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Decision-making for automated vehicles at intersections

adapting human-like behavior

Pierre de Beaucorps∗ Thomas Streubel∗ Anne Verroust-Blondet∗ Fawzi Nashashibi∗

Benazouz Bradai† Paulo Resende†

Abstract

Learning from human driver’s strategies for solving
complex and potentially dangerous situations includ-
ing interaction with other road users has the potential
to improve decision-making methods for automated ve-
hicles. In this paper, we focus on simple unsignalized
intersections and roundabouts in presence of another
vehicle. We propose a human-like decision-making al-
gorithm for these scenarios built up from human drivers
recordings. The algorithm includes a risk assessment
to avoid collisions in the intersection area. Three road
topologies with different interaction scenarios were pre-
sented to human participants on a previously devel-
oped simulation tool. The same scenarios have been
used to validate our decision-making process. The al-
gorithm showed promising results with no collisions in
all setups and the ability to successfully determine to
go before or after another vehicle.

1 Introduction

While the development of automated vehicles advances
further, the focus in research moves towards more com-
plex scenarios especially in urban traffic environments.
Here, the high density of vehicles leads to numerous
interactions that challenge the cognitive abilities of
drivers and the development of automated vehicle sys-
tems alike.

The focus of this paper is the decision-making pro-
cess for an automated vehicle at intersections and
roundabouts in the presence of other vehicles. This
problem is usually coupled with the introduction of
a behavior estimation approach for manually driven
vehicles as in [1]. The aim here is to investigate the
human behavior in order to create a naturalistic deci-
sion process. The high error rate of drivers leading to
accidents and casualties is a major argument for devel-
oping automated vehicles. Thus, our decision process
is combined with an objective risk assessment to avoid
collisions. However, the high adaptability and robust
decision-making process of drivers should not be ne-
glected. Therefore, our approach incorporates human
driving behavior enhanced by a robust risk assessment.
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We created a new multi-agent simulation environ-
ment for testing and validating the decision-making al-
gorithm design. It enables the simultaneous driving of
multiple agents (human or automaton). Such a tool
is essential for the investigation of the interaction be-
tween human drivers and automated vehicles. It is also
used for data acquisition that is required to tune the
algorithm. The key aspect of our work is the introduc-
tion of a decision-making process capable of handling
intersection and roundabout scenarios avoiding colli-
sions.

1.1 Related Work

Different decision-making problems for automated
driving have been recently tackled. Depending on the
scenarios, some concentrate on lane-changing scenarios
([2, 3, 4]) while others focus on intersections. The rele-
vant features at intersections are different than in lane
change scenarios (see [5] for a survey). In [6], the post-
encroachment time (PET) is mentioned as measurable
parameter connected with risk in left turning scenarios.
It refers to the area that is common to the paths of two
vehicles coming from different directions. The PET
is the time between one vehicle leaving and the other
vehicle entering this zone. The study examined the
driving behavior in a real driving scenario created on
a test field. The situational conditions varied between
comfort and hurried and the aim was to investigate the
accepted comfort limits (expressed by PET and lateral
acceleration) under both conditions. While in the com-
fort situation the PET was around 2 seconds, the lower
limit is slightly above 1 second for the hurried condi-
tion. One of the challenges in such an experimental
setup seems to be the realization of comparable situa-
tions for all test drivers since the approaching behavior
at an intersection differs greatly between drivers.

Decision-making at intersections is addressed re-
cently in [7] and [8]. Galceran et al. introduce a
multi-policy approach, i.e. there is a previously defined
discrete set of policies (maneuvers) estimated for vehi-
cles including a Bayesian change-point detection where
the intention of executing a certain maneuver switches.
The maneuver set decreases the computation time in
favor of a real-time application. The decision-making
is based on a reward function taking several safety and
comfort features into account and the optimal maneu-
ver is found by forward simulation. Here, an interac-
tion between vehicles on a maneuver level is taken into



account. The decision-making is similarly approached
in [8]. Although, the prediction is realized through a
Hidden Markov Model (HMM) to determine the driv-
ing direction (left, right, straight) and the intention to
pass (stop, yield, no yield). Further, several policies
are created for the automated car and the observed
vehicle by creating artificial speed profiles through dis-
crete acceleration steps (step size 0.5 s) within a certain
comfort limit for deceleration and acceleration and to
comply with the speed limit. The prediction horizon is
chosen very high with 8 seconds which is compensated
with a wide step size. The decision of the best policy is
made using a reward function that takes comfort and
safety features into account. A potential conflict and
the traffic law compliance are both handled as binary
resulting in a high penalty for collision or breaking the
law.

Driven speed profile extraction have been used re-
cently for different purposes. This was used in [9] to
model automated vehicle behavior by building a neural
network that predicts the velocity declination in curvy
roads and turns. In [10] a functional discretization of
space for road intersection crossing has been designed
considering speed profile extraction.

1.2 Concept

The process towards decision-making follows the
scheme described in Figure 1. Concerning the envi-
ronment perception, we suppose that the informa-
tion is available and that sensing errors are neglected.
The behavior estimation is realized by a simple ex-
trapolation of the movement of other vehicles. The
trajectory planning of the automated vehicle is split
into two parts. First, the path planning is realized
by defining a route corridor formed by a list of cubic
Bézier curves maintaining G1 continuity. It is com-
puted offline according to the road topology by an ex-
ternal path planning module. Further, the trajectory
planning is completed by assigning a speed profile
to the path. Speed profiles are retrieved through test
drivers driving in our simulation environment to shape
human-like behavior. This inherently assures a cer-
tain comfort boundary for lateral acceleration. The

Trajectory planning
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Figure 1: Decision-making framework

trajectory planning and estimated trajectories of other
vehicles are used for a situational risk assessment to
avoid collisions in the intersection area. The risk is

determined by the PET and other safety-related vari-
ables. The decision-making is finalized by choosing
the lowest risk or, in case of no risk, the time-optimal
speed profile available among the several speed profiles
clustered from the retrieved driving data. So, this ap-
proach combines natural speed profiles extracted from
the human driving data recorded on our simulation tool
and objective risk features to adapt the velocity of an
automated vehicle and avoid collision risks in the in-
tersection.

This paper is organized as follows. In section 2, the
simulation tool is introduced, its functionality is de-
scribed and the data acquisition is outlined in section
3. Further, section 4 presents the decision-making al-
gorithm. Finally, in section 5 the simulation results are
shown and in section 6 the conclusion is drawn.

2 Simulation tool

For testing decision-making algorithms in automated
vehicles, a simulation tool is indispensable. Even on a
test field, the risk of collision and damaging the equip-
ment is too high. Since a simulator fitting all require-
ments was unavailable, a new custom simulation tool
was created. In the following, we present its main char-
acteristics.

2.1 Requirements

To deal with interactive behavior in urban traffic sce-
narios, the following requirements were identified:

1. The simulator tool should be capable of processing
human inputs in a controlled environment (driver-
in-the-loop). This way different drivers can be
tested in the exact same scenarios. The inputs
as well as the vehicle dynamics are recorded for
further analysis.

2. New algorithms can be tested for objective (min-
imal distance to the other vehicle, collision free)
and subjective (risk score, driver acceptance) cri-
teria, even in critical driving situations, which is
not easily feasible with a hardware platform.

3. Multiple vehicles with decision-making algorithms
can run against each other for validation or for it-
erative learning approaches such as self-play rein-
forcement learning.

Overall, a realistic, versatile, multi-agent and generic
simulator is required. Realistic refers to a reason-
able physics model to generate vehicles executing ac-
tually drivable trajectories. Versatile is meant mainly
in terms of road topology. The tool should allow a
customization of road designs (crossroads and round-
abouts with different intersection angles, lane widths,
traffic signs, etc.) to create new scenarios easily and
quickly. For interaction, a multi-agent simulation al-
lows to gather several human inputs in real time and
place them in the same virtual environment. This en-
ables to study the process of human decision making



especially regarding the choice to go before or after an-
other vehicle. The generic attribute refers to the ability
to run human inputs, recordings and automated vehi-
cles in the same software at the same time.

2.2 Vehicle model

We adapted an implementation of the bullet physics
engine [11] in order to run the simulation on a server
which centralizes the physics computations for every
client of the architecture. The vehicle is controlled by
setting three parameters: steering wheel angle, gas,
and brake. The physical engine then calculates the
next state of the world according to the friction slip
of the ground and the vehicle model [12]. The latter
includes four independent wheels with their suspen-
sion systems and a body mass on top. It reproduces
pitch and bounce degrees of freedom for the powertrain
giving realistic visual feedback to the human driver
for throttle changes. Each suspension system includes
stiffness, compression, damping and maximum travel.

2.3 Visualization

An example of the 3D view of the simulation can be
seen in Fig. 2. A special feature of the tool is to en-
able a rapid integration of new road topologies in the
scenario design. The visual representation of the envi-
ronment is generated from a two-dimensional bird-view
image, a description of traffic signs (type, position, ori-
entation) and a list of available paths for vehicles. A
monitor mode enables to display the scene from a bird-
view to watch the study, restart the scenario and assign
predefined paths to available human drivers.

Figure 2: left: bird view of the scene (monitor mode),
right: driver view

2.4 Control Systems

The intention is to gather meaningful behavioral data
of human drivers decisions in complicated driving situ-
ations. A detailed trace of trajectories is not required.
For this reason and because it is more convenient for
the study, the vehicles are controlled only by a com-
puter mouse. To keep trajectories and decisions realis-
tic the two following controls are applied to assist the
driver.

2.4.1 Automatic Lateral Control

The driver is told to follow a route that is highlighted
in the 3D view. As the only interaction regarding other
road users is either pass or give way, there is no reason
to escape a predefined route corridor. As the steering
task is neither required nor easy in this artificial en-
vironment, an automatic lateral control helps to keep
the lane according to the predefined path. The human
driver is only required to set the speed of the vehicle.

2.4.2 Semi-Automatic Longitudinal Control

According to the above, the only remaining critical task
to define a driving behavior is to set the speed profile
(i.e. the adjustment of the vehicle speed over time).
The assistance for the longitudinal control acts like a
Cruise Control system; the user sets a target speed with
the mouse cursor, and the longitudinal control adjusts
the brake/gas ratio to reach it in a smooth, natural
way, as follows, K being defined empirically:

Acc = AccMax

(
1−

(
Speedcurrent
Speedtarget

)3
)

Acc > 0⇒ gas = Acc

Acc < 0⇒ brake = −K ·Acc

(1)

The speed is set regarding the height of the mouse
cursor: the higher the cursor, the greater the accel-
eration. After several minutes in a test scenario, the
drivers seemed sufficiently accustomed to the simulated
driving task.

3 Data acquisition

The simulated environment is further used to gather
data about human behavior in several simple inter-
sections. The experiment is conducted with 10 par-
ticipants, each one of them driving their vehicle (ego-
vehicle) in 56 different setups involving interaction with
an automated vehicle (dummy-vehicle).

3.1 Scenarios

For the current work, we focus on the following road
topologies (cf. Figure 3):

• Two crossroads with four legs; the first one in
which two opposing routes lead to a yield sign and
the second one without traffic signs except those
reminding to give priority to the right

• A roundabout with four exits and one inner lane,
every incoming lane leading to a yield sign

Seven main scenarios are selected: six for the cross-
roads and one for the roundabout. For the crossroad,
we distinguish between the maneuver performed by the
ego-vehicle crossing the path of another vehicle (Left
Turn Across Path (LTAP), Right Turn Across Path



Figure 3: Available road topologies
(RTAP), Straight Across Path (SAP)) and the direc-
tion from which the other vehicle is coming (Left Di-
rection (LD), Opposite Direction (OD), Right Direc-
tion (RD)). In all cases the other vehicle has the prior-
ity. Therefore, there are six scenarios for the crossroad
topology: three for Left Turn Across Path (LTAP/LD,
LTAP/OD, LTAP/RD), two for Straight Across Path
(SAP/LD, SAP/RD) and one for Right Turn Across
Path (RTAP/LD). These scenarios are repeated with
different setups where the starting position and the
cruise speed for the dummy-vehicle change, so the in-
teraction between the two vehicles always varies.

3.2 The tracking algorithm

Since the human drivers do not have the same behavior
in the scene, they may enter the intersection with dif-
ferent timings. As an attempt to standardize each sce-
nario over every participant in the study, the dummy-
vehicle is manipulated to reach a given position with
a given speed when the ego-vehicle enters the intersec-
tion. Therefore, a dedicated algorithm has been de-
signed to perform a real-time tracking that shapes the
speed profile of the dummy-vehicle. Since interaction
between the dummy-vehicle and drivers was the pri-
mary target of this manipulation, risky situations were
created where the human drivers do not always succeed
to avoid a collision.

3.3 Procedure

All participants were in possession of a driver’s license
and were familiar with driving a car. To get used to
the simulation environment, there was a test loop pre-
sented first to gain experience with the controls of the
vehicle for several minutes. The study includes 30min
of driving through the 56 setups of the 7 scenarios,
each of them being ended by a subjective risk assess-
ment form. Neither any detail about the purpose of the
study nor any specific instructions are given, except a
request to observe traffic rules and to drive as in a real
environment. The simulator records all relevant infor-
mation about all vehicles every 100ms. Their position,
orientation, speed, acceleration (gas or brake applied)
and steering angle are stored in a dedicated JSON file.

4 Algorithm design

The trajectory planning is divided into a predefined
path computed offline and the variable speed profile
that determinates the behavior of the automated vehi-
cle. The outcome of the decision-making process is an

Figure 4: The Post Encrochment Time (PET)

optimal speed to be reached by the control module of
the automated vehicle. This target speed is updated
at each time step.

A set of reference speed profiles is determined of-
fline, extracted from human data (cf. section 4.1). The
decision-making process iterates over them to make
a prediction and decides then to follow the reference
speed profile that fits the best to the present situation.

In this approach, the post-encroachment time (PET)
is used as the objective risk feature. It corresponds to
the time difference between the first exit of the collision
zone and the last entrance in it (see Figure 4). As the
paths are predefined, the collision zone is approximated
by a rectangle in crossroads and a sector of an annulus
in roundabouts.

4.1 The reference speed profiles

The reference speed profiles are established for the
seven scenarios described in section 3.1. For a given
scenario, we consider the corresponding speed profiles
generated by the users in the simulation tool. The aim
is to identify the most common shapes of speed profiles
and average them to create a group of reference speed
profiles. In order to compare different speed profiles
generated by drivers, we define them with respect to
the curvilinear abscissa of the vehicle’s position which
is projected on the predefined path. Since the lateral
control of the vehicles ensures that the predefined path
is followed, this alignment of speed profiles is reason-
ably accurate.

The generated speed profiles are divided into three
groups (ego vehicle first, other vehicle first, risky situ-
ation) considering their PET values. The ego vehicle
passed first if PET > 0, and gave way to other ve-
hicle if PET < 0. Cases considered too risky (colli-
sions included) and situations with a high score on the
driver’s subjective risk (> 8 on a scale from 1 to 10) are
discarded. Further, a k-means clustering is performed
for the remaining two groups, giving a set of centroids
of speed profiles that average the observed behaviors
(Figure 5-B). To apply the k-mean algorithm on se-
quential data, every profile is considered a vector hav-
ing one element per abscissa step (i.e. 1m step on the
predefined path). The recorded speed profiles rarely



Figure 5: A: Recorded speed profiles in crossroad
LTAP/RD scenario. Only ”passing first” speed profiles
(PET > 0) are considered. B: Three reference speed
profiles after clustering

Figure 6: A: The six reference speed profiles in cross-
road LTAP/RD scenario (3 passing, 2 yielding, 1 stop-
ping). B: The speed profiles candidates, adapted to the
current speed (red cross) with a control algorithm.

intersect over the abscissa, which enables the k-mean
algorithm to perform a good separation of the speed
profiles into clusters. On some scenarios, a first clus-
tering builds singleton clusters with only one outsider
speed profile inside. The outsider profiles are removed
from data before performing a second clustering that
is better balanced.

The reference speed profiles (see Figure 6-A for an
example) consist of three speed profiles for entering the
intersection fast (for situations where the ego vehicle
passed first safely), two speed profiles for entering the
intersection slower (ego yield to other vehicle), and one
speed profile for stopping definitely before the intersec-
tion at the stop line.

4.2 Short term prediction

When the automated vehicle AV approaches an inter-
section while another vehicle veh2 is closing in from
a different direction, a decision has to be made to go
before or after veh2. For this purpose, a short term
prediction is made at each time step (approx. 100ms),
with a time horizon of 2s if the AV reaches the inter-
section within this horizon. The prediction of the AV
utilizes the reference speed profiles while the maneuver
of veh2 is assumed to be predicted correctly and the
position on the path is an extrapolation with the cur-
rent speed. About 30m before the intersection the AV
enters the ”decision zone”, which is the region where
the decision has to be made. The decision zone ends
at the path of veh2.

To be adapted to any situation (i.e. to any driv-
ing speed), the reference speed profiles (Fig. 6-A) are
considered as a target for the control algorithm used
above in the simulated environment (cf. equation 1).
The control algorithm starts at the current speed and
then simulates the future longitudinal dynamics of the
vehicle adapting to the given reference speed profile.
The output gives actual executable speed profile can-
didates (Fig. 6-B).

Based on the predicted motion of both vehicles, the
PET is computed for each of the six speed profiles
candidates and is provided to the decision-making algo-
rithm. The prediction iterates over every speed profile
candidate for the automated vehicle, so different be-
haviors are tested against the situation. The prediction
stops when the vehicle AV exits the ”decision zone” and
crosses the path of veh2. After this point, the decision
process is set back to a default lane-following mode.

4.3 Decision-making

The decision-making process depends on the objective
risk feature and the predicted speed of the vehicle. Es-
timated trajectories leading to a |PET | below a criti-
cal threshold are rejected for being too risky. After the
risk evaluation, the speed profile with the highest in-
stantaneous speed is selected from the remaining can-
didates to contribute to time efficiency. In the cases
where there is no appropriate candidate (i.e. emer-
gency cases), the stopping speed profile is automati-
cally selected. This leads either to a stop before cross-
ing the path if possible or at least to a high reduction
of speed. As previously mentioned, as soon as the path
of veh2 is entered the AV changes into a lane-following
mode since a stop in the path of the other vehicle is
undesirable and potentially dangerous. Finally, the se-
lected speed profile is sent to the control module.

5 Results

The algorithm is capable of passing the intersection
safely. The driving strategy is reasonable and seems to
replicate human-like behavior to the extent that such
a property can be evaluated in the present simulated
environment. The results are also presented in a video



Figure 7: Number of collisions

provided in [13]. The following will focus on an objec-
tive validation of our algorithm.

To enable an objective comparison, an automated
vehicle with the described algorithm is tested in the
same setups that were used to retrieve the speed pro-
files. The validation setups have been grouped into
the seven scenarios described in 3.1. The ten human
drivers have been clustered into two groups of five
drivers according to their averaged speed inside the in-
tersection over all scenarios. The group of faster drivers
is called the ”daring human drivers” and the other is
the ”cautious human drivers” group. Besides these two
groups, the evaluation is performed with two versions
of the decision-making algorithm differing in the PET
threshold for taking a predicted speed profile into ac-
count. The automated vehicles 1 and 2 ensure respec-
tively |PET | > 1.5 and |PET | > 0.7, which leads to
two discriminable behaviors.

As presented before, the seven scenarios have eight
variants leading to 56 different setups. As it is not
trivial to condensate the complete course of a driving
situation into one score, three features have been cho-
sen for the evaluation of the driving performance.

• The number of collisions (Fig. 7). In case of the
two groups of human drivers, this value is dis-
played with a min to max range referring to the
collisions of an individual driver of the group and
the mean indicator for the group.

• The number of daring situations, i.e. situations
where the driver succeeded to pass before the other
vehicle (Fig. 8). In case of the two groups of
human drivers, this value is again displayed with
a min to max range referring to the numbers of
an individual driver of the group and the mean
indicator for the group.

• The average speed (unless when stopped) inside
the intersection (Fig. 9). For each scenario, the
mean and standard deviation are computed over
the 8 different setups (and over the 5 drivers in
case of a group).

In all scenarios, automated vehicles 1 and 2 passed ev-
ery setup without colliding with the other vehicle (see
Fig. 7). However, the dummy car was implemented
to generate comparable setups that are risky. So, its

Figure 8: Number of situations where driver passed
first

Figure 9: Average speed inside the intersection

behavior was highly artificial. This explains the high
collision rate for the human drivers in both groups.

The daring human driver group enters the intersec-
tion first most frequently in average compared to the
cautious human driver group (see Fig. 8). The only ex-
ception is in the roundabout scenario where the mean
values are the same for both groups. The automated
vehicles act more conservative to prevent collisions.
While automated vehicle 2 with a higher risk accep-
tance is passing first multiple times in several scenar-
ios, the automated vehicle 1 is almost always yielding
to the incoming dummy vehicle. So, AV 2 is compara-
ble with the human drivers in terms of using the oppor-
tunity to pass first and is often between both human
driver groups. In the SAP-LD scenario, AV 2 manages
to pass first even more often than the daring human
driver group in average. Here, the human drivers seem
to miss some opportunities to pass before the incoming
vehicle. In roundabouts both AVs are rather conserva-
tive and pass only once in all the setups.

6 Conclusion

We presented a human-like decision-making algorithm
for simple unsignalized intersections in presence of an-
other vehicle. A dedicated simulation tool was used to
record human speed profiles in especially risky situa-
tions where a conflict can arise if the driver dares to
pass before the other vehicle. The aggregated data has
been used to design an algorithm that enables human-
like speed profile generation while ensuring safety with
objective risk assessment. The post-encroachment time
(PET) appeared to be a useful feature to estimate risk
at unsignalized intersections. Therefore, it was used in



a short-term prediction that successfully avoided colli-
sions in every tested scenario. The results show that
our approach can handle standard intersection scenar-
ios with another car approaching from a different direc-
tion without collisions. This is not only realizable by
just avoiding the conflict at all and yielding in almost
every setup (compare AV 1) but also by accepting some
level of risk and passing first if it is possible (compare
AV 2). This combines some level of human-like dar-
ing behavior with the objective risk evaluation of an
automated system.

Work in progress extends this approach to more com-
plex scenarios, especially with generic road topologies
and more road users interacting simultaneously. A new
method of validation is also investigated to estimate
the acceptance of the automated vehicle behavior by
human drivers in the scene.
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