
HAL Id: hal-01522684
https://hal.archives-ouvertes.fr/hal-01522684

Submitted on 15 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Mobile Cloud Robotics as a Service with OCCIware
Philippe Merle, Christophe Gourdin, Nathalie Mitton

To cite this version:
Philippe Merle, Christophe Gourdin, Nathalie Mitton. Mobile Cloud Robotics as a Service with
OCCIware. 2nd IEEE International Congress on Internet of Things, IEEE ICIOT 2017, Jun 2017,
Honolulu, Hawaii, United States. pp.50 - 57, �10.1109/IEEE.ICIOT.2017.15�. �hal-01522684�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/132064051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01522684
https://hal.archives-ouvertes.fr


Mobile Cloud Robotics as a Service with OCCIware
Philippe Merle12, Christophe Gourdin12, Nathalie Mitton1

1 Inria, France, firstname.lastname@inria.fr
2 University Lille 1 CRIStAL UMR CNRS 9189, France

Abstract—We have recently witnessed the emerging of cloud
computing on one hand and robotics platforms on the other hand.
Naturally, these two visions have been merging to give birth to
the Cloud Robotics paradigm in order to offer even more remote
services. But such a vision is still in its infancy. Architectures
and platforms are still to be defined to efficiently program
robots so they can provide different services, in a standardized
way masking their heterogeneity. This paper introduces OPEN
MOBILE CLOUD ROBOTICS INTERFACE (OMCRI), a Robot-as-
a-Service vision based platform, which offers a unified easy access
to remote heterogeneous mobile robots. OMCRI encompasses
an extension of the Open Cloud Computing Interface (OCCI)
standard and a gateway hosting mobile robot resources. We
then provide an implementation of OMCRI based on the open
source model-driven Eclipse-based OCCIWARE tool chain and
illustrates its use for three off-the-shelf mobile robots: Lego
Mindstorm NXT, Turtlebot, and Parrot AR.Drone.

Index Terms—Mobile Cloud Robotics, Robot-as-a-Service,
Open Cloud Computing Interface, implementation.

I. INTRODUCTION

With the advent of the Internet of Things (IoT) and robotics
on one hand and of Cloud Computing on the other hand,
people have witnessed a shift in the way they can interact
and communicate with their things and their environment.
Naturally, robotics platforms and cloud computing have been
getting closer to lead to the concept of Cloud Robotics [13],
[18], [19], [23], [30]. Such a new paradigm paves the way to
various new applications and could allow for instance robot
sharing for service providing, especially if we consider fleets
of heterogeneous robots able to perform different tasks. We
thus talk of the vision of Robot as a Service [6], [7]. Such a
concept is gaining a lot of attention since it could be applied
in many domains ranging from smart city management to
rescue operations in remote areas [28] but it comes with a
large sets of new challenges [13], [16], [18]. This paradigm
is still in its infancy and new architectures are needed to
manage robots. Current solutions are not yet user-oriented.
Remote programming and control of heterogeneous robots are
not always possible, which ends up as difficult tasks requiring
advanced skills.

In this paper, we present OPEN MOBILE CLOUD ROBOTICS
INTERFACE (OMCRI), an OCCI extension platform based on
the Robot-as-a-Service paradigm, which allows the easy re-
mote programming of heterogeneous robots, reducing access
complexity for the user. OMCRI relies on the Open Cloud
Computing Interface (OCCI), the open cloud standard [11],
and proposes an abstraction of mobile robots and of the
services they offer. OMCRI is modular and extensible. Specific
commands to address each kind of robots is gathered in

an independent module to plug into the OMCRI core. The
adoption of a modular architecture eases the understanding,
the development and the integration of the different robots
programming and virtualization layer. OMCRI is innovative
since to the best of our knowledge, it is the very first platform
to provide simultaneously all the following features:

• OMCRI fills the gap between both cloud and robotics
worlds by exposing a cloud-oriented programming inter-
face,

• OMCRI is OCCI-standard compliant,
• OMCRI is scalable and extensible thanks to its modular

architecture, and
• OMCRI is universal since it can support any kind of

robots and deals with a set of heterogeneous robots.
This paper introduces the design of OMCRI, which consists
of (i) an OCCI extension for modeling Mobile Cloud Robotics
as a Service and (ii) the OMCRI gateway hosting mobile
robot resources, and provides an implementation of OMCRI by
using OCCIware [20], our open source model-driven Eclipse-
based tool chain dedicated to OCCI. OMCRI supports any
kind of robots. As an illustration of this, implementation is
given for three different mobile robots: Lego Mindstorm NXT
21, Turtlebot 22, and Parrot AR.Drone3. Evaluation tests show
that our module does not add latency, keeping server overhead
low and remains stables over time and requests.

The remaining of the paper is as follows. In Section II, we
motivate the need of such a cloud robotics platform through the
description of application scenarios. Section III gives a back-
ground overview of OCCI. Section IV describes the design
of OMCRI and especially its new OCCI extension for Mobile
Cloud Robotics and the OMCRI gateway. Section V presents
our implementation of OMCRI on top of the OCCIware tool
chain and shows its relevance through the integration of three
kinds of robots. Finally, we position our work with related
approaches in Section VI before concluding and drawing some
perspectives of future works in Section VII.

II. MOTIVATION

Imagine a disaster such as the Fukushima nuclear power
plant that was damaged in 2011 by an earthquake and a
tsunami. Human workers are better not to be sent to measure
the damages because of radiations. Suppose that robots and
drones are sent instead. Drones are essential to inspect the

1https://shop.lego.com/en-US/LEGO-MINDSTORMS-NXT-2-0-8547
2http://www.turtlebot.com
3https://www.parrot.com



most urgent places to reach from the air (if some victims
are located for instance) communicate this information to the
robots and then potentially guide them. Robots cooperate to
explore the area on the ground. Several kinds of ground robots
are needed based on the needs on the ground: They may need
to climb, move, break, lift some stones, monitor radiation,
rescue people, etc. Heterogeneity in both flying and ground
robots is thus mandatory to perform well all tasks in such an
application. Easy and standard way to remotely control them
is also paramount.

But this is only an example of what could be achieved
when heterogeneous robots cooperate [28]. But their potential
is much wider since they can find applications in a lot of areas,
such as civilian, military or industrial, at different scales. To
name of few, we can refer to rescue operations, hostile envi-
ronment exploration, infrastructure monitoring or destroying,
fine-grained ground monitoring for agriculture, transportation
enhancement, etc. In all these applications, having fleets of
heterogeneous robots is a great asset but this potentially goes
with an increased complexity in controlling them. Therefore,
this is paramount to mask these difficulties and offer to the
user a unified view of all robots, together with simplified tools
and a unique interface to remotely address and control them.
This is the purpose of OMCRI.

III. BACKGROUND ON OCCI
OMCRI is an extension of the Open Cloud Computing

Interface (OCCI), the open cloud standard [11] specified by the
Open Grid Forum (OGF). OCCI defines a RESTful4 Protocol
and API5 for all kinds of management tasks on any kind of
cloud resources, including Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), Software as a Service (SaaS),
and especially Mobile Robotics as a Service as proposed in
this paper. In order to be modular and extensible, OCCI is
delivered as a set of specification documents6 divided into the
four following categories as illustrated in Fig. 1:

Fig. 1. OCCI Specifications (the dark blue box is our OMCRI contribution).

• OCCI Core: The OCCI Core specification [26] de-
fines a RESTful-oriented model. The main concepts

4REpresentation State Transfer [12]
5Application Programming Interface
6Available at http://occi-wg.org/about/specification/.

of this model are Resource, Link, Kind, Mixin,
Attribute, and Action. Resource is the root ab-
straction of any cloud resource, such as a virtual machine,
a network, an application, and a mobile robot. Link
represents a relation between two resources, such as a vir-
tual machine connected to a network and an application
hosted by a virtual machine. Each OCCI entity (resource
and link) owns zero or more Attributes, such as its
unique identifier, the host name of a virtual machine, the
Internet Protocol address of a network. Each OCCI entity
has zero or more Actions representing business spe-
cific behaviors, such as start/stop a virtual machine, and
up /down a network. Each OCCI entity is strongly typed
by Kind and Mixins. Kind represents the immutable
type of OCCI entities and defines allowed attributes and
actions. Single inheritance between Kinds allows us to
factorize attributes and actions common to several kinds.
Mixin represents cross-cutting attributes and actions that
can be dynamically added to an OCCI entity. Mixin
can be applied to zero or more Kinds and can depend
from zero or more other Mixins. For more details on the
OCCI Core Model, readers can refer to [20]. OCCI Core
can be interacted with over protocols/renderings and is
expandable through extensions.

• OCCI Protocols: Each OCCI Protocol specification de-
scribes how a particular network protocol can be used to
interact with the OCCI Core Model. Multiple protocols
can interact with the same instance of the OCCI Core
Model. Currently, only the OCCI HTTP Protocol [25] has
been defined but other OCCI protocols could be proposed
in the future such as AMQP7.

• OCCI Renderings: Each OCCI Rendering specification
describes a particular rendering of the OCCI Core Model.
Multiple renderings can interact with the same instance
of the OCCI Core Model and will automatically support
any OCCI extension. Currently, both OCCI Text [10] and
JSON8 [27] renderings have been defined.

• OCCI Extensions: Each OCCI Extension specifica-
tion describes a particular extension of the OCCI Core
Model for a specific application domain, and thus de-
fines a set of domain-specific Kinds and Mixins.
OCCI Infrastructure [21] is dedicated to IaaS and
defines Compute, Network, NetworkInterface,
Storage, StorageLink kinds, IPNetwork and
Credentials mixins. OCCI Compute Resource Tem-
plates Profile (CRTP) [8] defines a set of well-defined
instances of the Compute resource kind, such as small,
medium, and large mixins. OCCI Platform [22]
is dedicated to PaaS and defines Application,
Component, and ComponentLink kinds. OCCI Ser-
vice Level Agreements [14] is dedicated to define SLA
in OCCI. This paper proposes a new OCCI extension
for mobile cloud robotics.

7Advanced Message Queuing Protocol
8JavaScript Object Notation



Fig. 2. OMCRI Extension Diagram.

IV. OPEN MOBILE CLOUD ROBOTICS INTERFACE

OPEN MOBILE CLOUD ROBOTICS INTERFACE features
two main components (i) an OCCI extension for modeling
Mobile Cloud Robotics as a Service and (ii) the OMCRI
gateway hosting mobile robot resources. We detail these both
components in the two next sections.

A. OCCI Extension for Mobile Cloud Robotics

Our OCCI extension for Mobile Cloud Robotics (called the
OMCRI extension) is presented in the form of a diagram
in Fig. 2. This diagram was designed with OCCIWARE
STUDIO [29], our open source model-driven based integrated
development environment dedicated to OCCI. The OCCI Core
Model is represented by the grey box. Kinds and mixins
are represented by green and blue boxes, respectively. Type
inheritance is represented by full arrows. The application of
a mixin to a kind is represented by dotted arrows. Mandatory
attributes are in bold and immutable attributes are in italics.
Enumeration data types are represented by white boxes.

Our OMCRI extension is split into two parts: 1) a generic
part at the top of Fig. 2 and 2) a specific part at the
bottom of Fig. 2. The generic part defines abstract robot
agnostic types (kinds and mixins). The specific part defines
concrete robot-specific types. OMCRI is extensible by design
to support any kind of ground and flying robots, whatever their
communication and core technology. However, in this paper,
the specific part is limited to three particular mobile robots:
Lego Mindstorm NXT 2, Turtlebot 2 and Parrot AR.Drone.

The generic part of the OMCRI extension is composed of
one kind and two mixins:

• Robot: This kind is the base type of any robot in OMCRI,
i.e., specific robot kinds inherit from robot. As robot
inherits from the resource kind, any robot owns
transitively three attributes: (i) occi.core.id the im-
mutable mandatory unique identifier of the robot, (ii)
occi.core.title a mutable optional string entitled
the robot and (iii) occi.core.summary a mutable
optional text describing the robot.



• Sensor: This mixin is the base type of any robot sensor in
OMCRI, i.e., specific sensor types inherit from sensor.
A robot can have zero or more sensors.

• Actuator: This mixin is the base type of any robot actu-
actor in OMCRI, i.e., specific actuator types inherit from
actuator. A robot can have zero or more actuators.

The robot-specific part of the OMCRI extension is com-
posed of three kinds (one for each targeted robot) and six
mixins (three robot-specific sensors and three actuators):

• Lego Mindstorm NXT 2: This kind represents Lego
Mindstorm NXT 2 robots and defines one specific manda-
tory attribute: mac_address is the MAC address of
a Lego Mindstorm NXT 2 robot. This address must be
configured at the creation time of the robot resource and
is used later by OMCRI to interact via Bluetooth with
the robot.

• Turtlebot: This kind represents Turtlebot 2 robots and
defines three specific mandatory attributes. Both attributes
user and password are the security credentials to
connect to the robot. Attribute ip_address is the IP
address to interact with the robot. These attributes must
be configured at the creation time of the robot resource
and are used later by OMCRI to securely connect/interact
with a Turtlebot 2 robot.

• AR.Drone: This kind represents Parrot AR.Drone robots
and defines one specific mandatory attribute. Attribute
ip_address is the IP address of a drone. This address
must be configured at the creation time of the drone and
is used later by OMCRI to interact via WiFi with the
drone.

• Color Sensor: This mixin represents the color sensor of
a Lego Mindstorm NXT 2 robot, i.e., color-sensor
is applied to lego-mindstorm-nxt2. This sensor
provides three immutable sensing attributes: color is
the last sensed color, light is the last sensed light, and
darkness is the last sensed darkness. This sensor can
sense six distinct colors (white, black, blue, yellow, red,
and green) as defined by the Color enumeration data
type. Moreover, this sensor can act as a lamp and the color
of this lamp is configured by the mutable color-lamp
attribute. The sense_color action does the sensing
and updates the three sensing attributes accordingly.

• Touch Sensor: This mixin represents the touch sensor of
a Lego Mindstorm NXT 2 robot, i.e., touch-sensor
is applied to lego-mindstorm-nxt2. This sensor
provides one immutable sensing attribute: touch is the
last sensed touch state. The three possible touch status
(pressed, released, and hit) are defined by the Touch
enumeration data type. The sense_touch action does
the sensing and updates the touch attribute accordingly.

• Ultrasonic Sensor: This mixin represents the
ultrasonic sensor of a Lego Mindstorm NXT 2
robot, i.e., ultrasonic-sensor is applied to
lego-mindstorm-nxt2. This sensor measures the
distance between the robot and obstacles. The last sensed

distance is stored into the distance attribute. The
sense_distance action does the sensing and updates
the distance attribute accordingly.

• Mouth Actuator: This mixin represents the
mouth actuator of a Lego Mindstorm NXT 2
robot, i.e., mouth-actuator is applied to
lego-mindstorm-nxt2. This actuator has no
configurable attributes and provides two actions:
open_mouth and close_mouth to open and close
the mouth of the robot, respectively.

• Motion Actuator: This mixin represents the mo-
tion actuator of any robot able to move. Let’s
note that this mixin is applied to two kinds of
robots: lego-mindstorm-nxt2 and turtlebot.
This mixin defines three configurable attributes: angle
is the angle when the robot turns (45 degree by default),
speed defines the motion speed when the robot moves
(100 by default), and duration is the motion duration
when the robot moves (1 second by default). Fives
actions are allowed on mobile robots: move_forward,
move_backward, turn_right, turn_left, and
stop.

• Flight Actuator: This mixin represents the flight
actuator of any robot able to fly. In this paper,
this mixin is only applied to ar_drone robots.
Four mandatory configurable attributes are defined:
horizontal_tilt is the horizontal flight tilt of the
drone, vertical_tilt is the vertical flight tilt of
the drone, horizontal_speed is the horizontal flight
speed of the drone, and vertical_speed is the ver-
tical flight speed of the drone. Three actions can be
executed on drones: move, land, and take_off.

B. OMCRI Gateway Architecture

At runtime, end users (or programs) interact with mobile
robots through the networked OMCRI gateway, as illustrated
in Fig. 3. The OMCRI gateway is composed of three parts:

Fig. 3. OMCRI Gateway Architecture.



• OCCI Server: The OMCRI gateway embeds an OCCI
server implementing the following OCCI specifications:
– OCCI HTTP Protocol [25],
– OCCI Text/JSON Renderings [10], [27], and
– OCCI Core Model [26].

• OMCRI Extension: The OMCRI gateway supports the
OCCI extension for Mobile Cloud Robotics presented in
Section IV-A.

• OMCRI Connectors: The OMCRI gateway contains
a set of connectors. Each connector is dedicated to a
specific robot, e.g., Lego Mindstorm NXT 2, Turtlebot,
and AR Drone. The OMCRI gateway is extensible by
design: Supporting a new kind of robots consists of
adding a new connector.

Users send their HTTP requests to the OMCRI gateway and
wait for a reply (Step 1 in Fig. 3). In the OMCRI gateway, the
processing of a user’s request consists of managing the OCCI
HTTP protocol (Step 2), decoding the HTTP request body
according to its text or JSON format (Step 3), forwarding the
request to the OCCI Core Model (Step 4), controlling if the
request is allowed by the OMCRI extension (Step 5), calling
the connector related to the targeted robot (Step 6), preparing
the request to send to the robot (Step 7), communicating
with the robot via its associated network protocol (Step 8),
processing the request by the robot (Step 9), encoding the
HTTP reply body (Step 10), and return the reply to the user
(Step 11). Then the user processes the reply (Step 12).

V. IMPLEMENTING OMCRI WITH OCCIWARE

A. Overview

The implementation of OMCRI is built on top of our
open source model-driven Eclipse-based OCCIWARE tool
chain [29] composed of two main parts: (i) OCCIWARE
STUDIO9 an integrated development environment for OCCI
and (ii) OCCIWARE RUNTIME10 a full OCCI-compliant server
implementing OCCI Core [26], OCCI HTTP Protocol [25],
and OCCI Text/JSON Renderings [10], [27] specifications.

Fig. 4. Implementing OMCRI with OCCIware.

As illustrated in Fig. 4, a designer defines OMCRI types for
its mobile robots (i.e., specific robot kinds, their sensor

9Available at https://github.com/occiware/OCCI-Studio
10Available at https://github.com/occiware/MartServer

and actuator mixins, and required data types) with OC-
CIWARE STUDIO as discussed in Section IV-A. Then, OCCI-
WARE STUDIO generates the implementation of a connector
for each modeled mobile robot. A developer completes each
generated connector with robot-specific code implementing the
business logic to interact with the mobile robot as discussed in
Section V-B. The connector is then deployed on the OMCRI
gateway, which embeds OCCIWARE RUNTIME to process
users’ OCCI HTTP requests as discussed in Section IV-B.
Users interact with the mobile robots as presented in Sec-
tion V-C.

B. Implementing OMCRI Connectors

To implement the OMCRI connector associated to a mobile
robot, the developer must complete the code generated by OC-
CIWARE STUDIO. Listing 1 presents the generated connector
class for Lego Mindstorm NXT 2.

Listing 1. Generated connector for Lego Mindstorm NXT 2.
public class LegoMindstormNxt2Connector

extends LegoMindstormNxt2Impl
{

public void occiCreate() {/* TBC */}
public void occiRetrieve() {/* TBC */}
public void occiUpdate() {/* TBC */}
public void occiDelete() {/* TBC */}

public void sense_color() {/* TBC */}
public void sense_touch() {/* TBC */}
public void sense_distance() {/* TBC */}
public void open_mouth() {/* TBC */}
public void close_mouth() {/* TBC */}
public void move_forward() {/* TBC */}
public void move_backward() {/* TBC */}
public void turn_right() {/* TBC */}
public void turn_left() {/* TBC */}
public void stop() {/* TBC */}

}

The generated LegoMindstormNxt2Connector Java
class extends another generated class LegoMindsto-
rmNxt2Impl, which contains all the OCCIWARE RUN-
TIME specific code. The connector class contains four OCCI
specific callback methods and all the robot specific actions
that must be completed (TBC). The callback methods are
called by OCCIWARE RUNTIME to signal that the OCCI
resource (i) was created (occiCreate), (ii) will be retrieved
(occiRetrieve), (iii) was updated (occiUpdate), and
(iv) will be deleted (occiDelete). These callbacks can open
a network connection to the mobile robot, consult the robot’s
state, update its state, and close the connection, respectively.
The developer must implement all the actions defined in both
the OCCI kind of the robot (lego_mindstorm_nxt2) and
all its applied mixins (color-sensor, touch-sensor,
ultrasonic-sensor, mouth-actuator, and motio-
n-actuator). The implementation of each action consists
of forwarding the called action to the mobile robot through the
appropriate networked robot protocol (e.g., Bluetooth for Lego
Mindstorm NXT 2, IP for Turtlebot, WiFi for AR.Drone). The



implementation details are not discussed in this paper due to
space limit11.

C. Interacting with mobile robots

Users interact with mobile robots by sending OCCI HTTP
requests to the OMCRI gateway (see Section IV-B). Then, we
show three typical users’ requests: creation of a mobile robot
resource, updating its attributes, and executing an action of the
robot.

Listing 2. OMCRI request for creating a Lego Mindstorm NXT 2 resource.
{

"title": "robot vehicule claptap",
"summary": "robot claptap car",
"kind":

"http://omcri#lego_mindstorms_nxt2",
"mixins": [

"http://omcri#motion-actuator",
"http://omcri#color-sensor"

],
"attributes": {

"mac_address": "00:16:53:10:10:C3",
"speed": 1,
"color-lamp": "RED"

},
"location": "lego/myRobot"

}

To create a mobile robot resource, users send an HTTP
PUT request with a JSON body as illustrated in Listing 2.
The body of a creation request must contain the robot kind
(lego_mindstorms_nxt2), its associated mixins (e.g.,
motion-actuator and color-sensor), and the ini-
tial value of mandatory attributes (mac_address defined
in bold in Fig. 2). The request could also contain the
value of other optional attributes (both occi.core.title
and occi.core.summary of resource kind, speed
of motion-actuator mixin, and color-lamp of
color-sensor mixin in Fig. 2). The last location field
defines the HTTP path (lego/myRobot) to interact with the
mobile robot later.

Listing 3. OMCRI request for updating a Lego Mindstorm NXT 2 resource.
{
"location": "lego/myRobot",
"attributes": {
"duration": 2000

}
}

To update a mobile robot resource, users send an HTTP
POST request with a JSON body as illustrated in Listing 3.
The body of an updating request must contain the location of
the robot to update (lego/myRobot) and the list of attributes
to update (e.g., duration to update to 2000 milliseconds).

Listing 4. Executing move_forward on a Lego Mindstorm NXT 2 resource.
{

11A prototype of the three connectors is available at https://github.com/
PFECloudRobotics2017.

"location": "lego/myRobot",
"action": "http://omcri/motion-actuator/

action#move_forward"
}

To execute an action on a mobile robot resource, users send
an HTTP POST request with a JSON body as illustrated in
Listing 4. The body of an execution request must contain the
location to the robot (lego/myRobot), the action to exe-
cute (move_forward of mixin motion-actuator), and
action parameters (if required by the action). Thus Listing 4
requests the previously created Lego Mindstorm NXT 2 robot
to move forward during two seconds (the last value of the
duration attribute).

D. OMCRI Gateway Performance Evaluation

The objective of this evaluation is to measure the perfor-
mance, stability, and scalability of the OMCRI gateway, and
determinate the overhead introduced by the OMCRI gateway
when executing an action on a mobile robot.

The OMCRI gateway has been installed on a MacBook Pro
with Intel Core I7 2.2 Ghz 8 cores, 16 GB 1600 Mhz DDR3 of
RAM, 250 GB SSD of disk, running MacOS Sierra operating
system and Oracle Java Runtime Environment version 8. The
measures were taken with Apache Jmeter12 version 3.1, an
open source software to evaluate HTTP performance and to
load HTTP servers. To avoid network latency, the OMCRI
gateway and JMeter have been launched on the same machine.
The OMCRI gateway hosts the three connectors for Lego
Mindstorm NXT 2, Turtlebot, and AR Drone. In this paper, we
only present and analyse the measures for the Lego Mindstorm
NXT 2 connector. However the measures for other connectors
are similar.

We run ten shots. Each slot includes 1,000 create, 10,000
update, 10,000 retrieve and 30 execute action requests. Based
on these 210,300 requests, we compute average response time
per request, median time, standard deviation, variance, and the
number of requests per second. Fig. 5 summarizes all these
measures and Table I shows them as a histogram.

Our analysis of these observed measures is:
1) As no request failed during all the ten shots, we can

consider that our implementation of the OMCRI gateway is
robust and reliable.

2) As the average response time is very close to median time
and both standard deviation and variance of create, update, and
retrieve requests are extremely low, we can consider that the
performance of the OMCRI gateway is extremely stable and
predictable.

3) The OMCRI gateway scales well until 1,000 resources,
which already form an extremely large fleet of mobile robots.

4) The OMCRI gateway provides a high throughput for
update and retrieve requests (i.e., 2,049 and 2,386 requests
per second, respectively). The throughput of create requests
(249) is lower. This is due to the fact that creating a new
resource requires memory allocation and verification of the

12http://jmeter.apache.org/



TABLE I
OMCRI GATEWAY PERFORMANCE EVALUATION

Average Median Standard
OMCRI Request Requests/shot Response Time (ms) (ms) Deviation Variance Requests/sec.
Create a Lego Mindstorm NXT 2 resource 1,000 4.015 3.995 0.119 0.014 249
Update a Lego Mindstorm NXT 2 resource 10,000 0.488 0.490 0.004 0.0000178 2,049
Retrieve a Lego Mindstorm NXT 2 resource 10,000 0.419 0.420 0.006 0.000032 2,386
Execute action turn_left 30 65.526 65.135 1.873 3.51 15
OMCRI overhead for executing action turn_left 1.134 1.130 0.126 0.016 882

Fig. 5. OMCRI Gateway Response Time.

existence and compatibility13 of the requested kind and
applied mixins, and checking that users’ requests contain
all mandatory attributes.

5) The overhead introduced by the OMCRI gateway is very
low (near 1.1 ms) compared to the total time needed by the
robot to execute the requested action (near to 65 ms to turn left
a Lego Mindstorm NXT 2). Of course, the overhead depends
on the requested action and the kind of robots. However, for
action turn_left, the overhead is near 1.73%.

VI. RELATED WORK

As already mentioned, the concept of Cloud Robotics have
slightly emerged recently [18]. The community agreed that
getting robots and cloud closer will allow for a new world
of opportunities. First attempts were mainly proposing data
sharing between robots, creating a so-called social network for
robots, allowing one to develop their own services at home on
robots [2].

Exploiting the full potential of the cloud to not only share
data but also offload complex computing has emerged with
[9], [24]. Then, the vision of Robot as a Service (RaaS) has
emerged with its sets of challenges [13], [16], [19]. Several
platforms have started to emerge, providing more or less
open robot programming tools. The authors of [30] provide a
platform that allows the remote control of robots through shape
recognizing software to overcome the absence of camera on

13e.g., checking that the flight-actuator mixin is not applied to a
lego_mindstormnxt2 resource.

robots. [7] offers a web-based robot programming interface,
which is actually a great asset since available from almost
everywhere and user-friendly. Both of these latter approaches
consider the concept of Robot as a Service but they only
consider fleets of homogeneous robots. [6] enables the control
of different kinds of robots such as Lego Mindstorms and
iRobots among others but it relies on proprietary tools for
their programming. Complete platforms have been proposed
like DaVinci [1], [5], [15], [17] and Rapyuta [23].

DaVinci (Distributed Agents with Collective Intelligence)
was one of the first implementation of a collaborative platform.
It showed the advantages of cloud computing by paralyzing a
SLAM algorithm using a Hadoop cluster. Although innovative
and promising, it was not very reliable neither scalable since
it was not supporting too big data volumes and not publicly
available. [1] offers to execute robot behaviors such as vision
and speech algorithms on compatible robots in the cloud. [15]
uses Google’s Object Recognition Engine to recognize and
grasp common household objects. These two approaches allow
for the use of heterogeneous robots but unfortunately are not
publicly available.

Rapyuta [23] is certainly the most similar approach than
OMCRI. Rapyuta is the RoboEarth Cloud Engine, an open
source cloud robotics framework. The RoboEarth project [3]
offers a Cloud Robotics infrastructure, which aims to include
everything needed to close the loop from the robot to the cloud
and back to the robot. Each robot connected to Rapyuta has a
secured computing environment giving it the ability to move
its heavy computation into the cloud. Similarly to OMCRI, it
could be applied in a large set of scenario, including rescue
operations [28]. RoboEarth provides an open-source Cloud
Robotics framework that allows robots to share knowledge
via a WWW-style database and access powerful robotics cloud
services. It thus provides an open-source implementation for
a robotics platform able to manage different kinds of robots.
However, Rapyuta does not rely on cloud standards but rather
integrates ad hoc implementation of modules.

VII. CONCLUSION

This paper presented OMCRI encompassing an OCCI ex-
tension for modeling Mobile Cloud Robotics as a Service
and the OMCRI gateway for hosting mobile robot resources.
OMCRI is modular and extensible. It can support any kind
of robots. We used the OCCIware tool chain to provide
an implementation for three off-the-shelf mobile robots to
illustrate its ease of use and how robot heterogeneity is made



transparent for the user. Evaluation tests have shown that
the gateway overhead remains low and that OMCRI does
not add any latency. As perspectives, we forecast to extend
OMCRI for supporting other kinds of robots and make them
cooperate at a large scale. Implementations and then different
scenarios will be able to be experimented over the FIT IoT-
LAB platform14 [4], emulating different application scenarios
as described in Section II. Another perspective is to size the
OMCRI gateway in order to directly embed it into mobile
Internet of Things such as autonomous vehicles either for
intelligent transportation systems or smart agriculture monitor-
ing (vehicles can be farming vehicles), personal care or event
shooting [31]. Finally, we will propose OMCRI to Open Grid
Forum in order to standardize an OCCI extension for mobile
robots.

ACKNOWLEDGMENTS

We thank Lucas Delvallet, Quentin Delvallet, and Flo-
rian Doublet for the implementation of the first prototype
of OMCRI. This work is partially supported by both the
CPER/FEDER DATA grant and the OCCIware research and
development project (www.occiware.org) funded by French
Programme d’Investissements d’Avenir (PIA).

REFERENCES

[1] Gostainet. http://www.gostainet.com.
[2] My Robots. https://en.wikipedia.org/wiki/MyRobots.
[3] RoboEarth. http://roboearth.ethz.ch.
[4] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie

Mitton, Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel,
Guillaume Schreiner, Julien Vandaele, et al. FIT IoT-LAB: A Large
Scale Open Experimental IoT Testbed. In 2015 IEEE 2nd World Forum
on Internet of Things (WF-IoT), pages 459–464. IEEE, 2015.

[5] Rajesh Arumugam, Vikas Reddy Enti, Liu Bingbing, Wu Xiaojun, Kr-
ishnamoorthy Baskaran, Foong Foo Kong, A.Senthil Kumar, Kang Dee
Meng, and Goh Wai Kit. DaVinci: A Cloud Computing Framework for
Service Robots. In Proceedings of 2010 IEEE International Conference
on Robotics and Automation (ICRA), pages 3084–3089, Anchorage,
USA, 2010. IEEE.

[6] Yinong Chen and Hualiang Hu. Internet of Intelligent Things and Robot
as a Service. Simulation Modelling Practice and Theory, 34:159–171,
2013.

[7] Yinong Chen and Zhizheng Zhou. Robot as a Service in Computing
Curriculum. In Proceedings of 2015 IEEE Twelfth International Sympo-
sium on Autonomous Decentralized Systems (ISADS), pages 156–161,
Taichung, Taiwan, 2015. IEEE.

[8] Michel Drescher, Boris Parák, and David Wallom. OCCI Compute
Resource Templates Profile. Recommandation GFD-R-P.222, Open Grid
Forum, October 2016.

[9] Zhihui Du, Weiqiang Yang, Yinong Chen, Xin Sun, Xiaoying Wang, and
Chen Xu. Design of a Robot Cloud Center. In Proceedings of IEEE
Twelfth International Symposium on Autonomous Decentralized Systems
(ISADS), pages 269–275, Kobe, Japan, 2011. IEEE.

[10] Andy Edmonds and Thijs Metsch. Open Cloud Computing Interface
– Text Rendering. Recommandation GFD-R-P.229, Open Grid Forum,
October 2016.

[11] Andy Edmonds, Thijs Metsch, Alexander Papaspyrou, and Alexis
Richardson. Toward an Open Cloud Standard. IEEE Internet Computing,
16(4):15–25, 2012.

[12] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California,
Irvine, 2000.

14https://www.iot-lab.info

[13] D Gowrimol. A Study on Cloud Robotics and Automation. Interna-
tional Journal of Advanced Research in Computer and Communication
Engineering (IJARCCE), 5(4):25–26, 2016.

[14] Gregory Katsaros. Open Cloud Computing Interface – Service Level
Agreements. Recommandation GFD-R-P.228, Open Grid Forum, Octo-
ber 2016.

[15] Ben Kehoe, Akihiro Matsukawa, Sal Candido, James Kuffner, and
Ken Goldberg. Cloud-Based Robot Grasping with the Google Object
Recognition Engine. In Proceedings of IEEE International Conference
on Robotics and Automation (ICRA), pages 4263–4270, Karlsruhe,
Germany, 2013. IEEE.

[16] Ben Kehoe, Sachin Pati, Pieter Abbeel, and Ken Goldberg. A Survey
of Research on Cloud Robotics and Automation. IEEE Transactions on
Automation Science and Engineering, 12(2):398–409, 2015.

[17] Anis Koubâa. A Service-Oriented Architecture for Virtualizing Robots in
Robot-as-a-Service Cloud. In Proceedings of International Conference
on Architecture of Computing Systems (ARCS), pages 196–208, Lübeck,
Germany, 2014. Springer.

[18] Daniel Lorencik and Peter Sincak. Cloud Robotics: Current Trends and
Possible Use as a Service. In Proceedings of 11th IEEE International
Symposium on Applied Machine Intelligence and Informatics (SAMI),
pages 85–88, Herlány, Slovakia, 2013. IEEE.

[19] Xinqiang Ma and Yi Huang. Research on Mobile Cloud Robotics
based on Cloud Computing. In Proceedings of International Forum
on Management, Education and Information Technology Application
(IFMEITA), Guangzhou, China, 2016.

[20] Philippe Merle, Olivier Barais, Jean Parpaillon, Noël Plouzeau, and
Samir Tata. A Precise Metamodel for Open Cloud Computing Inter-
face. In Proceedings of 8th IEEE International Conference on Cloud
Computing, CLOUD 2015, pages 852–859. IEEE, June 2015.

[21] Thijs Metsch, Andy Edmonds, and Boris Parák. Open Cloud Computing
Interface – Infrastructure. Recommandation GFD-R-P.224, Open Grid
Forum, October 2016.

[22] Thijs Metsch and Mohamed Mohamed. Open Cloud Computing Inter-
face – Platform. Recommandation GFD-R-P.227, Open Grid Forum,
October 2016.

[23] Gajamohan Mohanarajah, Dominique Hunziker, Raffaello D´Andrea,
and Markus Waibel. Rapyuta: A Cloud Robotics Platform. IEEE
Transactions on Automation Science and Engineering, 12(2):481–493,
2015.

[24] Carla Mouradian, Fatima Zahra Errounda, Fatna Belqasmi, and Roch
Glitho. An Infrastructure for Robotic Applications as Cloud Computing
Services. In Proceedings of 2014 IEEE World Forum on Internet of
Things (WF-IoT), pages 377–382, Seoul, Korea, 2014. IEEE.

[25] Ralf Nyrén, Andy Edmonds, Thijs Metsch, and Boris Parák. Open Cloud
Computing Interface – HTTP Protocol. Recommandation GFD-R-P.223,
Open Grid Forum, October 2016.

[26] Ralf Nyrén, Andy Edmonds, Alexander Papaspyrou, Thijs Metsch, and
Boris Parák. Open Cloud Computing Interface – Core. Recommendation
GFD-R-P.221, Open Grid Forum, October 2016.

[27] Ralf Nyrén, Florian Feldhaus, Boris Parák, and Zdenek Sustr. Open
Cloud Computing Interface – JSON Rendering. Recommandation GFD-
R-P.226, Open Grid Forum, October 2016.

[28] Francesco Palmieri, Massimo Ficco, Silvio Pardi, and Aniello Cas-
tiglione. A Cloud-based Architecture for Emergency Management and
First Responders Localization in Smart City Environments. Computers
and Electrical Engineering, 56(C):810–830, 2016.

[29] Jean Parpaillon, Philippe Merle, Olivier Barais, Marc Dutoo, and Fawaz
Paraiso. OCCIware - A Formal and Tooled Framework for Managing
Everything as a Service. In Projects Showcase@ STAF’15, volume 1400,
pages 18–25, 2015.

[30] Louis Turnbull and Biswanath Samanta. Cloud Robotics: Formation
Control of a Multi Robot System Utilizing Cloud Infrastructure. In
Proceedings of SoutheastCon, pages 1–4, Jacksonville, USA, 2013.

[31] Lotfi Zaouche, Enrico Natalizio, and Abdelmadjid Bouabdallah. Ettaf:
Efficient target tracking and filming with a flying ad hoc network. In
Proceedings of the 1st International Workshop on Experiences with the
Design and Implementation of Smart Objects, SmartObjects ’15, pages
49–54, New York, NY, USA, 2015. ACM.


