independent, unam-
biguous mathematical specification of the multi-cloud
solutions. It encourages focusing on what a system should
do rather than how to accomplish it, and has only one
interpretation, unlike natural language statements;

• to allow a formal validation of cloud structural and
behavioural models. This is quite advantageous because
the earlier a defect is removed the cheaper it will be to
correct it;

• to reason about the cloud formal models and prove cloud
properties, which are constraints denoting characteristics
of cloud configurations and/or operations. They guarantee
the accuracy and correctness of the multi-cloud solutions.

For the above reasons, we propose in our current work to
head towards using formal models and verification for cloud
computing. Previously, one existing work [10] proposed a
formal model for cloud computing using Bigraphical Reactive
Systems (BRS). Besides using different techniques to reason
over the cloud, [10] differs in its objective too. It aims to
reason over cloud concepts for deployment and adaptation
purpose. It does not deal with behavioural semantics and
does not focus on the interoperability concern. For the field
of semantic interoperability, the authors in [11] proposed
an ontology-based framework for semantic interoperability in
multi-clouds. They define translations between IaaS concepts
of three standards. However, they do not consider any align-
ment between API operations. PaaS Semantic Interoperability
Framework (PSIF) [12] was implemented in the context of
Cloud4SOA project. PSIF proposes common PaaS models



that describes structural, functional and behavioural semantics.
FCLOUDS goes beyond PSIF and aims to verify properties of
the models thanks to the usage of formal methods.

III. THE FCLOUDS FRAMEWORK

In this section, we present FCLOUDS, which is a conceptual
formal-based framework for semantic interoperability in multi-
clouds. We begin by giving a scenario that motivates our
approach and then we describe how we model FCLOUDS
structure and behaviour. We also explain the reasoning process
and identify three properties to be held in FCLOUDS models.

A. Usage Scenario

Fig. 2: FCLOUDS Usage Scenario.

We assume that a developer would like to build a multi-
cloud system spread over two clouds, the private EGI FC and
the public GCP. EGI is based on Open Cloud Computing
Interface (OCCI) REST API and GCP on its own REST
API, so the developer is faced to two heterogeneous APIs
implementing different concepts and paradigms. To provision
a virtual machine, the HTTP request has a different format
for each API, which is quite frustrating. The developer would
like a single API for both clouds to seamlessly access their
resources. However, the GCP API will not work on OCCI
and if OCCI wanted to provide equivalent services to GCP, it
should not only adopt the same type of API but also the same
concepts with the risk of misunderstandings, inconsistencies
and incompleteness. Conflicts and misunderstandings about
the semantics of cloud providers can be solved, or at least
identified at an earlier stage, if aspects of structure and
operations are conveyed through the use of formal models.

As depicted in Fig. 2, the first stage of FCLOUDS requires
extracting from websites, in a manual or automated way,
knowledge regarding the services offered by cloud providers.
Then, we proceed by a precise modelling to understand and
validate the behaviour of cloud APIs, in order to overcome
their semantic heterogeneity. In the second stage of FCLOUDS,
we proceed with transformation models, which explain how
knowledge collected against one cloud provider can be trans-
formed to fit another. This stage allows a rigorous comparison

and semantic connections between cloud providers. Finally, in
the third stage, our formal framework is incorporated in the
development and maintenance of a bridge with a unified API,
to promote real-world interoperability, while formal semantics
is properly reflected in its behaviour.

B. Overview of FCLOUDS

FCLOUDS framework is based on several cloud formal
models that can be composable. It consists of a formal model
for OCCI (FOCCI), a formal model for GCP (FGCP), a formal
model for AWS (FAWS), etc. (see Fig. 3). Later on, we will
define Transformations that find equivalence and specialization
relationships between them, thus we can seamlessly achieve
semantic interoperability.

Fig. 3: FCLOUDS Framework Overview.

In the following, we detail the process of formalising cloud
APIs, which is at the basis of FCLOUDS framework. As shown
in Fig. 4, it is developed in two main steps: Modelling and
Reasoning.

C. Modelling

Modelling using formal methods is the process of providing
a precise specification of a cloud model, i.e., defining and
validating:

• Cloud structure and constraints, as represented in
Frame (1) in Fig. 4, to denote the types of cloud
concepts such as virtual machines, containers, storage,
operating systems, servers, applications, etc. and describe
configurations of these types. FCLOUDS models support
cloud computing concepts specification while simplifying
irrelevant details to focus on the most important charac-
teristics.

• Cloud API operations, as represented in Frame (2) in
Fig. 4, to denote the operations that the developer uses to
provision, manage or release cloud services through the
cloud API.

In our work, we aim to choose the formal language Alloy
that provides a concise specification of FCLOUDS models, with
both a graphical output and a textual output, so it can be easy
to analyse and reason over them.

D. Reasoning

Using formal models has the advantage of allowing reason-
ing over concepts and operations for a better understanding of



Fig. 4: Formalisation Process.

their semantics and how they work. Therefore, once FCLOUDS
models have been specified, we proceed by the definition and
verification of cloud structural and behavioural properties
as shown in Frame (3) in Fig. 4. This step allows to ensure
the correctness of all cloud formal models in the FCLOUDS
framework, so we can draw later inferences between them.

At first, we verify using a constraint solver whether some
general properties hold in our formal model. Among these
properties, we are mainly interested in checking:

a) Consistency: to verify that there are no contradictory
constraints, so the concepts are instantiable and each cloud
API operation is executable. We can also analyze what could
not be instantiated, thus can’t be deployed in real-world. In
these cases, our formal model might be overconstraining so
we deem necessary to release some constraints.

The notion of consistency is basic and does not suffice
in order to validate our model. There are other examples of
reliable verification and validation tasks that can be performed
on pairs of operations such as sequentiality and/or reversibility
of operations:

b) Sequentiality: to check that sometimes a cloud API
operation cannot happen if another operation did not happen
at the time before. For example, the developer can adapt the
performance of a virtual machine only if it was created before.

c) Reversibility: to check that some cloud API operations
are reversible because they contain contradictory mathematical
logic. For example, de-provisioning a virtual machine reverses
the operation of provisioning it.

IV. CONCLUSION

The wide number of available cloud providers, their high
heterogeneity and semantic differences make it complicated
to exploit multi-cloud assets. In this paper, we provide a
classification of multi-cloud solutions, and explain the need
for formal languages and techniques. We propose FCLOUDS, a
formal-based framework for semantic interoperability in multi-
clouds. It carries cloud mathematical models, that allow formal
description of cloud APIs core concepts and operations, for a
better understanding of their behaviour. To our knowledge,
FCLOUDS is the first framework that promotes mathematical
reasoning and verification over cloud models. Having rigor-
ously specified the structure and behaviour semantics of each

cloud, we can define transformation functions, thus ensure
semantic interoperability between them.

For future work, we will continuously complete the
FCLOUDS framework with a wide catalogue of formal cloud
models that describe mathematically concepts, capabilities
and constraints of cloud providers and verify cloud specific
properties. We will define and verify other properties such
as Reachability, i.e., when executing operations on cloud
resources through APIs, there is always a transition from a
resource state to another. Finally, we will define semantic
links between FCLOUDS models, which will give rise to
transformation functions also verifying these properties. This
goes into the direction of our long-term goal, which is allowing
FCLOUDS framework to be executable inside the first formal-
based real-world interoperability bridge.

ACKNOWLEDGMENT

This work is supported by both the OCCIware research
and development project funded by French Programme
d’Investissements d’Avenir (PIA) and Hauts-de-France Re-
gional Council.

REFERENCES

[1] D. Petcu, “Multi-Cloud: Expectations and Current Approaches,” in Pro-
ceedings of the 2013 international workshop on Multi-cloud applications
and federated clouds. ACM, 2013, pp. 1–6.

[2] S. R. Ko, S. Lee, and V. Rajan, “Cloud Computing Vulnerability
Incidents: A Statistical Overview,” Cloud Security Alliance, 2013.

[3] G. Sousa, W. Rudametkin, and L. Duchien, “Automated Setup of Multi-
Cloud Environments for Microservices-Based Applications,” in 9th IEEE
International Conference on Cloud Computing. IEEE, 2016, pp. 327–
334.

[4] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards
Model-Driven Provisioning, Deployment, Monitoring, and Adaptation
of Multi-Cloud Systems,” in 2013 IEEE Sixth International Conference
on Cloud Computing (CLOUD). IEEE, 2013, pp. 887–894.

[5] F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc, “Towards a REST
Cloud Computing Lexicon,” in 7th International Conference on Cloud
Computing and Services Science, CLOSER 2017. IEEE, 2017, pp.
348–355.

[6] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable Cloud Services
Using TOSCA,” IEEE Internet Computing, no. 3, pp. 80–85, 2012.

[7] J. Parpaillon, P. Merle, O. Barais, M. Dutoo, and F. Paraiso, “OCCIware
- A Formal and Tooled Framework for Managing Everything as a
Service,” in Projects Showcase@ STAF’15, vol. 1400, 2015, pp. 18–
25.

[8] H. Bruneliere, J. Cabot, and F. Jouault, “Combining Model-Driven
Engineering and Cloud Computing,” in Modeling, Design, and Analysis
for the Service Cloud-MDA4ServiceCloud’10: Workshop’s 4th edition
(co-located with the 6th European Conference on Modelling Foundations
and Applications-ECMFA 2010), 2010.

[9] M. Richters and M. Gogolla, “On Formalizing the UML Object Con-
straint Language OCL,” in International Conference on Conceptual
Modeling. Springer, 1998, pp. 449–464.

[10] Z. Benzadri, F. Belala, and C. Bouanaka, “Towards a Formal Model
for Cloud Computing,” in International Conference on Service-Oriented
Computing. Springer, 2013, pp. 381–393.

[11] K. Yongsiriwit, M. Sellami, and W. Gaaloul, “A Semantic Framework
Supporting Cloud Resource Descriptions Interoperability,” in 2016 IEEE
9th International Conference on Cloud Computing (CLOUD). IEEE,
2016, pp. 585–592.

[12] N. Loutas, E. Kamateri, and K. Tarabanis, “A Semantic Interoperability
Framework for Cloud Platform as a Service,” in 2011 IEEE Third
International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE, 2011, pp. 280–287.


	Introduction
	Multi-cloud Interoperability
	Provider Space
	Programming Space
	Modelling Space
	Semantic Space

	The fclouds Framework
	Usage Scenario
	Overview of fclouds 
	Modelling
	Reasoning

	Conclusion
	References

